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Abstract

We design state observers for nonlinear networked control systems (NCS) implemented over FlexRay. FlexRay is a commu-
nication protocol used in the automotive industry, which has the feature to switch between two scheduling rules during its
communication cycles. These switches induce technical difficulties when modeling, designing and analysing observers for such
systems compared to standard NCS. We present a solution based on the emulation approach. Given an observer in the absence
of communication constraints, we implement it over the network and we provide sufficient conditions on the latter, to preserve
the stability property of the observer. In particular, we provide explicit bounds on the maximal allowable transmission inter-
vals, which adapt to the lengths of the segment associated to each scheduling rule. We assume that the plant dynamics and
measurements are affected by noise and we guarantee an input-to-state stability property for the corresponding estimation
error system. The overall system is modeled as a hybrid system and the analysis relies on the use of a novel hybrid Lyapunov
function.

1 Introduction

Networked control systems (NCS) attract great atten-
tion due to the features they offer in terms of ease of in-
stallation and flexibility. NCS are characterized by the
use of a shared serial communication channel to connect
spatially distributed sensors and actuators with the con-
trol unit. While the usage of a network offers great ad-
vantages over traditional point-to-point set-ups, it also
introduces communication constraints in terms of lim-
ited sampling, scheduling, delay, packet loss, quantiza-
tion, which may have a severe impact on the desired
requirements. In this paper, we focus on FlexRay net-
works and we concentrate on the effect of sampling and
scheduling. FlexRay is a protocol developed by BMW,
Daimler-Chrysler, Philips and Freescale in 2000 to pro-
vide appropriate communications for implementing X-
by-wire technology in automotive control (Consortium
2005, Schmidt & Schmidt 2009). It works with commu-
nication cycles, that alternate between a static and a dy-
namic segment during which a specific scheduling rule
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is used (Consortium 2005); we thus have to deal with
a switched protocol. Our objective is to design observers
for uncertain nonlinear NCS with FlexRay. This study is
motivated by the fact that this communication protocol
is increasingly used in the automotive industry and esti-
mation methods for such systems are currently missing
in the literature; only stabilization results are available
to the best of our knowledge, see e.g. (Naghshtabrizi &
Hespanha 2009, Wang et al. 2015).

We consider the scenario where the plant input and the
measurements are sent to the observer via the network.
Actuators and sensors are grouped into nodes, and only
one of these transmit its data to the observer at each
transmission instant. The latter therefore only has access
to partial and sampled information of the plant input
and output. The solution we propose is based on emula-
tion. The idea is to first synthesize the observer while ig-
noring the communication constraints. At this stage, any
of the continuous-time observer design techniques avail-
able in the literature can be applied. Then, the observer
is implemented over the network and conditions on the
latter are derived to preserve the desired error conver-
gence properties. Similar results exist for NCS with non-
switched protocols see (Postoyan&Nešić 2012, Postoyan
et al. 2014), however none of these apply to our prob-
lem because of the switches between the two scheduling
rules exhibited by FlexRay. Indeed, these switches re-
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quire a new model, appropriate assumptions on the ob-
server and the network, and a new stability analysis. In
addition, we consider plants with input, perturbed dy-
namics and noisy measurements, which is more general
and induces additional technical difficulties compared
with (Postoyan & Nešić 2012, Postoyan et al. 2014).

We model the overall system as a hybrid system in the
formalism of (Goebel et al. 2012), for which a jump either
describes a segment switch or a transmission.We assume
that the transmissions during the static and the dynamic
segments are governed by possibly (distinct) input-to-
state stable (ISS) protocols, which include round-robin
(RR) and maximum-error-first try-once-discard (TOD)
(Walsh & Ye 2001), as particular cases. The concept of
ISS protocol was introduced in (Tabbara & Nešić 2008)
and appears to be very useful for NCS subject to mea-
surement noise. We provide explicit bounds on the max-
imum allowable transmission intervals (MATI) for each
segment and we guarantee an input-to-state stability
property for the estimation error system. The analysis
relies on a novel hybrid Lyapunov function.

Our contributions are threefold. First, we present an ob-
server design strategy for NCS with FlexRay for the first
time to the best of our knowledge. Second, the MATI
bounds we propose are much simpler to compute than
those derived in (Wang et al. 2015), where the corre-
sponding stabilization problem is addressed. This is due
to the novel hybrid Lyapunov function we construct.
Third, our results extend the works in (Postoyan&Nešić
2012, Postoyan et al. 2014) to perturbed systems with
control inputs and noisy measurements in the particular
case where there is a single segment.

2 Problem Statement

Consider the nonlinear plant

ẋp = fp(xp, u, w) yp = g(xp) + v, (1)

where xp ∈ R
nx is the state, u ∈ R

nu is the control in-
put, w ∈ R

nw is the external disturbance, yp ∈ R
ny is

the plant output affected by the noise v ∈ R
ny . The func-

tions u(·) and v(·) are assumed to be Lebesgue measur-
able and differentiable. Moreover, these functions and
their time-derivatives are assumed to have a finite L∞

norm. We assume that we know an observer of the form

ẋo = fo (xo, u, yp − yo) yo = g(xo), (2)

where xo ∈ R
nx is the estimate of the state xp and yo ∈

R
ny is the output of the observer.

