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Abstract

In this paper, we address two minimal controllability problems, where the goal is to determine a

minimal subset of state variables in a linear time-invariant system to be actuated to ensure controllability

under additional constraints. First, we study the problem of characterizing the sparsest input matrices

that assure controllability when the autonomous dynamics’matrix is simple. Secondly, we build upon

these results to describe the solutions to the robust minimal controllability problem, where the goal is to

determine the sparsest input matrix ensuring controllability when specified number of inputs fail. Both

problems are NP-hard, but under the assumption that the dynamics’ matrix is simple, we show that it

is possible to reduce these two problems to set multi-covering problems. Consequently, these problems

share the same computational complexity, i.e., they are NP-complete, but polynomial algorithms to

approximate the solutions of a set multi-covering problem can be leveraged to obtain close-to-optimal

solutions to either of the minimal controllability problems.

I. INTRODUCTION

The problem of guaranteeing that a dynamical system can be driven toward the desired state

regardless of its initial position is a fundamental question that has been studied in control systems

and it is referred to ascontrollability. Several applications, for instance, control processes, control

of large flexible structures, systems biology and power systems [1]–[3] rely on the notion of
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controllability to safeguard their proper functioning. Furthermore, as the systems become larger

(i.e., the dimension of their state space), we (often) aim toidentify a relatively small subset

of state variables that ensure the controllability of the system, for instance, due to economic

constraints [4]. Consequently, it is natural to pose the following question.

Q1: Which state variables need to be directly actuated to ensurethe controllability of a

dynamical system?

QuestionQ1 can be formally captured by theminimal controllability problem(MCP) [4] that

aims to determine the minimum number of state variables thatneed to be actuated to ensure

system’s controllability. Unfortunately, the MCP problemwas shown to be NP-hard [4], which

implies that a polynomial solution to determine its solution is unlikely to exist.

The MCP is also fundamental to understand resilience and robustness properties of dynamical

systems since it unveils which variable need to be actuated.These resilience/robustness properties

are crucial to coping with the adverse nature of the environments where the actuators are deployed

and, due to the wear and tear of the materials, some of these actuators may malfunction over

time. In addition, the inputs can malfunction due to a malicious external agent who aims to

tamper with the inputs to compromise the system behavior. Infact, a classical example of such

malicious attack is the Stuxnet malware incident [5], in which the controller’s input response to

a tempered measured output lead the system away from its normal operating conditions.

Therefore, from a design perspective, we would like to deploy actuators in the system such

that any subset with at most a specified number of actuators can fail without compromising

the controllability of the system. Subsequently, invokingsimilar reasons to the MCP, we can

seek to address the robust MCP (rMCP) that aims to determine the sparsest input matrix that

ensures controllability if at most a specified number of actuators fail. It is important to mention

that both minimal controllability problems can be stated regarding observability, by invoking

the duality between controllability and observability in LTI systems [6]. In particular, [7]–[9]

provide necessary and sufficient conditions concerning thesensor deployment to ensure that a

reliable estimate of the system is recovered. More importantly, those conditions can be achieved

by design, by solving the rMCP.

Related Work: The understanding of which state variables need to be actuated to asseverate

certain properties of the system has been an active researcharea [10]. Initially, the goal was to

establish stability and/or asymptotic stability of the dynamics for reference point, for instance,
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consensus or agreement value [11], [12]. The trend has changed to assure that the system is

controllable, since (often) we want to ensure that a controllaw exists such that an arbitrary goal

or desired state is achieved in finite time.

This paper follows up and subsumes some of the existing literature where the dynamics’ matrix

is assumed to be the Laplacian, symmetric (modeling undirected graphs) and/or irreducible (mod-

eling directed graphs with the digraph representation being a strongly connected component).

In [13] the controllability of circulant networks is analyzed by exploring the Popov-Belevitch-

Hautus eigenvalue criterion, where the eigenvalues are characterized using the Cauchy-Binet

formula. The controllability in multi-agents with Laplacian dynamics was initially explored

in [14]. Later, in [15], [16], the controllability for Laplacian dynamics is studied, and necessary

and sufficient conditions are given in terms of partitions ofthe graph. In [17], the controllability is

explored for paths and cycles, and later extended by the sameauthors to the controllability of grid

graphs by means of reductions and symmetries of the graph [18], and considering dynamics that

are scaled Laplacians. In [19], [20] the controllability isstudied for strongly regular graphs and

distance-regular graphs. Recently, in [21], [22] new insights on the controllability of Laplacian

dynamics are given regarding the uncontrollable subspace.In addition, in [23] the controllability

of isotropic and anisotropic networks is analyzed.

Furthermore, [21] concludes by pointing out that further study of non-symmetric dynamics

and the controllability is required – which we address in thepresent paper. Note that the MCPs

lie within the framework of sparse optimization subject to arank constraint. Further, we notice

that the problem addressed does not belong to known classes where polynomial solutions are

available [24], nor it resources to convex relaxation schemes, where no sub-optimality guarantees

are available. Instead, we consider a much less restrictiveassumption:A is a simplematrix, i.e.,

all eigenvalues are distinct. Furthermore, there are several applications whereA satisfies this

assumption, for instance, all dynamical systems modeled asrandom networks of the Erdős-

Rényi type [25], as well as several known dynamical systemsused as benchmarks in control

systems engineering [26].

Observe that the MCP problem presents both continuous and discrete optimization properties,

captured by the controllability property and the number of non-zero entries, respectively. To

avoid the nature of this problem, in [4] the non-zero entriesof the input matrix were randomly

generated. In the present paper, we ‘decouple’ the continuous and discrete optimization proper-
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ties, and show that by first solving the discrete nature of theproblem, it is always possible to

deterministically obtain a solution to MCP in a second phase. Besides, the first step reduces the

MCP to the set covering problem – well known to be NP-hard. Nonetheless, the set covering

problem is likely one of the most studied NP-hard problems (probably second only to the SAT

problem). Subsequently, although the set covering problemis NP-hard, some subclasses of the

problem are equipped with sufficient structure that can be leveraged to invoke a polynomial

algorithm that approximate the solution with ‘almost’ optimality guarantees [27]. This contrasts

with the approach proposed in [4], where an approximated solution particular to the MCP problem

was provided. In addition, we study the rMCP which has not been previously addressed in the

literature. Similarly to the MCP, we show that the rMCP can bepolynomially reduced to theset

multi-covering problem, i.e., a set covering problem that allows the same elements to be covered

a predefined number of times. Furthermore, extensions of polynomial approximation algorithms

are also available with similar optimality guarantees.

Alternatively, in [28] instead of determining the sparsestinput matrix ensuring the controlla-

bility, the aim is to determine the sparsest input matrix that ensuresstructural controllability,

which we refer to as theminimal structural controllability problem(MSCP) – see Section III

for formal definitions and problem statement. Briefly, the MSCP focus on the structure of the

dynamics, i.e., the location of zeros/non-zeros, and the obtained sparsest input matrix is such

that for almost all matrices satisfying the structure of the dynamics and the input matrix, the

system is controllable [29]. Notwithstanding, in the present paper, we provide an example where

the solution to the minimal structural controllability problem is not necessarily a solution to

the minimal controllability problem when the dynamics’ matrix is simple; hence,disproving the

general belief that a solution to MSCP is a solution to MCP in such cases. Further, we emphasize

that the solution to the MSCP has been fully explored in [28] and can be determined by recurring

to polynomial complexity algorithms; more precisely,O(n3) wheren is the dimension of the state

space. In addition, the minimum number of state variables toachieve structural controllability

can account for the scenario where actuating state variables incur in different cost [30]. Further,

if the collection of possible actuators is given a priori andwe seek the minimum number of

these actuators to ensure structural controllability, then the problem is NP-hard [31]. Finally, [32]

studies the structural counterpart of the rMCP under one failure, which is also proved to be NP-

hard, and shown to be reducible to aweightedset covering problem. In particular, the reductions
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and the objects captured by the sets in the set covering problem in [32] are entirely different

from those of the problems explored in this paper, mainly, due to the nature of the problems.◦

