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Abstract

This paper is concerned with the distributed recursive filtering problem for a class of discrete time-delayed stochastic systems
subject to both uniform quantization and deception attack effects on the measurement outputs. The target plant is disturbed
by the multiplicative as well as additive white noises. A novel distributed filter is designed where the available innovations
are from not only the individual sensor but also its neighbouring ones according to the given topology. Attention is focused
on the design of a distributed recursive filter such that, in the simultaneous presence of time-delays, deception attacks and
uniform quantization effects, an upper bound for the filtering error covariance is guaranteed and subsequently minimized by
properly designing the filter parameters via a gradient-based method at each sampling instant. Furthermore, by utilizing the
mathematical induction, a sufficient condition is established to ensure the asymptotic boundedness of the sequence of the error
covariance. Finally, a simulation example is utilized to illustrate the usefulness of the proposed design scheme of distributed
filters.
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1 Introduction

For a few decades, as one of the most notable algorithms
for state estimation problems, the Kalman filtering (K-
F) technique has been playing an important role in sig-
nal processing and system control fields [2, 3, 36]. The
KF technique is essentially a maximum-likelihood esti-
mate algorithm for linear models with Gaussian noises
under a quadratic performance criterion [12]. To cope
with nonlinearities and/or uncertainties, there have been
a few sub-optimal variants based on the traditional K-
F algorithm. Examples include, but are not limited to,
the robust KF for uncertain systems [12], the extended
KF (EKF) or the unscented KF for nonlinear system-
s [15] and the KF/EKF for systems with equality con-
straints [29]. Recently, the Kalman filtering problem for
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systems with communication delays has received consid-
erable research interest corresponding to the popularity
of the networked systems. In case of the discrete time-
delayed systems, the filtering algorithms have been pro-
posed via system augmentation approach in order to uti-
lize the Riccati equationmethods [22]. Different from the
discrete-time case, the continuous-time system with de-
layedmeasurements can be converted into a nominal sys-
tem with delay-free measurements via the re-organizing
method [18]. It is worth mentioning that the computa-
tional burden would become an issue for the augmen-
tation and re-organizing methods especially when the
time-delays are relatively large. Obviously, an adequate
trade-off between the estimation accuracy and the com-
putational efficiency should be taken into account when
dealing with time-delays in the filtering problems.

It is well known that, in networked systems, an analog-
to-digital converter is usually adopted to convert the
continuous-time analog signal to the corresponding
discrete-time digital one. Due primarily to the operation
of rounding or truncation, the unavoidable difference
between the actual analog value and converted digital
one is customarily referred to as the quantization er-
ror or quantization distortion. This kind of errors can
be modeled as a bounded unknown disturbance or as
an additional random signal obeying uniform distribu-
tion [4, 28]. Up to now, the stabilization and minimum
data transmission rate issues with uniform quantization
have been investigated by utilizing Lyapunov functions
combined with perturbation analysis techniques, see
e.g. [4]. It is worth emphasizing that the quantization er-
rors from uniform quantizers are non-square summable
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sequences that cannot be described by the widely used
state-dependent Lipschitz-like conditions [20] and there-
fore cannot be handled by the well-known robust design
techniques. This may well explain why the results on
filter/controller design problems under uniform quanti-
zations have been scattered in comparison with those
for logarithmic quantizations.

On the other hand, in parallel with the quiet evolution
of sensor network technologies, the distributed filtering
problem through sensor networks has gained an ever-
increasing interest from researchers in many areas such
as signal processing and control engineering, and a num-
ber of filtering algorithms have been proposed in the lit-
erature, see e.g. [8,9,19] for the distributed H∞ filtering
schemes and [25] for the distributed KFmethods. In par-
ticular, a distributed filtering framework that sheds in-
sightful light on this domain has been established in [25]
with the aid of two identical consensus filters for fusion
of the sensor data and covariance information. A typical
feature with the distributed filters is their collaborative
information processing mechanism, that is, the informa-
tion available on an individual node is not only from its
own measurement but also from its neighboring sensors’
measurements according to the given topology via open
networks. Note that the sensor nodes are usually made
of low cost devices with low computing capacity and lim-
ited battery power. As such, the sensor networks might
be vulnerable to cyber-attacks especially during the sig-
nal transmission [24, 37] and, accordingly, the emerging
cyber-security issues have been raised that have quickly
attracted much attention, see e.g. [26, 31].

In the general context of networked control systems,
so far, much progress has been made on the security
control/filtering problems by employing the techniques
of dynamic programming or Lyapunov stability theory,
see e.g. [1, 21] for denial-of-service (DoS) attacks and
[6, 7, 11, 16, 26] for deception attacks. However, when it
comes to the distributed filtering issues over sensor net-
works, only a limited number of results have been avail-
able in the literature (see e.g. [24, 32, 37]). For instance,
under binary hypotheses with quantized sensor observa-
tions, the optimal attacking distributions have been es-
timated in [24] to minimize the detection error exponent
and the fraction of Byzantine sensors (i.e. compromised
sensors for adversaries). Recently, in [37], the identifica-
tion and categorization issues of attacked sensors have
been discussed by utilizing the joint estimation of the
statistical description of the attacks and the estimated
parameter. Note that most existing results have been
concerned with static target plants despite the fact that
dynamic target plants are more often encountered in en-
gineering practice, which is due probably to the difficul-
ties in analyzing the dynamics in collaborative nature
and spatial structure when designing distributed filters.

In the research area of cyber-security, the success ratio
of the launched attacks has recently become an emerg-
ing topic of research from the defenders’ perspectives.
The launched attacks by the adversaries may not always
be successful for mainly three reasons: 1) only a relative-
ly small amount of attacks could pass through the de-
tectors (with anti-attack countermeasures) for system-
s equipped with protection devices or software; 2) the
attacks cannot be persistently (or arbitrarily) launched
by the adversaries due to unavoidable limited resource

(e.g. energy); and 3) the attacks sent through the net-
works with limited bandwidth are subject to randomly
fluctuated condition changes (e.g. network load, network
congestion and network transmission rate) and therefore
cannot arrive at the desired end. As such, from the view-
point of the defending party, the successfully occurred
cyber-attacks can be understood to be intermittent or
random in implementation, and the corresponding is-
sue of intermittently or randomly occurred cyber-attacks
have been dealt with in [1,37,38]. For example, the max-
imal number of succession attacks has been investigated
in [38] where a variation of the receding-horizon control
law has been proposed to deal with the replay attacks
and analyze the resulting system performance degrada-
tion. Nevertheless, the intermittent or random nature of
the successfully occurred cyber-attacks has not received
adequate attention yet for the distributed filtering prob-
lem of dynamic target plants, not to mention the case
where the multiplicative/additive noises [13] and the u-
niform quantizations are also the concerns.

