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Supervisor Localization of Discrete-Event

Systems under Partial Observation*
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Abstract

Recently we developed supervisor localization, a top-down approach to distributed control of discrete-

event systems. Its essence is the allocation of monolithic (global) control action among the local control

strategies of individual agents. In this paper, we extend supervisor localization by considering partial

observation; namely not all events are observable. Specifically, we employ the recently proposed concept

of relative observability to compute a partial-observation monolithic supervisor, and then design a suitable

localization procedure to decompose the supervisor into a set of local controllers. In the resulting local

controllers, only observable events can cause state change. Further, to deal with large-scale systems, we

combine the partial-observation supervisor localization with an efficient architectural synthesis approach:

first compute a heterarchical array of partial-observation decentralized supervisors and coordinators, and

then localize each of these supervisors/coordinators into local controllers.
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I. INTRODUCTION

In [1–5] we developed a top-down approach, called supervisor localization, to the distributed control

of multi-agent discrete-event systems (DES). This approach first synthesizes a monolithic supervisor

(or a heterarchical array of modular supervisors) assuming that all events can be observed, and then
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decomposes the supervisor into a set of local controllers for the component agents. Localization creates

a purely distributed control architecture in which each agent is controlled by its own local controller;

this is particularly suitable for applications consisting of many autonomous components, e.g. multi-

robot systems. Moreover, localization can significantly improve the comprehensibility of control logic,

because the resulting local controllers typically have many fewer states than their parent supervisor. The

assumption of full event observation, however, may be too strong in practice, since there often lacks

enough sensors to observe every event.

In this paper, we extend supervisor localization to address the issue of partial observation. Our approach

is as follows. We first synthesize a partial-observation monolithic supervisor using the concept of relative

observability in [6]. Relative observability is generally stronger than observability [7, 8], weaker than

normality [7, 8], and the supremal relatively observable (and controllable) sublanguage of a given language

exists. The supremal sublanguage may be effectively computed [6], and then implemented by a partial-

observation (feasible and nonblocking) supervisor [9, Chapter 6]. We then suitably extend the localization

procedure in [1] to decompose the supervisor into local controllers for individual agents, and moreover

prove that the derived local controlled behavior is equivalent to the monolithic one. We then suitably

extend the localization procedure in [1] to decompose the supervisor into local controllers for individual

agents, and moreover prove that the derived local controlled behavior is equivalent to the monolithic one.

The main contribution of this work is the novel combination of supervisor localization [1] with relative

observability [6], which leads to a systematic approach to distributed control of DES under partial

observation. The central concept of supervisor localization is control cover [1], which is defined on

the state set of the full-observation supervisor. Under partial observation, we propose an extended control

cover, which is defined on the state set of the partial-observation supervisor; roughly speaking, the latter

corresponds to the powerset of the full-observation supervisor’s state set. In this way, in the transition

structure of the resulting local controllers, only observable events can lead to state changes. We design

an extended localization algorithm for computing these local controllers. Moreover, to deal with large-

scale systems, we combine the developed localization procedure with an efficient architectural synthesis

approach [10]: first compute a heterarchical array of partial-observation decentralized supervisors and

coordinators that collectively achieves globally feasible and nonblocking controlled behavior, and then

localize each of these supervisors/coordinators into local controllers.

Our proposed localization procedure can in principle be used to construct local controllers from a

partial-observation supervisor computed by any synthesis method. In particular, the algorithms in [11, 12]

compute a nonblocking (maximally) observable sublanguage that is generally incomparable with the
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supremal relatively observable sublanguage. The reason that we adopt relative observability is first of

all that its generator-based computation of the supremal sublanguage is better suited for applying our

localization algorithm; by contrast [12] uses a different transition structure called “bipartite transition

system”. Another important reason is that the computation of relative observability has been implemented

and tested on a set of benchmark examples. This enables us to study distributed control under partial

observation of more realistic systems; by contrast, the examples reported in [11, 12] are limited to

academic ones.

We note that in [13–15] partial-observation supervisors are synthesized to enforce properties other

than safety (satisfying imposed specifications) and nonblockingness; examples include diagnosability and

opacity. Although we focus on safety and nonblockingness, for the sake of consistency with our previous

work on full-observation localization that targets multi-agent distributed control problems, our developed

localization procedure may be applied in the same way to decompose partial-observation supervisors with

other properties. Thus if a partial-observation supervisor enforces specified properties determined only

by the synthesized language, then those properties are preserved by localization and achieved collectively

by the synthesized local controllers.

The paper is organized as follows. Section II reviews the supervisory control problem of DES under

partial observation and formulates the partial-observation supervisor localization problem. Section III

develops the partial-observation localization procedure, and Section IV presents the localization algorithm,

which is illustrated by a Transfer Line example. Section V outlines a procedure combining the partial-

observation localization with an efficient heterarchical supervisor synthesis to address distributed control

of large-scale systems. Finally Section VI states our conclusions.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Supervisory Control of DES under Partial Observation

A DES plant is given by a generator

G = (Q,Σ, δ, q0, Qm) (1)

where Q is the finite state set; q0 ∈ Q is the initial state; Qm ⊆ Q is the subset of marker states; Σ is the

finite event set; δ : Q× Σ → Q is the (partial) state transition function. In the usual way, δ is extended

to δ : Q× Σ∗ → Q, and we write δ(q, s)! to mean that δ(q, s) is defined. Let Σ∗ be the set of all finite

strings, including the empty string ǫ. The closed behavior of G is the language

L(G) = {s ∈ Σ∗|δ(q0, s)!}
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and the marked behavior is

Lm(G) = {s ∈ L(G)|δ(q0, s) ∈ Qm} ⊆ L(G).

A string s1 is a prefix of a string s, written s1 ≤ s, if there exists s2 such that s1s2 = s. The (prefix)

closure of Lm(G) is Lm(G) := {s1 ∈ Σ∗|(∃s ∈ Lm(G)) s1 ≤ s}. In this paper, we assume that

Lm(G) = L(G); namely, G is nonblocking.

For supervisory control, the event set Σ is partitioned into Σc, the subset of controllable events that

can be disabled by an external supervisor, and Σuc, the subset of uncontrollable events that cannot be

prevented from occurring (i.e. Σ = Σc∪̇Σuc). For partial observation, Σ is partitioned into Σo, the subset

of observable events, and Σuo, the subset of unobservable events (i.e. Σ = Σo∪̇Σuo). Bring in the natural

projection P : Σ∗ → Σ∗
o defined by

P (ǫ) = ǫ;

P (σ) =







ǫ, if σ /∈ Σo,

σ, if σ ∈ Σo;

P (sσ) = P (s)P (σ), s ∈ Σ∗, σ ∈ Σ.

(2)

As usual, P is extended to P : Pwr(Σ∗) → Pwr(Σ∗
o), where Pwr(·) denotes powerset. Write P−1 :

Pwr(Σ∗
o) → Pwr(Σ∗) for the inverse-image function of P .