Main Contributions of the present paper are as follows: (i) we characterize the exact solutions

to the MCP; (ii ) we show that for a given dynamics’ matrix almost all input vectors satisfying

a specified structure are solutions to the MCP; (iii ) we prove that the rMCP is an NP-hard

problem; (iv) we characterize the exact solutions to the rMCP; (v) we show that the decision

version of both MCPs are NP-complete; (vi) we provide approximated solutions to both MCPs

and discuss their optimality guarantees; and, finally, in (vii) we discuss the limitations of the

proposed methodology. ◦

The remainder of this paper is organized as follows. In Section II, we formally state both MCPs

addressed in this paper. Next, in Section III, we review concepts from computational complexity

and control systems that are essential to keep this paper self-contained. In Section IV, we present

the main results of this paper: we characterize the solutions to the MCPs, their complexity, and

polynomial algorithms that approximate the solution. Finally, in Section V we provide some

examples that illustrate the main results of the paper and discuss the limitations of the proposed

methodology.

Notation: We denote vectors by small font letters such asv, w, b and its corresponding

entries by subscripts; for example,vi corresponds to thei-th entry in the vectorv. A collection

of vectors is denoted by{vj}j∈J , where the superscript indicates an enumeration of the vectors

using indices from a set (usually denoted by calligraphic letter) such asI,J ⊂ N. The number

of elements of a setS is denoted by|S|. Real-valued matrices are denoted by capital letters,

such asA, B, andAi,j denotes the entry in thei-th row andj-th column in matrixA. We denote

by In then-dimensional identity matrix. Given a matrixA, σ(A) denotes the set of eigenvalues

of A, also known as thespectrumof A. Given two matricesM1 ∈ Cn×m1 andM2 ∈ Cn×m2 , the

matrix [M1 M2] corresponds to then× (m1 +m2) concatenated complex matrix. The structural

pattern of a vector/matrix (i.e., the zero/non-zero pattern) or astructural vector/matrixhave their

entries in{0, ⋆}, where⋆ denotes a non-zero entry, and they are denoted by a vector/matrix with

a bar on top of it. In other words,̄A denotes a matrix with̄Ai,j = 0 if Ai,j = 0 and Āi,j = ⋆

otherwise. We denote byA⊺ the transpose ofA. The function· : Cn × Cn → C denotes the

usual inner product inCn, i.e., v · w = v†w, wherev† denotes the adjoint ofv (the conjugate
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of v⊺). With some abuse of notation,· : {0, ⋆}n× {0, ⋆}n → {0, ⋆} also denotes the map where

v̄ · w̄ 6= 0, with v̄, w̄ ∈ {0, ⋆}n if and only if there existsi ∈ {1, . . . , n} such that̄vi = w̄i = ⋆.

Additionally, ‖v‖0 denotes the number of non-zero entries of the vectorv in either{0, ⋆}n or Rn.

Given a subspaceH ⊂ C
n we denote byHc its complement with respect toC, i.e.,Hc = C

n\H.

In addition, inequalities involving vectors are to be interpreted component-wise. With abuse of

notation, we will use inequalities involving structural vectors as well – for instance, we say

v̄ ≥ w̄ for two structural vectors̄v and w̄ if and the only if the following two conditions hold:

(i) if w̄i = 0, then v̄i ∈ {0, ⋆}, and (ii) if w̄i = ⋆ then v̄i = ⋆.

II. PROBLEMS STATEMENT

In this paper, we focus on dynamical systems modeled by discrete-time linear time-invariant

(LTI) systems, but the results are readily applicable to continuous-time LTI systems. We will

neglect the output equation because we are only addressing the controllability problem. Therefore,

consider systems described by

x(k + 1) = Ax(k) +Bu(k), x(0) = x0, (1)

wherex ∈ Rn is the state of the sytem,u ∈ Rp is the input signal exert by the actuators, and

k ∈ N denotes the time instance. The matrixA ∈ Rn×n, which is referred to as the system

dynamics’ matrix describes the coupling between state variables. The matrixB ∈ R
n×p is the

input matrix and describes the state variables that the inputs act on. As previously mentioned,

it is often desirable the LTI system (1) becontrollable, i.e., a system can be steered towards a

desirable state in at mostn steps despite the initial statex0, in which case the pair(A,B) is

said to be controllable.

The first problem addressed in this paper is the MCP, that can be formally stated as follows.

P1: Given the system dynamics’ matrixA determine the input matrixB ∈ Rn×n such that

B∗ = arg min
B∈Rn×n

‖B‖0

s.t. (A,B) controllable.
(2)

Notice that the input matrix is assumed to ben × n to ensure a solution to exist, since the

identity matrix always ensures system’s controllability.
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Alternatively, under the adverse scenarios of failure or malicious temper of the actuators, the

dynamics of the system can be modeled by

x(k + 1) = Ax(k) +Bu(k) + a(k), (3)

where the malfunctioning inputs correspond to non-zero entries in a ∈ Rn representing an

alteration of the actuation in comparison with the actual value. Therefore, an extra set of actuators

should be in place to ensure that it is still possible to control the system if some inputs fail, i.e.,

the system

x(k + 1) = Ax(k) +BM\Au(k), (4)

is controllable, whereBM\A consists of the subset of columns with indices inM\A, the set

M = {1, . . . , p} is the set of inputs’ labeling indices andA = {i ∈M : ai(k) 6= 0, k ∈ N} the

set of indices of malfunctioning actuators. Therefore,(A,BM\A) is desirable to be controllable,

and, subsequently, the rMCP can be posed as follows.

P2: Given a dynamics’ matrixA ∈ Rn×n and the number of possible input failuress, determine

the matrixB∗ ∈ Rn×(s+1)n such that

B∗ = arg min
B∈Rn×(s+1)n

‖B‖0 (5)

s.t. (A,BM\A) is controllable,

|A| ≤ s, A ⊂M,

whereM ⊂ {1, . . . , n} are the indices of the non-zero columns of the matrixB. Notice that,

similarly to P1, the dimension ofB aren× (s+ 1)n to ensure that a solution always exist, in

particular, in the worst case scenario the matrixB that concatenatess times the identity matrix

is a feasible solution. In practice, only the non-zero columns ofB matter, which we refer to as

effective inputs.

In this paper, both MCPs proposed above will be addressed under the following two assump-

tions.

Assumption 1: The dynamics’ matrix issimple, i.e., all the eigenvalues ofA are distinct. ◦

We notice that Assumption 1 is not very restrictive since there are several applications where

A satisfy this assumption. For example, dynamical systems modeled as random networks of
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the Erdős-Rényi type [25], as well as several known dynamical systems used as benchmarks in

control systems engineering [26].

Assumption 2: A left-eigenbasisof A is available, i.e., the eigenbasis consisting of left-

eigenvectors ofA. ◦

The second assumption is required by technical reasons, since an eigenbasis is determined us-

ing numerical methods. Therefore, in practice, it may be composed of approximated eigenvectors

to a given floating-point error – see Section IV-E for furtherdiscussion.

III. PRELIMINARIES AND TERMINOLOGY

In this section, we review some basic concepts in computational complexity theory, control

systems, and structural systems theory, to keep the paper self-contained.

