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Abstract

Neural fields are integro-differential equations describing spatiotemporal activity of neuronal populations. When considering
finite propagation speed of action potentials, neural fields are affected by space-dependent delays. In this paper, we provide
conditions under which such dynamics can be robustly stabilized by a proportional feedback acting only on a portion of the
neuronal population and by relying on measurements of this subpopulation only. To that aim, in line with recent works,
we extend the concept of input-to-state stability (ISS) to generic nonlinear delayed spatiotemporal dynamics and provide
a small-gain result relying on Lyapunov-Krasovskii functionals. Exploiting the robustness properties induced by ISS, we
provide conditions under which a uniform control signal can be used for the whole controlled subpopulation and we analyze
the robustness of the proposed strategy to measurement and actuation delays. These theoretical findings are compared to
simulation results in a model of pathological oscillations generation in Parkinson’s disease.

Key words: Delayed neural fields, robust stabilization, input-to-state stability, spatiotemporal delayed systems.

1 Introduction

The use of spatiotemporal models to describe the activity of neuronal populations is considerably increasing. This
success is due to technological advances, including electrode arrays and brain imaging, that allow recordings of
unprecedented resolution in both time and space. The possibility to represent the spatiotemporal evolution of neural
activity constitutes a crucial feature to deepen our understanding of cerebral functions or diseases that involve
propagating waves or pattern formation, such as memory, epilepsy, or Parkinson’s disease (Bressloff, 2012; Coombes
et al., 2014).

Neural fields are nonlinear integro-differential equations designed to model the spatiotemporal evolution of neuronal
populations. They offer a good compromise between physiological plausibility, richness of behaviors, and analytical
tractability. Neural fields dynamics are derived based on statistical considerations by assuming that neural activity
evolves on a continuous medium. They rely on the seminal works Wilson and Cowan (1973); Amari (1977). They
have been the subject of an intense research, with a wide range of applications to neuroscience: we refer the reader
to Bressloff (2012) for a detailed survey on neural fields. From an analytical point of view, several works have
been devoted to the existence and estimation of equilibrium patterns, local and global stability analysis, bifurcation
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analysis, and existence of periodic orbits: see e.g. Pinto and Ermentrout (2001); Laing et al. (2002); Faugeras et al.
(2009); Veltz and Faugeras (2010).

A key source of complexity, and subsequent richness of producible dynamical behaviors, lies in the delays induced by
the non-instantaneous communication between neurons. From a physiological perspective, these delays are needed to
model the finite speed of signals along axons. They typically depend on the physical distance between the considered
neurons. Delayed neural fields have been the subject of several mathematical studies, including Atay and Hutt (2004,
2006); Veltz and Faugeras (2011); beim Graben and Hutt (2014).

A central question in the analytical study of neural fields stands in the stability of stationary solutions. This question
is crucial for the understanding of the resulting brain function as modeled by the equilibrium pattern. In some
applications, it is also motivated by the need for non-oscillating responses. In the case of Parkinson’s disease, which
is the original motivation for the present work, such oscillations in specific frequency bands are correlated with motor
symptoms. The mechanisms for this pathological oscillations onset are still a matter of debate, but are believed to
be linked to the combination of propagation delays and exaggerated synaptic weights between neuronal populations
(Plenz and Kital, 1999; Nevado-Holgado et al., 2010; Pasillas-Lépine, 2013). Following this hypothesis, a natural way
to improve motor performance would be to attenuate these pathological oscillations, by relying on electrical (Benabid
et al., 1991) or optical (Gradinaru et al., 2009) stimulation. This was investigated in Haidar et al. (2016) by relying
on a model of the averaged activity, and then extended in Detorakis et al. (2015) to spatiotemporal dynamics.

Despite numerous theoretical developments on neural fields, with or without delays, the question of their stabilization
by a control signal had not yet been addressed. The purpose of this note is to analyze the stability and robustness
induced by proportional feedback control. In order to cope with implementation constraints, we consider the case
when the stimulation signal impacts directly only a portion of the neuronal population, which we refer to as the
“controlled population”. We also impose that the feedback relies only on measurements on this controlled population
in order to limit the number of required sensing electrodes. Our main result states that global robust stabilization
of delayed neural fields can always be achieved provided that the internal synaptic strength of the “uncontrolled”
population is lower than the inverse of the Lipschitz constant of the activation function. This result in turn corrects
a flaw in the (incomplete) proof provided in Detorakis et al. (2015). We also address two constraints of practical
relevance, which were addressed only through simulations in Detorakis et al. (2015). The first one is the limited
number of available stimulation points: we show that stabilization can still be achieved with a unique control signal
provided that the synaptic weights are homogeneous enough. The second one is the unavoidable feedback delays
needed to acquire and estimate the neural activity: we show that the considered proportional scheme is robust to
such delays but that, not surprisingly, this robustness may decrease as the feedback gain increases.