For two languages L1 ⊆ Σ∗
1 and L2 ⊆ Σ∗

2, the synchronous product L1||L2 ⊆ (Σ1 ∪ Σ2)
∗ is defined

according to L1||L2 := P−1
1 L1∩P

−1
2 L2, where Pi : (Σ1∪Σ2)

∗ → Σ∗
i (i = 1, 2) are the natural projections

as defined in (2). For two generators Gi = (Qi,Σi, δi, q0,i, Qm,i), i = 1, 2, let Lm(Gi) and L(Gi) be the

marked and closed behaviors of Gi respectively; then the synchronous product G = (Q,Σ, δ, q0, Qm) of

G1 and G2, denoted by G1||G2, is constructed [9] to have marked behavior Lm(G) = Lm(G1)||Lm(G2)

and closed behavior L(G) = L(G1)||L(G2). Synchronous product of more than two generators can be

constructed similarly.

A supervisory control for G is any map V : L(G) → Γ, where Γ := {γ ⊆ Σ|γ ⊇ Σuc}. Then the

closed-loop system is V/G, with closed behavior L(V/G) and marked behavior Lm(V/G) [9]. Under

partial observation P : Σ∗ → Σ∗
o, we say that V is feasible if

(∀s, s′ ∈ L(G)) P (s) = P (s′) ⇒ V (s) = V (s′), (3)

and V is nonblocking if Lm(V/G) = L(V/G).

It is well-known [7] that under partial observation, a feasible and nonblocking supervisory control V

exists which synthesizes a (nonempty) sublanguage K ⊆ Lm(G) if and only if K is both controllable
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and observable [9]. When K is not observable, however, there generally does not exist the supremal

observable (and controllable) sublanguage of K. Recently in [6], a new concept of relative observability

is proposed, which is stronger than observability but permits the existence of the supremal relatively

observable sublanguage.

Formally, a sublanguage K ⊆ Lm(G) is controllable [9] if

KΣuc ∩ L(G) ⊆ K. (4)

Let C ⊆ Lm(G). A sublanguage K ⊆ C is relatively observable with respect to C (or C-observable)

if for every pair of strings s, s′ ∈ Σ∗ that are lookalike under P , i.e. P (s) = P (s′), the following two

conditions hold [6]:

(i) (∀σ ∈ Σ)sσ ∈ K, s′ ∈ C, s′σ ∈ L(G) ⇒ s′σ ∈ K (5)

(ii) s ∈ K, s′ ∈ C ∩ Lm(G) ⇒ s′ ∈ K (6)

For E ⊆ Lm(G) write CO(E) for the family of controllable and C-observable sublanguages of E. Then

CO(E) is nonempty (the empty language ∅ belongs) and is closed under set union; CO(E) has a unique

supremal element sup CO(E) given by

sup CO(E) =
⋃

{K|K ∈ CO(E)}

which may be effectively computed [6]. Note that since relative observability is weaker than normality

[9], sup CO(E) is generally larger than the normality counterpart.

B. Formulation of Partial-Observation Localization Problem

Let the plant G be comprised of N (> 1) component agents

Gk = (Qk,Σk, δk, q0,k, Qm,k), k = 1, ..., N.

Then G is the synchronous product of Gk, k in the integer range {1, ..., N}, denoted as [1, N ], i.e.

G = ||{Gk|k ∈ [1, N ]}. Here, the Σk need not be pairwise disjoint. These agents are implicitly coupled

through a specification language E ⊆ Σ∗ that imposes a constraint on the global behavior of G (E may

itself be the synchronous product of multiple component specifications). For the plant G and the imposed

specification E, let the generator SUP = (X,Σ, ξ, x0,Xm) be such that

Lm(SUP) := sup CO(E ∩ Lm(G)). (7)
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and L(SUP) = Lm(SUP) (i.e. SUP is nonblocking). We call SUP the controllable and observable

controlled behavior.1 To rule out the trivial case, we assume that Lm(SUP) 6= ∅.

Now let α ∈ Σc be an arbitrary controllable event, which may or may not be observable. We say that

a generator

LOCα = (Yα,Σα, ηα, y0,α, Ym,α), Σα ⊆ Σo ∪ {α}

is a partial-observation local controller for α if (i) LOCα enables/disables the event α (and only α)

consistently with SUP, and (ii) if α is unobservable, then α-transitions are selfloops in LOCα, i.e.

(∀y ∈ Yα) ηα(y, α)! ⇒ ηα(y, α) = y.

Condition (i) means that for all s ∈ Σ∗ there holds

Pα(s)α ∈ L(LOCα), sα ∈ L(G), s ∈ L(SUP)

⇔sα ∈ L(SUP) (8)

where Pα : Σ∗ → Σ∗
α is the natural projection. Condition (ii) requires that only observable events may

cause a state change in LOCα, i.e.

(∀y, y′ ∈ Yα,∀σ ∈ Σα) y
′ = ηα(y, σ)!, y

′ 6= y ⇒ σ ∈ Σo. (9)

This requirement is a distinguishing feature of a partial-observation local controller as compared to its

full-observation counterpart in [1].

Note that the event set Σα of LOCα in general satisfies

{α} ⊆ Σα ⊆ Σo ∪ {α};

in typical cases, both subset containments are strict. The events in Σα \ {α} may be viewed as commu-

nication events that are critical to achieve synchronization with other partial-observation local controllers

(for other controllable events). The event set Σα is not fixed a priori, but will be determined as part of

the localization result presented in the next section.

We now formulate the Partial-Observation Supervisor Localization Problem:

Construct a set of partial-observation local controllers {LOCα | α ∈ Σc} such that the collective

controlled behavior of these local controllers is equivalent to the controllable and observable controlled

1Note that SUP, defined over the entire event set Σ, is not a representation of a partial-observation supervisor. The latter can

only have observable events as state transitions, according to the definition in Section III-A, below.
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behavior SUP in (7) with respect to G, i.e.

Lm(G) ∩
(

⋂

α∈Σc

P−1
α Lm(LOCα)

)

= Lm(SUP)

L(G) ∩
(

⋂

α∈Σc

P−1
α L(LOCα)

)

= L(SUP).

Having obtained a set of partial-observation local controllers, one for each controllable event, we can

allocate each controller to the agent(s) owning the corresponding controllable event. Thereby we build

for a multi-agent DES a nonblocking distributed control architecture under partial observation.

III. PARTIAL-OBSERVATION LOCALIZATION PROCEDURE

A. Uncertainty Set

Let G = (Q,Σ, δ, q0, Qm) be the plant, Σo ⊆ Σ the subset of observable events, and P : Σ∗ → Σ∗
o the

corresponding natural projection. Also let SUP = (X,Σ, ξ, x0,Xm) be the controllable and observable

controlled behavior (as defined in (7)).

Under partial observation, when a string s ∈ L(SUP) occurs, what is observed is P (s); namely,

the events in Σuo (= Σ \ Σo) are erased. Hence two different strings s and s′ may be lookalike, i.e.

P (s) = P (s′). For s ∈ L(SUP), let U(s) be the subset of states that may be reached by some string s′

that looks like s, i.e.

U(s) = {x ∈ X|(∃s′ ∈ Σ∗)P (s) = P (s′), x = ξ(x0, s
′)}.

It is always true that the state ξ(x0, s) ∈ U(s). We call U(s) the uncertainty set of the state ξ(x0, s)

associated with string s. Let

U(X) := {U(s) ⊆ X|s ∈ L(SUP)} (10)

i.e. U(X) is the set of uncertainty sets of all states (associated with strings in L(SUP)) in X. The size

of U(X) is |U(X)| ≤ 2|X| in general.