In what follows, we use some concepts of computational complexity theory [33], that address

the classification of (computational) problems into complexity classes. Formally, this classifica-

tion is for decision problems, i.e., problems with a ‘yes’ or ‘no’ answer. Further, for a decision

problem, if there exists an algorithm that obtains the correct answer in a number of steps that

is bounded by a polynomial in the size of the input data of the problem, then the algorithm

is referred to as anefficient or polynomialsolution to the decision problem and the decision

problem is said to be polynomially solvable or belong to the class of polynomially solvable

problems. A decision problem is said to be in NP (i.e., the class of nondeterministic polynomially

solvable problems) if, given any possible solution instance, it can be verified using a polynomial

procedure whether the instance constitutes a solution to the problem or not. It is easy to see

that any problem that is polynomially solvable (in P) is alsoin NP, although, there are some

problems in NP for which it is unclear whether polynomial solutions exist. These latter problems

are referred to as being NP-complete. Consequently, the class of NP-complete problems contains

those that are thehardestamong the NP problems, i.e., those that are verifiable using polynomial

algorithms, but no polynomial algorithms to solve them are known to exist. Whereas the above

classification is intended for decision problems, it can be immediately extended to optimization

problems, by noticing that every optimization problem can be posed as a decision problem.

More precisely, given a minimization problem, we can pose the following decision problem: Is

there a solution to the minimization problem that is less than or equal to a prescribed value?

On the other hand, if the solution to the optimization problem is obtained, then any decision
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version can be easily addressed. Consequently, if a (decision) problem is NP-complete, then the

associated optimization problem is referred to as being NP-hard. We refer the reader to [34] for

an introduction to the topic. In what follows, we will consider the following NP-hard problem.

Definition 1 ([35]). (Minimum Set Multi-covering Problem) Given a set ofm elementsU =

{1, 2, . . . , m} referred to as universe, a collection ofn setsS = {S1, . . . ,Sn}, with Sj ⊂ U , with

j ∈ {1, . . . , n}
n
⋃

j=1

Sj = U , and a demand functiond : U → N that indicates the number of times

an elementi needs to be covered. In other words,d(i) is the minimum number of sets inS that

need to be consider such thati is member of all of this sets. The minimum set multi-covering

problem consists of finding a set of indicesI∗ ⊆ {1, 2, . . . , n} corresponding to the minimum

number of sets coveringU , where every elementi ∈ U is covered at leastd(i) times, i.e.,

J ∗ = argmin
J⊆{1,2,...,n}

|J |

s.t. |{j ∈ J : i ∈ Sj}| ≥ d(i) .

In particular, we note that ifd(i) = 1 for all i ∈ {1, . . . , n}, then we obtain the well known

minimum set covering problem. ⋄

The minimum set multi-covering problem plays a double role in this paper: (i) we reduce

both MCPs to a minimum set multi-covering problem; and (ii) by polynomially reducing it to

the rMCP we show the latter to be NP-hard. A (computational) problem is said to bereducible

in polynomial timeto another if there exists a procedure to transform the former to the latter

using a polynomial number of operations on the size of its inputs. Such reduction is useful in

determining the qualitative complexity class [34] a particular problem belongs to. For instance,

we will need the following result.

Proposition 1 ([34]). Let PA be an NP-hard problem. If there is a polynomial reduction from

PA to PB, from which a solution toPA can be determined, thenPB is an NP-hard problem.⋄

Similarly, the minimum set covering problem is used in the present paper to show the NP-

completeness of the MCP, by considering the following result.

Lemma 1 ([34]). Let PA andPB be two NP-hard problems, andPd
A andPd

B be their decision

versions, respectively. If a problemPA is polynomially reducible toPB (or equivalently, their
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decision versions) andPB is polynomially reducible toPA (or equivalently, their decision

versions), then bothPd
A andPd

B are NP-complete. ⋄

Now, given an arbitrary LTI system (1), we will focus on the following controllability tests.

Theorem 1 ([6]). (PBH test for controllability using eigenvalues) The system described in (1)

is controllableif and only if rank
([

A− λIn B

])

= n for all λ ∈ C. ⋄

In fact, it suffices to verify the criterion of Theorem 1 for each λ ∈ σ(A). Observe that

Theorem 1 provides a polynomial method to check the controllability of an LTI system since for

each eigenvalueλ of A only the computation of the rank of[A−λIn B] is required. Nevertheless,

it does not provide any immediate information about which entries ofB should be different from

zero and with what particular values such that the rank condition is ensured. That is, verifying

if a B is a solution can be achieved in P, so the controllability problem is in NP. Therefore,

a naive usage of the PBH eigenvalue test would lead to a strictly combinatorial procedure for

solving the MCP. Instead, we can consider the PBH test for controllability using eigenvectors.

Theorem 2 ([6]). (PBH test for controllability using eigenvectors) Given(1), the system is not

controllable if and only if there exists a left-eigenvectorv of A such thatv†B = 0. ⋄

To relate our results with the ones from structural systems and further understand the ad-

vantages and drawbacks of this approach, we will introduce the structural counterpart of the

MCP, theminimal structural controllability problem(MSCP). But first, we need to review the

structural counterpart of controllability [29].

Definition 2 ([29]). (Structural Controllability) Given an LTI system(1) with sparseness given

by (Ā, B̄), with Ā ∈ {0, ⋆}n×n and B̄ ∈ {0, ⋆}n×p, where the entries correspond to fixed zeros

and free real parameters, the pair(Ā, B̄) is said to be structurally controllable if there exists a

controllable pair (A,B), with the same sparseness as(Ā, B̄). ⋄

In fact, a stronger characterization of structural controllability holds as stated in the following

proposition.

Proposition 2 ([36]). For a structurally controllable pair(Ā, B̄), the numerical realizations

(A,B) with the same sparseness as(Ā, B̄) that are non-controllable are described by a proper
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variety inR
n×n×R

n×p. In other words, almost all realizations respecting the structural pattern

of a structurally controllable pair are controllable. ⋄

By almost all realizations, we mean that at most a set with zero Lebesgue measure will lead

to numerical realizations that do not ensure controllability.

Subsequently, the MSCP is posed as follows: given the structural matrix Ā ∈ {0, ⋆}n×n

associated with the dynamics’ matrixA, find B̄ such that

B̄ = argmin
B̄′∈{0,⋆}n×n

‖B̄′‖0

s.t. (Ā, B̄′) is structurally controllable.
(6)

Now, note that, by Definition 2, a pair(A,B) is controllable only if the corresponding structural

pair (Ā, B̄) is structurally controllable. Therefore, it is natural first to characterize all the sparsest

structures of input vectors that ensure structural controllability, i.e., solutions to (6). In particular,

as a consequence of Proposition 2, we have the following result which links the MCP to its

structural counterpart.

Proposition 3 ([28]). GivenA ∈ Rn×n, a solutionB ∈ Rn×p for the MCP and a numerical

realizationB′ ∈ Rn×p of a solution to the MSCP associated with the structural matrix Ā, we

have
‖B‖0 ≥ ‖B

′‖0.

More generally, for eachB that solves the MCP, there exists a solutionB̄′ of the MSCP such

that

B̄ ≥ B̄′,

whereB̄ andB̄′ denote the structural matrix associated withB andB′, respectively. Conversely,

given a structural matrixĀ and a solutionB̄′ to the MSCP, for almost all numerical instancesA

satisfying the structural pattern of̄A, then almost all numerical instances satisfying the structural

pattern ofB̄′ are solutions to the MCP associated withA. ⋄

IV. M INIMUM CONTROLLABILITY PROBLEMS

In this section, we provide the main results of this paper. InSection IV-A, we show that the

MCP can be exactly solved in two steps: (i) Polynomial reduction of the structural optimization
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problem (2) to a set-covering problem (Algorithm 1); and (ii) determine a numerical parametriza-

tion of an input matrixB with specified input structurēB, in a deterministic polynomial fashion

(Algorithm 2). Further, by sequentially performing the twoalgorithms, we are ‘decoupling’

the discrete and continuous properties of the MCP without losing optimality (Theorem 4). In

other words, we treat separately the identification of the matrix pattern B̄ (discrete property)

and the computation of a numerical realization encompassing the B̄ pattern, and ensuring

controllability of the system (continuous property). In Section IV-B, we show that rMCP is

NP-hard (Theorem 7), and a similar procedure to that used to solve MCP is followed. More

specifically, we determine the sparsity of an input matrix bypolynomially reducing the problem

to a minimum set multi-covering problem (Theorem 8), and this can later be used to characterize

the solutions to rMCP (Theorem 9).