Summarizing the above discussions, the focus of this pa-
per is on the parameter design and performance analy-
sis of distributed recursive filtering with uniform quan-
tization and intermittent deception attacks. We endeav-
or to answer the following questions: 1) how to design
a distributed filter effectively fusing the unreliable da-
ta corrupted by noises, quantization errors and possible
deception attacks? 2) how to develop an efficient filter-
ing algorithm that would help reduce the computation
burden resulting from time delays and the large num-
ber of sensor nodes? and 3) how to cope with the com-
plicated coupling issues between the filtering errors and
observed states in the performance analysis? The main
contribution of this paper is threefold: 1) a novel struc-
ture of distributed filters is designed to adequately utilize
the available innovations from not only itself (credible
measurements) but also its neighbouring sensors which
could be subject to deception attacks; 2) the developed fil-
ter design algorithm is of a form suitable for distributed
recursive computation in online applications via solving
two Riccati-like difference equations; and 3) a sufficient
condition is proposed to show the asymptotic bounded-
ness of the filtering error covariance through intensive
stochastic analysis.

Notation The notation used here is fairly standard ex-
cept where otherwise stated. Rn and R

n×m denote, re-
spectively, the n dimensional Euclidean space and the
set of all n×m real matrices. I denotes the identity ma-
trix of compatible dimension. The notation X ≥ Y (re-
spectively,X > Y ) whereX and Y are symmetric matri-
ces, means that X − Y is positive semi-definite (respec-
tively, positive definite). MT represents the transpose of
M . E{x} stands for the expectation of stochastic vari-
able x. ||x|| describes the Euclidean norm of a vector x.
The shorthand diag{M1,M2, · · · ,Mn} denotes a block
diagonal matrix with diagonal blocks being the matrices
M1, M2, · · · ,Mn.

2 Problem Formulation and Preliminaries

In this paper, the underlying sensor network has n
sensor nodes which are distributed in space according
to a fixed network topology represented by a directed
graph G = (V , E ,H ) of order n with the set of nodes
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V ={1, 2, · · · , n}, the set of edges E ∈ V × V , and the
weighted adjacency matrix H = [hij ] with nonnega-
tive adjacency element hij . An edge of G is denoted
by the ordered pair (i, j). The adjacency elements as-
sociated with the edges of the graph are positive, i.e.,
hji > 0 ⇐⇒ (j, i) ∈ E , which means that sensor i can
obtain information from sensor j. The set of neighbors
of node i ∈ V is denoted by Ni = {j ∈ V : (j, i) ∈ E }.
The in-degree of Node i is defined as ~iin =

∑

j∈Ni
hji.

In this paper, assume ~iin 6= 0 for all nodes.

Let the target plant be described by the following
discrete-time stochastic system with multiplicative
noises:

xk+1 =
(
A0,k +

r∑

s=1

ωs,kAs,k

)
xk

+
(
Ad

0,k +
r∑

s=1

ωs,kA
d
s,k

)
xk−τ +Bkwk

(1)

with n sensors modeled by

ỹi,k =
(
C0,k+̟i,kCi,k

)
xk+Dkvi,k, i = 1, 2, · · · , n (2)

where xk ∈ R
nx is the state of the target plant that

cannot be observed directly, ỹi,k ∈ R
ny is the ideal

measurement output (without quantization) from sen-
sor i. wk ∈ R

s and vi,k ∈ R
p (i = 1, 2, · · · , n) are

the white noises with zero-mean and unity covariance,
and are mutually uncorrelated in k and i. ωs,k ∈ R

(s = 1, 2, · · · , r) and ̟i,k ∈ R (i = 1, 2, · · · , n) are mul-
tiplicative noises with zero-mean and unity variances,
and are mutually uncorrelated in k. r and τ are two
known positive integers. As,k, A

d
s,k (s = 0, 1, · · · , r) and

Ci,k (i = 0, 1, · · · , n) are known constant matrices with
compatible dimensions.

In this paper, a uniform quantizer is taken into account.
Assume that the overall quantizer range is [−M, M ]
withM > 0. The length of the quantizer level u is defined
as u = 2M/(2b − 1) where b is the number of bits for
digital sensors. The uniform quantizer [28] is denoted by

ȳi,k = Q(ỹi,k) = ỹi,k + qi,k (3)

where ȳi,k is the quantized signal and qi,k ∈ R
ny is the

quantization error process. Here, qi,k is an additive white
uniform distributed noise with each element being uni-
formly distributed in [−0.5u, 0.5u]. Obviously, the vari-

ance of such a quantization error process is u2

12
I.

As discussed in the introduction, from the defender-
s’ perspectives, the successfully occurred cyber-attacks
could be intermittent or random in the implementation.
In this case, the signals during the network transmission
are subject to deception attacks modeled as follows:

yi,k = Q(ỹi,k) + αi,kζi,k (4)

where yi,k is the received signal by neighboring nodes,
ζi,k ∈ R

ny stands for the signal sent by attackers that
is described as ζi,k = −Q(ỹi,k) + ξk. Here, the non-zero
ξk satisfying ‖ξk‖ ≤ δ is an arbitrary limited magnitude
signal and the bound δ is a known positive scalar that

can be estimated through statistical tests or specified by
security requirements. The variable αi,k is a Bernoulli
distributed white sequence taking values on 0 or 1 with
the following probabilities

Prob{αi,k = 0} = 1− ᾱ, Prob{αi,k = 1} = ᾱ

where ᾱ ∈ [0, 1] is a known constant.

In this paper, the Kalman-type recursive filter on Node
i is of the following form:







x̂i,k+1|k = A0,kx̂i,k|k +Ad
0,kx̂i,k−τ |k−τ (5a)

x̂i,k+1|k+1 = x̂i,k+1|k + ~
i
inK

1
i,k+1

×
(
ȳi,k+1 − C0,k+1x̂i,k+1|k

)
+K2

i,k+1

×
∑

j∈Ni

hji

(
yj,k+1 − (1− ᾱ)C0,k+1x̂i,k+1|k

)
(5b)

where x̂i,k|k and x̂i,k+1|k are, respectively, the state esti-

mate and the one-step prediction at time k, and K1
i,k+1

and K2
i,k+1 are the filter parameters to be determined.