The transition function associated with U(X) is ξ̂ : U(X)× Σo → U(X) given by

ξ̂(U, σ) =
⋃

{ξ(x, u1σu2)|x ∈ U, u1, u2 ∈ Σ∗
uo}.

2 (11)

If there exist u1, u2 ∈ Σ∗
uo such that ξ(x, u1σu2)!, then ξ̂(U, σ) is defined, denoted as ξ̂(U, σ)!. With

U(X) and ξ̂, define the partial-observation monolithic supervisor [9, 16]

SUPO = (U(X),Σo, ξ̂, U0,Um) (12)

2Let U = U(s) for some string s ∈ L(SUP); then by definition of uncertainty set,
⋃
{ξ(x, u1σu2)|x ∈ U, u1, u2 ∈ Σ∗

uo
} =

{ξ(x0, s
′u1σu2)|ξ(x0, s

′)!, P s′ = Ps, u1, u2 ∈ Σ∗

uo
} = {ξ(x0, s

′′)|ξ(x0, s
′′)!, P s′′ = P (sσ)} = U(sσ) ∈ U(X).

7
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Fig. 1. Plant G, controllable and observable controlled behavior SUP, partial-observation monolithic supervisor SUPO,

Σc = {1, 3, 5}, and Σo = {1, 3, 4, 8}. Inspecting the transition diagram of SUP, the uncertainty sets are U(ǫ) = {x0, x2},

U(1) = {x1, x2}, U(1.4) = {x3, x4}, and for the remainder of strings s ∈ L(SUP), U(s) equals one of the above; namely, the

set U(X) of uncertainty sets of SUP is U(X) = {{x0, x2}, {x1, x2}, {x3, x4}}. For later reference, denote U0 = {x0, x2},

U1 = {x1, x2}, and U2 = {x3, x4}. With U(X) = {U0, U1, U2}, we find ξ̂ : U(X) × Σo → U(X), and then the partial-

observation supervisor SUPO is constructed. Note that in SUPO, only observable events lead to state changes. Notation: a

circle with → denotes the initial state, and a double circle denotes a marker state; this notation will be used throughout.

where U0 = U(ǫ) and Um = {U ∈ U(X)|U ∩ Xm 6= ∅}. It is known [9, 16] that L(SUPO) =

P (L(SUP)) and Lm(SUPO) = P (Lm(SUP)).3 For an example of uncertainty set and partial-observation

monolithic supervisor, see Fig. 1.

Now let U ∈ U(X), x ∈ U be any state in SUP and α ∈ Σc be a controllable event. We say that (1)

α is enabled at x ∈ U if

ξ(x, α)!;

(2) α is disabled at x ∈ U if

¬ξ(x, α)! and(∃s ∈ Σ∗)ξ(x0, s) = x & ξ̂(U0, Ps) = U & δ(q0, sα)!;

(3) α is not defined at x ∈ U if

¬ξ(x, α)! and(∀s ∈ Σ∗)ξ(x0, s) = x & ξ̂(U0, Ps) = U ⇒ ¬δ(q0, sα)!.

Under partial observation, the control actions after string s ∈ L(SUP) do not depend on the individual

state ξ(x0, s) ∈ X, but just on the uncertainty set U(s) ∈ U(X) (i.e. the state of SUPO). Since the

language Lm(SUP) is (relatively) observable, the following is true.

Lemma 1. Given SUP in (7), let U ∈ U(X), x ∈ U , and α ∈ Σc. If α is enabled at x, then for all

x′ ∈ U , either α is also enabled at x′, or α is not defined at x′.On the other hand, if α is disabled at

x, then for all x′ ∈ U , either α is also disabled at x′, or α is not defined at x′.

3 To ensure that the partial-observation supervisor SUPO is feasible, it is necessary to selfloop each state U of ξ̂ by σ = Σuo

exactly when there exists x ∈ U such that ξ(x, σ)!.
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Proof. By x ∈ U ∈ U(X), there exists s ∈ L(SUP) such that ξ(x0, s) = x and U(s) = U . Suppose

that σ ∈ Σc is enabled at x ∈ U , i.e. ξ(x, σ)!; it follows that ξ(x, sσ)!, i.e. sσ ∈ L(SUP). Now let

x′ ∈ U = U(s). According to the subset construction algorithm, there must exist s′ ∈ L(SUP) such that

ξ(x0, s
′) = x′ (i.e. s′ ∈ L(SUP)) and Ps′ = Ps. At state x′, either (i) ξ(x′, σ)!, or (ii) ¬ξ(x′, σ)!. Case

(i) means that σ is enabled at x′ ∈ U . In case (ii), we claim that s′σ /∈ L(G), i.e. σ is not defined at

x′ ∈ U . To see this, assume on the contrary that s′σ ∈ L(G). Then we have Ps′ = Ps, s′ ∈ L(SUP),

s′σ ∈ L(G), s′σ /∈ L(SUP), and sσ ∈ L(SUP). This implies that Lm(SUP) is not observable, which

is a contradiction to the definition of Lm(SUP) in (5). Therefore, in case (ii), σ is not defined at x′ ∈ U

after all.

The second statement can be proved by a similar argument.

�

B. Localization Procedure

The procedure of partial-observation localization proceeds similarly to [1], but is based on the set

U(X) of the uncertainty sets and its associated transition function ξ̂, i.e. based on the partial-observation

monolithic supervisor SUPO in (12).

First, consider the following four functions which capture the control and marking information on the

uncertainty sets. Fix a controllable event α ∈ Σc. Define Eα : U(X) → {0, 1} according to

(∀U ∈ U(X)) Eα(U) =







1, if (∃x ∈ U)ξ(x, α)!,

0, otherwise.

Thus Eα(U) = 1 if event α is enabled at some state x ∈ U . Then by Lemma 1 at any other state x′ ∈ U ,

α is either enabled or not defined. Also define Dα : U(X) → {0, 1} according to

(∀U ∈ U(X))

Dα(U) =



















1, if (∃x ∈ U)¬ξ(x, α)! &(∃s ∈ Σ∗)

ξ(x0, s) = x & ξ̂(U0, Ps) = U & δ(q0, sα)!,

0, otherwise.

Hence Dα(U) = 1 if α is disabled at some state x ∈ U . Again by Lemma 1 at any other state x′ ∈ U ,

α is either disabled or not defined.

Consider the example displayed in Fig. 1. The control actions include (i) enabling events 1, 3 at state

x0, event 5 at state x3; and (ii) disabling event 3 at state x1, event 5 at state x2. For the uncertainty

set U0 = {x0, x2}, E3(U0) = 1 because event 3 is enabled at state x0 ∈ U0; note that event 3 is not

9



defined at the other state x2 ∈ U0. For the uncertainty set U1 = {x1, x2}, D3(U1) = 1 because event 3

is disabled at state x1 ∈ U1; also note that event 3 is not defined at state x2 ∈ U1.

Next, define M : U(X) → {0, 1} according to

(∀U ∈ U(X)) M(U) =







1, if U ∈ Um,

0, otherwise.

