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Abstract

We consider a nonlinear state-space model with the state transition and observation functions expressed as basis
function expansions. The coefficients in the basis function expansions are learned from data. Using a connection to
Gaussian processes we also develop priors on the coefficients, for tuning the model flexibility and to prevent overfitting
to data, akin to a Gaussian process state-space model. The priors can alternatively be seen as a regularization, and
helps the model in generalizing the data without sacrificing the richness offered by the basis function expansion. To
learn the coefficients and other unknown parameters efficiently, we tailor an algorithm using state-of-the-art sequential
Monte Carlo methods, which comes with theoretical guarantees on the learning. Our approach indicates promising
results when evaluated on a classical benchmark as well as real data.
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1 Introduction

Nonlinear system identification (Ljung, 1999, 2010; Sjöberg et al., 1995) aims to learn nonlinear mathematical models
from data generated by a dynamical system. We will tackle the problem of learning nonlinear state-space models with
only weak assumptions on the nonlinear functions, and make use of the Bayesian framework (Peterka, 1981) to encode
prior knowledge and assumptions to guide the otherwise too flexible model.

Consider the (time invariant) state-space model

xt+1 = f(xt, ut) + vt, vt ∼ N (0, Q), (1a)
yt = g(xt, ut) + et, et ∼ N (0, R). (1b)

The variables are denoted as the state1 xt ∈ Rnx , which is not observed explicitly, the input ut ∈ Rnu , and the
output yt ∈ Rny . We will learn the state transition function f : Rnx × Rnu 7→ Rnx and the observation function
g : Rnx × Rnu 7→ Rny as well as Q and R from a set of training data of input-output signals {u1:T , y1:T }.
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Figure 1: The Gaussian process as a modeling tool for an
one-dimensional function f : R 7→ R. The prior distri-
bution (upper left plot) is represented by the shaded blue
color (the more intense color, the higher density), as well
as 5 samples drawn from it. By combining the prior and
the data (upper right plot), the posterior (lower plot) is
obtained. The posterior mean basically interpolates be-
tween the data points, and adheres to the prior in regions
where the data is not providing any information. This is
clearly a desirable property when it comes to generaliz-
ing from the training data—consider the thought exper-
iment of using a 2nd order polynomial instead. Further,
the posterior also provides a quantification of the uncer-
tainty present, high in data-scarce regions and low where
the data provides knowledge about f(·).

Consider a situation when a finite-dimensional linear, or other
sparsely parameterized model, is too rigid to describe the be-
havior of interest, but only a limited data record is available so
that any too flexible model would overfit (and be of no help in
generalizing to events not exactly seen in the training data). In
such a situation, a systematic way to encode prior assumptions
and thereby tuning the flexibility of the model can be useful. For
this purpose, we will take inspiration from Gaussian processes
(GPs, Rasmussen and Williams 2006) as a way to encode prior
assumptions on f(·) and g(·). As illustrated by Figure 1, the GP
is a distribution over functions which gives a probabilistic model
for inter- and extrapolating from observed data. GPs have suc-
cessfully been used in system identification for, e.g., response
estimation, nonlinear ARX models and GP state-space models
(Pillonetto and De Nicolao, 2010; Kocijan, 2016; Frigola-Alcade,
2015).

To parameterize f(·), we expand it using basis functions

f(x) =

m∑
j=0

w(j)φ(j)(x), (2)

and similarly for g(·). The set of basis functions is denoted
by {φ(j)(·)}mj=0, whose coefficients {w(j)}mj=0 will be learned
from data. By introducing certain priors p(w(j)) on the basis
function coefficients the connection to GPs will be made, based
on a Karhunen-Loève expansion (Solin and Särkkä, 2014). We
will thus be able to understand our model in terms of the well-
established and intuitively appealing GP model, but still bene-
fit from the computational advantages of the linear-in-parameter
structure of (2). Intuitively, the idea of the priors p(w(j)) is to
keep w(j) ‘small unless data convinces otherwise’, or equiva-
lently, introduce a regularization of w(j).

To learn the model (1), i.e., determine the basis function coefficients w(j), we tailor a learning algorithm using recent
sequential Monte Carlo/particle filter methods (Schön et al., 2015; Kantas et al., 2015). The learning algorithm infers
the posterior distribution of the unknown parameters from data, and come with theoretical guarantees. We will pay
extra attention to the problem of finding the maximum mode of the posterior, or equivalent, regularized maximum
likelihood estimation.

1vt and et are iid with respect to t, and xt is thus Markov.
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Our contribution is the development of a flexible nonlinear state-space model with a tailored learning algorithm, which
together constitutes a new nonlinear system identification tool. The model can either be understood as a GP state-space
model (generalized allowing for discontinuities, Section 3.2.3), or as a nonlinear state-space model with a regularized
basis function expansion.

2 Related work

Important work using the GP in system identification includes impulse response estimation (Pillonetto and De Nicolao,
2010; Pillonetto et al., 2011; Chen et al., 2012), nonlinear ARX models (Kocijan et al., 2005; Bijl et al., 2016), Bayesian
learning of ODEs (Calderhead et al., 2008; Wang and Barber, 2014; Macdonald et al., 2015) and the latent force model
(Alvarez et al., 2013). In the GP state-space model (Frigola-Alcade, 2015) the transition function f(·) in a state-space
model is learned with a GP prior, particularly relevant to this paper. A conceptually interesting contribution to the GP
state-space model was made by Frigola et al. (2013), using a Monte Carlo approach (similar to this paper) for learning.
The practical use of Frigola et al. (2013) is however very limited, due to its extreme computational burden. This
calls for approximations, and a promising approach is presented by Frigola et al. (2014) (and somewhat generalized
by Mattos et al. (2016)), using inducing points and a variational inference scheme. Another competitive approach is
Svensson et al. (2016), where we applied the GP approximation proposed by Solin and Särkkä (2014) and used a Monte
Carlo approach for learning (Frigola-Alcade (2015) covers the variational learning using the same GP approximation).
In this paper, we extend this work by considering basis function expansions in general (not necessarily with a GP
interpretation), introduce an approach to model discontinuities in f(·), as well as including both a Bayesian and a
maximum likelihood estimation approach to learning.

To the best of our knowledge, the first extensive paper on the use of a basis function expansion inside a state-space
model was written by Ghahramani and Roweis (1998), who also wrote a longer unpublished version (Roweis and
Ghahramani, 2000). The recent work by Tobar et al. (2015) resembles that of Ghahramani and Roweis (1998) on
the modeling side, as they both use basis functions with locally concentrated mass spread in the state space. On the
learning side, Ghahramani and Roweis (1998) use an expectation maximization (EM, Dempster et al. 1977) procedure
with extended Kalman filtering, whilst Tobar et al. (2015) use particle Metropolis-Hastings (Andrieu et al., 2010).
There are basically three major differences between Tobar et al. (2015) and our work. We will (i) use another (related)
learning method, particle Gibbs, allowing us to take advantage of the linear-in-parameter structure of the model to
increase the efficiency. Further, we will (ii) mainly focus on a different set of basis functions (although our learning
procedure will be applicable also to the model used by Tobar et al. (2015)), and – perhaps most important – (iii) we
will pursue a systematic encoding of prior assumptions further than Tobar et al. (2015), who instead assume g(·) to be
known and use ‘standard sparsification criteria from kernel adaptive filtering’ as a heuristic approach to regularization.