Complementary to the solutions to the MCPs, in Section IV-C,we show that in fact the

decision versions of MCP and rMCP (under Assumption 1) are NP-complete (Theorem 10).

Further, in Section IV-D, because the MCPs are NP-hard, we discuss a possible approach that

leverage existing polynomial algorithms used to determinegood approximations of the solutions

to the minimum set multi-covering problem (for instance, Algorithm 3). Subsequently, we argue

that the approximate solution warrants some optimality guarantees (Theorem 11). Finally, in

Section IV-E, we explore some numerical implications of waiving Assumption 2.

A. A Characterization of the MCP Solution

In this section, we present a systematic method to obtain a solution to the MCP problem. First,

we show that given a left-eigenbasis of the dynamics’ matrixA, it is possible to polynomially

reduce the MCP to the minimum set covering problem. This reduction assumes that we only

have a single effective input to actuate the system, i.e., the input matrix has a single non-zero

column. Notice that a feasible solution always exist because A is simple. Subsequently, we

say that the input vector is a solution to the MCP if the input matrix obtained consists of one

effective input associated with that input. Further, in Theorem 6, we show that this can be done

without loss of generality. The reduction is achieved by exploiting the PBH eigenvector criterion

(Theorem 2) for controllability. More precisely, the reduction is obtained in two steps: first, we

provide a necessary condition on the structureb̄ of the sparsest input vectorb (see Lemma 2),

which is obtained by formulating a minimum set covering problem (see Algorithm 1) associated
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with the structure (i.e., location of non-zero entries) of the left-eigenvectors of the dynamics’

matrix A. Secondly, we show that a possible numerical realization ofb̄ which solves the MCP

may be generated using a polynomial construction (Algorithm 2). Both algorithms (Algorithm 1

and Algorithm 2) have polynomial complexity in the number ofstate variables (Theorem 4).

Further, the sequential use of these algorithms provides a systematic solution to the MCP (see

Theorem 5).

The first set of results provides necessary conditions on thestructure that an input vectorb must

satisfy to ensure controllability of(A, b), and a polynomial complexity procedure (Algorithm 1)

that reduces the problem of obtaining such necessary structural patterns to a minimum set

covering problem.

Lemma 2. Given a collection of non-zero vectors{v̄j}j∈J with v̄j ∈ {0, ⋆}n, the procedure of

finding b̄∗ ∈ {0, ⋆}n such that

b̄∗ = argmin
b̄∈{0,⋆}n

‖b̄‖0

s.t. v̄j · b̄ 6= 0, for all j ∈ J
(7)

is polynomially (in|J | and n) reducible to a minimum set covering problem with universeU

and a collectionS of sets by applying Algorithm 1. ⋄

Algorithm 1 Polynomial reduction of the structural optimization problem (2) to a set-covering

problem
Input: {v̄j}j∈J , a collection of|J | vectors in{0, ⋆}n.

Output: S = {Si}i∈{1,...,n} andU , a set ofn sets and the universe of the sets, respectively.

1: set Si = {} for i = 1, . . . , n

2: for j = 1, . . . , |J |

for i = 1, . . . , n

if v̄
j
i 6= 0 then

Si = Si ∪ {j};

end if

end for

end for

3: set S = {S1, . . . ,Sn} andU =

n
⋃

i=1

Si.
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Next, we show that given the structure obtained in Lemma 2, almost all possible real numerical

realizations lead to a vectorb ∈ Rn that is a solution to the MCP.

Theorem 3. Let {vi}i∈J to be the set of left-eigenvectors ofA, and b̄ a solution to(7). Then,

almost all numerical realizationsb of b̄ are solutions to the MCP. ⋄

Observe that Theorem 3 differs from the converse result in Proposition 3 in a subtle, yet

important, manner which we describe in the following remark.

Remark 1. The converse result in Proposition 3 about the generic properties that characterize

structural controllability shows that almost all parameters of both dynamics and input matrices

satisfying a given structural pattern are controllable. Although, in Theorem 3 the dynamics’

simple matrixA is fixed, i.e., a numerical instance with specified structure, and density arguments

are provided to the numerical realizations of the input vector with certain structure ensure

controllability of the system. ⋄

Although Theorem 3 ensures that almost all parameterizations provide a feasible solution to

the MCP, we need to determine one parameterization that guarantees controllability. Toward this

goal, in Algorithm 2, we present an efficient algorithm to obtain such parameterization. The

correctness and computational complexity of the algorithmis provided in the next result.

Theorem 4. Algorithm 2 is correct and has complexityO(|J |), where |J | is the size of the

collection of vectors given as input to the algorithm. ⋄

Whereas Algorithm 2 provides an efficient formulation that enables to retrieve a possible

parametrization ensuring controllability, one can easilyextend this framework to more general

scenarios aiming to capture some additional control metrics of interest, for instance, the control-

lability energy. This extensions are described in further detail in the following remark.

Remark 2. Suppose the objective function in Algorithm 2 is given byf(B). Then, this can

be chosen to satisfy additional design constraints. For instance,f(B) = c⊺B1, wherec could

capture an actuation cost, i.e., entryci captures how desirable is to actuatexi, and1 is a vector

of ones with appropriate dimensions. Subsequently, one mayneed additional constraints such

that the total actuation budgetr available is bounded, for instance,|f(B)| ≤ r and Bi,j ≥ 0
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Algorithm 2 Determines a numerical parametrization of an input matrixB with specified input

structureB̄

Input: {vj}j∈J , a collection of|J | complex vectors, and̄B ∈ {0, ⋆}n×m.

Output: B∗ ∈ Rn×m solution to (8).

B∗ = arg min
B∈Rn×m

0

s.t. (vj)
†
B > 0, j ∈ J

Bl,k = 0 if B̄l,k = 0, l, k = 1, . . . , n

to avoid negative entries that will restrain the objective goal. Alternatively,f(B) can also be

considered to be nonlinear, while capturing control-theoretic properties; in particular, it can be

a function of the controllability Grammian [37], with some appropriate constraints to ensure

the problem to be well defined. ⋄

Next, we show that the sparsest vector pattern given by Lemma2, together with Algorithm 2,

leads to a numerical realization that is a solution to the MCP.

Lemma 3. Given{vi}i∈J with vi ∈ Cn, the procedure of findingb∗ ∈ Rn such that

b∗ = argmin
b∈Rn

‖b‖0

s.t. vi · b 6= 0, for all i ∈ J ,
(8)

is polynomially (in |J | and n) reducible to a minimum set covering problem (provided by

Algorithm 1), with numerical entries determined using Algorithm 2. ⋄

Now, we state one of the main results of the paper.

Theorem 5. The solution to the MCP can be determined by first identifyingthe sparsity of the

input vector as in Lemma 2, followed by determining the numerical realization of the non-zero

entries using Algorithm 2. ⋄

Finally, we characterize the sparsity solutions to the MCP besides those described by a single

effective input.
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Theorem 6. Let b ∈ R
n be a solution to the MCP as described in Theorem 5,b̄ its sparsity

andN ⊂ {1, . . . , n} the indices wherēb is non-zero, i.e.,N = {i : b̄i = ⋆, and i = 1, . . . , n}.

If B̄ ∈ {0, ⋆}n×n has exactly one non-zero entry in thei-th row, wherei ∈ N , then the output

B ∈ R
n×n of Algorithm 2, whenB̄ and the left-eigenbasis ofA are considered, is a solution to

the MCP. ⋄

In particular, from Theorem 6, we obtain the following result regarding the scenario where

every effective input actuates a single state variable, which we refer to asdedicatedinputs.