Thus M(U) = 1 if U is marked in SUPO (i.e. U contains a marker state of SUP). Finally define

T : U(X) → {0, 1} according to

(∀U ∈ U(X))

T (U) =



















1, if (∃s ∈ Σ∗)ξ(x0, s) ∈ U &

ξ̂(U0, Ps) = U & δ(q0, s) ∈ Qm,

0, otherwise.

So T (U) = 1 if U contains some state that corresponds (via a string s) to a marker state of G.

With the above four functions capturing control and marking information of the uncertainty sets in

U(X), we define the control consistency relation Rα ⊆ U(X) × U(X) as follows.

Definition 1. For U,U ′ ∈ U(X), we say that U and U ′ are control consistent with respect to α, written

(U,U ′) ∈ Rα, if

(i) Eα(U) ·Dα(U
′) = 0 = Eα(U

′) ·Dα(U),

(ii) T (U) = T (U ′) ⇒M(U) =M(U ′).

Thus a pair of uncertainty sets (U,U ′) satisfies (U,U ′) ∈ Rα if (i) event α is enabled at at least one

state of U , but is not disabled at any state of U ′, and vice versa; (ii) U , U ′ both contain marker states of

SUP (resp. both do not contain) provided that they both contain states corresponding to some marker

states of G (resp. both do not contain).

For example, in Fig. 1, for event 3 we have:

E3 D3 M T

U0 1 0 1 1

U1 0 1 0 0

U2 0 0 0 0

Hence (U0, U2) ∈ R3, (U2, U1) ∈ R3, and (U0, U1) /∈ R3. From this example we see that Rα is

generally not transitive, and thus not an equivalence relation. This fact leads to the following definition

of a partial-observation control cover.
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Definition 2. Let I be some index set, and Cα = {Ui ⊆ U(X)|i ∈ I} be a cover on U(X). We say that

Cα is a partial-observation control cover with respect to α if

(i) (∀i ∈ I,∀U,U ′ ∈ Ui) (U,U
′) ∈ Rα,

(ii) (∀i ∈ I,∀σ ∈ Σo)(∃U ∈ Ui) ξ̂(U, σ)! ⇒
[

(∃j ∈ I)

(∀U ′ ∈ Ui) ξ̂(U
′, σ)! ⇒ ξ̂(U ′, σ) ∈ Uj

]

.

A partial-observation control cover Cα lumps the uncertainty sets U ∈ U(X) into (possibly overlapping)

cells Ui ∈ Cα, i ∈ I , according to (i) the uncertainty sets U that reside in the same cell Ui must be

pairwise control consistent, and (ii) for every observable event σ ∈ Σo, the uncertainty set that is reached

from any uncertainty set U ′ ∈ Ui by a one-step transition σ must be covered by the same cell Uj .

Inductively, two uncertainty sets U and U ′ belong to a common cell of Cα if and only if U and U ′ are

control consistent, and two future uncertainty sets that can be reached respectively from U and U ′ by a

given observable string are again control consistent.

The partial-observation control cover Cα differs from its counterpart in [1] in two aspects. First, Cα

is defined on U(X), not on X; this is due to state uncertainty caused by partial observation. Second,

in condition (ii) of Cα only observable events in Σo are considered, not Σ; this is to generate partial-

observation local controllers whose state transitions are triggered only by observable events. We call Cα

a partial-observation control congruence if Cα happens to be a partition on U(X), namely its cells are

pairwise disjoint.

Having defined a partial-observation control cover Cα on U(X), we construct a generator Jα =

(I,Σo, ζα, i0, Im) defined over Σo and a control function ψα : I → {0, 1} as follows:

(i) i0 ∈ I such that (∃U ∈ Ui0)x0 ∈ U ; (13)

(ii) Im := {i ∈ I|(∃U ∈ Ui)Xm ∩ U 6= ∅}; (14)

(iii) ζα : I × Σo → I with ζα(i, σ) = j

if (∃U ∈ Ui) ξ̂(U, σ) ∈ Uj ; (15)

(iv) ψα(i) = 1 iff (∃U ∈ Ui) Eα(U) = 1. (16)

The control function ψα(i) = 1 means that event α is enabled at state i of Jα. Note that owing to cell

overlapping, the choices of i0 and ζα may not be unique, and consequently Jα may not be unique. In

that case we pick an arbitrary instance of Jα.

Finally we define the partial-observation local controller LOCα = (Yα,Σα, ηα, y0,α, Ym,α) as follows.
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(i) Yα = I , y0,α = i0, and Ym,α = Im. Thus the control function ψα is ψα : Yα → {0, 1}.

(ii) Σα = {α} ∪Σcom,α, where

Σcom,α := {σ ∈ Σo \ {α} | (∃i, j ∈ I)i 6= j, ζα(i, σ) = j} (17)

Thus Σcom,α is the set of observable events that are not merely selfloops in Jα. It holds by definition

that {α} ⊆ Σα ⊆ Σo ∪ {α}, and Σcom,α contains the events of other local controllers that need to be

communicated to LOCα.

(iii) If α ∈ Σo, then ηα := ζα|Yα×Σα
: Yα × Σα → Yα, i.e. ηα is the restriction of ζα to Yα × Σα.

If α ∈ Σuo, first obtain ηα := ζα|Yα×Σα
and then add α-selfloops ηα(y, α) = y to those y ∈ Yα with

ψα(y) = 1.

Lemma 2. The generator LOCα is a partial-observation local controller for α, i.e. (8) and (9) hold.

We postpone the proof of Lemma 2 after our main result, Theorem 1, in the next subsection.

Consider again the example displayed in Fig. 1. We construct a partial-observation local controller

LOC5 for the unobservable controllable event 5. For event 5 we have:

E5 D5 M T

U0 0 1 1 1

U1 0 1 0 0

U2 1 0 0 0

Hence (U0, U1) ∈ R5, (U0, U2) /∈ R5, and (U1, U2) /∈ R5. Further, because ξ̂(U0, 8) = ξ̂(U1, 8) = U0,

U0 and U1 can be put in the same cell; but U0 and U2 cannot, nor can U1 and U2. So we get a partial-

observation control cover C5 = {{U0, U1}, {U2}}. From this control cover, we construct a generator J5

as shown in Fig. 2, and a control function ψ5 such that ψ5({U0, U1}) = 0 and ψ5({U2}) = 1 because

E5(U2) = 1. Finally the partial-observation local controller LOC5 is constructed from the generator J5

by adding the 5-selfloop at state y1 because ψ5({U2}) = 1 and 5 is unobservable, and removing event 1

since it is merely a selfloop in J5 (see Fig. 2).

C. Main Result

By the same procedure as above, we construct a set of partial-observation local controllers LOCα,

one for each controllable event α ∈ Σc. We shall verify that these local controllers collectively achieve

the same controlled behavior as represented by SUP in (7).

12
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Fig. 2. Generator J5 and partial-observation local controller LOC5. In J5, state 0 corresponds to cell {U0, U1} of the control

cover C5 = {{U0, U1}, {U2}} while state 1 corresponds to cell {U2}. From J5 to LOC5, (i) the 5-selfloop at state y1 is added

because ψ5({U2}) = 1 and event 5 is unobservable, and (ii) event 1 is removed since it is merely a selfloop in J5 and thus its

occurrences will not affect the enablement/disablement of event 5.