There are also connections to Paduart et al. (2010), who use a polynomial basis inside a state-space model. In contrast
to our work, however, Paduart et al. (2010) prevent the model from overfitting to the training data not by regularization,
but by manually choosing a low enough polynomial order and terminating the learning procedure prematurely (early
stopping). Paduart et al. are, in contrast to us, focused on the frequency properties of the model and rely on optimization
tools. An interesting contribution by Paduart et al. is to first use classical methods to find a linear model, which is then
used to initialize the linear term in the polynomial expansion. We suggest to also use this idea, either to initialize the
learning algorithm, or use the nonlinear model only to describe deviations from an initial linear state-space model.

Furthermore, there are also connections to our previous work (Svensson et al., 2015), a short paper only outlining
the idea of learning a regularized basis function expansion inside a state-space model. Compared to Svensson et al.
(2015), this work contains several extensions and new results. Another recent work using a regularized basis function
expansion for nonlinear system identification is that of Delgado et al. (2015), however not in the state-space model
framework. Delgado et al. (2015) use rank constrained optimization, resembling an L0-regularization. To achieve a
good performance with such a regularization, the system which generated the data has to be well described by only
a few number of the basis functions being ‘active’, i.e., have non-zero coefficients, which makes the choice of basis
functions important and problem-dependent. The recent work by Mattsson et al. (2016) is also covering learning of a
regularized basis function expansion, however for input-output type of models.
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3 Constructing the model

We want the model, whose parameters will be learned from data, to be able to describe a broad class of nonlinear
dynamical behaviors without overfitting to training data. To achieve this, important building blocks will be the basis
function expansion (2) and a GP-inspired prior. The order nx of the state-space model (1) is assumed known or set
by the user, and we have to learn the transition and observation functions f(·) and g(·) from data, as well as the noise
covariance matrices Q and R. For brevity, we focus on f(·) and Q, but the reasoning extends analogously to g(·) and
R.

3.1 Basis function expansion

The common approaches in the literature on black-box modeling of functions inside state-space models can broadly be
divided into three groups: neural networks (Bishop, 2006; Narendra and Li, 1996; Nørgård et al., 2000), basis function
expansions (Sjöberg et al., 1995; Ghahramani and Roweis, 1998; Paduart et al., 2010; Tobar et al., 2015) and GPs
(Rasmussen and Williams, 2006; Frigola-Alcade, 2015). We will make use of a basis function expansion inspired by
the GP. There are several reasons for this: Firstly, a basis function expansion provides an expression which is linear in
its parameters, leading to a computational advantage: neural networks do not exhibit this property, and the naïve use
of the nonparametric GP is computationally very expensive. Secondly, GPs and some choices of basis functions allow
for a straightforward way of including prior assumptions on f(·) and help generalization from the training data, also in
contrast to the neural network.

We write the combination of the state-space model (1) and the basis function expansion (2) as

xt+1 =


w

(1)
1 · · · w

(m)
1

...
...

w
(1)
nx · · · w

(m)
nx


︸ ︷︷ ︸

A


φ

(1)
(xt, ut)

...
φ

(m)
(xt, ut)


︸ ︷︷ ︸

ϕ̄(xt,ut)

+vt, (3a)

yt =


w

(1)
g,1 · · · w

(m)
g,1

...
...

w
(1)
g,ny · · · w

(m)
g,ny


︸ ︷︷ ︸

C


φ

(1)
g (xt, ut)

...
φ

(m)
g (xt, ut)


︸ ︷︷ ︸

ϕ̄g(xt,ut)

+et. (3b)

There are several alternatives for the basis functions, e.g., polynomials (Paduart et al., 2010), the Fourier basis (Svens-
son et al., 2015), wavelets (Sjöberg et al., 1995), Gaussian kernels (Ghahramani and Roweis, 1998; Tobar et al., 2015)
and piecewise constant functions. For the one-dimensional case (e.g., nx = 1, nu = 0) on the interval [−L,L] ∈ R,
we will choose the basis functions as

φ(j)(x) =
1√
L

sin

(
πj(x+ L)

2L

)
. (4)

This choice, which is the eigenfunctions to the Laplace operator, enables a particularly convenient connection to the
GP framework (Solin and Särkkä, 2014) in the priors we will introduce in Section 3.2.1. This choice is, however,
important only for the interpretability2 of the model. The learning algorithm will be applicable to any choice of basis
functions.

3.1.1 Higher state-space dimensions

The generalization to models with a state space and input dimension such that nx + nu > 1 offers no conceptual
challenges, but potentially computational ones. The counterpart to the basis function (4) for the space

2Other choices of basis functions are also interpretable as GPs. The choice (4) is, however, preferred since it is independent of the choice of
which GP covariance function to use.

4



[−L1, L1]× · · · × [−Lnx+nu , Lnx+nu ] ∈ Rnx+nu is

φ(j1,...,jnx+nu )(x) =

nx+nu∏
k=1

1√
Lk

sin

(
πjk(xk+Lk)

2Lk

)
, (5)

(where xk is the kth component of x), implying that the number of terms m grows exponentially with nx + nu. This
problem is inherent in most choices of basis function expansions. For nx > 1, the problem of learning f : Rnx+nu 7→
Rnx can be understood as learning nx number of functions fi : Rnx+nu 7→ R, cf. (3).

There are some options available to overcome the exponential growth with nx + nu, at the cost of a limited capability
of the model. Alternative 1 is to assume f(·) to be ‘separable’ between some dimensions, e.g., f(xt, ut) = fx(xt) +
fu(ut). If this assumption is made for all dimensions, the total number of parameters present grows quadratically
(instead of exponentially) with nx + nu. Alternative 2 is to use a radial basis function expansion (Sjöberg et al.,
1995), i.e., letting f(·) only be a function of some norm ‖ · ‖ of (xt, ut), as f(xt, ut) = f(‖(xt, ut)‖). The radial
basis functions give a total number of parameters growing linearly with nx + nu. Both alternatives will indeed limit
the space of functions possible to describe with the basis function expansion. However, as a pragmatic solution to
the otherwise exponential growth in the number of parameters it might still be worth considering, depending on the
particular problem at hand.

