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Abstract

In this paper, we propose a new aperiodic formulation of model predictive control for nonlinear continuous-time systems. Unlike
earlier approaches, we provide event-triggered conditions without using the optimal cost as a Lyapunov function candidate.
Instead, we evaluate the time interval when the optimal state trajectory enters a local set around the origin. The obtained
event-triggered strategy is more suitable for practical applications than the earlier approaches in two directions. First, it does
not include parameters (e.g., Lipschitz constant parameters of stage and terminal costs) which may be a potential source of
conservativeness for the event-triggered conditions. Second, the event-triggered conditions are necessary to be checked only
at certain sampling time instants, instead of continuously. This leads to the alleviation of the sensing cost and becomes more
suitable for practical implementations under a digital platform. The proposed event-triggered scheme is also validated through
numerical simulations.
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1 Introduction

Event-Triggered Control (ETC) and Self-Triggered
Control (STC) have been active areas of research in
the community of Networked Control Systems (NCSs),
due to their potential advantages over the typical time-
triggered controllers [1]. In contrast to the time-triggered
case where the control signals are executed periodically,
ETC and STC trigger the executions based on the vi-
olation of certain prescribed control performances, see
e.g., [2,3].

In another line of research, Model Predictive Control
(MPC) has been one of the most popular control strate-
gies applied in a wide variety of applications. MPC plays
an important role when several constraints, such as actu-
ator or physical limitations, need to be explicitly taken
into account. The basic idea of MPC is to obtain the
current control action by solving the Optimal Control
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Problem (OCP) online, based on the knowledge of cur-
rent state measurement and future behavior prediction
through the dynamics.

The application of ETC and STC framework to MPC,
generally known as Event-Triggered MPC (ETMPC)
and Self-triggered MPC (STMPC), is particular of
importance as it potentially alleviates a computa-
tional load by reducing the amount of solving OCPs.
In ETMPC and STMPC, the OCPs are solved only
when some events, generated based on certain control
performance criteria, are triggered. These strategies
have received an increased attention in recent years;
most of the works focus on discrete-time systems, see
e.g., [4,5,6,7,8,9,10,11], and some results include for the
continuous-time case, see e.g., [12,13,14] for linear sys-
tems and [15,16,17,18,19,20] for nonlinear systems. In
this paper, we are particularly interested in the case of
nonlinear continuous-time systems. Among the afore-
cited papers for nonlinear continuous-time systems, the
results can be further divided into two categories, de-
pending on whether disturbances are taken into account;
see [16] for the disturbance-free case and [15,18,17,19,20]
for the presence of disturbance case. In [16], an event-
triggered MPC strategy has been proposed for nonlinear
systems with no disturbances. While a delay compensa-
tion strategy has been developed to tackle uncertainties
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for networked control systems, an explicit form of the
event-triggered condition is not provided and beyond
the scope of that paper. In [17], a self-triggered strategy
is proposed for general nonlinear systems with additive
disturbances. The self-triggered condition was derived
based on the optimal cost regarded as an ISS Lyapunov
function candidate. In [18], an event-triggered strat-
egy has been proposed for general nonlinear systems
with additive bounded disturbances. When deriving the
event-triggered strategy, an additional state constraint
is imposed such that the optimal cost as a Lyapunov
function candidate is decreasing. In [20], a self-triggered
strategy was provided for nonlinear input affine systems
based on the optimal cost as a Lyapunov function can-
didate. In the approach, an additional way to discretize
an optimal control trajectory into several control sam-
ples was provided so that these can be transmitted to
the plant over the network channels.

In this paper, we propose a new event-triggered formula-
tion of MPC for nonlinear continuous-time systems with
additive bounded disturbances. The main novelty of the
proposed framework with respect to earlier results in this
category ([15,18,17,19,20]), is that the event-triggered
condition is derived based on a new stability theorem,
which does not evaluate the optimal cost as a Lyapunov
function candidate. In the stability derivations, we in-
stead evaluate the time interval, when the optimal state
trajectory enters a local region around the origin. By
guaranteeing that this time interval becomes smaller as
the OCP is solved, it is ensured that the state enters a
prescribed set in finite time.

The derivation of the new stability is motivated by
the fact that the earlier event-triggered strategies may
include Lipschitz constant parameters for the stage
and terminal cost (see e.g., [15,20]). When standard
quadratic costs are utilized, the corresponding Lipschitz
parameters are characterized by the maximum distance
of the state from the origin [15], and the triggering
condition becomes largely affected by the state domain
considered in the problem formulation. That is, as a
larger state domain is considered, the event-triggered
condition may become more conservative. Depending on
the problem formulation, therefore, it may not be desir-
able to include these parameters in the event-triggered
condition. Since our approach does not evaluate the
optimal cost as a Lyapunov functon candidate, the cor-
responding event-triggered conditions do not include
such unsuitable parameters even though quadratic cost
functions are used. We will also illustrate through a
simulation example that the proposed approach attains
much less conservative result than our previous result
presented in [20].

As another contribution of this paper with respect to
the afore-cited papers of ETMPC for continuous-time
systems (including the linear case), we will additionally
incorporate Periodic Event-Triggered Control (PETC)

framework [21]. In PETC, triggering conditions are eval-
uated only at certain sampling time instants, instead of
continuously. This approach has certain advantages over
the existing ETMPC strategies, since it alleviates a sens-
ing load to evaluate the event-triggered conditions and
becomes more suitable to be implemented under digital
platforms. In the general PETC framework, the sam-
pling time to evaluate the event-triggered condition is
constant for all update times [21]. In our proposed ap-
proach, on the other hand, the sampling time is selected
in an adaptive way; for each time of solving OCP, the
controller adaptively determines the sampling time to
check the event-triggered condition, such that the de-
sired control performance can be guaranteed.