Theorem 1. The set of partial-observation local controllers {LOCα|α ∈ Σc} is a solution to the Partial-

Observation Supervisor Localization Problem, i.e.

L(G) ∩ L(LOC) = L(SUP) (18)

Lm(G) ∩ Lm(LOC) = Lm(SUP) (19)

where L(LOC) =
⋂

α∈Σc

P−1
α L(LOCα) and Lm(LOC) =

⋂

α∈Σc

P−1
α Lm(LOCα).

Proof: First we show that Lm(SUP) ⊆ Lm(G)∩Lm(LOC). It suffices to show (∀α ∈ Σc) Lm(SUP) ⊆

P−1
α Lm(LOCα). Let α ∈ Σc and s ∈ Lm(SUP); we must show s ∈ P−1

α Lm(LOCα). Write Ps =

σ0, ..., σn; then Ps ∈ PLm(SUP). According to the definition of uncertainty set, there exist U0, ..., Un ∈

U(X) such that

ξ̂(Uj , σj) = Uj+1, j = 0, ..., n − 1.

Then by the definition of Cα and ζα, for each j = 0, ..., n − 1, there exist ij , ij+1 ∈ I such that

Uj ∈ Uij & Uj+1 ∈ Uij+1
& ζα(ij , σj) = ij+1.

So ζα(i0, σ0...σn)!, i.e. ζα(i0, Ps)!. Let in = ζα(i0, Ps); then U(Ps) ∈ Uin , and thus ξ(x0, s) ∈ U(Ps)∩

Xm. So in ∈ Im, i.e. Ps ∈ Lm(Jα). Let P ′
α : Σ∗

o → Σ∗
α be the natural projection as defined in (2); then

Pα(s) = P ′
α(Ps) ∈ P ′

αLm(Jα) = Lm(LOCα). Hence s ∈ P−1
α Lm(LOCα).
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Now that we have shown Lm(SUP) ⊆ Lm(G) ∩ Lm(LOC), it follows that

L(SUP) = Lm(SUP)

⊆ Lm(G) ∩ Lm(LOC)

⊆ Lm(G) ∩ Lm(LOC)

⊆ L(G) ∩
⋂

α∈Σc

P−1
α Lm(LOCα)

⊆ L(G) ∩
⋂

α∈Σc

P−1
α L(LOCα)

= L(G) ∩ L(LOC)

so L(SUP) ⊆ L(G) ∩ L(LOC).

Next, we prove L(G) ∩ L(LOC) ⊆ L(SUP), by induction on the length of strings.

For the base case, as it was assumed that Lm(SUP) is nonempty, it follows that the languages L(G),

L(LOC) and L(SUP) are all nonempty, and as they are closed, the empty string ǫ belongs to each.

For the inductive step, suppose that s ∈ L(G) ∩ L(LOC) implies s ∈ L(SUP), and sα ∈ L(G) ∩

L(LOC) for an arbitrary event α ∈ Σ; we must show that sα ∈ L(SUP). If α ∈ Σu, then sα ∈ L(SUP)

because Lm(SUP) is controllable. Otherwise, we have α ∈ Σc and there exists a partial-observation local

controller LOCα for α. It follows from sα ∈ L(LOC) that sα ∈ P−1
α L(LOCα) and s ∈ P−1

α L(LOCα).

So Pα(sα) ∈ L(LOCα) and Pα(s) ∈ L(LOCα), namely, ηα(y0, Pα(sα))! and ηα(y0, Pα(s))!. Let

y := ηα(y0, Pα(s)); then ηα(y, α)! (because α ∈ Σα). Since α may be observable or unobservable, we

consider the following two cases.

Case (1) α ∈ Σuo. It follows from the construction (iii) of LOCα that ηα(y, α)! implies that for the

state i ∈ I of the generator Jα corresponding to y (i.e. i = ζα(i0, P (s))), there holds ψα(i) = 1. By the

definition of ψα in (16), there exists an uncertainty set U ∈ Ui such that Eα(U) = 1. Let U ′ = ξ̂(U0, Ps);

by (15) and i = ζα(i0, Ps), U
′ ∈ Ui. According to (11), ξ(x0, s) ∈ U ′. Since U and U ′ belong to the

same cell Ui, by the definition of partial-observation control cover they must be control consistent, i.e.

(U,U ′) ∈ Rα. Thus Eα(U) · Dα(U
′) = 0, which implies Dα(U

′) = 0. The latter means that for all

states x ∈ U ′, either (i) ξ(x, α)! or (ii) for all t ∈ Σ∗ with ξ(x0, t) = x, δ(q0, tα) is not defined. Note

that (ii) is impossible for ξ(x0, s) ∈ U ′, because sα ∈ L(G). Thus by (i), ξ(ξ(x0, s), α)!, and therefore

sα ∈ L(SUP).

Case (2) α ∈ Σo. In this case, for the state i ∈ I of the generator Jα corresponding to y (i.e.

i = ζα(i0, P (s))), there holds ζα(i, α)!. By the definition of ζα in (15), there exists an uncertainty set

14
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Fig. 3. Partial-observation local controllers LOC1 and LOC3. For LOC1, since event 1 is not disabled at any uncertainty

set, the partial-observation control cover C1 = {{U0, U1, U2}} and LOC1 has just one state at which event 1 is enabled. For

LOC3, note that the uncertainty sets U0 and U2 (corresponding to states y0 and y2 respectively) are not in a common cell of C3

even though U0 and U2 are control consistent; this is because after an 8-transition, they will arrive in U0 and U1 respectively,

but U0 and U1 are not control consistent. Thus C3 = {{U0}, {U1}, {U2}} and LOC3 has three states.

U ∈ Ui such that ξ̂(U,α)!, i.e. Eα(U) = 1. The rest of the proof is identical to Case (1) above, and we

conclude that sα ∈ L(SUP) in this case as well.

Finally we show Lm(G)∩Lm(LOC) ⊆ Lm(SUP). Let s ∈ Lm(G)∩Lm(LOC); we must show that

s ∈ Lm(SUP). Since Lm(G) ∩ Lm(LOC) ⊆ L(G) ∩ L(LOC) ⊆ L(SUP), we have s ∈ L(SUP),

which implies that for all α ∈ Σc, in = ζα(i0, Ps) and U(Ps) ∈ Uin . In addition, s ∈ Lm(LOC)

implies that s ∈ P−1
α Lm(LOCα); so Pαs ∈ Lm(LOCα), i.e. ηα(y0, Pαs) ∈ Ym. Since Pαs = P ′

α(Ps),

ηα(y0, Pαs) corresponds to ζα(i0, Ps) = in; so in ∈ Im (because Ym = Im). Therefore, there exists

U ′ ∈ Uin such that Xm ∩ U ′ 6= ∅. Then M(U ′) = 1 and thus T (U ′) = 1. By s ∈ Lm(G), we have

T (U(Ps)) = 1. Now we have that both U ′ and U(Ps) are in Uin , i.e. (U ′, U(Ps)) ∈ Rα. Consequently

M(U(Ps)) = M(U ′) = 1. Hence U(Ps) ∩ Xm 6= ∅. Let x = U(Ps) ∩ Xm; then there must exist

t ∈ Lm(SUP) such that x = ξ(x0, t) and Pt = Ps. Now, since Lm(SUP) is observable, by s ∈ Lm(G)

we have s ∈ Lm(SUP).