3.1.2 Manual and data-driven truncation

To implement the model in practice, the number of basis functions m has to be fixed to a finite value, i.e., truncated.
However, fixing m also imposes a harsh restriction on which functions f(·) that can be described. Such a restriction
can prevent overfitting to training data, an argument used by Paduart et al. (2010) for using polynomials only up to 3rd
order. We suggest, on the contrary, to use priors on w(j) to prevent overfitting, and we argue that the interpretation
as a GP is a preferred way to tune the model flexibility, rather than manually and carefully tuning the truncation. We
therefore suggest to choose m as big as the computational resources allows, and let the prior and data decide which
w(j) to be nonzero, a data-driven truncation.

Related to this is the choice of L in (4): if L is chosen too small, the state space becomes limited and thereby also limits
the expressiveness of the model. On the other hand, if L is too big, an unnecessarily large m might also be needed,
wasting computational power. To chose L to have about the same size as the maximum of ut or yt seems to be a good
guideline.

3.2 Encoding prior assumptions—regularization

The basis function expansion (3) provides a very flexible model. A prior might therefore be needed to generalize from,
instead of overfit to, training data. From a user perspective, the prior assumptions should ultimately be formulated in
terms of the input-output behavior, such as gains, rise times, oscillations, equilibria, limit cycles, stability etc. As of
today, tools for encoding such priors are (to the best of the authors’ knowledge) not available. As a resort, we therefore
use the GP state-space model approach, where we instead encode prior assumptions on f(·) as a GP. Formulating prior
assumptions on f(·) is relevant in a model where the state space bears (partial) physical meaning, and it is natural to
make assumptions whether the state xt is likely to rapidly change (non-smooth f(·)), or state equilibria are known,
etc. However, also the truly black-box case offers some interpretations: a very smooth f(·) corresponds to a locally
close-to-linear model, and vice versa for a more curvy f(·), and a zero-mean low variance prior on f(·) will steer the
model towards a bounded output (if g(·) is bounded).

To make a connection between the GP and the basis function expansion, a Karhunen-Loève expansion is explored by
Solin and Särkkä (2014). We use this to formulate Gaussian priors on the basis function expansion coefficients w(j),
and learning of the model will amount to infer the posterior p(w(j)|y1:T ) ∝ p(y1:T |w(j))p(w(j)), where p(w(j)) is
the prior and p(y1:T |w(j)) the likelihood. To use a prior w(j) ∼ N (0, α−1) and inferring the maximum mode of the
posterior can equivalently be interpreted as regularized maximum likelihood estimation

arg min
w(j)

− log p(y1:T |w(j)) + α|w(j)|2. (6)
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3.2.1 Smooth GP-priors for the functions

The Gaussian process provides a framework for formulating prior assumptions on functions, resulting in a non-
parametric approach for regression. In many situations the GP allows for an intuitive generalization of the training
data, as illustrated by Figure 1. We use the notation

f(x) ∼ GP(m(x), κ(x, x′)) (7)

to denote a GP prior on f(·), wherem(x) is the mean function and κ(x, x′) the covariance function. The work by Solin
and Särkkä (2014) provides an explicit link between basis function expansions and GPs based on the Karhunen-Loève
expansion, in the case of isotropic3 covariance functions, i.e., κ(x, x′) = κ(|x−x′|). In particular, if the basis functions
are chosen as (4), then

f(x) ∼ GP(0, κ(x, x′))⇔ f(x) ≈
m∑
j=0

w(j)φ(j)(x), (8a)

with4

w(j) ∼ N (0, S(λ(j))), (8b)

where S is the spectral density of κ, and λ(j) is the eigenvalue of φ(j). Thus, this gives a systematic guidance on how
to choose basis functions and priors on w(i). In particular, the eigenvalues of the basis function (4) are

λ(j) =

(
πj

2L

)2

, and λ(j1:nx+nu ) =

nx+nu∑
k=1

(
πjk
2Lk

)2

(9)

for (5). Two common types of covariance functions are the exponentiated quadratic κeq and Matérn κM class (Ras-
mussen and Williams, 2006),

κeq(r) = sf exp
(
− r2

2l2

)
, (10a)

κM(r) = sf
21−ν

Γ(ν)

(√
2νr
l

)ν
Kν

(√
2νr
l

)
, (10b)

where r , x− x′, Kν is a modified Bessel function, and `, sf and ν are hyperparameters to be set by the user or to be
marginalized out, see Svensson et al. (2016) for details. Their spectral densities are

Seq(s) = sf
√

2πl2 exp
(
−π

2l2s2

2

)
, (11a)

SM(s) = sf
2π

1
2 Γ(ν+

1
2 )(2ν)ν

Γ(ν)l2ν

(
2ν
l2 + s2

)−(ν+ 1
2 )
. (11b)

Altogether, by choosing the priors for w(j) as (8b), it is possible to approximately interpret f(·), parameterized by the
basis function expansion (2), as a GP. For most covariance functions, the spectral density S(λ(j)) tends towards 0 when
λ(j) →∞, meaning that the prior for large j tends towards a Dirac mass at 0. Returning to the discussion on truncation
(Section 3.1.2), we realize that truncation of the basis function expansion with a reasonably large m therefore has no
major impact to the model, but the GP interpretation is still relevant.

As discussed, finding the posterior mode under a Gaussian prior is equivalent to L2-regularized maximum likelihood
estimation. There is no fundamental limitation prohibiting other priors, for example Laplacian (corresponding to L1-
regularization: Tibshirani 1996). We use the Gaussian prior because of the connection to a GP prior on f(·), and it will
also allow for closed form expressions in the learning algorithm.

For book-keeping, we express the prior on w(j) as a Matrix normal (MN , Dawid 1981) distribution over A. The
MN distribution is parameterized by a mean matrix M ∈ Rnx×m, a right covariance U ∈ Rnx×nx and a left

3Note, this concerns only f(·), which resides inside the state-space model. This does not restrict the input-output behavior, from u(t) to y(t), to
have an isotropic covariance.

4The approximate equality in (8a) is exact if m→∞ and L→∞, refer to Solin and Särkkä (2014) for details.
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covariance V ∈ Rm×m. The MN distribution can be defined by the property that A ∼ MN (M,U, V ) if and
only if vec(A) ∼ N (vec(M), V ⊗ U), where ⊗ is the Kronecker product. Its density can be written as

MN (A |M,U, V ) =
exp

(
− 1

2 tr
{

(A−M)TU−1(A−M)V −1
})

(2π)nxm|V |nx/2|U |m/2
. (12)

By letting M = 0 and V be a diagonal matrix with entries S(λ(j)), the priors (8b) are incorporated into this
parametrization. We will let U = Q for conjugacy properties, to be detailed later. Indeed, the marginal variance
of the elements in A is then not scaled only by V , but also Q. That scaling however is constant along the rows, and so
is the scaling by the hyperparameter sf (10). We therefore suggest to simply use sf as tuning for the overall influence
of the priors; letting sf →∞ gives a flat prior, or, a non-regularized basis function expansion.