We consider the scenario where the plant and the ob-
server communicate over a network and FlexRay is used
to schedule transmissions, see Figure 1. In particular,
the control signal u is directly available to the plant and
transmitted to the estimation unit via the network to
the observer as û. We assume that the signal u and the
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Fig. 1. Block diagram of the setup

noisy measurements yp are transmitted through ℓ ∈ Z>0

nodes, where a node corresponds to a group of co-located
sensors or/and actuators, and the latter have access to
the measurements of some components of (yp, u). Be-
cause of the network, the observer has no longer access
to yp and u, but to their networked versions ŷp and û. At
each transmission instant ti, i ∈ Z>0, only one node is
granted access to the channel by the scheduling policy to
send its packet. FlexRay uses two different policies that
operate in a cyclic fashion to schedule the transmissions,
as we explain in Section 3.

Our objective is to provide conditions on the observer
and the network, in particular on the scheduling rules
and the MATIs associated to each segment, under which
the state of observer (2) (approximately) converges to
the state of plant (1).

3 FlexRay

In this section, we briefly present FlexRay and the as-
sumptions we make on the network; for more details, see
(Wang et al. 2015). FlexRay works with pre-set commu-
nication cycles of length T > 0. Each cycle contains a
static segment of length T1 > 0, a dynamic segment of
length T2 > 0 and two protocol segments called symbol
window and network idle time, see (Consortium 2005).
The lengths of the protocol segments can be considered
as negligible compared to T1 and T2, and hence we ig-
nore them in the network modeling, which allows us to
write T = T1 + T2.

Distinct network access techniques are applied for the
static and the dynamic segments. In particular, the time
division multiple access (TDMA) approach is employed
for the static segment and the nodes get access to the net-
work in a prefixed manner. The static segment consists
of time slots of equal length. The chosen node codes its
information into packets and then sends them over the
communication channel at the beginning of each time
slot. The dynamic segment on the other hand uses the
flexible time division multiple access (FTDMA) tech-
nique (Cena & Valenzano 2006), and is composed of
minislots, which are substantially shorter than static
time slots. A dynamic protocol is used to assign prior-
ity among the nodes based on the online information.
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The priority can be assigned in a centralized manner,
the node with highest priority is assigned with the ‘ear-
liest’ minislot and the minislots are idle when no nodes
compete for access.

We further make the following assumptions on the static
and the dynamic segments as in (Wang et al. 2015).

Assumption 1

(1) Data are transmitted instantaneously and a trans-
mission occurs at the end of the two segments.

(2) The static time slots are of length τsMATI > 0, where
τsMATI is such that N1τ

s
MATI = T1 with N1 ∈ Z>0.

(3) The inter-transmission time interval in the
dynamic segments, denoted by τdy,i, satisfies
τdy,i ∈ [τmin, τ

d
MATI], where τdMATI is the MATI

associated with the dynamic segment and τmin ∈
(0,min{τsMATI, τ

d
MATI}] refers to the length of a min-

islot which satisfies N2τmin = T2 with N2 ∈ Z>0. �

We next introduce two clock variables, which are use-
ful to obtain a hybrid model of NCS with FlexRay in
the formalism of (Goebel et al. 2012). We introduce
τ1 ∈ R≥0 to model the time elapsed since the last trans-
mission, and τ2 ∈ R≥0 to describe the time elapsed since
the last segment switch. We also introduce a state vari-
able q ∈ {1, 2} which keeps track of whether we are in
the static segment (q = 1) or in the dynamic segment
(q = 2). Then, the transmission and segments switching
mechanisms can be modeled as

τ̇1 = 1

τ̇2 = 1

q̇ = 0



 (τ1, τ2, q) ∈ C1 ∪ C2 (3a)

τ+1 = 0

τ+2 = τ2

q+ = q





(τ1, τ2, q) ∈ Dtrans
1 ∪Dtrans

2 (3b)

τ+1 = τ1

τ+2 = 0

q+ = 3− q





(τ1, τ2, q) ∈ Dseg

1 ∪Dseg
2 , (3c)

where

C1 := [0, τsMATI]× [0, T1]× {1}
C2 := [0, τdMATI]× [0, T2]× {2}

Dtrans
1 := {τsMATI} × [0, T1]× {1}

Dtrans
2 :=

[
τmin, τ

d
MATI

]
× [0, T2]× {2}

Dseg
1 := {0} × {T1} × {1}

Dseg
2 := {0} × {T2} × {2}.

We can see from (3b) that a transmission jump, corre-
sponding to τ1 being reset to 0, occurs when τ1 reaches
τsMATI during the static segment (q = 1), and is allowed

to occur whenever τ1 ∈ [τmin, τ
d
MATI] during the dynamic

segment (q = 2). On the other hand, a segment jump,
corresponding to τ2 being reset to 0 and q being toggled
to 3 − q, occurs when τ2 reaches T1 when q = 1 and T2
when q = 2. In this case, τ1 has to be equal to 0, which
corresponds to a transmission at the end of each seg-
ment, which is in agreement with item (1) in Assump-
tion 1. Otherwise, the solutions to (3) will stop to ex-
ist, which is not a problem in the subsequent analysis.
Hence, only the (maximal) solutions, which satisfy the
second part of item (1) of Assumption 1, are complete.