Remark 1 For distributed filtering problems, the infor-
mation available on each node is not only from itself but
also from its neighbors according to the given topology.
From the problem addressed in this paper, the data re-
ceived from any neighboring sensors might be unreliable
due to the possible deception attacks. As such, the innova-
tion in (5b) is divided into two parts, that is, ~iin

(
ȳi,k+1−

C0,k+1x̂i,k+1|k

)
regarding the data from the node itself

and
∑

j∈Ni
hji

(
yj,k+1 − (1− ᾱ)C0,k+1x̂i,k+1|k

)
account-

ing for the data from the neighboring nodes. Therefore,
the proposed filter model (5b) can be utilized to effectively
fuse the data from two different sources, thereby improv-
ing the filtering performance.

Let us denote the one-step prediction error and the fil-
tering error on Node i as ei,k+1|k := xk+1 − x̂i,k+1|k and
ei,k|k := xk − x̂i,k|k, respectively. The objective of this
paper is twofold:

R1) Design a Kalman-type filter of the form (5a) and
(5b) such that, in the presence of deception attacks, an
upper bound for the filtering error covariance is guar-
anteed, i.e., there exists a sequence of positive-definite
matrices Πi,k|k satisfying

E{ei,k|ke
T
i,k|k} ≤ Πi,k|k, ∀k > 0 (6)

Furthermore, the sequence of upper bounds Πi,k|k is

minimized by the designed filter parameters K1
i,k+1

and

K2
i,k+1

through a recursive scheme;

R2) For designed filter parameters K1
i,k+1

and K2
i,k+1

,
find a condition under which the sequence Πi,k|k is
asymptotically bounded as time tends to infinity.

3 Distributed filter design

In this section, by resorting to the stochastic analysis
combined with some special matrix inequalities, a suffi-
cient condition on the filter design is proposed by solving
two Riccati-like difference equations in order to guar-
antee an upper bound of the filtering error covariance.

3



Moreover, such an upper bound is minimized based on
the designed filter. Before proceeding further, we intro-
duce the following lemmas which will be needed for the
derivation of our main results. In addition, all proofs of
Lemmas and Theorems are moved to the appendixes for
clarity of presentation.

Lemma 1 [30] Suppose that X = XT > 0, Φk(X) =
ΦT

k (X) ∈ R
nx×nx and Ψk(X) = ΨT

k (X) ∈ R
nx×nx . If

there exists Y = Y T > X such that

Φk(Y ) ≥ Φk(X), Ψk(Y ) ≥ Φk(Y ) (7)

then the solutions Mk and Nk to the following difference
equations

Mk+1 = Φk(Mk), Nk+1 = Ψk(Nk), M0 = N0 > 0 (8)

satisfy Mk ≤ Nk.

Lemma 2 For the addressed system (1), the state co-
variance matrix Xk+1 = E{xk+1x

T
k+1

} obeys the follow-
ing inequality:

Xk+1 ≤ (1 + εk)

r∑

s=0

As,kXkA
T
s,k +BkB

T
k

+ (1 + ε−1

k )

r∑

s=0

Ad
s,kXk−τ (A

d
s,k)

T .

(9)

In light of Lemma 2, the upper bounds of both the co-
variance matrix Pi,k+1|k of one-step prediction error and
the filtering error covariance Pi,k+1|k+1 are presented in
the following theorem.

Theorem 1 For the addressed system (1) with measure-
ments (3) suffering from attacks (4), the covariance ma-
trix Pi,k+1|k of one-step prediction errors and the filter-
ing error covariance Pi,k+1|k+1 satisfy

Pi,k+1|k ≤ Πi,k+1|k, Pi,k+1|k+1 ≤ Πi,k+1|k+1 (10)

where

Πi,k+1|k = (1 + εk)A0,kΠi,k|kA
T
0,k +BkB

T
k

+ (1 + ε−1

k )Ad
0,kΠi,k−τ |k−τ (A

d
0,k)

T

+ (1 + εk)
∑r

i=1
Ai,kXkA

T
i,k

+ (1 + ε−1

k )
∑r

i=1
Ad

i,kXk−τ (A
d
i,k)

T

Πi,k+1|k+1 = Ψ0
i,k+1Πi,k+1|kΨ

0T
i,k+1 +K1

i,k+1Ψ
1
i,k+1

×K1T
i,k+1 +K2

i,k+1Ψ
23
i,k+1K

2T
i,k+1

(11)
with

s̃i =
n∑

l=1

n∑

j=1

ᾱ2hlihji +
n∑

l=1

(ᾱ − ᾱ2)(hli)
2

Ψ0
i,k+1 = I − ~

i
inK

1
i,k+1C0,k+1 − ~

i
in(1− ᾱ)K2

i,k+1C0,k+1

Ψ1
i,k+1 = (~iin)

2
(

Ci,k+1Xk+1C
T
i,k+1 +Dk+1D

T
k+1 +

u2I

12

)

Ψ2
i,k+1 =

n∑

j=1

(1 − ᾱ)(hji)
2
(

ᾱ(1 + εk)C0,k+1Xk+1C
T
0,k+1

+ Cj,k+1Xk+1C
T
j,k+1

)

Ψ3
i,k+1 = (1 + 2ε−1

k )s̃iδ
2I

+

n∑

j=1

(1− ᾱ)(hji)
2
(

Dk+1D
T
k+1 +

u2I

12

)

Ψ23
i,k+1 = Ψ2

i,k+1 +Ψ3
i,k+1, Πi,j|j = Pi,j|j (−τ ≤ j ≤ 0).

Up to now, the upper bound for the filtering error co-
variance has been derived. We are now in a position to
consider the filter gain design problem for the addressed
problem. The following result can be accessible by using
the gradient-based approach.