This paper is organized as follows. In Section 2, the opti-
mal control problem is formulated. In Section 3, feasibil-
ity of the OCP is analyzed. In Section 4, our main pro-
posed algorithm is presented, and the stability is shown
in Section 5. A simulation example validates our pro-
posed method in Section 6. We finally conclude in Sec-
tion 7.

Notations. Let R, R>0, R≥0, N≥0, N≥1 be the real, pos-
itive real, non-negative real, non-negative integers and
positive integers, respectively. For a given matrix Q, we
use Q � 0 to denote that the matrix Q is positive defi-
nite. The notation λmin(Q) is used to denote the minimal
eigenvalue of the matrix Q. We denote ||x|| as the Eu-
clidean norm of vector x, and ||x||P as a weighted norm

of vector x, i.e., ||x||P =
√
xTPx. Given a compact set

Φ ⊆ Rn, we denote by ∂Φ the boundary of Φ. The func-
tion f : Rn×Rm → Rn is called Lipschitz continuous in
Rn with a weighted matrix P , if there exists 0 ≤ Lf <
∞ such that ||f(x1, u) − f(x2, u)||P ≤ Lf ||x1 − x2||P ,
∀x1, x2 ∈ Rn, ∀u ∈ Rm.

2 Problem formulation

2.1 Dynamics and optimal control problem

In this section the problem formulation is defined. We
consider to apply MPC to the following nonlinear sys-
tems with additive disturbances:

ẋ(t) = f(x(t), u(t)) + w(t), t ≥ t0, (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control in-
put, w(t) ∈ Rn is an additive bounded disturbance, and
t0 ∈ R denotes the initial time. The control input u and
the disturbance w are assumed to satisfy the following
constraints:

u(t) ∈ U ⊆ Rm, w(t) ∈ W ⊆ Rn, ∀t ≥ t0. (2)

Regarding the constraint (2) and the plant model (1),
we make the following standard assumptions [22]:
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Assumption 1 (i) The constraint sets U and W
are compact, convex and 0 ∈ U ; (ii) the function
f : Rn × Rm → Rn is twice continuously differentiable,
and f(0, 0) = 0; (iii) the system (1) has a unique, ab-
solutely continuous solution for any initial state x(t0)
and any piecewise continuous control and disturbance
u : [t0,∞) → U , w : [t0,∞) → W; (iv) for the lin-
earized system around the origin with no disturbances,
i.e., ẋ(t) = Afx(t) + Bfu(t), where Af = ∂f/∂x(0, 0)
and Bf = ∂f/∂u(0, 0), the pair (Af , Bf ) is stabilizable.

Let tk, k ∈ N≥0 be the update time instants when OCPs
are solved, and let ∆k = tk+1 − tk be the inter-event
times. At tk, the controller solves an OCP based on the
state measurement x(tk) and the predictive behavior of
the systems described by (1). In this paper, we consider
the following cost to be minimized:

J(x(tk), u(·)) =

∫ tk+Tk

tk

||x̂(ξ)||2Q + ||u(ξ)||2Rdξ, (3)

where Q = QT � 0, R = RT � 0 and Tk > 0 is the
prediction horizon. x̂(ξ) denotes the nominal trajectory

of (1) given by ˙̂x(ξ) = f(x̂(ξ), u(ξ)) for all ξ ∈ [tk, tk+Tk]
with x̂(tk) = x(tk). Here, the prediction horizon Tk is not
constant but is adaptively selected such that it is strictly
decreasing. More characterization of Tk is provided in
this section when formulating the OCP.

The following lemma states that there exists a stabiliz-
ing, state feedback controller in a prescribed local set
around the origin:

Lemma 1 Suppose that Assumption 1 holds. Then,
there exists a positive constant 0 < ε < ∞, a matrix
Pf = PT

f � 0, and a local controller κ(x) = Kx ∈ U ,
satisfying

∂Vf
∂x

f(x, κ(x)) ≤ −
1

2
xT(Q+KTRK)x (4)

for all x ∈ Φ, where Vf (x) = xTPfx and Φ = {x ∈ Rn :
Vf (x) ≤ ε2}. Furthermore, Φ is a positive invariant set
for the system (1) with κ(x) = Kx ∈ U , if the disturbance

w satisfies ||w||Pf
≤ ŵmax with ŵmax = ελmin(Q̂P )/4

and Q̂P = P
−1/2
f (Q+KTRK)P

−1/2
f .

The proof is obtained by extending Lemma 1 in [22] and
is given in the Appendix.

Definition 1 (Control Objective of MPC) The
control objective of MPC is to steer the state x to the
local region Φ in finite time.

In this paper, we consider that the control law switches
from applying MPC to the utilization of the local con-
troller κ, as soon as the state enters Φ. This switching

Fig. 1. Graphical representation of the two regions Φ (grey
region), Φf (red region) and the optimal state trajectory x̂∗

(blue solid line). T ∗k denotes the time interval to reach Φf .

control law is referred to as dual mode MPC, which is
adopted in many works in the literature [23]. Note that
if the plant is controlled over a network 1) , applying the
local controller κ(x) may require a continuous control
update and may not be suitable under limited commu-
nication capabilities. One way to avoid this issue is to
apply the local controller in a sample-and-hold fashion,
i.e., u(t) = κ(x(tk)), t ∈ [tk, tk + δ]. Here, 0 < δ < ∞
can be chosen small enough such that asymptotic sta-
bility is still guaranteed, see [24] for a detailed analysis.
Also, please see Remark 2 in [20] for yet another way to
avoid the problem of such continuous requirement.