4 Observer Emulation

We emulate observer (2) as follows

ẋo = fo (xo, û, ŷp − ŷo) . (4)

As already mentioned in Section 2, the emulated ob-
server (4) no longer depends on (yp, u), but on (ŷp, û)
because of the network. These variables are generated by
the observer based on the received data. Furthermore,
observer (4) does not depend on its own output yo, as
in (2), but on ŷo. The variable ŷo is an artificially intro-
duced networked version of yo. The idea to use ŷo in-
stead of yo was suggested in (Postoyan et al. 2014) and
allows ensuring stronger stability properties for the esti-
mation error system, see Section VIII in (Postoyan et al.
2014). We next present the dynamics of ŷp and û before
proceeding with the construction of the dynamics of ŷo.

Let (yp, u) = (yp1 , · · · , ypny
, u1, · · · , unu

) and (ŷp, û) =

(ŷp1 , · · · , ŷpny
, û1, · · · , ûnu

), where ny, nu ∈ Z>0. Sup-

pose that node j ∈ {1, · · · , ℓ} is selected by the protocol
at time ti, i ∈ Z>0, and say that the components ypjy

and uju of yp and u, respectively, are associated to node
j, with jy ∈ {1, · · · , ny} and ju ∈ {1, · · · , nu}. Then

ŷpjy
(t+i ) = ypjy

(ti) ûju(t
+
i ) = uju(ti), (5)

while for all other components of ŷp and û,

ŷpky
(t+i ) = ŷpky

(ti) ûku
(t+i ) = ûku

(ti), (6)

with ky ∈ {1, · · · , ny} and ku ∈ {1, · · · , nu} satisfying
ky 6= jy and ku 6= ju. We can see from (6) that the com-
ponents of ŷ and û corresponding to the j-th node are
updated and the other components are kept unchanged.
For simplicity, we use zero-order-hold devices to imple-
ment the observer which gives ˙̂yp = 0 and ˙̂u = 0 for
t ∈ [ti, ti+1] and i ∈ Z>0, however other choices are pos-
sible.

The variable ŷo is constructed to evolve along the same
vector field as ŷp between two successive transmission

instants, i.e., ˙̂yo = 0 for t ∈ [ti, ti+1]. We now ex-
plain how ŷo jumps at each transmission instant. Let
yo = (yo1 , · · · , yony

) and ŷo = (ŷo1 , · · · , ŷony
). At each

transmission of a component of ŷp, say ŷpjy
with jy ∈
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{1, . . . , ny}, the corresponding component of ŷo, that is
ŷojy , is reset to yojy , which gives

ŷojy (t
+
i ) =

{
yojy (ti) if ŷpjy

(t+i ) = ypjy
(ti)

ŷojy (ti) otherwise.
(7)

In view of (7), the dynamics of ŷo, loosely speaking,mim-
ics the dynamics of ŷp.

For the sake of convenience, we introduce the network-
induced error on the plant output ep := ŷp − yp ∈ R

ne ,
ne := ny, and the network-induced error on the input
eu := û − u ∈ R

nu . We also define an artificially in-
troduced network-induced error on the observer output
eo := ŷo − yo ∈ R

ne . Using the definitions of ep, eu and
eo, we can rewrite (4) as

ẋo = fo(xo, u+ eu, yp − yo + e), (8)

where e := ep − eo corresponds to the network-induced
error on the observation error yp − yo.

5 Switched Protocols

In this section, we model the transmission mechanisms
of FlexRay under the assumptions made in Section 3 and
we present the class of scheduling rules we consider.

5.1 Model

The network-induced errors introduced in the pre-
vious section are useful to model the scheduling
mechanism of FlexRay. Let ep = (ep1 , · · · , epne

),
eo = (eo1 , · · · , eone

) and eu = (eu1 , · · · , eunu
). If the

node j associated to ypjy
and uju (see Section 4) has ac-

cess to the network, it follows from (5), (6) and (7) that
epjy

(t+i ) = ŷpjy
(t+i )− ypjy

(ti) = 0 with jy ∈ {1, · · · , ne}
and epky

(t+i ) = ŷpky
(t+i ) − ypky

(ti) = epky
(ti) for

ky ∈ {1, · · · , ne} satisfying ky 6= jy. Note that similar
dynamics properties also hold for eo and eu by fol-
lowing the same lines. We then model the dynamics
of ep, eo and eu at each transmission time using the

general form ep(t
+
i ) = hp

(
i, ep(ti), eu(ti), eo(ti), q(ti)

)
,

eo(t
+
i ) = ho

(
i, ep(ti), eu(ti), eo(ti), q(ti)

)
and eu(t

+
i ) =

hu
(
i, ep(ti), eu(ti), eo(ti), q(ti)

)
. The functions hp, ho

and hu are assumed to be continuous functions; an
example is provided in Section 5.2. We then derive that

e(t+i ) = he
(
i, ep(ti), e(ti, ), eu(ti), q(ti)

)
, (9)

where he is obtained from hp and ho, noting that we
make it depend on (i, ep, e, eu, q) and not (i, ep, eu, eo, q),
which is equivalent in view of the definition of e. In view
of (8), the dynamics of the observer is only affected by e
and eu. We therefore introduce the variable e := (e, eu).
In that way, we term the equation below,

e(t+i ) = he(i, ep(ti), e(ti), q(ti)), (10)

which specifies how e at transmission time ti is mapped
at t+i as the protocol equation, where he is continuous
since so are hp, hu and ho. Recall that q : R≥0 → {1, 2}
is a switching signal indicating which segment is active.
The map he has the form of

he(i, ep(ti), e(ti), q(ti)) := (2− q(ti))he,1(i, ep(ti), e(ti))

+ (q(ti)− 1)he,2(i, ep(ti), e(ti)), (11)

where he,1 is the scheduling rule corresponding to the
static segment and he,2 corresponds to the dynamic seg-
ment.