3.2.2 Prior for noise covariances

Apart from f(·), the nx × nx noise covariance matrix Q might also be unknown. We formulate the prior over Q as
an inverse Wishart (IW , Dawid 1981) distribution. The IW distribution is a distribution over real-valued positive
definite matrices, which puts prior mass on all positive definite matrices and is parametrized by its number of degrees
of freedom ` > nx − 1 and an nx × nx positive definite scale matrix Λ. The density is defined as

IW(Q | `,Λ) =
|Λ|`/2|Q|−(nx+`+1)/2

2`nx/2Γnx(`/2)
exp

(
−1

2
tr
{
Q−1Λ

})
, (13)

where Γnx(·) is the multivariate gamma function. The mode of the IW distribution is Λ
`+nx+1 . It is a common choice

as a prior for covariance matrices due to its properties (e.g., Wills et al. 2012; Shah et al. 2014). When the MN
distribution (12) is combined with the IW distribution (13) we obtain theMNIW distribution, with the following
hierarchical structure

MNIW(A,Q |M,V,Λ, `) =MN (A |M,Q, V )IW(Q | `,Λ). (14)

TheMNIW distribution provides a joint prior for the A and Q matrices, compactly parameterizing the prior scheme
we have discussed, and is also the conjugate prior for our model, which will facilitate learning.

3.2.3 Discontinuous functions: Sparse singularities

−2 −1 0 p1 1 p2 2

0
5

x

f
(x
)

Figure 2: The idea of a piecewise GP: the interval [−2,−2]
is divided by np = 2 discontinuity points p1 and p2, and a
GP is used to model a function on each of these segments,
independently of the other segments. For practical use, the
learning algorithm have to be able to also infer the discon-
tinuity points from data.

The proposed choice of basis functions and priors is encoding
a smoothness assumption of f(·). However, as discussed by
Juditsky et al. (1995) and motivated by Example 5.3, there are
situations where it is relevant to assume that f(·) is smooth
except at a few points. Instead of assuming an (approximate)
GP prior for f(·) on the entire interval [−L,L] we therefore
suggest to divide [−L,L] into a number np of segments, and
then assume an individual GP prior for each segment [pi, pi+1],
independent of all other segments, as illustrated in Figure 2.
The number of segments and the discontinuity points dividing
them need to be learned from data, and an important prior is
how the discontinuity points are distributed, i.e., the number
np (e.g., geometrically distributed) and their locations {pi}

np
i=1

(e.g., uniformly distributed).

7



3.3 Model summary

We will now summarize the proposed model. To avoid notational clutter, we omit ut as well as the observation
function (1b):

xt+1 =

np∑
i=0

Aiϕ̄(xt)1pi≤xt<pi+1
+ vt, (15a)

vt ∼ N (0, Q), (15b)

with priors

[Ai, Qi] ∼MNIW(0, V, `,Λ), i = 0, . . . , np, (15c)

np, {pi}
np
i=1 ∼ arbitrary prior, (15d)

where 1 is the indicator function parameterizing the piecewise GP, and ϕ̄(xt) was defined in (3). If the dynamical
behavior of the data is close-to-linear, and a fairly accurate linear model is already available, this can be incorporated
by adding the known linear function to the right hand side of (15a).

A good user practice is to sample parameters from the priors and simulate the model with those parameters, as a
sanity check before entering the learning phase. Such a habit can also be fruitful for understanding what the prior
assumptions mean in terms of dynamical behavior. There are standard routines for sampling from theMN as well as
the IW distribution.

The suggested model can also be tailored if more prior knowledge is present, such as a physical relationship between
two certain state variables. The suggested model can then be used to learn only the unknown part, as briefly illustrated
by Svensson et al. (2015, Example IV.B).

4 Learning

We now have a state-space model with a (potentially large) number of unknown parameters

θ ,
{
{Ai, Qi}

np
i=0, np, {pi}

np
i=1

}
, (16)

all with priors. (g(·) is still assumed to be known, but the extension follows analogously.) Learning the parameters is
a quite general problem, and several learning strategies proposed in the literature are (partially) applicable, including
optimization (Paduart et al., 2010), EM with extended Kalman filtering (Ghahramani and Roweis, 1998) or sigma point
filters (Kokkala et al., 2016), and particle Metropolis-Hastings (Tobar et al., 2015). We use another sequential Monte
Carlo-based learning strategy, namely particle Gibbs with ancestor sampling (PGAS, Lindsten et al. 2014). PGAS
allows us to take advantage of the fact that our proposed model (3) is linear in A (given xt), at the same time as it has
desirable theoretical properties.

4.1 Sequential Monte Carlo for system identification

Sequential Monte Carlo (SMC) methods have emerged as a tool for learning parameters in state-space models (Schön
et al., 2015; Kantas et al., 2015). At the very core when using SMC for system identification is the particle filter (Doucet
and Johansen, 2011), which provides a numerical solution to the state filtering problem, i.e., finding p(xt | y1:t). The
particle filter propagates a set of weighted samples, particles, {xit, ωit}Ni=1 in the state-space model, approximating the
filtering density by the empirical distribution p̂(xt | y1:t) =

∑N
i=1 ω

i
tδxit(xt) for each t. Algorithmically, it amounts to

iteratively weighting the particles with respect to the measurement yt, resample among them, and thereafter propagate
the resampled particles to the next time step t + 1. The convergence properties of this scheme have been studied
extensively (see references in Doucet and Johansen (2011)).

8



Algorithm 1 PGAS Markov kernel.

Input: Trajectory x1:T [k], number of particles N , known state-space model (f , g, Q, R).
Output: Trajectory x1:T [k + 1]

1: Sample xi1 ∼ p(x1), for i = 1, . . . , N − 1.
2: Set xN1 = x1[k].
3: for t = 1 to T do
4: Set ωit = N

(
yt | g(xit), R

)
, for i = 1, . . . , N .

5: Sample ait with P(ait = j) ∝ ωjt , for i = 1, . . . , N − 1.

6: Sample xit+1 ∼ N
(
f(x

ait
t ), Q

)
, for i = 1, . . . , N − 1.

7: Set xNt+1 = xt+1[k].
8: Sample aNt w. P(aNt = j) ∝ ωjtN

(
xNt+1 | f(xjt), Q

)
.

9: Set xi1:t+1 = {xa
i
t

1:t, x
i
t+1}, for i = 1, . . . , N .

10: end for
11: Sample J with P(J = i) ∝ ωiT and set x1:T [k + 1] = xJ1:T .

When using SMC methods for learning parameters, a key idea is to repeatedly infer the unknown states x1:T with a
particle filter, and interleave this iteration with inference of the unknown parameters θ, as follows:

I. Use SMC to infer the states x1:T for given parameters θ.
II. Update the parameters θ to fit the states x1:T from the previous step.