Based on the local set Φ, we further define the restricted
set Φf given by Φf = {x ∈ Rn : Vf (x) ≤ ε2

f}, where
0 < εf < ε. Since εf < ε, the set Φf is contained in
Φ, i.e., Φf ⊂ Φ. An example of these two regions is
illustrated in Fig. 1.

Assumption 2 The nonlinear function f : Rn×Rm →
Rn is Lipschitz continuous in Rn with the weighted matrix
Pf , with the Lipschitz constant 0 ≤ Lf < ∞.

Assumption 2 will be used to derive several conditions
to guarantee feasibility of the OCP. In the formulation
of MPC, we iteratively find at each update time tk, k ∈
N≥0, an optimal predictive state x̂∗(ξ) and a control
trajectory u∗(ξ) for all ξ ∈ [tk, tk+Tk], by minimizing the
cost given by (3). Following the idea from [22], we impose
here the so called terminal constraint, that the predictive
state reaches Φf within Tk, i.e., x̂∗(tk +Tk) ∈ Φf . Since
x̂∗(tk + Tk) ∈ Φf , there exists a positive time interval
when the optimal state reaches the boundary of Φf ; let
T ∗
k ∈ R>0 be such time interval given by x̂∗(tk + T ∗

k ) ∈
∂Φf . The time instant tk+T ∗

k is also illustrated in Fig. 1.

Based on the above notations, we propose the following
OCP:

1) Note that our problem formulation is not limited to NCSs.
Since the objective of this paper is to reduce the computation
load of solving OCPs, applying our approach is still useful
even for the case when the plant is not controlled over a
network.
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Problem 1 (OCP) For the non-initial time tk, k ∈
N≥1, given x(tk) and T ∗

k−1, the OCP is to minimize the
cost J(x(tk), u(·)) given by (3), subject to

˙̂x(ξ) = f(x̂(ξ), u(ξ)), ξ ∈ [tk, tk + Tk] (5)

u(ξ) ∈ U (6)

x̂(tk + Tk) ∈ Φf , (7)

where Tk = T ∗
k−1 − α∆k−1 for a given 0 < α < 1 and

∆k−1 = tk − tk−1. For the initial time t0, minimize the
cost J(x(tk), u(·)) given by (3), subject to (5), (6) and
x̂(t0 + T0) ∈ Φf for a given T0 > 0.

For the initial time t0, Problem 1 is solved with a given
T0 > 0. In order to guarantee the feasibility at t0, T0

needs to be suitably chosen such that the terminal con-
straint x̂(t0 + T0) ∈ Φf is fulfilled. More specifically,
T0 should be selected to satisfy x(t0) ∈ X (T0), where
X (T0) = {x(t0) ∈ Rn | ∃u(t) ∈ U , t ∈ [t0, t0 + T0] :
x̂(t0 + T0) ∈ Φf}, i.e., X (T0) denotes the set of states
that can reach Φf within the time t0 + T0. Although
there may not exist a general framework to compute
X (T0) explicitly for nonlinear systems, several approxi-
mation methods have been proposed to compute X (T0),
see e.g., [25]. The initial feasibility is essentially required
for guaranteeing recursive feasibility, which is analyzed
in the next section.

For the non-initial time tk, k ∈ N≥1, we require by (7)
that the optimal state enters Φf within Tk = T ∗

k−1 −
α∆k−1, where T ∗

k−1 is the time interval obtained by the
previous calculation of OCP. This implies that T ∗

k sat-
isfies T ∗

k ≤ Tk = T ∗
k−1 − α∆k−1 < T ∗

k−1 ≤ Tk−1, which
guarantees that the time interval T ∗

k and the prediction
horizon Tk become strictly smaller than the previous one
at tk−1. In later sections, we will make use of this prop-
erty to show that the state enters Φ in finite time.

Remark 1 Although various analysis and control
strategies have been proposed for MPC, approaches to
guarantee stability can be mainly divided into two cat-
egories; the OCP with a terminal constraint (see e.g.,
[22]), and the OCP without a terminal constraint (see
e.g., [26,27]). While the OCP becomes in general harder
to be solved when the terminal constraint is imposed,
this paper follows the former approach to guarantee
stability and to derive an event-triggered strategy. Note
that our problem formulation slightly differs from the
standard formulation [22], since the prediction hori-
zon is not constant but is adaptively selected for each
calculation time of the OCP. 2

3 Feasibility analysis

The main focus of this section is to derive several con-
ditions to guarantee the notion of recursive feasibility,
which states that the existence of a solution to Problem 1

at an initial update time t0 implies the feasibility at any
update times afterwards tk, k ∈ N≥1. The obtained fea-
sibility conditions will be key ingredients to derive the
event-triggered strategy, which will be discussed in the
next section.

Theorem 1 Suppose that the OCP defined in Problem 1
has a solution at tk, providing an optimal control input
u∗(ξ) and the corresponding state trajectory x̂∗(ξ) for all
ξ ∈ [tk, tk+Tk], and the time tk+T ∗

k . Then, Problem 1 has
a solution at tk+1(> tk), if the followings are satisfied:

||x(tk+1)− x̂∗(tk+1)||Pf
≤ (ε− εf )e−LfT

∗
k (8)

∆k = tk+1 − tk ≤ T ∗
k , (9)

||w(t)||Pf
≤ w̃max, ∀t ∈ [tk, tk+1] (10)

where w̃max = λmin(Q̂P )

4e
LfT∗

0
(1− α)εf .