�

For the example in Fig. 1, we construct partial-observation local controllers LOC1 and LOC3 for

the (observable) controllable events 1 and 3 respectively, as displayed in Fig. 3. It is then verified that

the collective controlled behavior of these local controllers (LOC1, LOC3, and LOC5) is identical to

SUP (in the sense of (18) and (19)). 4

Finally, we provide the proof of Lemma 2.

Proof of Lemma 2. We must prove (8) and (9).

4This can be verified by TCT procedures as follows. First, compute TEST = Sync(G,LOC1,LOC3,LOC5), i.e.

TEST = G||LOC1||LOC3||LOC5. Then it is verified by true = Isomorph(TEST,SUP) that Lm(TEST) =

Lm(SUP) and L(TEST) = L(SUP).
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First, for (⇒) of Eq. (8), let Pα(s)α ∈ L(LOCα), sα ∈ L(G) and s ∈ L(SUP); we must prove that

sα ∈ L(SUP). It is derived from Pα(s)α ∈ L(LOCα), that Pα(s) ∈ L(LOCα), because L(LOCα)

is prefix-closed. Let y := ηα(y0,α, Pα(s))!; by Pα(s)α ∈ L(LOCα), ηα(y, α)!. The rest of the proof is

identical to the inductive case of proving (⊆) of (18), and we conclude that sα ∈ L(SUP).

Next, for (⇐) of Eq. (8), let sα ∈ L(SUP); s ∈ L(SUP) and sα ∈ L(G) are immediate, and

it is left to show that Pα(s)α ∈ L(LOCα). By sα ∈ L(SUP) and (18), we have for all σ ∈ Σc,

sα ∈ P−1
σ L(LOCσ). Because α ∈ Σc, we have sα ∈ P−1

α L(LOCα), and thus Pα(sα) ∈ L(LOCα).

According to the definition of Σα, {α} ⊆ Σα. Hence, Pα(s)α = Pα(sα) ∈ L(LOCα).

Finally, to prove (9), let y, y′ ∈ Yα and σ ∈ Σo and assume that y′ = ηα(y, σ) and y 6= y′; we prove

that σ ∈ Σo by contradiction. Suppose that σ ∈ Σuo. According to (15), for all i ∈ I , ζα(i, σ) is not

defined. Further, according to the rule (iii) of constructing LOCα, (1) for all y ∈ Y , ηα(y, σ) is not

defined, contradicting the assumption that y′ = ηα(y, α); (2) the selfloop ηα(y, α) = y is added to ηα

when ψα(y) = 1, which, however, contradicts the assumption that y 6= y′. So we conclude that σ ∈ Σo.

�

IV. PARTIAL-OBSERVATION LOCALIZATION ALGORITHM AND TRANSFER LINE EXAMPLE

In this section, we adapt the supervisor localization algorithm in [1] to compute the partial-observation

local controllers.

Let SUP = (X,Σ, ξ, x0,Xm) be the controllable and observable controlled behavior (as in (7)), with

controllable Σc and observable Σo. Fix α ∈ Σc. The algorithm in [1] would construct a control cover

on X. Here instead, owing to partial observation, we first find the set U(X) of all uncertainty sets and

label it as

U(X) = {U0, U1, ..., Un−1}.

Also we calculate the transition function ξ̂ : U(X)×Σ∗
o → U(X). These steps are done by constructing

the partial-observation monolithic supervisor SUPO as in (12) [9, 16].

Next, we apply the localization algorithm in [1] to construct a partial-observation control cover Cα on

U(X). Initially Cα is set to be the singleton partition on U(X), i.e.

Cα = {{U0}, {U1}, ..., {Un−1}}.

Write Ui,Uj for two cells in Cα. Then the algorithm ‘merges’ Ui,Uj into one cell if for every uncertainty

set Ui ∈ Ui and every Uj ∈ Uj , Ui and Uj , as well as their corresponding future uncertainty sets reachable
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Fig. 4. Transfer Line: system configuration, with the set of controllable events Σc = {1, 3, 5}
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Fig. 5. Transfer Line: local controllers with full observation

by identical strings, are control consistent in terms of Rα. The algorithm loops until all uncertainty sets

in U(X) are checked for control consistency. We call this algorithm the partial-observation localization

algorithm.

Similar to [1], the algorithm terminates in a finite number of steps and results in a partial-observation

control congruence Cα (i.e. with pairwise disjoint cells). The complexity of the algorithm is O(n4); since

the size n of U(X) is n ≤ 2|X| in general, the algorithm is exponential in |X|.

In the following, we illustrate the above partial-observation localization algorithm by a Transfer Line

system TL, as displayed in Fig. 4. TL consists of two machines M1, M2 followed by a test unit TU;

these agents are linked by two buffers (Buffer1, Buffer2) with capacities of three slots and one slot,

respectively. We model the synchronous product of M1, M2, and TU as the plant to be controlled; the

specification is to protect the two buffers against overflow and underflow.

For comparison purpose, we first present the local controllers under full observation. By [1], these

controllers are as displayed in Fig. 5, and their control logic is as follows.

TLLOC1 for agent M1 ensures that no more than three workpieces can be processed in the material-

feedback loop. This is realized by counting the occurrences of event 2 (input a workpiece into the loop)

and event 6 (output a workpiece from the loop).

TLLOC3 for agent M2 guarantees no overflow or underflow of the two buffers. This is realized by

counting events 2, 8 (input a workpiece into Buffer1), 3 (output a workpiece from Buffer1), 4 (input a

workpiece into Buffer2), and 5 (output a workpiece from Buffer2).
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Fig. 6. Transfer Line: local controllers under partial observation P (Σuo = {3, 6})

TLLOC5 for agent TU guarantees no overflow or underflow of Buffer2. This is realized by counting

event 4 (input a workpiece into Buffer2) and event 5 (output a workpiece from Buffer2).

Now consider partial observation. We consider two cases: first with Σuo = {3, 6}, controlled behavior

similar to the full-observation case is achieved but with more complex transition structures; second, with

Σuo = {1, 3, 5} (i.e. all controllable events are unobservable), the resulting controlled behavior is more

restrictive.

Case (i) Σuo = {3, 6}.We first compute as in (7) the controllable and observable controlled behavior

SUP1 which has 39 states. Then we apply the localization algorithm to obtain the partial-observation

local controllers. The results are displayed in Fig. 6. It is verified that the collective controlled behavior

of these controllers is equivalent to SUP1.

The control logic of TLXLOC1 for agent M1 is again to ensure that no more than three workpieces

can be processed in the loop. But since event 6 is unobservable, the events 5 and 8 instead must be

counted so as to infer the occurrences of 6: if 5 followed by 8 is observed, then 6 did not occur, but

if 5 is observed and 8 is not observed, 6 may have occurred. As can be seen in Fig. 6, event 6 being

unobservable increased the structural complexity of the local controller (as compared to its counterpart

in Fig. 5).