5.2 Assumption

We assume that the scheduling rule (10), which governs
the transmissions of the static and the dynamic seg-
ments, satisfies the properties listed below.

Assumption 2 For each m ∈ {1, 2}, there exist Wm :
R

ne+nu × Z≥0 → R≥0, which is locally Lipschitz in its
first argument, σv

m ∈ K∞, constants αWm
, αWm

> 0
and ρm ∈ (0, 1) such that for any κ ∈ Z≥0, ep ∈ R

ne ,
e ∈ R

ne+nu and v ∈ R
ne :

(1) αWm
|e| ≤Wm(e, κ) ≤ αWm

|e|,
(2) Wm(he,m(κ, ep, e), κ+1) ≤ ρmWm(e, κ)+σv

m(|v|).
�

Assumption 2 is a stability condition on the protocol
equation (10). The underlying idea is to treat proto-
cols as discrete-time dynamical systems as suggested in
(Nešić & Teel 2004), which appears to be extremely use-
ful to study NCS stability. More precisely, Assumption 2
states that (10) is an (exponentially) input-to-state sta-
ble (ISS) protocol, as termed in (Tabbara & Nešić 2008).
We next provide an example of a switched protocol that
satisfies these conditions.

Example 1 We consider a switched protocol which
employs the RR scheduling rule during the static seg-
ment and a TOD-like protocol during the dynamic
segment. RR grants access to the nodes in a peri-
odic fashion and it follows from (Nešić & Teel 2004)
that he,1(i, ep, e) := (I − ∆(i))e, where i ∈ Z>0,

∆(i) = diag{δ̃1(i)In1 , · · · , δ̃ℓ(i)Inℓ
}, Ins

is the identity

matrix of dimension ns with
∑ℓ

s=1 ns = ne, δ̃s satisfies

δ̃s(i) = 1 when i = s + kℓ for k ∈ Z≥0 and δ̃s(i) = 0
otherwise, for s ∈ {1, . . . , ℓ} and i ∈ Z≥0.

On the other hand, TOD gives access to the node with
the largest mismatch between the current signal value and
the last transmitted one (Walsh &Ye 2001). We partition
e as e = (e1, · · · , eℓ) and then a TOD-like protocol from
(Postoyan et al. 2014) grants access to the node where |ej |
is the biggest for j ∈ {1, · · · , ℓ}. Then, he,2(i, ep, e) :=
(I − Ψ(e))e, where Ψ(e) := diag{ψ1(e)In1 , ψ2(e)In2 ,
· · · , ψℓ(e)Inℓ

}. The function ψs satisfies ψs(e) = 1 when
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s = min(arg maxj∈{1,··· ,ℓ}|ej |) and ψs(e) = 0 otherwise,

for s ∈ {1, · · · , ℓ} and i ∈ Z≥0.

By following similar lines as in Propositions 3-4 in
(Postoyan et al. 2014), we have that the switched RR-
TOD-like protocol satisfies Assumption 2 with ρ1 = ρ2 =√

ℓ−1
ℓ , σv

1 (s) =
√
ℓ(1 + ρ1)s and σv

2 (s) = (1 + ρ2)s

for s ≥ 0, αW1
= 1, αW1 =

√
ℓ, αW2

= αW2 = 1,

where W1(e, κ) :=

√∑κ+l
i=κ |φ(i, κ, e)|2, W2(e, κ) := |e|,

φ(i, κ, e) is the solution to e(κ+1) = he,1(κ, ep, e(κ)) at
time i with initial condition e and κ. �

6 NCS Model

We now write the overall system. We introduce for this
purpose the variable κ ∈ Z≥0 to count the number
of transmissions, which is useful to model scheduling
policies such as RR. We also introduce the estimation
error ξ := xo − xp ∈ R

nξ with nξ = np, and d :=
(du, dv), where du and dv respectively denote the time-
derivative of the input signal u and of the noise v. Let
ψ := (ξ, xp, e, ep, κ, τ1, τ2, q) be the full state vector. In
view of Sections 2 to 5, we model the overall system us-
ing the hybrid formalism of (Cai & Teel 2009, Goebel
et al. 2012), which gives

ψ̇ = F(ψ, u, v, w, d) ψ ∈ C

ψ+ = G(ψ) ψ ∈ D,
(12)

where (u, v, w, d) ∈ R
2nu+nw+2ne ,C := R

nξ+np+2ne+nu×
Z≥0×(C1∪C2),D := R

nξ+np+2ne+nu×Z≥0×(D1∪D2),
D1 := Dtrans

1 ∪ Dseg
1 , D2 := Dtrans

2 ∪ Dseg
2 , and Dseg

1 ,
Dseg

2 , Dtrans
1 and Dtrans

2 come from (3).