Corollary 1. Let b ∈ Rn be a solution to the MCP as described in Theorem 5,b̄ its sparsity

andN ⊂ {1, . . . , n} the indices wherēb is non-zero, i.e.,N = {i : b̄i = ⋆, and i = 1, . . . , n}.

If B̄ ∈ {0, ⋆}n×n has exactly one non-zero entry in thei-th row and each column, wherei ∈ N ,

then the outputB ∈ Rn×n of Algorithm 2, whenB̄ and the left-eigenbasis ofA are considered,

is a dedicated solution to the MCP, i.e., every effective input actuates a single state variable.⋄

B. On the Exact Solution of the Robust Minimal Controllability Problem

Now, we study the rMCP, by first showing that this is an NP-hardproblem (Theorem 7). Then,

similarly to the previous subsection, we first show that a particular subclass of input matrices is a

solution to this problem. More specifically, we characterize the dedicated solutions to the rMCP

(Theorem 8), and, subsequently, we provide a characterization of the solution to the rMCP in

Theorem 9.

Theorem 7. The rMCP is NP-hard. ⋄

Now, similar to the reduction proposed from MCP to the set covering problem, we can

characterize the dedicated solutions to the rMCP by considering a set multi-covering problem

as stated in the next result.

Theorem 8. Let v1, . . . , vn be a left-eigenbasis ofA, ands the number of possible input failures.

Further, consider the set multi-covering problem({S1, . . . ,S(s+1)n}, U ≡ {1, . . . , n}; d), where

the demand isd(i) = s + 1 for i ∈ U , and Sk = {j : [vj ]l 6= 0, and l − 1 = k mod n} for

k ∈ K ≡ {1, . . . , (s+ 1)n}. Then, the following statements are equivalent:

(i) M∗ is a solution to the set multi-covering problem({S1, . . . ,S(s+1)n},U ≡ {1, . . . , n}; d);
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(ii) Bn(M
∗) is a dedicated solution to rMCP, where[Bn(M

∗)]i,l = 1 for l = i mod n and

i ∈M∗ ⊂ K, and zero otherwise. ⋄

Remark 3. A matrixBn(M
′) described by the concatenation of(s+ 1) solutions to the MCP

achieves feasibility to the rMCP, but it is not necessarily an optimal solution to the rMCP. In

Section V-C, we provide an example where the concatenation of solutions is not a solution to

the rMCP. ⋄

In Theorem 8, we provided a characterization of dedicated solutions to the rMCP. In particular,

we notice that the solution may require that several non-zero entries in a row of a dedicated

solution are considered. In other words, the same state variable needs to be actuated by different

actuators to ensure robustness fors input failures.

Next, we characterize the solutions of the rMCP, i.e., not only the ones that are dedicated.

Towards this goal, we need to introduce the followingmerging procedure. Let two distinct

effective inputsi andj, associated with two non-zero columns of the input matrix,bi andbj , be

such that they share no non-zero entryk, i.e., [bi]k 6= [bj ]k for k ∈ {1, . . . , n}. These two inputs

are said to be merged into one inputbi
′

, where[bi
′

]k = [bi]k when [bi]k 6= 0, and [bi
′

]k = [bj ]k

when [bj ]k 6= 0, for k ∈ {1, . . . , n}. Further, it is implicitly assumed thatbi
′

takes the place ofbi

andbj is set to zero. In other words, the effective inputi is associated withbi
′

and the effective

input j is discarded.

Theorem 9. Let Bn(M∗) ∈ Rn×(s+1)n be a dedicated solution to the rMCP as described in

Theorem 8. In addition, let̄B ∈ {0, ⋆}n×(s+1)n be the sparsity of the matrix resulting of the

merging procedure between any of the effective inputs inBn(M∗). Then, the matrixB ∈ Rn×n

obtained using Algorithm 2, with̄B and the left-eigenbasis ofA, is a solution to the rMCP.⋄

C. Computational Complexity

In the previous subsections, we have mentioned that both MCPs are NP-hard. The NP-hardness

assesses that a problem is at least as difficult as another NP-hard problem. In this subsection, we

show that both MCPs are NP-complete, i.e., their decision versions are NP-complete. Therefore,

we provide an interesting remark about NP-completeness class from results known in control

systems. Also, it sets the grounds for the next subsection, where polynomial approximation
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algorithms (that obtain a suboptimal solution to the set multi-covering problem) are leveraged

to obtain approximate solutions to the MCP and rMCP.

Theorem 10. The MCP and rMCP are NP-complete. ⋄

Additionally, Theorem 10 leads to the following interesting observation.

Remark 4. By Proposition 3 (the converse part), it follows that a solution of the MCP almost

always coincides with a numerical realization of a solutionto an associated minimal structural

controllability. Combining this with the fact that the MCP is NP-complete when the eigenvalues

of A are simple (see Theorem 10), it follows that the set of simpledynamics’ matrices that lead

to NP-complete problems has zero Lebesgue measure. ⋄

As stated in Theorem 10, the condition that the matricesA be restricted to have simple

eigenvalues, is, in fact, necessary in a sense for the proposed reduction of the MCP to the

minimum set covering problem to be polynomial inn. This fact is explored in the next remark.

Remark 5. The proposed reduction from the MCP to the minimum set covering problem is

polynomial inmax(|J |, n), where |J | denotes the number of left-eigenvectors. Nevertheless,

because the number of left-eigenvectors can grow exponentially, it follows that the proposed

reduction cannot be used to show that the decision version ofthe (general) MCP is NP-complete.

However, this does not imply that the decision version of theMCP for arbitrary dynamics’

matrices (i.e., whenA is not restricted to have simple eigenvalues) is not NP-complete, which

remains an open question. ⋄

Finally, we notice that the fact that a problem is NP-hard, itdoes not mean that all instances are

not solved polynomially; notwithstanding, these can be solved exactly [38], [39]. Furthermore,

the NP-completeness stated in Theorem 10, allows us to consider the subclasses of the set multi-

covering problem that are known to be polynomially solvable, to identify polynomially solvable

subclasses of the MCPs. This enables a new characterizationof solutions to the question posed

in [21], regarding the existence of polynomial algorithms exist to determine controllable graph

structures. In particular, we notice that in several of these cases, the graphs are associated with

dynamics’ matrices that are simple – the case explored in this present paper. Alternatively, by the

proposed construction, if the set multi-covering problem obtained possess additional structure,

September 24, 2018 DRAFT



19

then this can be leveraged to use polynomial algorithms to approximate the solutions with close-

to-optimal solutions, as we discuss in the next subsection.

D. Polynomial Approximations to the Solution of the MinimalControllability Problems

As a consequence of Theorem 10, it follows that we can obtain polynomial approximations

for both the multi-set covering problem and the rMCP. Noticethat, in particular, a solution to

the MCP can be obtained by considering that no input fails. Therefore, in Algorithm 3, we

propose an algorithm that leverages the submodularity properties [40] of the set multi-covering

properties to obtain a dedicated solution to the rMCP. Submodularity properties ensure that the

associated polynomial greedy algorithms have sub-optimality guarantees while performing well

in practice [40], see also Remark 6. Subsequently, following a similar reasoning to that presented

in Theorem 8, we can obtain the following result.

Algorithm 3 Approximate Solution to the rMCP
Input: Left-eigenbasisv1, . . . , vn associated withA ∈ Rn×n and the number of possible input failuress.

Output: Dedicated solutionBn(M′) ∈ Rn×(s+1)n.

1: Let S1, . . . ,S(s+1)n, whereSk = {j : [vj ]l 6= 0, and l − 1 = k mod n} for k ∈ K ≡ {1, . . . , n(s+ 1)}.