(17)

There are several details left to specify in this iteration, and we will pursue two approaches for updating θ: one sample-
based for exploring the full posterior p(θ|y1:T ), and one EM-based for finding the maximum mode of the posterior, or
equivalently, a regularized maximum likelihood estimate. Both alternatives will utilize the linear-in-parameter structure
of the model (15), and use the Markov kernel PGAS (Lindsten et al., 2014) to handle the states in Step I of (17).

The PGAS Markov kernel resembles a standard particle filter, but has one of its state-space trajectories fixed. It is
outlined by Algorithm 1, and is a procedure to asymptotically produce samples from p(x1:T | y1:T , θ), if repeated
iteratively in a Markov chain Monte Carlo (MCMC, Robert and Casella 2004) fashion.

4.2 Parameter posterior

The learning problem will be split into the iterative procedure (17). In this section, the focus is on a key to Step II
of (17), namely the conditional distribution of θ given states x1:T and measurements y1:T . By utilizing the Markovian
structure of the state-space model, the density p(x1:T , y1:T | θ) can be written as the product

p(x1:T , y1:T | θ) = p(x1)

T−1∏
t=1

p(xt+1 |xt, θ)p(yt |xt) = p(x1)

T−1∏
t=1

p(xt+1 |xt, θ)︸ ︷︷ ︸
p(x1:T | θ)

T∏
t=1

p(yt |xt)︸ ︷︷ ︸
p(y1:T | x1:T )

. (18)

Since we assume that the observation function (1b) is known, p(yt |xt) is independent of θ, which in turn means
that (18) is proportional to p(x1:T | θ). Further, we assume for now that p(x1) is also known, and therefore omit it. Let
us consider the case without discontinuity points, np = 0. Since vt is assumed to be Gaussian, p(xt+1 |xt, ut, θ) =
N (xt+1 |Aϕ̄(xt, ut), Q), we can with some algebraic manipulations (Gibson and Ninness, 2005) write

log p(x1:T |A,Q) = −Tnx2 log(2π)− T
2 log det(Q)− 1

2 tr
{
Q−1

(
Φ−AΨT −ΨAT +AΣAT

)}
, (19)

with the (sufficient) statistics

Φ =

T∑
t=1

xt+1x
T
t+1, Ψ =

T∑
t=1

xt+1ϕ̄(xt, ut)
T, Σ =

T∑
t=1

ϕ̄(xt, ut)ϕ̄(xt, ut)
T. (20a)

The density (19) gives via Bayes’ rule and theMNIW prior distribution for A,Q from Section 3

log p(A,Q) = log p(A |Q) + log p(Q) ∝ − 1
2 (nx + `+m+ 1) log det(Q)− 1

2 tr
{
Q−1

(
Λ +AV −1AT

)}
, (21)
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the posterior

log p(A,Q |x1:t) ∝ log p(x1:t |A,Q) + log p(A,Q) ∝ − 1
2 (nx + T + `+m+ 1) log detQ

− 1
2 tr
{
Q−1

(
Λ + Φ−Ψ(Σ + V −1)−1ΨT + (A−Ψ(Σ + V −1)−1)Q−1(A−Ψ(Σ + V −1)−1)T

)}
. (22)

This expression will be key for learning: For the fully Bayesian case, we will recognize (22) as another MNIW
distribution and sample from it, whereas we will maximize it when seeking a point estimate.

Remarks: The expressions needed for an unknown observation function g(·) are completely analogous. The case
with discontinuity points becomes essentially the same, but with individual Ai, Qi and statistics for each segment.
If the right hand side of (15a) also contains a known function h(xt), e.g., if the proposed model is used only to
describe deviations from a known linear model, this can easily be taken care of by noting that now p(xt+1 |xt, ut, θ) =
N (xt+1 − h(xt) |Aϕ̄(xt, ut), Q), and thus compute the statistics (20) for (xt+1 − h(xt)) instead of xt+1.

4.3 Inferring the posterior—Bayesian learning

There is no closed form expression for p(θ | y1:T ), the distribution to infer in the Bayesian learning. We thus resort to
a numerical approximation by drawing samples from p(θ, x1:T | y1:T ) using MCMC. (Alternative, variational methods
could be used, akin to Frigola et al. (2014)). MCMC amounts to constructing a procedure for ‘walking around’ in
θ-space in such a way that the steps . . . , θ[k], θ[k + 1], . . . eventually, for k large enough, become samples from the
distribution of interest.

Let us start in the case without discontinuity points, i.e., np ≡ 0. Since (21) is MNIW , and (19) is a product
of (multivariate) Gaussian distributions, (22) is also an MNIW distribution (Wills et al., 2012; Dawid, 1981). By
identifying components in (22), we conclude that

p(θ |x1:T , y1:T ) =MNIW
(
A,Q |Ψ(Σ + V −1)−1, (Σ + V −1)−1,Λ + Φ−Ψ(Σ + V −1)−1ΨT, `+ Tnx

)
(23)

We now have (23) for sampling θ given the states x1:T (cf. (17), step II), and Algorithm 1 for sampling the states x1:T

given the model θ (cf. (17), step I). This makes a particle Gibbs sampler (Andrieu et al., 2010), cf. (17).

If there are discontinuity points to learn, i.e., np is to be learned, we can do that by acknowledging the hierarchical
structure of the model. For brevity, we denote {np, {pi}

np
i=1} by ξ, and {Ai, Qi}

np
i=1 simply by A,Q. We suggest to

first sample ξ from p(ξ |x1:T ), and next sample A,Q from p(A,Q |x1:T , ξ). The distribution for sampling A,Q is the
MNIW distribution (23), but conditional on data only in the relevant segment. The other distribution, p(ξ |x1:T ),
is trickier to sample from. We suggest to use a Metropolis-within-Gibbs step (Müller, 1991), which means that we
first sample ξ∗ from a proposal q(ξ∗ | ξ[k]) (e.g., a random walk), and then accept it as ξ[k+ 1] with probability
min

(
1, p(ξ

∗ | x1:T )
p(ξ[k] | x1:T )

q(ξ[k] | ξ[k])
q(ξ∗ | ξ[k])

)
, and otherwise just set ξ[k+ 1] = ξ[k]. Thus we need to evaluate p(ξ∗ |x1:T ) ∝

p(x1:T | ξ∗)p(ξ∗). The prior p(ξ∗) is chosen by the user. The density p(x1:T | ξ) can be evaluated using the expression
(see Appendix A.1)

p(x1:T | ξ) =

np∏
i=0

2nxTi/2

(2π)Ti/2
Γnx( l+N2 )

Γnx( l2 )

|V −1|nx/2

|Σi + V −1|nx/2
× |Λ|l/2

|Λ + Φi + Ψi(Σi + V −1)−1ΨT
i |

l+N
2

(24)

where Φi etc. denotes the statistics (20) restricted to the corresponding segment, and Ti is the number of data points in
segment i (

∑
i Ti = T ). The suggested Bayesian learning procedure is summarized in Algorithm 2.