In order to establish these results, we rely on a spatiotemporal extension of input-to-state stability (ISS, Sontag
(1989, 2008)). This extension imposes that the state’s L2-norm over the spatial domain be bounded by a vanishing
function of the spatial L2-norm of initial conditions plus a term “proportional” to the spatial L2-norm of exogenous
inputs. A further extension is required in order to allow for delayed dynamics. After having extended the classical
Lyapunov sufficient condition for ISS (Sontag, 1989), we present a small-gain theorem applicable to such class of
systems (Section 3). This extension is in line with recent works addressing ISS for infinite-dimensional systems
(Dashkovskiy and Mironchenko, 2013; Karafyllis and Jiang, 2007; Mironchenko and Ito, 2016; Prieur and Mazenc,
2012), including retarded functional differential equations (Pepe and Jiang, 2006; Karafyllis et al., 2008; Mazenc
et al., 2008; Teel, 1998). Focusing on delayed neural fields under partial proportional feedback, we then show that
the uncontrolled population is ISS with respect to the state of the controlled population and possible exogenous
signals, provided that the spatial L2-norm of its internal synaptic weights is below a certain bound. On the other
hand, we show that the controlled population can always be made ISS by picking a sufficiently large feedback gain.
ISS of the overall closed-loop system is then established based on small-gain arguments. Both stabilization by a
single stimulation signal and robustness to feedback delays are addressed by exploiting the robustness induced by
the ISS property (Section 4). Simulations are then presented in Section 5 to confirm our theoretical expectancies and
to evaluate the performance of the considered control laws (proportional, uniform, and involving feedback delays).

Notation. Given x = (x1, . . . , xn) ∈ Rn, |x| denotes its Euclidean norm: |x| :=
√
x2

1 + . . .+ x2
n. Given two sets Ω1

and Ω2, C(Ω1,Ω2) (resp. C1(Ω1,Ω2)) denotes the set of all continuous (resp. continuously differentiable) functions
from Ω1 to Ω2. L2(Ω1,Ω2) denotes the set of all square integrable functions from Ω1 to Ω2, meaning all functions
f : Ω1 → Ω2 such that

∫
Ω1
|f(s)|2ds <∞. Given a set Ω ⊂ Rq, #Ω denotes its Lebesgue measure. Given f : Ω→ Rn,

with Ω = Ω1 × . . .Ωq where Ωi ⊂ R for each i ∈ {1, . . . , q}, we compactly write
∫

Ω
f(r)dr to denote the multiple

integral
∫

Ω1
. . .
∫

Ωq
f(r)drq . . . dr1, with r =: (r1, . . . , rq)

T . We define Fn := L2(Ω,Rn) and Cn := C([−d̄; 0],Fn) for
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some constant d̄ > 0. Fn is a Banach space for the L2-norm ‖ · ‖Fn defined as ‖x‖Fn :=
√∫

Ω
|x(s)|2ds for each

x ∈ Fn. Similarly, Cn is a Banach space for the norm ‖ · ‖Cn defined as ‖x‖Cn := supt∈[−d̄;0] ‖x(t)‖Fn for all x ∈ Cn.
We also denote by Un the set of all measurable locally bounded functions from R≥0 to Fn. When the context is
sufficiently clear, we will simply refer to Fn, Cn and Un as F , C and U respectively. Given x ∈ C and t ∈ [−d̄; 0], we
indicate by [x(t)](r) the value taken by the function x(t) ∈ F at position r ∈ Ω. A function α : R≥0 → R≥0 is said
to be of class K if it is continuous, zero at zero and increasing. It is said to be of class K∞ if it satisfies additionally
lims→+∞ α(s) = +∞. A function β : R≥0 × R≥0 → R≥0 is said to be of class KL if s 7→ β(s, t) is of class K for
any fixed t ∈ R≥0 and, for any fixed s ∈ R≥0, t 7→ β(s, t) is continuous and non-increasing and tends to zero as its
argument tends to +∞.