2: set U i = ∅, with i = 1, . . . , s ⊲ denote the indices inU that are coveredi times and the indices of the sets

covering them, respectively.

3: setJ = ∅

4: for i = 1, . . . , s+ 1

setU i = {k : |{k ∈ U : k ∈ Sj , j ∈ J }| ≥ i} ⊲ the indices that are already covered by at leasti sets

5: while U i 6= U

selectSj with largest number of indices inU \ U i

setJ ← J ∪ {j}

setU i ← U i ∪ Sj

end while

end for

setM′ ← J ;

Theorem 11. The matrixBn(M′) obtained using Algorithm 3, with̄B and the left-eigenbasis

of A, is a feasible solution to the rMCP. Further, the computational complexity of Algorithm 3

is O(sn), and it ensures an approximation optimality bound ofO(log n). ⋄
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Remark 6. Algorithm 3 produces suboptimal solutions that are often optimal solutions to

the rMCP, as illustrated in Section V-A. The practical performance, together with the linear

computational complexity motivated the choice of such procedure. Nonetheless, the information

on the structure of the left-eigenvectors, or equivalently, the structure of the sets in the set multi-

covering problem, can be leveraged to obtain better approximations, for instance, see [27], [41].

In particular, the approximation algorithm from [27] outperforms the majority of the known

approximation algorithms if the number of elements of the largest set is small. The authors

obtained an approximation optimality bound ofO(d log dc), wherec is the size of an optimal

solution andd the number of elements of the largest set, and its computational complexity is

O(cn log n
c
). Further, [42] extends the latter results by using a linear programming relaxation,

which has comparable computational complexity, but with a better approximation ratio that is

smaller by a constant factor. Also, in [42] the approach is directly applicable to set multi-covering

problems, required to determine the solution to the rMCP. ⋄

Finally, by invoking Theorem 9, we obtain the following result.

Corollary 2. Let Bn(M′) ∈ Rn×(s+1)n be a dedicated solution to the rMCP as described in

Theorem 11. In addition, let̄B ∈ {0, ⋆}n×(s+1)n be the sparsity of the matrix resulting of the

merging procedure between any of the effective inputs inBn(M
′). Then, the matrixB ∈ R

n×n

obtained using Algorithm 2, with̄B and the left-eigenbasis ofA, achieves feasibility to the rMCP

and is computed in polynomial time. ⋄

E. Numerical and Computational Remarks

Now, for the sake of completeness, we discuss the implications of waiving Assumption 2 and

the impact on the input vector in the MCP. The results trivially extend to the general solution

to the MCPs. Towards this goal, we need the following result from [43].

Theorem 12 ([43]). Let A ∈ Cn×n be a matrix with simple eigenvalues. The deterministic

arithmetic complexity of finding the eigenvalues and the eigenvectors ofA is bounded by

O (n3) + t (n,m) operations, wheret(n,m) = O
((

n log2 n
) (

logm+ log2 n
))

, for a required

upper bound of2−m‖A‖ on the absolute output error of the approximation of the eigenvalues

and eigenvectors ofA and for any fixed matrix norm‖ · ‖. ⋄
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More precisely, Theorem 12 states that in practice, only a numerical approximation of the left-

eigenbasis is possible in polynomial time. In this case, letǫ = 2−m‖A‖ be as in Theorem 12,

then the results stated in Lemma 2 and Lemma 3 (see also Algorithm 1 and Algorithm 2) can

only be used in anǫ-approximationof the left-eigenbasis of the dynamics’ matrix. Therefore,

the ǫ-approximation of the left-eigenbasis may lead to the following issues:

(i) an entry in the left-eigenvectors is considered as zero,where in fact it can be some non-zero

value that (in norm) is smaller thenǫ. Consequently, the sets generated using Algorithm 1 (see

also Lemma 2) do not contain the indices associated with those non-zero entries. Thus, additional

sets need to be considered to the minimum set covering, whichimplies that the structure of the

input vector may contain more non-zero entries than the sparsest input vector that is a solution

to the MCP. In other words, we obtain an over-approximation of the sparsest input vector that

is a solution to the MCP.

(ii) an entry in the left-eigenvectors in theǫ-approximationof the left-eigenbasis is non-

zero. Then, it does not represent an issue when computing thestructure of the input vector as

described in Lemma 2 (see also Algorithm 1), but it can represent a problem when determining

the numerical realization by resorting to Algorithm 2. Nonetheless, by Theorem 3 it follows that

such issue is unlikely to occur.

To undertake a deeper understanding of which entries fall inthe first issue presented above,

several methods to compute eigenvectors can be used and solutions posteriorly compared, see [44]

for a survey of the different methods and computational issues associated with those.

V. ILLUSTRATIVE EXAMPLES

In this section, we provide some examples that illustrate the main results of the paper.
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A. Minimal Controllability Problem

To illustrate the first main result of this paper, i.e., to determine a solution toP1, consider the

dynamics’ matrixA given by

A =





















6 −3 3 2 −1

0 8 0 0 0

4 3 7 2 1

0 0 0 6 0

−4 −3 −3 −2 3





















, (9)

whereσ(A) = {2, 4, 6, 8, 10} consists of distinct eigenvalues, so the matrixA is simple and the

results in Section IV-A are applicable. Consequently, to obtain the solution to the MCP, we first

compute the left-eigenvectors ofA that are as follows:v1 = [ 1 1 0 0 1 ]⊺, v2 = [ 0 0 1 0 1 ]⊺,

v3 = [ 0 0 0 1 0 ]⊺, v4 = [ 0 1 0 0 0 ]⊺ and v5 = [ 1 0 1 1 0 ]⊺. Therefore, their structures are

given by v̄1 = [ ⋆ ⋆ 0 0 ⋆ ]⊺, v̄2 = [ 0 0 ⋆ 0 ⋆ ]⊺, v̄3 = [ 0 0 0 ⋆ 0 ]⊺, v̄4 = [ 0 ⋆ 0 0 0 ]⊺ and

v̄5 = [ ⋆ 0 ⋆ ⋆ 0 ]⊺. Using Algorithm 1, sincēvi for i = 1, . . . , 5, we obtain{Sj}j=1,...,5, where

the j-th set corresponds to the set of indices of the left-eigenvector which have a non-zero entry

on thej-th position. In particular, we obtainS1 = {1, 5}, S2 = {1, 4}, S3 = {2, 5}, S4 = {3, 5},

S5 = {1, 2}, and the universe set is given byU =

n
⋃

i=1

Si = {1, 2, 3, 4, 5} . Now, it is easy to see

that a solution to this minimum set covering problem is the set of indicesI∗ = {2, 3, 4}, since

U = S2 ∪ S3 ∪ S4 and there is no pair of sets, i.e.,I ′ = {i, i′} with i, i′ ∈ {1, . . . , 5} such that

U = Si ∪ Si′ . Therefore, a possible structure of the vectorb that is a solution to the MCP is

b̄ = [ 0 ⋆ ⋆ ⋆ 0 ]
⊺. (10)

Additionally, to find the numerical parametrization ofb, under the sparsity pattern ofb̄, we have

to solve the following system with three unknowns:b2, b3, b4 6= 0 andb3+b4 6= 0. By inspection,

a possible choice isb = [ 0 1 1 1 0 ]⊺, but the numerical parametrization can be obtained by

invoking Algorithm 2, with the set of left-eigenvectors ofA given by {vj}j∈{1,...,5} and the

structure ofb given by b̄ in (10). For the sake of completeness, we, the controllability matrix is
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given by

C = [ b Ab A2b A3b A4b ]

=





















0 2 44 608 7184

1 8 64 512 4096

1 12 120 1176 11520

1 6 36 216 1296

0 −8 −104 −1112 −11264





















,

and the rank(C) = 5, which implies that(A, b) is controllable.