Our proposed algorithm can be seen as a combination of a collapsed Gibbs sampler and Metropolis-within-Gibbs, a
combination which requires some attention to be correct (van Dyk and Jiao, 2014), see Appendix A.2 for details in our
case. If the hyperparameters parameterizing V and/or the initial states are unknown, it can be included by extending
Algorithm 2 with extra Metropolis-within-Gibbs steps (see Svensson et al. (2016) for details).
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Algorithm 2 Bayesian learning of (15)
Input: Data y1:T , priors on A,Q and ξ.
Output: K MCMC-samples with p(x1:T , A,Q, ξ | y1:T ) as invariant distribution.

1: Initialize A[0], Q[0], ξ[0].
2: for k = 0 to K do
3: Sample x1:T [k+1]

∣∣ A[k], Q[k], ξ[k] Algorithm 1
4: Sample ξ[k+1]

∣∣ x1:T [k+1] Section 4.3
5: Sample Q[k+1]

∣∣ ξ[k+1], x1:T [k+1] by (23)
6: Sample A[k+1]

∣∣ Q[k+1], ξ[k+1], x1:T [k+1] by (23)
7: end for

4.4 Regularized maximum likelihood

A widely used alternative to Bayesian learning is to find a point estimate of θ maximizing the likelihood of the training
data p(y1:T | θ), i.e., maximum likelihood. However, if a very flexible model is used, some kind of mechanism is needed
to prevent the model from overfit to training data. We will therefore use the priors from Section 3 as regularization
for the maximum likelihood estimation, which can also be understood as seeking the maximum mode of the posterior.
We will only treat the case with no discontinuity points, as the case with discontinuity points does not allow for closed
form maximization, but requires numerical optimization tools, and we therefore suggest Bayesian learning for that case
instead.

The learning will build on the particle stochastic approximation EM (PSAEM) method proposed by Lindsten (2013),
which uses a stochastic approximation of the EM scheme (Dempster et al., 1977; Delyon et al., 1999; Kuhn and
Lavielle, 2004). EM addresses maximum likelihood estimation in problems with latent variables. For system identifi-
cation, EM can be applied by taking the states x1:T as the latent variables, (Ghahramani and Roweis (1998); another
alternative would be to take the noise sequence v1:T as the latent variables, Umenberger et al. (2015)). The EM
algorithm then amounts to iteratively (cf. (17)) computing the expectation (E-step)

Q(θ, θ[k]) = Ex1:T
[log p(θ |x1:T , y1:T ) | y1:T , θ[k]] , (25a)

and updating θ in the maximization (M-step) by solving

θ[k+1] = arg max
θ
Q(θ, θ[k]), (25b)

In the standard formulation, Q is usually computed with respect to the joint likelihood density for x1:T and y1:T . To
incorporate the prior (our regularization), we may consider the prior as an additional observation of θ, and we have
thus replaced (19) by (22) in Q. Following Gibson and Ninness (2005), the solution in the M-step is found as follows:
Since Q−1 is positive definite, the quadratic form in (22) is maximized by

A = Φ(Σ + V −1). (26a)

Next, substituting this into (22), the maximizing Q is

Q = 1
nx+Tnx+`+m+1

(
Λ + Φ−Ψ(Σ + V −1)−1Ψ

)
. (26b)

We thus have solved the M-step exactly. To compute the expectation in the E-step, approximations are needed. For
this, a particle smoother (Lindsten and Schön, 2013) could be used, which would give a learning strategy in the flavor
of Schön et al. (2011). The computational load of a particle smoother is, however, unfavorable, and PSAEM uses
Algorithm 1 instead.

PSAEM also replaces and replace the Q-function (25a) with a Robbins-Monro stochastic approximation of Q,

Qk(θ) = (1− γk)Qk−1(θ) + γk log p(θ |x1:T [k], y1:T ), (27)

where {γk}k≥1 is a decreasing sequence of positive step sizes, with γ1 = 1,
∑
k γk = ∞ and

∑
k γ

2
k < ∞. I.e.,

γk should be chosen such that k−1 ≤ γk < k−0.5 holds up to proportionality, and the choice γk = k−2/3 has been
suggested in the literature (Delyon et al., 1999, Section 5.1). Here, x1:T [k] is a sample from an ergodic Markov kernel
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Algorithm 3 Regularized maximum likelihood

1: Initialize θ[1].
2: for k > 0 do
3: Sample x1:T [k] by Algorithm 1 with parameters θ[k].
4: Compute and update the statistics of x1:T [k] (20, 30).
5: Compute θ[k+1] = argmaxθ Q(θ) (26).
6: end for

with p(x1:T | y1:T , θ) as its invariant distribution, i.e., Algorithm 1. At a first glance, the complexity of Qk(θ) appears
to grow with k because of its iterative definition. However, since p(x1:T , y1:T | θ) belongs to the exponential family,
we can write

p(x1:T [k], y1:T | θ) = h(x1:T [k], y1:T )c(θ) exp
(
ηT(θ)t[k]

)
, (28)

where t[k] is the statistics (20) of {x1:T [k], y1:T }. The stochastic approximation Qk(θ) (27) thus becomes

Qk(θ) ∝ log p(θ) + log c(θ) + ηT(θ) (γkt[k] + (1− γk)γk-1t[k − 1] + . . . ) . (29)

Now, we note that if keeping track of the statistics γkt[k] + γk-1t[k-1] + . . . , the complexity of Q does not grow with
k. We therefore introduce the following iterative update of the statistics

Φk = (1− γk)Φk−1 + γkΦ(x1:T [k]), (30a)
Ψk = (1− γk)Ψk−1 + γkΨ(x1:T [k]), (30b)
Σk = (1− γk)Σk−1 + γkΣ(x1:T [k]), (30c)

where Φ(x1:T [k]) refers to (20), etc. With this parametrization, we obtain arg maxθ Qk(θ) as the solutions for the
vanilla EM case by just replacing Φ by Φk, etc., in (26). Algorithm 3 summarizes.

4.5 Convergence and consistency

We have proposed two algorithms for learning the model introduced in Section 3. The Bayesian learning, Algorithm 2,
will by construction (as detailed in Appendix A.2) asymptotically provide samples from the true posterior density
p(θ | y1:T ) (Andrieu et al., 2010). However, no guarantees regarding the length of the burn-in period can be given, which
is the case for all MCMC methods, but the numerical comparisons in Svensson et al. (2016) and in Section 5.1 suggest
that the proposed Gibbs scheme is efficient compared to its state-of-the-art alternatives. The regularized maximum
likelihood learning, Algorithm 3, can be shown to converge under additional assumptions (Lindsten, 2013; Kuhn and
Lavielle, 2004) to a stationary point of p(θ|y1:T ), however not necessarily a global maximum. The literature on PSAEM
is not (yet) very rich, and the technical details regarding the additional assumptions remains to be settled, but we have
not experienced any problems of non-convergence in practice.