The control logic of TLXLOC3 for agent M2 is again to prevent overflow and underflow of the two

buffers. But since event 3 is unobservable, instead the occurrences of event 4 must be observed to infer

the decrease of content in Buffer1, and at the same time the increase of content in Buffer2. Also note

that since the unobservable controllable event 3 is enabled at states 0, 1, 2, 3, we have selfloops of event

3 at those states. The state size of TLXLOC3 is the same as its counterpart in Fig. 5.

TLXLOC5 for agent TU is identical to the one in the full-observation case.
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Fig. 7. Transfer Line: local controllers under partial observation P (Σuo = {1, 3, 5})
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Fig. 8. Transfer Line: communication diagrams of local controllers. The solid lines denote that the corresponding events are

directly observed by the local controllers; the dashed lines denote that the corresponding events need to be communicated to

the local controllers.

Case (ii) Σuo = {1, 3, 5}.We first compute as in (7) the controllable and observable controlled behavior

SUP2 which has only 6 states. Then we apply the localization algorithm to obtain the partial-observation

local controllers, as displayed in Fig. 7.

Since all the controllable events are unobservable, the controlled behavior in this case is restrictive:

TLYLOC1 for agent M1 allows at most one workpiece to be processed in the loop, and TLYLOC2

for agent M2 allows at most one workpiece to be put in Buffer1 even though Buffer1 has three slots.

Also note that in TLYLOC5 for agent TU, since event 5 is unobservable, events 6 and 8 instead must

be observed to infer the occurrence of 5: if either 6 or 8 occurs, event 5 must have previously occurred. In

spite of the restrictive controlled behavior, these local controllers collectively achieve equivalent controlled

performance to the 6-state SUP2.

Finally, we allocate each local controller to the agent owning the corresponding controllable event,

and according to the transition diagrams of the local controllers, we obtain two communication diagrams

one for each case, as displayed in Fig. 8. A local controller either directly observes an event generated

by the agent owning it, as denoted by the solid lines in Fig. 8, or imports an event by communication

from other local controllers, as denoted by the dashed lines. Although the communication structures are

the same in the two diagrams, owing to different observable event sets Σo the observed/communicated

events are different.
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V. PARTIAL-OBSERVATION LOCALIZATION FOR LARGE-SCALE SYSTEMS

So far we have developed partial-observation supervisor localization assuming that the monolithic

supervisor is feasibly computable. This assumption may no longer hold, however, when the system is

large-scale and the problem of state explosion arises. In the literature, there have been several architectural

approaches proposed to deal with the computational issue based on model abstraction [10, 17–19].

Just as in [1], for large-scale system, we propose to combine localization with an efficient heterarchical

supervisory synthesis approach [10] in an alternative top-down manner: first synthesize a heterarchical

array of partial-observation decentralized supervisors and coordinators that collectively achieves glob-

ally feasible and nonblocking controlled behavior; then apply the developed localization algorithm to

decompose each supervisor/coordinator into local controllers for the relevant agents.

The procedure of this heterarchical supervisor localization under partial observation is outlined as

follows:

Step 1) Partial-observation decentralized supervisor synthesis: For each imposed control specification,

collect the relevant component agents (e.g. by event-coupling) and compute as in (12) a partial-observation

decentralized supervisor.

Step 2) Subsystem decomposition and coordination: After Step 1, we view the system as comprised

of a set of modules, each consisting of a decentralized supervisor with its associated component agents.

We decompose the system into smaller-scale subsystems, through grouping the modules based on their

interconnection dependencies (e.g. event-coupling or control-flow net [10]).

Having obtained a set of subsystems, we verify the nonblocking property for each of them. If a

subsystem happens to be blocking, we design a coordinator that removes blocking strings [10, Theorem 4].

The design of the coordinator must respect partial observation; for this reason, we call the coordinator a

partial-observation coordinator.

Step 3) Subsystem model abstraction: After Step 2, the system consists of a set of nonblocking

subsystems. Now we need to verify the nonconflicting property among these subsystems. For this we

use model abstraction with the natural observer property [10] to obtain an abstracted model of each

subsystem.

Step 4) Abstracted subsystem decomposition and coordination: This step is similar to Step 2, but for

the abstracted models instead of modules. We group the abstracted models based on their interconnection

dependencies, and for each group verify the nonblocking property. If a group turns out to be blocking,

we design a partial-observation coordinator that removes blocking strings.

Step 5) Higher-level abstraction: Repeat Steps 3 and 4 until there remains a single group of subsystem
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abstractions in Step 4. The heterarchical supervisor/coordinator synthesis terminates at Step 5; the result

is a heterarchical array of partial-observation decentralized supervisors and coordinators. Similar to [10],

one can establish that these supervisors/coordinators together achieve globally feasible and nonblocking

controlled behavior.

Step 6) Partial-observation localization: In this last step, we apply the partial-observation localization

algorithm to decompose each of the obtained decentralized supervisors and coordinators into local

controllers for their corresponding controllable events. By Theorem 1, the resulting local controllers

achieve the same controlled behavior as the decentralized supervisors and coordinators did, namely the

globally feasible and nonblocking controlled behavior.

We note that the above procedure extends the full-observation one in [1] by computing partial-

observation decentralized supervisors and coordinators in Steps 1-5, and finally in Step 6 applying

the partial-observation supervisor localization developed in Section III. In the following we apply the

heterarchical localization procedure to study the distributed control of AGV serving a manufacturing

workcell under partial observation. As displayed in Fig. 9, the plant consists of five independent AGV

A1,A2,A3,A4,A5

and there are nine imposed control specifications

Z1,Z2,Z3,Z3,WS13,WS14S,WS2,WS3, IPS

which require no collision of AGV in the shared zones and no overflow or underflow of buffers in the

workstations. The generator models of the plant components and the specification are displayed in Figs. 10

and 11 respectively; the detailed system description and the interpretation of the events are referred to [9,

Section 4.7]. Consider partial observation and let the unobservable event set be Σuo = {13, 23, 31, 42, 53};

thus each AGV has an unobservable event. Our control objective is to design for each AGV a set of local

strategies such that the overall system behavior satisfies the imposed specifications and is nonblocking.

Step 1) Partial-observation decentralized supervisor synthesis: For each specification displayed in

Fig. 11, we group its event-coupled AGV, as displayed in Fig. 12, and synthesize as in (12) a partial-

observation decentralized supervisor. The state sizes of these decentralized supervisors are displayed in

Table I, in which the supervisors are named correspondingly to the specifications, e.g. Z1SUP is the

decentralized supervisor corresponding to the specification Z1.

Step 2) Subsystem decomposition and coordination: We have nine decentralized supervisors, and thus

nine modules (consisting of a decentralized supervisor with associated AGV components). Under full
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Fig. 10. AGV: Generators of plant components

observation, the decentralized supervisors for the four zones (Z1SUP, ..., Z4SUP) are harmless to the

overall nonblocking property [10], and thus can be safely removed from the interconnection structure;

then the interconnection structure of these modules are simplified by applying control-flow net [10].