Theorem 2 For the addressed system (1) with measure-
ments (3) suffering from attacks (4), the gain matrices
of the recursive filter (5a) and (5b) are given as follows

K1
i,k+1 = ~

i
inΠi,k+1|kC

T
0,k+1

(
I − (~iin)

2(1− ᾱ)2

×
(
S2
i,k+1

)−1
S0
i,k+1

)(
Ω1

i,k+1

)−1

K2
i,k+1 = (1− ᾱ)~iinΠi,k+1|kC

T
0,k+1

(
I − (~iin)

2

×
(
S1
i,k+1

)−1
S0
i,k+1

)(
Ω2

i,k+1

)−1

(12)

where

S0
i,k+1 = C0,k+1Πi,k+1|kC

T
0,k+1

S1
i,k+1 = (~iin)

2S0
i,k+1 +Ψ1

i,k+1

S2
i,k+1 = (~iin)

2(1 − ᾱ)2S0
i,k+1 +Ψ23

i,k+1

Ω1
i,k+1 = S1

i,k+1 − (1− ᾱ)2(~iin)
4S0

i,k+1

(
S2
i,k+1

)−1
S0
i,k+1

Ω2
i,k+1 = S2

i,k+1 − (1− ᾱ)2(~iin)
4S0

i,k+1

(
S1
i,k+1

)−1
S0
i,k+1.

Furthermore, the upper bound of the filtering error co-
variance Πi,k+1|k+1 is recursively calculated by Riccati-
like difference equation (11).

Remark 2 In the above theorem, the desired filter gain
matrices are obtained with the aid of the solution of
Riccati-like difference equations. It is not difficult to see
that, for ᾱ = 1, the gain K1

i,k+1
andK2

i,k+1
will reduce to

the case of a single node without neighbors (K2
i,k+1

= 0 in

this case), which implies that the filter on each node will
refuse to fuse the information from the neighboring nodes
when the network is completely unreliable. Furthermore,
it should be pointed out that these two gains are designed
by minimizing the trace of an upper bound for the filter-
ing error covariance due to the effect from time-delays,
deception attacks and uniform quantization. As such, the
proposed filter is only a suboptimal one.

4 Boundedness analysis

So far, we have derived an upper bound for the filtering
error covariance and such an upper bound is subsequent-
ly minimized by properly designing the filter parameters
via a gradient-based method at each sampling instant.
In reality, we would also be interested in understanding
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when the sequence of the upper bounds is asymptotical-
ly bounded in order to evaluate the performance of the
designed recursive filter. In this section, for obtained fil-
ter gains, we will propose a sufficient condition ensuring
the boundedness of the sequence Πi,k|k with respect to
the filtering error covariance. For this purpose, we firstly
introduce the following crucial assumption and lemmas.
Similar to Section 3, all proofs of Lemmas and Theorems
are moved to the appendixes for clarity of presentation.

Assumption 1 There are positive real constants f̄i, f̄
d
i ,

b, b̄, d, d̄ and c̄i (i = 0, 1, 2, · · · , r) such that the system
parameter matrices are bounded:

Ai,kA
T
i,k ≤ f̄iI, Ad

i,kA
dT
i,k ≤ f̄d

i I, Ci,kC
T
i,k ≤ c̄iI

bI ≤ BkB
T
k ≤ b̄I, dI ≤ DkD

T
k ≤ d̄I.

Lemma 3 [23] Let A and B be two n × n symmetric
matrices with their eigenvalues listed as follows:

λmax(A) = λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A) = λmin(A),

λmax(B) = λ1(B) ≥ λ2(B) ≥ · · · ≥ λn(B) = λmin(B).

Then, one has

min
1≤i≤s

(
λk(A)+λs+1−i(B)

)
≥ λs(A+B)

≥ max
s≤i≤n

(
λi(A) + λn+s−i(B)

)
, 1 ≤ s ≤ n.

Furthermore, when either A or B is positive definite, the
following are true for any s ≤ n:

min
1≤i≤s

(
λi(A)λs+1−i(B)

)
≥ λs(AB)

≥ max
s≤i≤n

(
λi(A)λn+s−i(B)

)
,

min
1≤i≤s

(
λi(A)λs+1−i(BBT )

)
≥ λs(BABT )

≥ max
s≤i≤n

(
λi(A)λn+s−i(BBT )

)
.

The following lemma is easily accessible by using the
mathematical induction method and its proof is there-
fore omitted.

Lemma 4 LetXi ≤ p̄xI (−τ ≤ i ≤ 0) hold for the given
positive scalar p̄x. For the addressed system (1), if there
exists a positive scalar ε satisfying
(

(1 + ε)
∑r

i=0
f̄i + (1 + ε−1)

∑r

i=0
f̄d
i

)

p̄x + b̄ ≤ p̄x,

then p
x
I ≤ Xk ≤ p̄xI is true for all k > 0 where p

x
is a

known positive scalar satisfying p
x
≤ b.

Now, let us give the main result, whose proof is moved
to the appendix for clarity of presentation.

Theorem 3 Under Assumption 1, let Πi,j|j ≤ p̄πi
I

(−τ ≤ j ≤ 0) where p̄πi
is a known positive scalar.

For the addressed system (1) with the filtering dynamics
(5a)-(5b), Πi,k+1|k+1 ≤ p̄πi

I holds for any k ≥ 1 if there
exists a positive scalar ε satisfying

(3 + ξ0)̺1 ≤ p̄πi (13)

where

ξ0 =
(~iinφ

mΨ
i,1 )2c̄0̺1

(φnΨ
i,1 )

3
+

(~iinφ
mΨ
i,23)

2(1− ᾱ)2c̄0̺1

(φnΨ
i,23)

3

+
3(~iin)

4c̄20̺
2
1

(φnΨ
i,1 )

2
+

3(~iin)
4c̄20̺

2
1

(φnΨ
i,23)

2

φmΨ
i,1 = (~iin)

2
(
C̄ip̄x + d̄+ u2/12

)
, φnΨ

i,1 = (~iinu)
2/12

φmΨ
i,23 =

n∑

j=1

(1− ᾱ)(hji)
2
(
ᾱ(1 + ε)c̄0p̄x

+ c̄j p̄x + d̄+ u2/12
)
+ (1 + 2ε−1)s̃iδ

2

φnΨ
i,23 =

n∑

j=1

(1− ᾱ)(hji)
2u2/12 + (1 + 2ε−1)s̃iδ

2

̺1 = (1 + ε)f̄0p̄πi
+ (1 + ε−1)f̄d

0 p̄πi

+

r∑

i=1

(
(1 + ε)f̄i + (1 + ε−1)f̄d

i

)
p̄x + b̄

Remark 3 It is worth noting that the condition (13) in
Theorem 3 includes all the information about plant dy-
namics, quantizations, cyber-attacks, filtering scheme as
well as communication topology. In practice, the bound
of system parameters in Assumption 1, the quantizer lev-
el, the communication topology as well as the statistical
characteristics of noises can all be made available to the
filter design through parameter identification. Therefore,
the condition (13) is essentially an algebraic polynomi-
al inequality on ε and p̄πi

. It is fairly easy, via Matlab
software tools, to verify whether or not there exists a re-
gion of (ε, p̄πi

) that guarantees (13). In addition, it can
be checked if the initial condition Πi,j|j = Pi,j|j ≤ p̄πi

I
(−τ ≤ j ≤ 0) holds for some p̄πi

.