The mapping F in (12) is defined as

F(ψ, u, v,w, d) := (fξ(ψ, u, v, w), fp(ψ, u, v, w), (13)

ge(ψ, u, v, w, d), gp(ψ, u, v, w, d), 0, 1, 1, 0),

where fξ, fp are obtained by direct calculations from (1)
and (2), ge(ψ, u, v, w, d) := (ge(ψ, u, v, w, dv), gu(du)),

ge(ψ, u, v, w, dv) :=
∂g
∂xo

(xp+ξ) fo
(
xp+ξ, u+eu,g(xp)+

v−g(xp+ξ)+e
)
− ∂g

∂xp
(xp)fp(xp, u+eu, w)−dv , gu(du) :=

−du, gp(ψ, u, v, w, d) := − ∂g
∂xp

(xp)fp(xp, u+ eu, w)− dv.

We note that the derivatives of the input signal and of
the measurement noise do appear in the dynamics of the
system.

The mapping G(ψ) := Gtrans(ψ) when (τ1, τ2, q) ∈
Dtrans

1 ∪ Dtrans
2 and G(ψ) := Gseg(ψ) when (τ1, τ2, q) ∈

Dseg
1 ∪ Dseg

2 , where Gtrans(ψ) := (ξ, xp, he(κ, ep, e, q),
hp(κ, ep, e, q), κ + 1, 0, τ2, q) corresponds to a trans-
mission jump, Gseg(ψ) := (ξ, xp, e, ep, κ, τ1, 0, 3 − q)
corresponds to a segment switching jump, hp and he
come from Section 5.1. We can see that the map G gen-

erates two kinds of jumps whether it corresponds to a
transmission or a segment switch.

7 Stability Analysis

We first assume an exponential growth condition on the
e-subsystem during two consecutive transmissions, like
in (Postoyan & Nešić 2012, Postoyan et al. 2014).

Assumption 3 For each m ∈ {1, 2}, there exist a con-
tinuous function Hm : R

nξ → R≥0, σm ∈ K∞ and
Lm ≥ 0 such that for all ξ ∈ R

nξ , v ∈ R
ne , w ∈ R

nw ,
d ∈ R

nu+ne , κ ∈ Z≥0 and almost all e ∈ R
ne+nu :〈

∂Wm(e,κ)
∂e , ge(ψ, u, v, w, d)

〉
≤ LmWm(e, κ) +Hm(ξ) +

σm(|(u, v, w, d)|), where the functionWm comes fromAs-
sumption 2. �

The above condition is satisfiedwhenWm is globally Lip-
schitz in e with constants Sm ≥ 0, which is the case for
the protocol in Example 1, and when |ge(ψ, u, v, w, d)| ≤
S3|e| + S4|ξ| + S5|(u, v, w, d)| for all (ψ, u, v, w, d) ∈
R

nξ+np+2ne+nu×Z≥0×R
2
≥0×{1, 2}×R

2nu+2nv+nw , with
S3, S4, S5 > 0. In this case, Assumption 3 holds with
Lm := SmS3

α
Wm

, Hm(ξ) := SmS4|ξ| and σm(s) := SmS5s

for all ξ ∈ R
nξ and s ≥ 0, where αWm

> 0 comes from
Example 1.

We next assume that the observer (2) has been designed
such that the following conditions hold.

Assumption 4 There exist a continuously differen-
tiable function V : R

nξ → R≥0 and αV , αV ∈ K∞

such that for each m ∈ {1, 2} there exist µm ∈ K∞

and εm, γm > 0 such that for all ξ ∈ R
nξ , e ∈ R

ne+nu ,
v ∈ R

ne , w ∈ R
nw and κ ∈ Z≥0,

(1) αV (|ξ|) ≤ V (ξ) ≤ αV (|ξ|),
(2) 〈∇V (ξ), fξ(ψ, v, w)〉 ≤ −εmV (ξ) − εmW

2
m(e, κ) −

H2
m(ξ) + γ2mW

2
m(e, κ) + µm(|(u, v, w)|), where Wm

andHm come respectively from Assumptions 2-3. �

Assumption 4 ensures that observer (2) is robust for
plant (1). In particular, the ξ-system in (12) is L2 sta-
ble from (Wm,

√
µm) to Hm, and ISS with respect to

(u, v, w).

We next present the bounds we impose on the MATI of
each segment, that is τsMATI and τ

d
MATI.

Assumption 5 Given T1, T2 > 0, m ∈ {1, 2}, let
Tm (14)

=





1
L̃m(Tm)rm

arctan(θ(Tm)) γm > L̃m(Tm)

1
L̃m(Tm)+ρmγmλm

− ρm

ρmL̃m(Tm)+γmλm
γm = L̃m(Tm)

1
L̃m(Tm)rm

arctanh(θ(Tm)) γm < L̃m(Tm)
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where L̃m(Tm) := 1
2

(
2Lm + 1

Tm
ln(λm)

)
and λm :=

max

{
1,

γ3−mα2
W3−m

γmρ1ρ2α2
Wm

}
with Lm, γm, αWm

, αWm
> 0 and

ρm ∈ (0, 1) coming from Assumptions 2-4, θ(Tm) :=

rm(1−ρm)

2 ρm
1+ρm

(
γm

L̃m(Tm)
−1

)
+1+ρm

, rm :=

√∣∣∣ γ
2
m

L2
m

− 1
∣∣∣. The con-

stants τsMATI and τ
d
MATI are such that τsMATI <

T1

⌈T1/T1⌉

and τdMATI < T2. �

The bounds in (14) depend on constants introduced in
Assumptions 2-4 and on the arbitrarily selected segment
lengths T1 and T2. Hence, once Assumptions 2-4 have
been verified, we derive the MATI bounds to be imple-
mented using Assumption 5 for any given value of T1
and T2. We note that the smaller Tm, the smaller Tm. On
the other hand, when T1 goes to infinity and only one
segment is activated (noting that L̃1(T1) → L1 here),
τMATI,1 corresponds to the MATI in (Postoyan et al.
2014) where observers are designed for NCS with non-
switched protocols.