Observe that the single-input solution obtained withb = [ 0 1 1 1 0 ]⊺, can be immediately

translated into a solution with two effective inputs, by invoking Theorem 6. In particular, two

possible solutions areB = [ b1 b2 ] with b1 = [ 0 1 1 0 0 ]⊺ and b2 = [ 0 0 0 1 0 ]⊺, andB =

[ b1 b2 b3 ] with b1 = [ 0 1 0 0 0 ]⊺, b2 = [ 0 0 1 0 0 ]⊺ andb3 = [ 0 0 0 1 0 ]⊺, where the latter is a

dedicated solution. Alternatively, if we consider for instanceB = [ b1 b2 ] with b1 = [ 0 1 0 0 0 ]⊺

and b2 = [ 0 0 −1 1 0 ]⊺, thenv⊺B = 0 for the left-eigenvectorv = [ 1 0 1 1 0 ]⊺ which renders

the pair(A,B) uncontrollable. Thus, as prescribed in Theorem 6, by invoking Algorithm 2, one

can obtain a new realization ofB that ensures controllability of(A,B); for instance, the same

b1 and b2 = [ 0 0 12
10

1 0 ]⊺.

In Section IV-D, a systematic polynomial approximation to the MCP can be obtained by

considering the rMCP with the number of input failures equalto s = 0. In fact, by doing so,

one obtains the same sparsity tob, i.e., b̄, as in the aforementioned example, and the subsequent

analysis follows. Furthermore, we notice that the approximate solution is a solution to the MCP.

B. Minimal Structural Controllability Problem

The solution to the MSCP considerinḡA associated withA in (7) is given bȳb′ = [0 ⋆ 0 ⋆ 0]⊺,

see [28] for details. Therefore, the structural controllability solution to the MSCP provides a

strict lower bound on the number of state variables we shouldactuate with the input, i.e.,

the sparsity of the input vector (in accordance to Proposition 3). More precisely, we achieve

structural controllability by actuating two variables (specifically x2 and x4), but in order to

ensure controllability an additional state variable needsto be actuated, for instance,x3 as obtained

in Section V-A. Therefore, structural controllability is necessary, but not sufficient, to achieve

controllability even when the matrixA is simple. In particular, considering the converse part
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of Proposition 3, we note that the numerical values of the matrix A fall into the set of zero

Lebesgue measure (see also Proposition 2), where the solution associated with the MSCP does

not provide a solution to the MCP. As a consequence, notice that Theorem 3 is different and

stronger than Proposition 3 (as observed in Remark 1). More specifically, in Theorem 3 the

matrix A has fixed values and only the non-zero entries ofB are taken into account, whereas

in Proposition 3 both non-zero entries ofA andB are considered not to be fixed.

To sharpen the intuition behind these results and observations, we perturbed the matrixA by

adding a random uniform noise on the interval[−10−10, 10−10] to each of its non-zero entries,

which leads to a new matrix that we denote byA′ (with the same structure asA). The structure

of the left-eigenvector of the matrixA′ now becomes:̄v′1 = [ ⋆ ⋆ ⋆ ⋆ ⋆ ]⊺, v̄′2 = [ ⋆ ⋆ ⋆ ⋆ ⋆ ]⊺,

v̄′3 = [ 0 0 0 ⋆ 0 ]⊺, v̄′4 = [ 0 ⋆ 0 0 0 ]⊺ and v̄′5 = [ ⋆ ⋆ ⋆ ⋆ ⋆ ]⊺. Subsequently, building the sets

for the minimum set covering problem as in Algorithm 1, basedon v̄′i with i = 1, . . . , 5, we

obtainS ′
1 = {1, 2, 5}, S

′
2 = {1, 2, 4, 5}, S

′
3 = {1, 2, 5}, S

′
4 = {1, 2, 3, 5} andS ′

5 = {1, 2, 5}, and

the universe of the minimum set covering problem isU = {1, 2, 3, 4, 5}. Finally, by inspection,

we can see that a solution of this minimum set covering problem is the set of indicesI ′∗ = {2, 4}.

Hence, the sparsity of the solution to the MCP coincides withthe solution to the MSCP associated

with Ā. Lastly, we observe that this example illustrates the conclusions of Proposition 2 and

Proposition 3.

C. Robust Minimal Controllability Problem

Now, we illustrate how to find a solution toP2. Let us apply the developments of Section IV-B,

when we consider the dynamics’ matrix in (9). First, if we consider that at most one input fails,

we use Algorithm 1, where a set multi-covering problem is considered with the sets as in

Section V-B, universeU = {1, . . . , 5} and with a demand functiond(i) = 2 for i = 1, . . . , 5,

i.e., each element must be covered twice. Subsequently, by inspection, we conclude that the

setsS2 andS4 need to be considered twice, since the elements5 and 4 only appear in these

sets, respectively. After this, we need to cover the element2 and to this end we can choose

S3 or S5 or twice one of them, so a possible solution to the multi-set covering problem is

M∗ = {2, 3, 4, 2, 3, 4}. Therefore,Bn(M∗) is a solution to the rMCP, and, in particular, the

solution is the same as concatenating twice a dedicated solution to the MCP, see Remark 3.

Further, Algorithm 3 produces an optimal solution as often occurs in practice (Remark 6).
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In fact, if we apply the developments of Section IV-B whens inputs are allowed to fail, i.e.,

for demand functiond(i) = s + 1 for i = 1, . . . , 5, we notice that the setsS2 andS4 need to

be considereds + 1 times since the elements5 and 4 only appear in these sets, respectively.

Besides, we need to cover the element2, so we can choose eitherS3 or S5 s+ 1 times, which

implies thatB(M∗), withM∗ = {2, 3, 4, . . . , 2, 3, 4} where the elements2, 3 and4 appears+1

times, is a solution. Similarly, the solution consists of concatenatings + 1 times a dedicated

solution to the MCP, and the same remarks are applicable, i.e., Remark 3 and Remark 6.

Notwithstanding, the concatenation ofs+ 1 solutions to the MCP is not always a solution to

the rMCP when at mosts inputs are allowed to fail. Let us consider the dynamics’ matrix and

associated left-eigenvectors as follows:

A =











4 −2 2

−1 3 1

1 −1 5











and V =











| | |

v1 v2 v3

| | |











=











1 0 1

1 1 0

0 1 1











. (11)

First, we note thatσ(A) = {2, 4, 6}, so A is simple, and we can apply the results in

Section IV-B. Secondly, the structure of the left-eigenvectors of A is given by v̄1 = [ ⋆ ⋆ 0 ]⊺,

v̄2 = [ 0 ⋆ ⋆ ]⊺ and v̄3 = [ ⋆ 0 ⋆ ]⊺. Further, we consider that at most one input failure is likely

to occur, i.e.,s = 1. Then, we can invoke Algorithm 1 to build the sets for the set multi-

covering problem, which are as follows:S = {S1,S2,S3}, with S1 = {1, 2}, S2 = {2, 3} and

S3 = {1, 3}, andU =
⋃3

i=1 Si = {1, 2, 3}. By inspection, we obtain thatM′ = {1, 2, 3} is the

optimal solution, where the indices cover each element ofU twice. Further, observe that a solution

to the dedicated input MCP always has size equal to two, and inthis case, the concatenation

of two solutions lead to a solution that has one more input than the optimal solution obtained.

Observe that this is a small dimensional example that incursinto a solution that is already33%

worst than the optimal. Alternatively, if we apply Algorithm 3 to approximate the solution to

the rMCP, we obtain one that is optimal, i.e.,B(M′) whereM′ = {1, 2, 3}, which is consistent

with Remark 6.

VI. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we addressed two minimal controllability problems, with the goal of characteriz-

ing the input configurations that actuate the minimal subsetof variables yielding controllability,
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under a specified number of failures. The problems explored were shown to be NP-complete, and

a polynomial reduction of these to a set multi-covering problem was provided. In particular, the

strategies followed by us separate the discrete and continues nature of the minimal controllability

problems. Subsequently, we discussed greedy solutions to the minimal controllability problems

that yields feasible (but sub-optimal) solutions to rMCP.