4.6 Initialization

The convergence of Algorithm 2 is not relying on the initialization, but the burn-in period can nevertheless be reduced.
One useful idea by Paduart et al. (2010) is thus to start with a linear model, which can be obtained using classical
methods. To avoid Algorithm 3 from converging to a poor local minimum, Algorithm 2 can first be run to explore the
‘landscape’ and from that, a promising point for initialization of Algorithm 3 can be chosen.

For convenience, we assumed the distribution of the initial states, p(x1), to be known. This is perhaps not realistic,
but its influence is minor in many cases. If needed, they can be included in Algorithm 2 by an additional Metropolis-
within-Gibbs step, and in Algorithm 3 by including them in (22) and use numerical optimization tools.
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5 Experiments
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(a) Maximum likelihood estimation of our proposed model,
without regularization; a useless model.
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(b) Maximum likelihood estimation of our proposed model,
with regularization. A subset of the m = 40 basis functions
used are sketched at the bottom. Computation time: 12 s.
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(c) Bayesian learning of our proposed model, i.e., the entire
posterior is explored. Computation time: 12 s.
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(d) Posterior distribution for the basis functions (sketched at
the bottom) used by Tobar et al. (2015), but Algorithm 2 for
learning. Computation time: 9 s.
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(e) The method presented by Tobar et al. (2015), using
Metropolis-Hastings for learning. Computation time: 32 s.

Posterior model uncertainty
Learned model
True state transition function
State samples underlying data
Basis functions

Figure 3: True function (black), states underlying the data
(red) and learned model (blue, gray) for the example in Sec-
tion 5.1.

We will give three numerical examples: a toy example, a clas-
sic benchmark, and thereafter a real data set from two cas-
caded water tanks. Matlab code for all examples is available
via the first authors homepage.

5.1 A first toy example

Consider the following example from Tobar et al. (2015),

xt+1 = 10sinc
(xt

7

)
+ vt, vt ∼ N (0, 4), (31a)

yt = xt + et, et ∼ N (0, 4). (31b)

We generate T = 40 observations, and the challenge is to
learn f(·), when g(·) and the noise variances are known. Note
that even though g(·) is known, y is still corrupted by a non-
negligible amount of noise.

In Figure 3 (a) we illustrate the performance of our proposed
model using m = 40 basis functions on the form (4) when
Algorithm 3 is used without regularization. This gives a non-
sense result that is overfitted to data, since m = 40 offers too
much flexibility for this example. When a GP-inspired prior
from an exponentiated quadratic covariance function (10a)
with length scale ` = 3 and sf = 50 is considered, we obtain
(b), that is far more useful and follows the true function rather
well in regions were data is present. We conclude that we
do not need to choose m carefully, but can rely on the priors
for regularization. In (c), we use the same prior and explore
the full posterior by Algorithm 2, obtaining information about
uncertainty as a part of the learned model (illustrated by the a
posteriori credibility interval), in particular in regions where
no data is present.

In the next figure, (d), we replace the set of m = 40 basis
functions on the form (4) with 8 Gaussian kernels to recon-
struct the model proposed by Tobar et al. (2015). As clari-
fied by Tobar (2016), the prior on the coefficients is a Gaus-
sian distribution inspired by a GP, which makes a close con-
nection to out work. We use Algorithm 2 for learning also
in (d) (which is possible thanks to the Gaussian prior). In
(e), on the contrary, the learning algorithm from Tobar et al.
(2015), Metropolis-Hastings, is used, requiring more compu-
tation time. Tobar et al. (2015) spend a considerable effort
to pre-process the data and carefully distribute the Gaussian
kernels in the state space, see the bottom of (d).
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5.2 Narendra-Li benchmark

The example introduced by Narendra and Li (1996) has become a benchmark for nonlinear system identification, e.g.,
The MathWorks, Inc. 2015; Pan et al. 2009; Roll et al. 2005; Stenman 1999; Wen et al. 2007; Xu et al. 2009. The
benchmark is defined by the model

x1
t+1 =

(
x1
t

1+(x1
t )

2 + 1
)

sin(x2
t ), (32a)

x2
t+1 =x2

t cos(x2
t ) + x1

t exp
(
− (x1

t )
2+(x2

t )
2

8

)
+ (ut)

3

1+(ut)2+0.5 cos(x1
t+x

2
t )
, (32b)

yt =
x1
t

1+0.5 sin(x2
t )

+
x2
t

1+0.5 sin(x1
t )
, (32c)

where xt = [x1
t x

2
t ]

T. The training data (only input-output data) is obtained with an input sequence sampled uniformly
and iid from the interval [−2.5, 2.5]. The input data for the test data is ut = sin(2πt/10) + sin(2πt/25).

According to Narendra and Li (1996, p. 369), it ‘does not correspond to any real physical system and is deliberately
chosen to be complex and distinctly nonlinear’. The original formulation is somewhat extreme, with no noise and
T = 500 000 data samples for learning. In the work by Stenman (1999), a white Gaussian measurement noise with
variance 0.1 is added to the training data, and less data is used for learning. We apply Algorithm 2 with a second order
state-space model, np = 0, and a known, linear g(·). (Even though the data is generated with a nonlinear g(·), it turn
out this will give a satisfactory performance.) We use 7 basis functions per dimension (i.e., 686 coefficients w(j) to
learn in total) on the form (5), with prior from the covariance function (10a) with length scale ` = 1.

For the original case without any noise, but using only T = 500 data points, a root mean square error (RMSE) for the
simulation of 0.039 is obtained. Our result is in contrast to the significantly bigger simulation errors by Narendra and
Li (1996), although they use 1 000 times as many data points. For the more interesting case with measurement noise in
the training data, we achieve a result almost the same as for the noise-free data. We compare to some previous results
reported in the literature (T is the number of data samples in the training data):

Reference RMSE T

This paper 0.06* 2 000
Roll et al. (2005) 0.43 50 000
Stenman (1999) 0.46 50 000
Xu et al. (2009) (AHH) 0.31 2 000
Xu et al. (2009) (MARS) 0.49 2 000

*The number is averaged over 10 realizations

It is clear that the proposed model is capable enough to well describe the system behavior.

5.3 Water tank data

We consider the data sets provided by Schoukens et al. (2015), collected from a physical system consisting of two
cascaded water tanks, where the outlet of the first tank goes into the second one. A training and a test data set is
provided, both with 1024 data samples. The input u (voltage) governs the inflow to the first tank, and the output y
(voltage) is the measured water level in the second tank. This is a well-studied system (e.g., Wigren and Schoukens
2013), but a peculiarity in this data set is the presence of overflow, both in the first and the second tank. When the first
tank overflows, it goes only partly into the second tank.