Remark 1 Contrary to the MATI bounds in (Wang
et al. 2015) where the corresponding stabilization problem
was studied, the expression in Assumption 5 exclusively
depends on parameters coming from Assumptions 2-4,
which make the designs of τsMATI and τ

d
MATI easier. �

All the required assumptions have been stated, we can
now present the stability property of the observer. The
proof of the next theorem is provided in the appendix.

Theorem 1 Suppose Assumptions 2-5 hold for sys-
tem (12). Then, there exist β ∈ KL and γ ∈ K∞ such
that for each solution pair 1

(
ψ, u, v, w, d

)
to system

(12) and for all (t, j) ∈ dom
(
ψ, u, v, w, d

)
, |ψ(t, j)|A ≤

β
(
|ψ(0, 0)|A, t + j

)
+ γ(||(u, v, w, d)||(t,j)), where

A := {ψ : ξ = 0, e = 0}, γ(s) := 1

1−exp(−˜̺τmin)
αU ◦

(∆F (s) + ˜̺∆G(s)) for some αU ,∆F ,∆G ∈ K∞ and
˜̺> 0. �

We can see from Theorem 1 that the estimation error
ξ and the network-induced error e converge to a ball
centered at the origin and whose radius depends on the
L∞ norm of the input (u, v, w, d). We can also see from
Theorem 1 that ξ and e do not a priori converge to
the origin even when w = 0 and v = 0 since, in this
case,

∣∣(ξ(t, j), e(t, j)
)∣∣ ≤ β

(
|(ξ(0, 0), e(0, 0))| , t + j

)
+

γ(||du||(t,j)). The nonlinear ISS gain γ in Theorem 1
depends on τmin, which is the minimum time between
two tranmission jumps during the dynamic segment. We
can also see that γ goes to infinity when τmin approaches
zero. This is due to our stability analysis which requires

1 See (Cai & Teel 2009) for a definition of the notion of
solution pair to system (12) as well as for a definition of the
L∞ norm used in Theorem 1.

the Lyapunov function to decrease for some time, at
least τmin, during flows in order to compensate a possible
increase at jump, see details in the proof of Theorem 1
given in the appendix.

8 Conclusions

We proposed an observer design approach for nonlinear
NCS with FlexRay. FlexRay is composed of communi-
cations cycles and each cycle consists of a static and a
dynamic segment for which different scheduling policies
apply. For an observer designed in the absence of commu-
nication constraints, we investigated the conditions on
the network to preserve its convergence property. In par-
ticular, we provided explicit segment-dependent maxi-
mal allowable transmission interval (MATI) bounds and
showed that the estimation error verifies an input-to-
state stable (ISS) property, provided that MATI bounds
are satisfied and scheduling rules are ISS.
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A Proof of Theorem 1

We need the following two technical lemmas to show the
main results. Lemma 1 follows from the same lines as
the proof of Lemma 3 in (Wang et al. 2015) and Lemma
2 can be derived according to the second paragraph of
the proof of Theorem 1 in (Postoyan et al. 2014), using
Lemma 1. Hence, their proofs are omitted.

Lemma 1 The solution φ̄m, m ∈ {1, 2}, of dφ̄m

ds =

−2L̃m(Tm)φ̄m − γmλmφ̄
2
m − γm

λm
with φ̄m(0) = 1

ρm
sat-

isfies φ̄m(s) ∈ [ρm, 1/ρm] for all s ∈ [0, Tm], where

L̃m(Tm), λm and Tm come from (14), γm > 0 from
Assumption 4 and Tm > 0. �

The bounds Tm on the MATIs in Assumption 5 actually
correspond to the time it takes for φ̄m to decrease from
1/ρm to ρm in Lemma 1.

Lemma 2 Suppose Assumption 5 holds and let τsMATI <
T1

⌈T1/T1⌉
and τdMATI < T2 be given. Then, there exist

ρ∗m ∈ (ρm, 1) and ηm ∈ (0, η∗m), where η∗m :=
(

ρ∗

m

ρm

)2

−1,

such that the solution φm to dφm

ds = −2L̃m(Tm)φm −
γmλm(1 + ηm)φ2m − γm

λm
with φm(0) = 1

ρ∗

m
satisfies

φm(s) ∈ [ρ∗m, 1/ρ
∗
m] for all s ∈ [0, τsMATI] when m = 1

and all s ∈ [0, τdMATI] when m = 2. �

Let T1, T2 > 0 be given. Let ρ∗1, ρ
∗
2, η

∗
1 , η

∗
2 > 0, functions

φ1 and φ2 come from Lemma 2. We consider the Lya-
punov function, for ψ ∈ C ∪D

U(ψ) := V (ξ) + γ1φ1(τ1)ϑ1(τ2)W
2
1 (e, κ)(2 − q)

+ γ2φ2(τ1)ϑ2(τ2)W
2
2 (e, κ)(q − 1), (A.1)

where W1 and W2 come from Assumption 2, V from
Assumption 4, ϑm(s) := exp(λ̄ms) for s ≥ 0,m ∈ {1, 2},
and λ̄m := 1/Tm · ln(λm) > 0. The functions φm and ϑm
in (A.1) are constructed differently compared to (Wang
et al. 2015), which allows us to derive simpler expressions
of the MATI in Assumption 5, as mentioned in Remark
1. We note that U is locally Lipschitz in ξ, xp, e, τ1 and
τ2 in view of Assumptions 2-4 and the definitions of φm
in Lemma 2.