Remark 4 In this paper, the filter parameters K1
i,k+1

and K2
i,k+1 can be obtained in an online manner (as

described in Theorem 2) in order to minimize the up-
per bound of filtering error covariance. Furthermore, the
boundedness of the obtained sequence on the filtering er-
ror covariance is discussed in Theorem 3, which is ac-
tually concerned with the stability issues of the recursive
Kalman filtering algorithms that have received particular
attention in the area. As opposed to the single filter pa-
rameter in traditional stability analysis [17, 27], two fil-
ter parameters are considered in our paper that deal with,
respectively, the reliable data from the node itself and the
possibly unreliable data from the neighboring nodes. The
introduction of the two filter parameters reflects the dis-
tributed nature of the filter dynamics but also brings in
essential difficulties in the stability analysis as traditional
methods (e.g. those in [17,27]) are no longer applicable.
In this paper, the mathematical induction method com-
bined with the properties of matrix analysis is utilized to
overcome the difficulties and obtain the desired sufficient
conditions that are related to both the quantization and
the attack. Actually, it can be seen from Theorem 3 that
the solvability of (13) is dependent on both δ and u.

5 Illustrative example

In this section, we present a simulation example to illus-
trate the effectiveness of the proposed distributed filter
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Fig. 1. Topological structure of the sensor network.

design scheme for discrete-time stochastic system with
multiplicative noises through sensor networks.

The target plant considered is modeled by (1) with r =
τ = 1 and the following parameters:

A0,k =

[

1.0 0.125 + 0.1 sin(0.2k)

−0.2 0.95

]

A1,k =

[

0 0

0 0.1

]

, Ad
0,k =

[

−0.01 0

0 0.05

]

Ad
1,k =

[

0 0

0 −0.01

]

, Bk =

[

0.01

−0.01

]

C0,k = [ 1 0.1 ], C1,k = [−0.01 0 ], Dk = 0.05.

The sensor network shown in Fig. 1 has the elements in
the adjacency matrix H are hji = 0.5 when sensor i can
obtain information from sensor j, otherwise hji = 0.

In this example, the probability ᾱ of the cyber-attacks,
the length u of the quantizer level and the bound δ are,
respectively, selected as 0.15, 0.01 and 0.2. The initial

conditions are set as x−1 = [ 0.4 0.3 ]T , x0 = [ 2.5 −3 ]T ,

Pi,−1|−1 = Pi,0|0 = I (i = 1, 2, · · · , 5), X−1 = 0.1I and
X0 = 0.2I. In addition, the attack signal is set to be
0.2 sin(ri,k) where ri,k obeys the Gaussian distribution
N (0, 12).

In order to compare with the centralized Kalman filter-
ing, we consider the node S5 without neighbors, that is,
we add the in-degree ~

5
in = 0 Fig. 1. On this node, the

traditional Kalman filtering algorithm is utilized to ob-
tain the estimated state and the filtering error covari-
ance. Simulation results are shown in Figs. 2-5, where
Fig. 2 plots the measurements and the actually received
signals where the red broken lines show the attack phe-
nomena. Fig. 3 depicts the trajectories for the system
states (blue lines) and their estimates (red lines). In ad-
dition, we can find from Fig. 4 that the innovation in-
formation from the node itself undertakes an important
role to improve the filtering performance. In Fig. 5, we
aim to examine how success ratio of the launched attacks
influences the filter performance. It can be observed that
the trace of Π2,k|k at k = 100 increases with increased ᾱ.
Obviously, when ᾱ > 0.2, the effect from attacks is quite
limited which means that the proposed distributed filter
is of the expected “robustness” against unreliable mea-
surements resulting from multiplicative noises, uniform
quantizations and intermittent deception attacks.
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Fig. 2. The measurements and the received signals.

0 20 40 60 80 100
−20

0

20

S
1

0 20 40 60 80 100
−20

0

20

S
2

0 20 40 60 80 100
−20

0

20

S
3

0 20 40 60 80 100
−20

0

20
S
4

0 20 40 60 80 100
−20

0

20

S
5

Fig. 3. The system states and their estimation (two elements
for considered system state).
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Fig. 4. The trace of filtering error covariance for different
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6 Conclusions

In this paper, the distributed recursive filtering problem
has been investigated a class of discrete time-delayed s-
tochastic systems subject to effects of both the uniform
quantization and the deception attacks. A distributed
filter has been designed that fuses the unreliable data
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Fig. 5. The trace of Π2,k|k for varying ᾱ on k = 100.

corrupted by noises, quantization errors and possible de-
ception attacks, where the filtering algorithm is shown
to be efficient in reducing the computation burden re-
sulting from time delays and the large number of sensor
nodes. The complicated coupling issues between the fil-
tering errors and observed states have been addressed
in the performance analysis. An upper bound on the fil-
tering error covariance has been guaranteed and then
minimized by means of solving two Riccati-like differ-
ence equations. In addition, by utilizing the mathemat-
ical induction method, a sufficient condition has been
proposed under which the filtering error covariance is
bounded as time trends to infinity. Finally, an example
has been provided to illustrate the effectiveness of the
proposed filter approach. Further research topics would
be to extend the main results of this paper to other more
complex systems (e.g. [5, 10, 14, 33–35]).

Appendix I: Proof of Lemma 2

Along the trajectory of system (1), it can be derived that

Xk+1 = BkB
T
k +

r∑

s=0

{

As,kE{xkx
T
k }A

T
s,k

+Ad
s,kE{xk−τx

T
k−τ}(A

d
s,k)

T

+As,kE{xkx
T
k−τ}(A

d
s,k)

T

+Ad
s,kE{xk−τx

T
k }A

T
s,k

}

.