PROOF. Consider the following dual mode controller
as a feasible control candidate:

ū(ξ) =

{
u∗(ξ), ξ ∈ [tk+1, tk + T ∗

k ]

κ(x̄(ξ)), ξ ∈ (tk + T ∗
k , tk+1 + Tk+1],

(11)

where Tk+1 = T ∗
k −α∆k and x̄(ξ) denotes the predictive

state trajectory obtained by applying ū(ξ), i.e., ˙̄x(ξ) =
f(x̄(ξ), ū(ξ)) with x̄(tk+1) = x(tk+1). Note that we have
tk+1+Tk+1 > tk+T ∗

k since tk+1+Tk+1 = tk+∆k+T ∗
k −

α∆k = tk + (1−α)∆k +T ∗
k > tk +T ∗

k . Furthermore, we
have Tk+1 > 0 since T ∗

k − α∆k ≥ (1 − α)T ∗
k > 0 from

the condition (9).

To prove that (11) is a feasible controller for tk+1, we
show that the following two arguments are satisfied:

(i) By applying ū(ξ), ξ ∈ [tk+1, tk + T ∗
k ], the predic-

tive state enters Φ by the time tk + T ∗
k . That is,

x̄(tk + T ∗
k ) ∈ Φ. This ensures that applying the lo-

cal controller κ from tk + T ∗
k is admissible.

(ii) By applying ū(ξ), ξ ∈ (tk + T ∗
k , tk+1 + Tk+1], the

predictive state x̄ enters Φf by the time tk+1+Tk+1.
That is, x̄(tk+1 + Tk+1) ∈ Φf .

The basic idea is to derive the upper bound of differ-
ence between x̄ and x̂∗ and show that the difference is
small enough to prove (i), (ii); the reader can also refer
to [28] for a related analysis. To prove (i), we first use
the Gronwall-Bellman inequality [29] to obtain the up-
per bound of the difference between x̄ and x̂∗; ||x̄(ξ) −
x̂∗(ξ)||Pf

≤ ||x(tk+1) − x̂∗(tk+1)||Pf
eLf (ξ−tk+1) for ξ ∈

[tk+1, tk + T ∗
k ]. Supposing that (8) holds and by letting

ξ = tk + T ∗
k , we obtain ||x̄(tk + T ∗

k )− x̂∗(tk + T ∗
k )||Pf

≤
e−LfT

∗
k (ε− εf )eLf (tk+T∗

k−tk+1) = (ε− εf )e−Lf (tk+1−tk).
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Thus, from the triangle inequality, we obtain

||x̄(tk + T ∗
k )||Pf

≤ ||x̂∗(tk + T ∗
k )||Pf

+ (ε− εf )e−Lf (tk+1−tk)

≤ εf + ε− εf = ε.

Thus it holds that x̄(tk +T ∗
k ) ∈ Φ and the proof of (i) is

completed.

We now prove the statement in (ii). By using x̄(tk +

T ∗
k ) ∈ Φ and from Lemma 1, we obtain V̇f (x̄(ξ)) ≤
−0.5 x̄T(ξ)(Q+KTRK)x̄(ξ) ≤ −0.5 λmin(Q̂P )Vf (x̄(ξ))
for ξ ∈ (tk+T ∗

k , tk+1+T ∗
k−α∆k]. Furthermore, by again

applying the Gronwall-Bellman inequality, we obtain

||x̄(tk + T ∗
k )||Pf

≤ ||x̂∗(tk + T ∗
k )||Pf

+
w̃max

Lf
eLfT

∗
k (1− e−Lf∆k)

≤ εf +
(1− α)

4Lf
εfλmin(Q̂P )(1− e−Lf∆k),

where we have used (10) in the last inequality. De-

noting η = (1−α)
4Lf

λmin(Q̂P ), and by using comparison

lemma [29], we obtain Vf (x̄(tk+1 + T ∗
k − α∆k)) ≤

ε2
f

(
1 + η(1− e−Lf∆k)

)2
e−2Lfη∆k ≤ ε2

f . The second
inequality follows from the fact that the function
gε(∆k) = (1 + η(1 − e−Lf∆k))e−Lfη∆k is shown to be
a decreasing function of ∆k with gε(0) = 1. Thus we
obtain Vf (x̄(tk+1 + T ∗

k − α∆k)) ≤ ε2
f , and the proof of

(ii) is completed. Based on above, (11) is proven to be a
feasible controller for tk+1(> tk), provided that (8), (9)
and (10) are satisfied. This completes the proof. 2

4 Event-triggered strategy

By making use of the feasibility conditions provided in
the previous section, we now propose an event-triggered
strategy. Suppose again that the OCP is solved at tk,
providing a pair of optimal control input u∗(ξ) and the
corresponding state trajectory x̂∗(ξ) for all ξ ∈ [tk, tk +
Tk]. In the following, event-triggered conditions based
on the feasibility result will be derived to determine the
next calculation time of the OCP tk+1(> tk).

The simplest way to determine tk+1 might be to use
the original feasibility conditions directly as the event-
triggered conditions, i.e., for each t > tk, check the fea-
sibility according to (8) and (9), i.e.,

||x(t)− x̂∗(t)||Pf
≤ (ε− εf )e−LfT

∗
k , (12)

t− tk ≤ T ∗
k . (13)

MPC

Plant

ETS
SDS

Controller system

Fig. 2. A schematic overview of the event-triggered strategy.

Only when either of the above conditions is violated,
then we set tk+1 = t as the next update time. However,
checking the above conditions for each t > tk requires
continuous monitoring of the state x(t) and evaluation
of the above conditions, which may lead to a high cost of
sensing requiring a dedicated analog hardware, and thus
it is not suitable for standard digital platforms used in
real-time implementations.