A possible, and interesting, direction for future researchin this line of work includes the use

of the obtained inputs’ structure and consider methods suchas coordinate gradient descent to

minimize an energy cost, and to consider the case where the model is not exactly known.
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APPENDIX

Proof of Lemma 2:Consider the setsS and U obtained in Algorithm 1. The following

equivalences hold: letI ⊂ {1, · · · , n} be a set of indices and̄bI the structural vector whosei-th

component is non-zero if and only ifi ∈ I. Then, the collection of sets{Si}i∈I in S covers

U if and only if ∀j ∈ J , ∃k ∈ I such thatj ∈ Sk, which is the same as∀j ∈ J , ∃k ∈

I such thatv̄jk 6= 0 and b̄k 6= 0 , this can be rewritten as∀j ∈ J , ∃k ∈ I such that̄vjk b̄k 6= 0

and therefore∀j ∈ J v̄j · b̄ 6= 0. In summary,̄bI is a feasible solution to the problem in (7).

In addition, it can be seen that by such reduction, the optimal solution b̄∗ of (7) corresponds to

the structural vector̄bI∗, where{Si}i∈I∗ is the minimal collection of sets that coverU , i.e., I∗

solves the minimum set covering problem associated withS andU . Hence, the result follows

by observing that Algorithm 1 has polynomial complexity, namelyO(max{|J |, n}3). �

Proof of Theorem 3:The proof follows by showing that if{vi}i∈J with countableJ such

that vi 6= 0 for all i ∈ J and b̄ a solution to (7), then the setΩ = {b ∈ Rn : vi · b =

0 for somei ∈ J , and b is a numerical instance of̄b} has zero Lebesgue measure. The proof

follows similar steps to those proposed in [45], but due to the additional sparsity constraint we
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devise an independent proof. Let{vi}i∈J , with countableJ , be given and let̄b be a solution

to problem (8). Forb ∈ Rn, the equationvi · b = 0 represents a hyperplaneHi ⊂ Cn (provided

vi 6= 0 for all i), thus the equationvi · b 6= 0 defines the spaceCn \ Hi. Therefore, the set ofb

that satisfiesvi ·b 6= 0 for all i ∈ J , is given by
⋂

i∈J

(Cn \ Hi) = C
n \

(

⋃

i∈J

Hi

)

and the setΩ of

values which does not verify the equations is the complement, i.e.,

(

C
n \

⋃

i∈J

Hi

)

c

=
⋃

i∈J

Hi,

which is a set with zero Lebesgue measure inCn, since|J | is countable.

Now, if {vi}i∈J is taken to be the set of left-eigenvectors ofA and b̄ the corresponding

solution to problem (8), each member of the setΩ constitutes a solution to (8) and hence the

MCP. Since, by the preceding arguments,Ω has Lebesgue measure zero inCn, it follows readily

that almost all numerical instances ofb̄ are solutions to the MCP. �

Proof of Theorem 4:The existence of a solution is granted by Theorem 3, and from [46]

one obtains the complexity for linear programming proposed. �

Proof of Lemma 3:By Lemma 2, given{v̄i}i∈J , problem (8) is polynomially (in|J | and

n) reducible to a minimum set covering problem. Now, given a solution b̄ to (7), Algorithm 2

can be used to obtain a numerical instantiationb with the same structure as̄b such thatvi · b 6= 0

for all i ∈ J , which incurs polynomial complexity (in|J | andn) by Theorem 4. Furthermore,

it is readily seen that any feasible solutionb′ to (8) satisfies‖b′‖0 ≥ ‖b̄‖0 = ‖b‖0. Hence,b

obtained by the above recipe is a solution to (8) and the desired assertion follows by observing

that all steps in the above construction, yieldingb̄ have polynomial complexity (in|J | andn).

�

Proof of Theorem 5:The proof follows by invoking the PBH eigenvector test in Theorem 2

and the left-eigenbasis that is available by Assumption 1, and noticing that the problem in (8)

is a restatement of the MCP in (2). �

Proof of Theorem 6:The feasibility of the solution is ensured by proceeding similarly to

Theorem 3 and Theorem 4, when the left-eigenbasis of the dynamics’ matrix is considered to

invoke the PHB eigenvector criterion. The optimality follows similar steps to those presented in

Lemma 3. �

Proof of Theorem 7:The proof follows by noticing that we can polynomially reduce the

MCP to an instance of the rMCP, and invoking Proposition 1. Inparticular, the rMCP is already

the result of such reduction since the MCP can be obtained when the total number of inputs
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allowed to fail iss = 0. �

Proof of Theorem 8:First, we observe that, by construction of the sets{S1, . . . ,S(s+1)n}

and the demand functiond(i), for i ∈ {1, . . . , n}, there exists alwayss + 1 entries matching

every non-zero entry of the vectors in a left-eigenbasis. This implies that if at mosts sensors

fail, at least one entry of a columnc of B is such that for each left-eigenvectorv.c 6= 0, implying

vi
⊺
B 6= 0 for i ∈ {1, . . . , n}. Hence, the system is controllable by Theorem 2, and we have a

feasible solution. Now we need to show that the solution is optimal, i.e., there is not another

solution with less dedicated inputs to the rMCP. We will proceed by contradiction, so assume that

there is a solution to a demand functiond(i) = w for i ∈ {1, . . . , n} and somew < s+1. Then,

for some entry of a left-eigenvectorv it is only ensured the existence ofw columns inB whose

inner product is not zero. Therefore, ifw dedicated inputs fails, i.e., the corresponding columns

of B are now zero, thenB is such thatv⊺B = 0, for some eigenvectorv. Thus, contradicting

the assumption that there is a sparser solution to the rMCP. �

Proof of Theorem 9:The proof follows similar steps to those presented in Theorem 6.

In particular, one as to recall the notion of merging procedure and the guarantees obtained in

Theorem 8. �

Proof of Theorem 10:From [4], we have that the MCP is NP-hard, and, in particular,the

minimum set covering problem can be polynomially reduced toit. Therefore, we just need to

show that the MCP assuming thatA comprises only simple eigenvalues and the left-eigenbasis

is known, i.e., under the assumption made in this paper, can be reduced polynomially to the

minimum set covering problem.

To this end, note that, given the set{v̄i}i∈J of left-eigenvectors ofA, the MCP is equivalent to

problem (8), the latter being polynomially (in|J | andn) reducible to the minimum set covering

problem (see Lemma 3). Since|J | = n, the overall reduction to the minimum set covering

problem is polynomial inn and the result follows by invoking Proposition 1.

Similar arguments hold with rMCP, where the problem was shown to be NP-hard in Theorem 7,

and a reduction to the minimum set multi-covering problem can be obtained as in Theorem 8.

�

Proof of Theorem 11:First, notice that the output of Algorithm 3, i.e.,Bn(M′), is a

feasible solution since the algorithm stops when each of theelements in the universe of the set

multi-cover iss+ 1 times covered.
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The computational complexity of Algorithm 3 is obtained by the overall complexity of steps 1,

4 and 5. In step 1, we need to compute(s+1)n sets, in step 5 at mostn sets need to be considered,

and, in step 4,(s+1) iterations are performed, each with the number of steps of step 5, yielding

(s+1)n computational steps. Summing up the complexity of each step, Algorithm 3 has, in the

worst case, computational complexity of orderO(sn). In addition, notice that the performance

attained in a multi-set covering problem is the same as in therMCP, as a consequence of

Theorem 10. Furthermore, the solution obtained incurs in anoptimality gap of at mostO(log n)

since the algorithm implements the greedy algorithm associated with submodular functions, as

it is the case of the multi-set covering problem, and the result follows. �
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