(14)

By utilizing the element inequality xyT +yxT ≤ εxxT +
ε−1yyT for ∀x, y ∈ R

n, one has

Xk+1 ≤ BkB
T
k +

r∑

s=0

{

(1 + εk)As,kE{xkx
T
k }A

T
s,k

+ (1 + ε−1

k )Ad
s,kE{xk−τx

T
k−τ}(A

d
s,k)

T
}

= (1 + εk)

r∑

s=0

As,kXkA
T
s,k +BkB

T
k

+ (1 + ε−1

k )

r∑

s=0

Ad
s,kXk−τ (A

d
s,k)

T .

(15)

which completes the proof. ✷

Appendix II: Proof of Theorem 1

First, the covariance matrix Pi,k+1|k of one-step predic-
tion error is given by

Pi,k+1|k

= E
{
(xk+1 − x̂i,k+1|k)(xk+1 − x̂i,k+1|k)

T
}

≤ (1 + εk)A0,kPi,k|kA
T
0,k +BkB

T
k + (1 + ε−1

k )Ad
0,k

× Pi,k−τ |k−τ (A
d
0,k)

T + (1 + εk)
r∑

i=1

Ai,kXkA
T
i,k

+ (1 + ε−1

k )

r∑

i=1

Ad
i,kXk−τ (A

d
i,k)

T .

(16)
Using Lemma 1, one has Pi,k+1|k ≤ Πi,k+1|k. In what
follows, for the purpose of simplicity, we introduce the
notations:

Ck+1 = [ CT
1,k+1 · · · CT

n,k+1
]T ,

Hi = [ 0 · · · 0
︸ ︷︷ ︸

i−1

~
i
in 0 · · · 0

︸ ︷︷ ︸

n−i

],

Wk+1 = diag{̟1,k+1, · · · , ̟n,k+1},

Λ1
k+1 = [ α1,k+1 · · · αn,k+1 ]

T ,

Λ2
k+1 = [ ᾱ− α1,k+1 · · · ᾱ− αn,k+1 ]

T ,

Λ3
k+1 = diag{1− α1,k+1, · · · , 1− αn,k+1}.

Subtracting (5b) from (1) leads to
ei,k+1|k+1

= xk+1 − x̂i,k+1|k+1

=
(

I − ~
i
inK

1
i,k+1C0,k+1 −

∑

j∈Ni

(1− ᾱ)hjiK
2
i,k+1

× C0,k+1

)

ei,k+1|k − ~
i
inK

1
i,k+1

(
̟i,k+1Ci,k+1xk+1

+Dk+1vi,k+1 + qi,k+1

)
−K2

i,k+1

∑

j∈Ni

hji

(

(ᾱ

− αj,k+1)C0,k+1 + (1− αj,k+1)̟j,k+1Cj,k+1

)

xk+1

−K2
i,k+1

∑

j∈Ni

hji(αj,k+1ξk+1 + (1− αj,k+1)qj,k+1)

−K2
i,k+1

∑

j∈Ni

(1− αj,k+1)hjiDk+1vj,k+1

= Ψ0
i,k+1ei,k+1|k −K1

i,k+1(Hi ⊗ I)(Wk+1 ⊗ I)Ck+1xk+1

−K1
i,k+1(Hi ⊗ I)(I ⊗Dk+1)vk+1 −K1

i,k+1(Hi

⊗ I)qk+1 −K2
i,k+1(H̄i ⊗ I)(Λ2

k+1 ⊗ I)C0,k+1xk+1

−K2
i,k+1(H̄i ⊗ I)(Λ3

k+1Wk+1 ⊗ I)Ck+1xk+1

−K2
i,k+1(H̄i ⊗ I)(Λ1

k+1 ⊗ I)ξk+1

−K2
i,k+1(H̄i ⊗ I)(Λ3

k+1 ⊗ I)qk+1

−K2
i,k+1(H̄i ⊗ I)(Λ3

k+1 ⊗ I)(I ⊗Dk+1)vk+1

(17)
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with
H̄i = [~ij ]1×n =

{

~
i
j = hji, j ∈ Ni,

~
i
j = 0, j 6∈ Ni.

Now, let us calculate the filtering error covariance
Pi,k+1|k+1 as follows:

Pi,k+1|k+1

= E
{
(xk+1 − x̂i,k+1|k+1)(xk+1 − x̂i,k+1|k+1)

T
}

= Ψ0
i,k+1E

{
ei,k+1|ke

T
i,k+1|k

}
Ψ0T

i,k+1

−Ψ0
i,k+1E

{
ei,k+1|kξ

T
k+1(Λ

1
k+1 ⊗ I)T

}
(H̄i ⊗ I)TK2T

i,k+1

−K2
i,k+1(Si ⊗ I)E

{
(Λ1

k+1 ⊗ I)ξk+1e
T
i,k+1|k

}
Ψ0T

i,k+1

+K1
i,k+1(Hi ⊗ I)E

{
(Wk+1 ⊗ I)Ck+1xk+1

× xT
k+1C

T
k+1(Wk+1 ⊗ I)T

}
(Hi ⊗ I)TK1T

i,k+1

+K1
i,k+1(Hi ⊗ I)(I ⊗Dk+1)E

{
vk+1

× vTk+1

}
(I ⊗Dk+1)