Therefore, we propose here an alternative event-
triggered approach by relaxing the above continuous
requirements. The key idea of our approach is to mea-
sure the state and evaluate event-triggered conditions
only at certain sampling time instants, instead of con-
tinuously. A schematic block diagram of our proposed
scheme is illustrated in Fig. 2 and the overview is stated
as follows. Once the OCP is solved by MPC at an update
time instant, say tk, and T ∗

k is obtained, the Sampling-
time Decision System (SDS) computes δ∗k ∈ R>0, which
represents the sampling time interval at which the
event-triggered condition is evaluated. Namely, from
the obtained δ∗k from SDS, the Event-Triggered System
(ETS) measures the state and checks the event-triggered
condition only at tk + mδ∗k, m ∈ N≥1, in order to de-
termine the next update time tk+1. Note that the SDS
has a partial role to determine tk+1 to solve the OCP
(the black dotted arrow in Fig. 2); as described later
in this section, tk+1 can sometimes be directly deter-
mined according to T ∗

k without needing to evaluate the
event-triggered condition.

Regarding the proposed framework outlined above, we
need to derive both mechanisms to determine δ∗k and
the event-triggered conditions. One might directly uti-
lize (12), (13) as the event-triggered conditions, and eval-
uate them with a given arbitrary value of δ∗k. However,
this cannot be applied due to the following two problems
regarding the violation of feasibility:

(P.1) If a large value of δ∗k would be chosen, the feasibility
would not be satisfied (i.e., the left hand side of (12)
exceeds the threshold in the right hand side) at the
next evaluation time tk + δ∗k.

(P.2) If we would directly use (12) as the event-triggered
condition, the feasibility might be violated between
two consecutive evaluation times. This issue is il-

5



Fig. 3. The figure illustrates the problem of violating the
feasibility described in (P.2). The blue marks represent the
sequence of the left hand side in (12) evaluated with the
sampling time δ∗k. As shown in the figure, the feasibility can
be violated between two evaluation times (represented as
green mark).

lustrated in Fig. 3.

In the following, we provide solutions to each problem
above and then provide the overall event-triggered strat-
egy. Consider first to solve (P.1); to deal with the prob-
lem, δ∗k needs to be chosen small enough such that the
feasibility conditions (12), (13) are satisfied for all t ∈
[tk, tk + δ∗k]. Thus, let us consider to evaluate a mini-
mum inter-event time of the feasibility conditions (12),
(13). Assume that the size of the disturbance satisfies
||w(t)||Pf

≤ w̃max,∀t ≥ t0, which ensures from Theo-
rem 1 that the effect of disturbances does not violate
the feasibility. By using Gronwall-Bellman inequality,
we obtain ||x(t) − x̂∗(t)||Pf

≤ w̃max

Lf
(eLf (t−tk) − 1) for

t ∈ [tk, tk + Tk]. Thus, a sufficient condition to satisfy

(12) is
λmin(Q̂P )(1−α)εf

4Lfe
LfT∗

0
(eLf (t−tk)− 1) ≤ (ε− εf )e−LfT

∗
k .

Solving the inequality for t yields t ≤ tk + ∆min
k , where

∆min
k =

1

Lf
ln

(
1 +

4Lf (ε− εf )eLf (T∗
0 −T∗

k )

λmin(Q̂P )(1− α)εf

)
(14)

Thus, the condition (12) is satisfied for all t ∈ [tk, tk +
∆min
k ]. By taking into account the other feasibility condi-

tion (13), the over-all minimum inter-event time is now
given by min{∆min

k , T ∗
k }. For the case when ∆min

k ≤ T ∗
k ,

the minimum inter-event time becomes ∆min
k . Thus, if

δ∗k is selected such that δ∗k = γ∆min
k ≤ ∆min

k for a given
0 < γ ≤ 1, the feasibility condition is fulfilled for all
t ∈ [tk, tk + δ∗k]. On the other hand, for the case when
∆min
k > T ∗

k , (12) is satisfied for all t ∈ [tk, tk + T ∗
k ]. This

means that (13) is violated earlier than (12). Thus, if
T ∗
k < ∆min

k , the next update time can be directly set as
tk+1 = tk +T ∗

k . Based on the above analysis, the follow-
ing strategy can be provided as a solution to (P.1):

(a) If T ∗
k ≥ ∆min

k , then set δ∗k = γ∆min
k for a given

0 < γ ≤ 1.
(b) If T ∗

k < ∆min
k , then set tk+1 = tk + T ∗

k as the next
update time.

Note that the above strategy is implemented by the SDS,
i.e., depending on the value of T ∗

k , it either determines δ∗k
(a) or directly the next update time tk+1 (b). From (14),
∆min
k as well as δ∗k(= γ∆min

k ) get larger as T ∗
k decreases.

Therefore, if the initial time fulfills T ∗
0 > ∆min

0 , case (a)
is selected for the initial time and both ∆min

k and δ∗k
increase afterwards while T ∗

k decreases. Since ∆min
k gets

larger and T ∗
k decreases, the magnitude relation will be

switched to T ∗
k < ∆min

k (case (b)) after a certain time
step. As shown in case (b), the computation of δ∗k is no
more required for this case since the next update time
tk+1 can be directly determined as tk+1 = tk + T ∗

k .