Under partial observation, however, the four decentralized supervisors are not harmless to the overall

nonblocking property and thus cannot be removed. As displayed in Fig. 13, we decompose the overall
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Fig. 12. Event-coupling relations

system into two subsystems:

SUB1 := WS3SUP||WS14SUP||Z3SUP||Z4SUP

SUB2 := WS2SUP||WS13SUP

Between the two subsystems are decentralized supervisors Z1SUP, Z2SUP, and IPSSUP. It is verified

TABLE I. STATE SIZES OF PARTIAL-OBSERVATION DECENTRALIZED SUPERVISORS

Supervisor State size Supervisor State size

Z1SUP 13 Z2SUP 11

Z3SUP 26 Z4SUP 9

WS13SUP 15 WS14SUP 19

WS2SUP 15 WS3SUP 26

IPSSUP 13
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Fig. 13. Subsystem decomposition

that SUB2 is nonblocking, but SUB1 is blocking. Hence we design a coordinator CO1 which makes

SUB1 nonblocking, by

Lm(CO1) = sup CO(Lm(SUB1))

adapted from [10, Theorem 4]. This coordinator CO1 has 50 states, and we refer to this nonblocking

subsystem NSUB1.

Step 3) Subsystem model abstraction: Now we need to verify the nonconflicting property among

the nonblocking subsystems NSUB1, SUB2 and the decentralized supervisors IPSSUP,Z1SUP

and Z2SUP. First, we determine their shared event set, denoted by Σsub. Subsystems NSUB1 and

SUB2 share all events in A5: 50, 51, 52 and 53. For IPSSUP,Z1SUP and Z2SUP, we use their

reduced generator models IPSSIM, Z1SIM and Z2SIM by supervisor reduction [20], as displayed

in Fig. 14. By inspection, IPSSUP and Z1SIM share events 21 and 24 with NSUB1, and events

11 with SUB2; Z2SUP shares events 24 and 26 with NSUB1, and events 32, 33 with SUB2. Thus

Σsub = {11, 12, 21, 24, 26, 32, 33, 50, 51, 52, 53}. It is then verified that Psub : Σ∗ → Σ∗
sub satisfies the

natural observer property [10]. With Psub, therefore, we obtain the subsystem model abstractions, denoted

by QC NSUB1 = Psub(NSUB1) and QC SUB2 = Psub(SUB2), with state sizes listed in Table II.

Step 4) Abstracted subsystem decomposition and coordination: We treat QC NSUB1, QC SUB2,

IPSSIM, Z1SIM and Z2SIM as a single group, and check the nonblocking property. This group turns
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TABLE II. STATE SIZES OF MODEL ABSTRACTIONS

NSUB1 QC NSUB1 SUB2 QC SUB2

State size 50 19 574 56

0 1

2

0 10 1

Fig. 14. Reduced generator models of decentralized supervisors Z1SUP, Z2SUP and IPSSUP

out to be blocking, and a coordinator CO2 is then designed by

Lm(CO2) = sup CO(Lm(QC SUB1)||Lm(QC SUB2)||

Lm(IPSSIM)||Lm(Z1SIM)||Lm(Z2SIM))

to make the group nonblocking. This coordinator CO2 has 160 states.

Step 5) Higher-level abstraction: The modular supervisory control design terminates with the previous

Step 4.

We have obtained a hierarchy of nine partial-observation decentralized supervisors and two coordina-

tors. These supervisors and coordinators together achieve globally feasible and nonblocking controlled

behavior.

Step 6) Localization: We finally apply the developed supervisor localization procedure to decompose

the obtained decentralized supervisors/coordinators into local controllers under partial observation. The

generator models of the local controllers are displayed in Fig. 15-19; they are grouped with respect to

the individual AGV and their state sizes are listed in Table III. By inspecting the transition structures of

the local controllers, only observable events lead to states changes.

Partial observation affects the control logics of the controllers and thus affects the controlled system be-

havior. For illustration, consider the following case: assuming that event sequence 11.10.13.12.21.18.20.22

has occurred, namely A1 has loaded a type 1 part to workstation WS2, and A2 has moved to input

station IPS2. Now, A2 may load a type 2 part from IPS2 (namely, event 23 may occur). Since event

24 (A2 exits Zone 1 and re-enter Zone 2) is uncontrollable, to prevent the specification on Zone 2 (Z2)

not being violated, AGV A3 cannot enter Zone 2 if 23 has occurred, i.e. event 33 must be disabled.

However, event 33 is eligible to occur if event 23 has occurred. So, under the full observation condition
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TABLE III. STATE SIZES OF PARTIAL-OBSERVATION LOCAL CONTROLLERS

Local controller of Local controller of Local controller of Local controller of Local controller of

Supervisor/coordinator A1(state size) A2(state size) A3(state size) A4(state size) A5(state size)

Z1SUP Z1 11(2) Z1 21(2)

Z2SUP Z2 21(2) Z2 33(2)

Z3SUP Z3 21(2),Z3 23(3) Z3 41(2),Z3 43(3)

Z4SUP Z4 41(2) Z4 51(2)

WS13SUP WS13 31(2) WS13 51(2)

WS14SUP WS14 43(2) WS14 51(2)

WS2SUP WS2 13(2) WS2 33(2)

WS3SUP WS3 21(2) WS3 41(2)

IPSSUP IPS 11(2) IPS 21(2)

CO1 CO1 41(2)

CO2 CO2 11(6) CO2 33(4)

0 1 0 1 0 1

0 1 3

5

2 4

Fig. 15. Local controllers for A1 with controllable events 11 and 13 (the local controllers are named in the format of

‘specification event’)
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Fig. 16. Local controllers for A2 with controllable events 21 and 23

(event 23 is observable) event 33 would occur safely if event 23 has not occurred. However the fact is that

event 23 is unobservable; so due to (relative) observability, 33 must also be disabled even if 23 has not

occurred, namely the controllers will not know whether or not event 23 has occurred, so it will disabled
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Fig. 19. Local controllers for A5 with controllable events 51 and 53 (event 53 is not disabled and thus there is no corresponding

local controller)

event 33 in both cases, to prevent the possible illegal behavior. This control strategy coincides with local

controller Z2 33: event 33 must be disabled if event 21 has occurred, and will not be re-enabled until

event 26 has occurred (A2 exits Zone 2 and re-enter Zone 3).

Finally, the heterarchical supervisor localization has effectively generated a set of partial-observation

local controllers with small state sizes (between 2 and 6 states). Grouping these local controllers for the

relevant AGV, we obtain a distributed control architecture for the system where each AGV is controlled

by its own controllers while observing certain observable events of other AGV; according to the transition

diagrams of the local controllers, we obtain a communication diagram, as displayed in Fig. 20, which

shows the events to be observed (denoted by solid lines) or communicated (denoted by dashed lines) to

local controllers.
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Fig. 20. AGV: communication diagram of local controllers. For i = 1, ..., 5, LOCi represents the local controllers corresponding

to Ai.

VI. CONCLUSIONS

We have developed partial-observation supervisor localization to solve the distributed control of multi-

agent DES under partial observation. This approach first employs relative observability to compute

a partial-observation monolithic supervisor, and then decomposes the supervisor into a set of local

controllers whose state changes are caused only by observable events. A Transfer Line example is

presented for illustration. When the system is large-scale, we have combined the partial-observation

supervisor localization with an efficient heterarchical synthesis procedure. In future research we shall

extend the partial-observation localization procedure to study distributed control of timed DES.
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