T (Hi ⊗ I)TK1T
i,k+1

+K1
i,k+1(Hi ⊗ I)E

{
qk+1q

T
k+1

}
(Hi ⊗ I)TK1T

i,k+1

+K2
i,k+1(H̄i ⊗ I)E

{
(Λ2

k+1 ⊗ I)C0,k+1xk+1

× xT
k+1C

T
0,k+1(Λ

2
k+1 ⊗ I)T

}
(H̄i ⊗ I)TK2T

i,k+1

−K2
i,k+1(H̄i ⊗ I)E

{
(Λ2

k+1 ⊗ I)C0,k+1xk+1

× ξTk+1(Λ
1
k+1 ⊗ I)T

}
(H̄i ⊗ I)TK2T

i,k+1

−K2
i,k+1(H̄i ⊗ I)E

{
(Λ1

k+1 ⊗ I)ξk+1

× xT
k+1C

T
0,k+1(Λ

2
k+1 ⊗ I)T

}
(H̄i ⊗ I)TK2T

i,k+1

+K2
i,k+1(H̄i ⊗ I)E

{
(Λ3

k+1Wk+1 ⊗ I)Ck+1xk+1

× xT
k+1C

T
k+1(Λ

3
k+1Wk+1 ⊗ I)T

}
(H̄i ⊗ I)TK2T

i,k+1

+K2
i,k+1(H̄i ⊗ I)E

{
(Λ1

k+1 ⊗ I)ξk+1

× ξTk+1(Λ
1
k+1 ⊗ I)T

}
(H̄i ⊗ I)TK2T

i,k+1

+K2
i,k+1(H̄i ⊗ I)E

{
(Λ3

k+1 ⊗ I)(I ⊗Dk+1)vk+1

× vTk+1(I ⊗Dk+1)
T (Λ3

k+1 ⊗ I)T
}
(H̄i ⊗ I)TK2T

i,k+1

+K2
i,k+1(H̄i ⊗ I)E

{
(Λ3

k+1 ⊗ I)qk+1

× qTk+1(Λ
3
k+1 ⊗ I)T

}
(H̄i ⊗ I)TK2T

i,k+1

≤ (1 + εk)Ψ
0
i,k+1Pi,k+1|kΨ

0T
i,k+1

+K1
i,k+1(Hi ⊗ I)XC

k+1(Hi ⊗ I)TK1T
i,k+1

+K1
i,k+1(HiH

T
i ⊗Dk+1D

T
k+1)K

1T
i,k+1

+
u2

12
K1

i,k+1(HiH
T
i ⊗ I)K1T

i,k+1

+ (1 + εk)ᾱ(1 − ᾱ)K2
i,k+1(H̄iH̄

T
i

⊗ C0,k+1Xk+1C
T
0,k+1)K

2T
i,k+1

+ (1− ᾱ)K2
i,k+1(H̄i ⊗ I)XC

k+1(H̄i ⊗ I)TK2T
i,k+1

+ (1 + 2ε−1

k )δ2K2
i,k+1(H̄i ⊗ I)

(
ᾱ2(11T )⊗ I

+ (ᾱ− ᾱ2)I
)
(H̄i ⊗ I)TK2T

i,k+1

+ (1− ᾱ)K2
i,k+1(H̄iH̄

T
i ⊗Dk+1D

T
k+1)K

2T
i,k+1

+
(1− ᾱ)u2

12
K2

i,k+1(H̄iH̄
T
i ⊗ I)K2T

i,k+1 (18)

Using the properties of Kronecker product to the above

matrix inequality results in

Pi,k+1|k+1 ≤ Ψ0
i,k+1Pi,k+1|kΨ

0T
i,k+1 +K1

i,k+1

×Ψ1
i,k+1K

1T
i,k+1 +K2

i,k+1Ψ
23
i,k+1K

2T
i,k+1

(19)

which implies that the second inequality in (10) is true.
✷

Appendix III: Proof of Theorem 2

According to Theorem 1, the design of gains K1
k+1

and

K2
k+1 needs to minimize Trace(Πi,k+1|k+1). For this pur-

pose, taking the partial derivative of Trace(Πi,k+1|k+1)

with respect to K1
k+1

and K2
k+1

, and letting the deriva-
tive be zero, one has

∂Trace(Πi,k+1|k+1)

∂K1
i,k+1

= 0

⇒− ~
i
inΨ

0
i,k+1Πi,k+1|kC

T
0,k+1 +K1

i,k+1Ψ
1
i,k+1 = 0.

∂Trace(Πi,k+1|k+1)

∂K2
i,k+1

= 0

⇒− ~
i
in(1 − ᾱ)Ψ0

i,k+1Πi,k+1|kC
T
0,k+1 +K2

i,k+1Ψ
23
i,k+1 = 0.

Subsequently, we have

−~
i
in

(
I − ~

i
in(1− ᾱ)K2

i,k+1C0,k+1

)
Πi,k+1|kC

T
0,k+1

+K1
i,k+1

(
(~iin)

2C0,k+1Πi,k+1|kC
T
0,k+1 +Ψ1

i,k+1

)
= 0,

−~
i
in(1− ᾱ)

(
I − ~

i
inK

1
i,k+1C0,k+1

)
Πi,k+1|kC

T
0,k+1

+K2
i,k+1

(
(~iin)

2(1− ᾱ)2C0,k+1

×Πi,k+1|kC
T
0,k+1 +Ψ23

i,k+1

)
= 0

which can be further simplified as follows:

K1
i,k+1S

1
i,k+1 + (1 − ᾱ)(~iin)

2K2
i,k+1S

0
i,k+1

− ~
i
inΠi,k+1|kC

T
0,k+1 = 0,

K2
i,k+1S

2
i,k+1 + (1 − ᾱ)(~iin)

2K1
i,k+1S

0
i,k+1

− (1 − ᾱ)~iinΠi,k+1|kC
T
0,k+1 = 0.

(20)

Furthermore, the following

Ω1
i,k+1 = S1

i,k+1 − (1− ᾱ)2(~iin)
4S0

i,k+1

(
S2
i,k+1

)−1
S0
i,k+1

= Ψ1
i,k+1 + (~iin)

2
[

S0
i,k+1 −

(

(1− ᾱ)2(~iin)
2S0

i,k+1

+Ψ23
i,k+1 −Ψ23

i,k+1

)(
S2
i,k+1

)−1
S0
i,k+1

]

= Ψ1
i,k+1 + (~iin)

2Ψ23
i,k+1

(
S2
i,k+1

)−1
S0
i,k+1

= Ψ1
i,k+1 + (1− ᾱ)−2

×
(

Ψ23
i,k+1 −Ψ23

i,k+1

(
S2
i,k+1

)−1
Ψ23

i,k+1

)

> Ψ1
i,k+1

(21)
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Ω2
i,k+1 = S2

i,k+1 − (1− ᾱ)2(~iin)
4S0

i,k+1

(
S1
i,k+1

)−1
S0
i,k+1

= Ψ23
i,k+1 + (1 − ᾱ)2

×
(

Ψ1
i,k+1 −Ψ1

i,k+1

(
S1
i,k+1

)−1
Ψ1

i,k+1

)

> Ψ23
i,k+1

(22)
are true. Therefore, taking (20)-(22) into consideration,
we can obtain the desired filter gain matrices. Further-
more, the upper bound for the filtering error covariance
Πi,k+1|k+1 is recursively calculated by Riccati-like dif-
ference equation (11).