Remark 2 One may argue that the inter-event time is
given by T ∗

k for case (b) and that it may thus tend to 0
since T ∗

k is decreasing. Note however, that T ∗
k > 0 always

holds while the MPC is implemented (i.e., x(tk) /∈ Φ);
if x(tk) is outside of Φ, there always exists a strictly
positive time interval for the optimal state to reach Φf .
Thus, this guarantees that the inter-event time remains
always positive while implementing the MPC. 2

Next, consider the problem (P.2). Based on the obtained
δ∗k, the time instants to measure the state and evaluate
the event-triggered condition are now given by tk+mδ∗k,
m ∈ N≥1. To avoid losing the feasibility between two
evaluation times, the ETS checks the feasibility condi-
tion at one time step ahead, instead of the current time
instant. That is, at an evaluation time t = tk + mδ∗k,
m ∈ N≥1, the feasibility is checked for t+ δ∗k instead of
t. If the feasibility at t+ δ∗k will be guaranteed, then the
ETS moves on to the next evaluation time t + δ∗k, and
repeats the same procedure. On the other hand, if the
feasibility at t+ δ∗k is not guaranteed, then the next up-
date time is set as tk+1 = t. Since the ETS preliminary
checks the feasibility at one step future time, the loss of
feasibility does not occur between two evaluation times.

The feasibility at one time step ahead can be given by
modifying the original feasibility conditions. Suppose at
an evaluation time t = tk + mδ∗k, m ∈ N≥1, we aim at
checking the feasibility at t + δ∗k based on the current
state x(t). The difference between the actual state and
the optimal state at t+ δ∗k is given by

||x(t+ δ∗k)− x̂∗(t+ δ∗k)||Pf

≤ eLfδ
∗
k ||x(t)− x̂∗(t)||Pf

+
w̃max

Lf
(eLf δ

∗
k − 1)

(15)

where we have used (10). From the feasibility conditions
(12), (13), feasibility at t+δ∗k is guaranteed if t+δ∗k−tk ≤
T ∗
k and ||x(t+ δ∗k)− x̂∗(t+ δ∗k)||Pf

< (ε− εf )e−LfT
∗
k are

both satisfied. From (15), sufficient conditions to satisfy
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these conditions are thus given by

||x(t)− x̂∗(t)||Pf

< (ε− εf )e−Lf (T∗
k +δ∗k) −

w̃max

Lf
(1− e−Lf δ

∗
k) (16)

(m+ 1)δ∗k ≤ T ∗
k . (17)

Note that if (16), (17) are both satisfied the feasibility is
guaranteed at t+ δ∗k, and these conditions can be evalu-
ated based on x(t). Therefore, by letting the ETS evalu-
ate (16) and (17) as the event-triggered conditions, the
violation of the feasibility between two evaluation times
will not occur, providing thus a solution to (P.2).

The over-all proposed algorithm of the event-triggered
strategy is now summarized below:

Algorithm 1 (Event-triggered MPC):

(i) At any update times tk, k ∈ N≥0, if x(tk) ∈ Φ, then
switch to the local controller κ(x) as a dual mode
strategy. Otherwise, solve Problem 1 and obtain the
optimal control and state trajectory u∗(ξ), x̂∗(ξ)
for all ξ ∈ [tk, tk + Tk], and T ∗

k as the time interval
when the state reaches Φf , i.e., x̂∗(tk +T ∗

k ) ∈ ∂Φf .
(ii) The SDS provides the sampling time δ∗k or the next

update time tk+1 in the following way:
(a) If T ∗

k ≥ ∆min
k , then set δ∗k = γ∆min

k for a given
0 < γ ≤ 1, and go to step (iii).

(b) If T ∗
k < ∆min

k , then set tk+1 = tk + T ∗
k and go

to step (iv).
(iii) The ETS provides the next update time tk+1(> tk)

in the following way:
(a) Set m = 1.
(b) At an evaluation time t = tk +mδ∗k, m ∈ N≥1,

measure the state x(t), and check the event-
triggered conditions given by (16), (17).

(c) If (16) and (17) are both satisfied, then apply
u∗(ξ) for ξ ∈ [t, t + δ∗k). Then, set m ← m + 1
and go back to step (b). Otherwise, set tk+1 = t
and go to step (iv).

(iv) k ← k + 1 and go back to step (i). 2

5 Stability analysis

In this section we analyze stability of the closed loop sys-
tem under the implementation of Algorithm 1. We will
prove in the following that, any state trajectories start-
ing from the initial feasible set X (T0) (see the definition
of X (T0) in Section 2) will eventually enter Φ within a
prescribed finite time interval.

Theorem 2 Consider the nonlinear system given by
(1), and suppose that Algorithm 1 is implemented. Then,
for any w(t) satisfying ||w(t)||Pf

≤ min{ŵmax, w̃max},
∀t ≥ t0, any state trajectories starting from x(t0) ∈

X (T0) enter Φ within the time interval T ∗
0 /α, and re-

main in Φ for all the future times.

PROOF. We prove the statement by contradiction. As-
sume that at tk we have tk−t0 ≥ T ∗

0 /α, and x(tk) is out-
side of Φ, i.e., x(tk) /∈ Φ. Since x(tk) /∈ Φ and Φf ⊂ Φ, we
have T ∗

k > 0. As x(t0) ∈ X (T0) and ||w(t)||Pf
≤ w̃max,

∀t ≥ t0, applying Algorithm 1 ensures that the feasibility
is guaranteed for all t0, t1, · · · , tk. Thus, we recursively
obtain from (7) that:

T ∗
k ≤ T ∗

k−1 − α∆k−1 ≤ T ∗
k−2 − α(∆k−1 + ∆k−2)

≤ · · · ≤ T ∗
0 − α

k−1∑
l=1

∆l

= T ∗
0 − α(tk − tk−1 + tk−1 − tk−2 + · · ·+ t1 − t0)

= T ∗
0 − α(tk − t0).