We next show that there exist αU , αU ∈ K∞, ∆F ,∆G ∈
K∞ and ˜̺> 0 such that the following properties hold.

(P1) For all ψ ∈ C ∪D, αU (|ψ|A) ≤ U(ψ) ≤ αU (|ψ|A).

(P2) For all 2 ψ ∈ C, v ∈ R
ne , w ∈ R

nw and
d ∈ R

ne+nu , U◦(ψ;F(ψ, u, v, w, d)) ≤ −˜̺U(ψ) +
∆F(|(u, v, w, d)|).

(P3) For allψ ∈ D and v ∈ R
ne ,U (Gtrans(ψ)) ≤ U(ψ)+

∆G(|v|) and U (Gseg(ψ)) ≤ U(ψ).

From the definition of ϑm, m ∈ {1, 2}, Lemma 2 and
Assumptions 2-4, we have that αU (|ψ|A) ≤ U(ψ) ≤
αU (|ψ|A), where αU : s 7→ min{αV

(
s
2

)
, γ1ρ

∗
1α

2
W1
s2,

γ2ρ
∗
2α

2
W2
s2} andαU (s) : s 7→ max

{
2αV (s),

2γ1λ1α
2
W1

ρ∗

1
s2 ,

2γ2λ2α
2
W2

ρ∗

2
s2
}

∈ K∞. The constructions of αU and αU

use the same technique as the proof of Proposition 2 in
(Wang et al. 2015).

We next consider (P2). We omit below the dependence
of φ1 on τ1 and ϑ1 on τ2 for the sake of convenience. In
view of page 99 in (Teel & Praly 2000) and the definition
of ϑ1, for all ψ ∈ C with q = 1 and any (u, v, w, d) ∈
R

2nu+nw+2ne ,

U◦(ψ;F(ψ, u, v, w, d)) = 〈∇V (ξ), fξ(ψ, v, w)〉 (A.2)

+ γ1

(
dφ1
dτ1

ϑ1 + φ1
dϑ1
dτ2

)
W 2

1 (e, κ)

+ 2γ1φ1ϑ1W1(e, κ)W
◦
1 (e; ge(ψ, u, v, w, d))

≤ −ε1V (ξ)− ε1W
2
1 (e, κ)−H2

1 (ξ) + µ1(|(u, v, w)|)

+ γ21W
2
1 (e, κ) + γ1

(
dφ1
dτ1

+ φ1λ̄1

)
ϑ1W

2
1 (e, κ) + 2γ1

· φ1ϑ1W1(e, κ)
(
L1W1(e, κ) +H1(ξ) + σ1(|(u, v, w, d)|)

)
.

We have 2γ1φ1ϑ1W1(e, κ)H1(ξ) ≤ γ21φ
2
1ϑ

2
1W

2
1 (e, κ)

+H2
1 (ξ). Hence, in view of (A.2), the facts that

ϑ1(τ2) ≤ λ1 for all τ2 ∈ [0, T1], and 2γ1φ1ϑ1W1(e, κ)
σ1(|(u, v, w, d)|) ≤ η1γ

2
1φ

2
1ϑ

2
1W

2
1 (e, κ)+

1
η1
σ2
1(|(u, v, w, d)|)

for η1 > 0 from Lemma 2,

U◦(ψ;F(ψ, u, v, w, d)) ≤ −ε1V (ξ)− ε1W
2
1 (e, κ) (A.3)

+ γ1λ1

(
dφ1

dτ1
+ γ1λ1(1 + η1)φ

2
1 + (2L1 + λ̄1)φ1 +

γ1

λ1

)

︸ ︷︷ ︸

(a)

·W 2
1 (e, κ) + ∆F(|(u, v, w, d)|)

where ∆F (s) := µ1(s) +
1
η1
σ2
1(s) for each s ≥ 0. Note

that L̃1(T1) = 1
2 (2L1 + λ̄1) since λ̄1 = lnλ1

T1
. Then,

in view of Lemma 2, the items subscripted by (a) in
(A.3) equal to zero when ψ ∈ C. Then, from (A.1),
U◦(ψ;F(ψ, u, v, w, d)) ≤ −ε1V (ξ) − ε1W

2
1 (e, κ) +

∆F(|(u, v, w, d)|) ≤ −˜̺U(ψ) + ∆F (|(u, v, w, d)|), where
˜̺ ∈ (0, ε1min{1, γ1ρ∗1}). The same reasoning applies
when q = 2.