We apply our proposed model, with a two dimensional state space. The following structure is used:

x1
t+1 = f1(x1

t , ut) + v1
t , (33a)

x2
t+1 = f2(x1

t , x
2
t , ut) + v2

t , (33b)

yt = x2
t + et. (33c)

It is surprisingly hard to perform better than linear models in this problem, perhaps because of the close-to-linear
dynamics in most regimes, in combination with the non-smooth overflow events. This calls for discontinuity points to
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be used. Since we can identify the overflow level in the second tank directly in the data, we fix a discontinuity point
at x2 = 10 for f2(·), and learn the discontinuity points for f1(·). Our physical intuition about the water tanks is a
close-to-linear behavior in most regimes, apart from the overflow events, and we thus use the covariance function (10a)
with a rather long length scale ` = 3 as prior. We also limit the number of basis functions to 5 per dimension for
computational reasons (in total, there are 150 coefficients w(j) to learn).
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Validation data
2nd order linear state space model. RMSE: 0.67
5th order NARX with sigmoidnet. RMSE: 0.73

” simulation focus. RMSE: 0.49
5th order NARX with wavelets. RMSE: 0.61

” simulation focus. RMSE: 0.64
The proposed model. RMSE: 0.45
Credibility interval for the proposed method.

Figure 4: The simulated and true output for the test data in the wa-
ter tank experiment (Section 5.3). The order of the NARX models
refers to the number of regressors in u and y.

Algorithm (2) is used to sample from the model posterior.
We use all samples to simulate the test output from the
test input for each model to represent a posterior for the
test data output, and compute the RMSE for the differ-
ence between the posterior mode and the true test output.
A comparison to nonlinear ARX-models (NARX, Ljung
1999) is also made in Figure 4. It is particularly interest-
ing to note how the different models handle the overflow
around time 3 000 in the test data. We have tried to se-
lect the most favorable NARX configurations, and when
finding their parameters by maximizing their likelihood
(which is equivalent to minimizing their 1-step-ahead
prediction, Ljung 1999), the best NARX model is per-
forming approximately 35% worse (in terms of RMSE)
than our proposed model. When instead learning the
NARX models with ‘simulation focus’, i.e., minimizing
their simulation error on the training data, their RMSE
decreases, and approaches almost the one of our model
for one of the models5. While the different settings in the
NARX models have a large impact on the performance,
and therefore a trial-and-error approach is needed for the
user to determine satisfactory settings, our approach of-
fers a more systematic way to encode the physical knowl-
edge at hand into the modeling process, and achieves a
competitive performance.

6 Conclusions and further work

During the recent years, there has been a rapid development of powerful parameter estimation tools for state-space
models. These methods allows for learning in complex and extremely flexible models, and this paper is a response
to the situation when the learning algorithm is able to learn a state-space model more complex than the information
contained in the training data (cf. Figure 3a). For this purpose, we have in the spirit of Peterka (1981) chosen to
formulate GP-inspired priors for a basis function expansion, in order to ‘softly’ tune its complexity and flexibility in a
way that hopefully resonates with the users intuition. In this sense, our work resembles the recent work in the machine
learning community on using GPs for learning dynamical models (see, e.g., Frigola-Alcade 2015; Bijl et al. 2016;
Mattos et al. 2016). However, not previously well explored in the context of dynamical systems, is the combination of
discontinuities and the smooth GP. We have also tailored efficient learning algorithms for the model, both for inferring
the full posterior, and finding a point estimate.

It is a rather hard task to make a sensible comparison between our model-focused approach, and approaches which
provide a general-purpose black-box learning algorithm with very few user choices. Because of their different nature,
we do not see any ground to claim superiority of one approach over another. In the light of the promising experimental
results, however, we believe this model-focused perspective can provide additional insight into the nonlinear system
identification problem. There is certainly more to be done and understand when it comes to this approach, in particular
concerning the formulation of priors.

5Since the corresponding change in learning objective is not available to our model, this comparison might only offer partial insight. It would,
however, be an interesting direction for further research to implement learning with ‘simulation focus’ in the Bayesian framework.
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We have proposed an algorithm for Bayesian learning of our model, which renders K samples of the parameter pos-
terior, representing a distribution over models. A relevant question is then how to compactly represent and use these
samples to efficiently make predictions. Many control design methods provide performance guarantees for a perfectly
known model. An interesting topic would hence be to incorporate model uncertainty (as provided by the posterior) into
control design and provide probabilistic guarantees, such that performance requirements are fulfilled with, e.g., 95%
probability.

A Appendix: Technical details

A.1 Derivation of (24)

From Bayes’ rule, we have

p(x1:T | ξ) =
p(A,Q | ξ)p(x1:T |A,Q, ξ)

p(A,Q | ξ, x1:T )
. (34)

The expression for each term is found in (12-14), (18) and (23), respectively. All of them have a functional form
η(ξ) · |Q|χ(ξ) · exp

(
− 1

2 tr
{
Q−1τ(A, x1:T , ξ)

})
, with different η, χ and τ . Starting with the |Q|-part, the sum of the

exponents for all such terms in both the numerator and the denominator sums to 0. The same thing happens to the
exp-part, which can either be worked out algebraically, or realized since p(x1:T | ξ) is independent ofQ. What remains
is everything stemming from η, which indeed is p(x1:T | ξ), (24).

A.2 Invariant distribution of Algorithm 2

As pointed out by van Dyk and Jiao (2014), the combination of Metropolis-within-Gibbs and partially collapsed Gibbs
might obstruct the invariant distribution of a sampler. In short, the reason is that a Metropolis-Hastings (MH) step is
conditioned on the previous sample, and the combination with a partially collapsed Gibbs sampler can therefore be
problematic, which becomes clear if we write the MH procedure as the operatorMH in the following simple example
from van Dyk and Jiao (2014) of a sampler for finding the distribution p(a, b):

Sample a[k+1] ∼ p(a | b[k]) (Gibbs)
Sample b [k+1] ∼MH(b | a[k+1], b[k]) (MH)

So far, this is a valid sampler. However, if collapsing over b, the sampler becomes
Sample a[k+1] ∼ p(a) (Partially collapsed Gibbs)
Sample b [k+1] ∼MH(b | a[k+1], b[k]) (MH)

where the problematic issue, obstructing the invariant distribution, is the joint conditioning on a[k+1] and b[k] (marked
in red), since a[k+1] has been sampled without conditioning on b[k]. Spelling out the details from Algorithm 2 in
Algorithm 4, it is clear this problematic conditioning is not present.

Algorithm 4 Details of Algorithm 2
2: for k = 0 to K do
3: Sample x1:T [k+1]

∣∣ A[k], Q[k], ξ[k] (Gibbs)
4: Sample ξ[k+1] ∼MH(x1:T [k+1], ξ[k])
5: Sample Q[k+1]

∣∣ ξ[k+1], x1:T [k+1] (Gibbs)
6: Sample A[k+1]

∣∣ Q[k+1], ξ[k+1], x1:T [k+1](Gibbs)
7: end for
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