Thus, by the assumption tk − t0 ≥ T ∗
0 /α, we obtain

T ∗
k ≤ 0. However, this clearly contradicts the fact that

we have T ∗
k > 0. Thus, it is shown that the state enters Φ

within the time interval T ∗
0 /α. Furthermore, since from

Lemma 1, Φ is a positively invariant set with the distur-
bance satisfying ||w(t)|| ≤ ŵmax, the state remains in Φ
for all future times. This completes the proof. 2

Remark 3 (On the control performance) In Theo-
rem 2, stability is proven by evaluating a time interval
to reach Φf , and not by the optimal cost. Although this
may be unconventional with respect to a control per-
formance view point, our approach is advantageous and
practical from a event-triggered control view point, since,
as previously mentioned in Section 1, the event-triggered
condition provides less conservative results than the ex-
isting ETMPC approaches. Moreover, the control per-
formance can be evaluated by tuning the parameter α.
For more details, please see Remark 4 below. 2

Remark 4 (Convergence time v.s. Disturbance)
If α is chosen larger, then T ∗

0 /α gets smaller and faster
convergence is obtained. However, this in turn means
from (10) that the allowable size of disturbance becomes
smaller, which implies that the robustness to noise or
model uncertainty may be degraded. Thus, there exists
a trade-off between the convergence time of the state
trajectory and the allowable size of the disturbance, and
this trade-off can be regulated by tuning α. 2

6 Simulation Results

As a simulation example, we consider the following sys-
tem adopted from [22]:

ẋ1 = x2 + u(µ+ (1− µ)x1) + w1

ẋ2 = x1 + u(µ− 4(1− µ)x2) + w2,
(18)
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Fig. 4. State trajectories under Algorithm 1 (γ = 1) and the
periodic MPC with a constant sampling time interval 0.1.

with µ = 0.8, where x = [x1;x2] ∈ R2, u ∈ R, and w =
[w1;w2] ∈ R2. We assume U = {u ∈ R|−2 ≤ u ≤ 2}, the
matrices for the stage cost are Q = 0.1I2, R = 0.05, and
the initial prediction horizon is set to T0 = 4.0. The local
controller is given by κ = Kx with K = [1.8042 1.8042],
and Pf = [0.0814 0.0314; 0.0314 0.0814] by follow-
ing the procedure presented in [22]. The computed Lip-
schitz constant is Lf = 0.53 and we set εf = 0.08,
α = 0.8. From Theorem 1, the feasibility is guaran-
teed if w̃max = 8.3 × 10−4 and from Lemma 1 the re-
gion Φ is positively invariant if ŵmax = 2.0 × 10−3.
Taking into account both restrictions, we assume that
W = {w ∈ R2 | ||w||Pf

≤ 8.3 × 10−4}. Fig. 4 rep-
resents state trajectories of x under Algorithm 1 with
x(t0) = x(0) = [3; 0], γ = 1.0, and the standard peri-
odic MPC with a constant sampling time interval 0.1.
From the figure, the state trajectory under Algorithm 1
converges to a region around the origin similarly to the
periodic case. The resulting convergence time needed
for the state to enter Φ under the proposed method is
2.89(≤ T ∗

0 /α = 3.88), and thus Theorem 2 is verified.

Fig. 5 shows the inter-event times ∆k under Algorithm 1
(γ = 0.2, 1.0), and the approach presented in [20]. From
the figure, the proposed scheme is shown to be more
practical than our previous approach, since it achieves
longer inter-event times.

From the result, we can also evaluate the sensing cost
by counting how often states are measured to check the
event-triggered conditions. The total number of time in-
stants when states are measured are given by 85 (times)
when γ = 0.2 and 46 (times) when γ = 1.0. Thus, less
sensing cost is attained when γ = 1.0. On the other hand,
since the inter-event times are longer for the case when
γ = 0.2 than when γ = 1.0 as illustrated in Fig. 5, less
computational cost of solving the OCPs is achieved in
the former case. Therefore, it is shown that there exists
a trade-off between the sensing cost and the computa-
tional cost, and the trade-off can be regulated by tuning
the parameter γ.

In the simulation example, the allowable size of distur-
bance is given by w̃max = 8.3×10−4, which may be rela-
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Fig. 5. Inter-event times of solving OCPs under Algorithm 1
(γ = 0.2, 1) and the previous approach presented in [20].

tively small. Although this size may get larger by param-
eter tuning, how this restriction can be relaxed should
be studied in our future research.

7 Conclusions

In this paper, we proposed an event-triggered strategy
for MPC of nonlinear continuous-time systems with ad-
ditive bounded disturbances. The proposed method is
derived based on new feasibility and stability results by
imposing the terminal constraint with an adaptive pre-
diction horizon. In the derivations of stability, we evalu-
ate the time interval when the optimal state trajectory
enters the local set Φf , and it is shown that the state
converges Φ within a prescribed finite time interval. Fur-
thermore, the proposed event-triggered conditions are
evaluated only at certain sampling time instants, aiming
at reducing sensing cost and are thus suitable for prac-
tical implementations. A simulation example illustrates
the effectiveness of the proposed scheme.