2 For x, v ∈ R
n and locally Lipschitz U : R

n → R, let
U◦(x; v) be the Clarke derivative of the function U at x in the

direction v, i.e. U◦(x; v) := lim supy→x,λ↓0
U(y+λv)−U(y)

λ
.
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We next investigate (P3) and distinguish two cases:
transmission jumps and segment switching jumps. We
only consider the case when q = 1 as the same conclusion
can be obtained for q = 2 by following the same lines.
Case I:Transmission jumps. Let (τ1, τ2, q) ∈ Dtrans

1 .
From Assumption 2, φ1(0) = 1/ρ∗1, U(G(ψ)) =
V (ξ) + γ1φ1(0)ϑ1(τ2)W

2
1 (he,1(κ, ep, e), κ + 1) ≤

V (ξ) + γ1
1
ρ∗

1
ϑ1(τ2)

(
ρ1W1(e, κ) + σv

1 (|v|)
)2
. In view of

(A.1), 2ρ1W1(e, κ)σ
v
1 (|v|) ≤ η1ρ

2
1W

2
1 (e, κ) +

1
η1
σv
1 (|v|)2

and recall (1 + η1)ρ
2
1 < (ρ∗1)

2 from Lemma 2, we have
that U(G(ψ)) ≤ V (ξ)+γ1

1
ρ∗

1
ϑ1(τ2)(1+ η1)ρ

2
1W

2
1 (e, κ)+

γ1
1
ρ∗

1
ϑ1(τ2)

(
1 + 1

η1

)
σv
1 (|v|)2 ≤ V (ξ) + γ1ρ

∗
1ϑ1(τ2)

·W 2
1 (e, κ) +∆G(|v|) ≤ U(ψ) +∆G(|v|), where ∆G(s) :=

γ1λ1

ρ∗

1

(
1 + 1

η1

)
σv
1 (s)

2.

Case II: Segment switching jumps. Let (τ1, τ2, q) ∈ Dseg
1 .

Since W 2
2 (e, κ) ≤ α2

W2
|e|2 ≤ α2

W2
/α2

W1
W 2

1 (e, κ),
ϑ2(0) = 1 from its definition, φ2(τ1) ≤ 1/ρ∗2 and ρ2 < ρ∗2,
U(G(ψ)) = V (ξ) + γ2φ2(τ1)ϑ2(0)W

2
2 (e, κ) ≤ V (ξ) +

γ2
1
ρ2

α2
W2

α2
W1

W 2
1 (e, κ) = V (ξ) + γ1ρ1

γ2α
2
W2

γ1ρ1ρ2α2
W1

W 2
1 (e, κ).

Since τ2 = T1 in Case II and in view of the defini-
tion of λ̄1, U(ψ) = V (ξ) + γ1φ1(τ1)λ1W

2
1 (e, κ). Thus,

U(G(ψ)) ≤ U(ψ), as φ1(τ1) > ρ1 from Lemma 2. Hence,
item (P3) holds.

Let (ψ, u, v, w, d) be a solution (12). Note that U
is locally Lipschitz in ξ, xp, e, τ1, τ2 from item (P1).
In view of page 99 in (Teel & Praly 2000), for all
i ∈ Z≥0 and almost all s ∈ [ti, ti+1],

d
dsU(ψ(s, i)) ≤

U◦(ψ(s, i);F(ψ(s, i), u(s, i), v(s, i), w(s, i), d(s, i)))
≤ −˜̺U(ψ(s, i)) + ∆F (|(u(s, i), v(s, i), w(s, i), d(s, i))|).
We then invoke the standard comparison princi-
ple to obtain U(ψ(t1, 0)) ≤ exp(−˜̺t1)U(ψ(0, 0)) +
˜̺−1∆F (||(u, v, w, d)||(t1,0)). Noting that u, v and w do
not undergo jumps, we have that ||(u, v, w, d)||(tj ,j+1) =
||(u, v, w, d)||(tj ,j) for any (tj , j) and (tj , j + 1) ∈
dom ψ. According to item (P3), U(ψ(t1, 1)) ≤
U(ψ(t1, 0)) + ∆G(||v||(t1,1)) ≤ exp(−˜̺t1)U(ψ(0, 0)) +

˜̺−1∆F (||(u, v, w, d)||(t1,1)) + ∆G(||v||(t1,1)) when t1
corresponds to a transmission jump instant, and
U(ψ(t1, 1)) = U(ψ(t1, 0)) when t1 corresponds to a
segment switch.

The segment jumps generate no increase of U and that
τmin > 0 is the minimum inter-transmission time for
both static and dynamic segment, the following is ob-
tained by induction. U(ψ(t, j)) ≤ exp(−˜̺t)U(ψ(0, 0))+

∆F (||(u, v, w, d)||(t,j))
∑j−1

k=0 exp(−˜̺τmin)
k+˜̺∆v

G(||v||t,j)
·∑j−1

k=0 exp(−˜̺τmin)
k for all (t, j) ∈ domψ. Conse-

quently, using item (P1), we get that |ψ(t, j)|A ≤
β(|ψ(0, 0)|A, t+ j) + γ(||(u, v, w, d)||(t,j)), for all (t, j) ∈
domψ, where β(s1, s2) := α−1

U ◦ (exp(−˜̺s2)αU (s1)),

γ(s) := 1

1−exp(−˜̺τmin)
α−1
U ◦

(
∆F (s) +˜̺∆G(s)

)
for

s, s1, s2 ≥ 0.
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