Appendix IV: Proof of Theorem 3

In order to prove the boundedness, the mathematical
induction method is utilized to deal with the difficulty
coming from both two filtering gains and the coupling
with plant states. For this purpose, suppose that p

πi
I ≤

Πi,k|k ≤ p̄πi
I holds and then show that it is also true at

the inductive step (that is, at k + 1 instants).

For the sake of simplicity, we fix εk = ε for any k, and
can obtain from (11) that

Πi,k+1|k

= (1 + ε)A0,kΠi,k|kA
T
0,k

+ (1 + ε−1)Ad
0,kΠi,k−τ |k−τ (A

d
0,k)

T

+ (1 + ε)
∑r

i=1
Ai,kXkA

T
i,k

+ (1 + ε−1)
∑r

i=1
Ad

i,kXk−τ (A
d
i,k)

T +BkB
T
k

≤ ̺1I

(23)

In what follows, it is not difficult to see

Ψ0
i,k+1Πi,k+1|kΨ

0T
i,k+1

=
(
I − ~

i
inK

1
i,k+1C0,k+1 − ~

i
in(1− ᾱ)K2

i,k+1C0,k+1

)

×Πi,k+1|k

(
I − ~

i
inK

1
i,k+1C0,k+1

− ~
i
in(1− ᾱ)K2

i,k+1C0,k+1

)T

≤ 3Πi,k+1|k + 3(~iin)
2K1

i,k+1S
0
i,k+1(K

1
i,k+1)

T

+ 3(~iin)
2(1 − ᾱ)2K2

i,k+1S
0
i,k+1(K

2
i,k+1)

T

(24)
Substituting (24) into (11) leads to

Πi,k+1|k+1

≤ 3Πi,k+1|k +K1
i,k+1Ψ

1
i,k+1(K

1
i,k+1)

T

+K2
i,k+1Ψ

23
i,k+1(K

2
i,k+1)

T

+ 3(~iin)
2K1

i,k+1S
0
i,k+1(K

1
i,k+1)

T

+ 3(~iin)
2(1− ᾱ)2K2

i,k+1S
0
i,k+1(K

2
i,k+1)

T

(25)

where Ψ23
i,k+1 = Ψ2

i,k+1 +Ψ3
i,k+1.

On the other hand, reviewing (21)-(22) and using the
property of positive definite matrices, one has

(Ω1
i,k+1)

−1 S0
i,k+1(Ω

1
i,k+1)

−1

≤ λmax(S
0
i,k+1)(Ω

1
i,k+1Ω

1
i,k+1)

−1

≤ λmax(S
0
i,k+1)λ

2
1((Ψ

1
i,k+1)

−1)I,

(Ω2
i,k+1)

−1 S0
i,k+1(Ω

2
i,k+1)

−1

≤ λmax(S
0
i,k+1)(Ω

2
i,k+1Ω

2
i,k+1)

−1

≤ λmax(S
0
i,k+1)λ

2
1((Ψ

23
i,k+1)

−1)I

(26)

Then, denoting

Λi,k+1 = (~iin)
2S0

i,k+1−(1−ᾱ)2(~iin)
4S0

i,k+1

(
S2
i,k+1

)−1
S0
i,k+1

we can check
Λi,k+1

= (~iin)
2S0

i,k+1 − (~iin)
2(S2

i,k+1

−Ψ23
i,k+1)

(
S2
i,k+1

)−1
S0
i,k+1

= (~iin)
2Ψ23

i,k+1

(
S2
i,k+1

)−1
S0
i,k+1

= (1− ᾱ)2Ψ23
i,k+1

(
S2
i,k+1

)−1
(S2

i,k+1 −Ψ23
i,k+1)

= (1− ᾱ)2
(
Ψ23

i,k+1 −Ψ23
i,k+1

(
S2
i,k+1

)−1
Ψ23

i,k+1)
)

≥ 0

(27)

According to the above inequality, it can be derived that

(Ω1
i,k+1)

−1Ψ1
i,k+1(Ω

1
i,k+1)

−1

=
(
Ψ1

i,k+1 + Λi,k+1

)−1
Ψ1

i,k+1

(
Ψ1

i,k+1 + Λi,k+1

)−1

=
(
Ψ1

i,k+1 + 2Λi,k+1 + Λi,k+1(Ψ
1
i,k+1)

−1Λi,k+1

)−1

≤ (Ψ1
i,k+1)

−1

(28)
Furthermore, using the same line of the above inequality,
we have

(Ω2
i,k+1)

−1Ψ23
i,k+1(Ω

2
i,k+1)

−1 ≤ (Ψ23
i,k+1)

−1 (29)

In addition, we can calculate
(
I − (~iin)

2(1− ᾱ)2
(
S2
i,k+1

)−1
S0
i,k+1

)

×
(
I − (~iin)

2(1 − ᾱ)2
(
S2
i,k+1

)−1
S0
i,k+1

)T

= I − (~iin)
2(1− ᾱ)2

(
S2
i,k+1

)−1
S0
i,k+1

− (~iin)
2(1− ᾱ)2S0

i,k+1

(
S2
i,k+1

)−1

+ (~iin)
4(1− ᾱ)4

(
S2
i,k+1

)−1
S0
i,k+1S

0
i,k+1

(
S2
i,k+1

)−1

=
(
S2
i,k+1

)−1
Ψ23

i,k+1 +Ψ23
i,k+1

(
S2
i,k+1

)−1
− I

+ (~iin)
4(1− ᾱ)4

(
S2
i,k+1

)−1
S0
i,k+1S

0
i,k+1

(
S2
i,k+1

)−1

=
(
S2
i,k+1

)−1
Ψ23

i,k+1Ψ
23
i,k+1

(
S2
i,k+1

)−1

≤
(φmΨ

i,23)
2

(φnΨ
i,23)

2
I

(30)
Similarly, it can be obtained

(
I − (~iin)

2
(
S1
i,k+1

)−1
S0
i,k+1

)

×
(
I − (~iin)

2
(
S1
i,k+1

)−1
S0
i,k+1

)T
≤

(φmΨ
i,1 )2

(φnΨ
i,1 )

2
I

(31)
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Finally, in light of Lemma 3 and Lemma 4, substituting
(26), (28), (29), (30) and (31) into (25) results in

Πi,k+1|k+1 ≤ (3 + ξ0)Πi,k+1|k ≤ (3 + ξ0)̺1I ≤ p̄πi
I
(32)

Therefore, by the induction, it can be concluded that
Πi,k|k < p̄πi

I is true for any k ≥ 1, which completes the
proof.
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