A Proof of Lemma 1

Consider a linearization of (1) around the origin for the
non-disturbance case; ẋ(t) = Afx(t) + Bfu(t), where
Af = ∂f/∂x(0, 0) and Bf = ∂f/∂u(0, 0). Since the lin-
earized system is stabilizable from Assumption 1, we can
find a state feedback controller κ(x) = Kx such that
Ac = Af +BfK is Hurwitz and the closed loop system
ẋ = Acx is thus asymptoptically stable. Choose a ma-
trix P such that the following Lyapunov equation holds:
PAc + AT

c P = −(Q+KTRK) where Q and R are ma-
trices for the stage cost defined in (3). Then, the time
derivative of the function Vf = xTPx along a trajectory
of the nominal system ẋ = f(x, κ(x)) yields:

V̇f (x) = −xT(Q+KTRK)x+ 2xTPφ(x)

≤− xT(Q+KTRK)x

(
1−

2||φ(x)||P
λmin(Q̂P )||x||P

)
,

where φ(x) = f(x, κ(x)) − Acx, and Q̂P = P−1/2(Q +
KTRK)P−1/2. Since ||φ(x)||P /||x||P → 0 as ||x||P → 0,
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there exists a positive constant 0 < ε0 < ∞ such that
||φ(x)||P /||x||P ≤ λmin(Q̂P ))/4 for ||x||P ≤ ε0. Let 0 <
ε ≤ ε0 such that for all ||x||P ≤ ε, κ(x) = Kx ∈ U . By

letting Φ = {x ∈ Rn | Vf (x) ≤ ε2}, we obtain V̇f (x) ≤
−0.5xT(Q+KTRK)x for all x ∈ Φ.

Now consider the time derivative of the function Vf along
a trajectory of the nonlinear system with additive dis-
turbances ẋ = f(x, κ(x)) + w:

V̇f (x) = −xT(Q+KTRK)x+ 2xTPφ(x) + 2xTPw

≤ −xT(Q+KTRK)x

(
1−

2||φ(x)||P
λmin(Q̂P )||x||P

−
2||w||P

λmin(Q̂P )||x||P

)
,

and consider also a compact set as a boundary of Φ;
∂Φ = {x ∈ Rn | Vf (x) = ε2}. From above, we obtain

V̇f ≤ 0 for x ∈ ∂Φ, if ||w||P ≤ ελmin(Q̂P )/4. Thus,
Φ is a positive invariant set for the closed loop system
ẋ = f(x, κ(x)) + w if the disturbance satisfies ||w||P ≤
ελmin(Q̂P )/4. This completes the proof of Lemma 1.
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Robust self-triggered mpc for constrained linear systems.
In Proceedings of the European Control Conference (ECC),
pages 472–477, 2014.

[8] E. Henriksson, D. E. Quevedo, E. G. W. Peters, H. Sandberg,
and K. H. Johansson. Multiple-loop self-triggered model
predictive control for network scheduling and control. IEEE
Transactions on Control Systems Technology, 23(6):2167–
2181, 2015.

[9] T. M. P Gommans and W. P. M. H. Heemels. Resource-
aware mpc for constrained nonlinear systems: A self-triggered
control approach. Systems & Control Letters, pages 59–67,
2015.

[10] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos.
Event-triggered control for discrete-time systems. In
Proceedings of American Control Conference (ACC), pages
4719–4724, 2010.

[11] K. Hashimoto, S. Adachi, and D. V. Dimarogonas.
Distributed aperiodic model predictive control for multi-
agent systems. IET Control Theory and Applications,
9(1):11–20, 2015.

[12] K. Hashimoto, S. Adachi, and D. V. Dimarogonas. Self-
triggered model predictive control for continuous-time
systems: A multiple discretizations approach. In Proceedings
of the 55th IEEE Conference on Decision and Control (IEEE
CDC), pages 3078–3083, 2016.

[13] K. Kobayashi and K. Hiraishi. Self-triggered model predictive
control with delay compensation for networked control
systems. In Proceedings of the 38th Annual Conference of the
IEEE Industrial Electronics Society, pages 3182–3187, 2012.

[14] D. Antunes and W. P. M. H. Heemels. Rollout event-
triggered control: Beyond periodic control performance.
IEEE Transaction on Automatic Control, 59(12):3296–3311,
2014.

[15] A. Eqtami, S. Heshmati-Alamdari, D. V. Dimarogonas, and
K. J. Kyriakopoulos. Self-triggered model predictive control
for nonholonomic systems. In Proceedings of the European
Control Conference (ECC), pages 638–643, Strasbourg,
France, 2013.

[16] P. Varutti, B. Kern, T. Faulwasser, and R. Findeisen. Event-
based model predictive control for networked control systems.
In Proceedings of Joint 48th IEEE Conference on Decision
and Control and 28th Chinese Control Conference, pages
567–572, 2009.

[17] A. Eqtami, D. V. Dimarogonas, and K. J. Kyriakopoulos.
Novel event-triggered strategies for model predictive
controllers. In Proceedings of 50th IEEE Conference on
Decision and Control and European Control Conference
(CDC-ECC), pages 3392–3397, 2011.

[18] H. Li and Y. Shi. Event-triggered robust model predictive
control of continuous-time nonlinear systems. Automatica,
50(5):1507–1513, 2014.

[19] K. Hashimoto, S. Adachi, and D. V. Dimarogonas. Time-
constrained event-triggered model predictive control for
nonlinear continuous-time systems. In Proceedings of the 54th
IEEE Conference on Decision and Control (IEEE CDC),
pages 4326–4331, 2015.

[20] K. Hashimoto, S. Adachi, and D. V. Dimarogonas. Self-
triggered model predictive control for nonlinear input-affine
dynamical systems via adaptive control samples selection.
IEEE Transactions on Automatic Control, 62(1):177–189,
2017.

[21] W. P. M. H. Heemels and M. C. F Donkers. Model-
based periodic event-triggered control for linear systems.
Automatica, 49(3):698–711, 2013.
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