2 Delayed neural fields

We start by introducing the spatiotemporal model under concern. Delayed neural fields are integro-differential
equations of the form:

τi(r)
∂zi
∂t

(r, t) = −zi(r, t) + Si

 n∑
j=1

∫
Ω

wij(r, r
′)zj(r

′, t− dj(r, r′))dr′ + Iext
i (r, t)

 , (1)

for i ∈ {1, . . . , n}. Ω denotes a set of Rq, q ∈ {1, 2, 3}, representing the physical support of the populations; throughout
this paper, we will assume that Ω is compact. r, r′ ∈ Ω are the space variables, whereas t ∈ R≥0 is the time variable.
zi(r, t) ∈ R represents the neuronal activity of population i, at position r ∈ Ω, and at time t ∈ R≥0. τi(r) > 0
is the time decay constant of the activity of population i at position r ∈ Ω. The kernel wij : Ω × Ω → R is a
bounded function describing the synaptic strength between location r′ in population j and location r in population
i. Iext

i : Ω × R≥0 → R is a bounded function describing the external input of population i, arising either from the
influence of exogenous cerebral structures or from an artificial stimulation device. The function dj : Ω× Ω→ [0; d̄],
d̄ ≥ 0, is a continuous function representing the axonal, dendritic and synaptic delays between a pre-synaptic neuron
at position r′ in population j and a post-synaptic neuron at position r. Si : R → R is a nondecreasing globally
Lipschitz function, known as the activation function of the neural population i.

The compactness assumption on Ω is realistic as neuronal populations are typically circumscribed to a limited
physical domain. Although τi is assumed to be uniform in most existing works on neural fields, we allow it to depend
on the position r for the sake of generality. Similarly, in most neuroscience works, the synaptic kernels wij are assumed
to depend only on the distance between r and r′ (i.e. wij(r, r

′) = wij(|r − r′|)). Typical shapes include Gaussian
functions or “Mexican hats”. Here we allow for more generic kernels, as they may encompass non-homogeneous
synaptic weights distributions. The delay distributions dj are also allowed to depend on positions r and r′ in an
inhomogeneous manner, although a typical model is dj(r, r

′) = |r− r′|/cj , where cj is the axonal propagation speed
of neurons in population j. These delays are neglected in several analytical works on neural fields (see e.g. Pinto and
Ermentrout (2001); Laing et al. (2002); Faugeras et al. (2009); Veltz and Faugeras (2010)), but they are crucial in
the present study as they are likely to play a key role in the generation of oscillations linked to Parskinson’s disease
(Nevado-Holgado et al., 2010; Pasillas-Lépine, 2013).

2.1 Controlled and non-controlled populations

Let us consider the impact of a stimulation signal on the populations network modeled by (1) with only two
interacting subpopulations (n = 2). We assume that this stimulation signal acts directly on a given subpopulation
only. In the case of optogenetics, this subpopulation corresponds to the set of neurons that express the gene that
codes for photoactivatable proteins and that receive sufficient illumination from the stimulation device. Without loss
of generality, we consider that this “controlled” population corresponds to the index i = 1. The dynamics of this
population then reads

τ1(r)
∂z1

∂t
(r, t) = −z1(r, t) + S1

 2∑
j=1

∫
Ω

w1j(r, r
′)zj
(
r′, t− dj(r, r′)

)
dr′ + I1 + α(r)u

 , (2)
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where some variables have been omitted for the sake of writing compactness. I1 : Ω×R≥0 → R is an exogenous input
(resulting from the influence of unmodelled cerebral structures) and u : Ω×R≥0 → R is the stimulation signal that
we use for control. α : Ω → R>0 is a gain distribution accounting for the strength of the stimulation influence. It
typically decreases as a function of the distance to the stimulation device, due to light (Jacques, 2013) and electrical
(Butson and McIntyre, 2005) absorption in brain tissues. The fact that α(r) > 0 for each r ∈ Ω means that each
neuron of the controlled population receives a sufficient stimulation, so that its activity can be modulated by the
control signal u.

The other population, i = 2, is not directly affected by the stimulation signal: the impact of the stimulation signal
on this population may only result from its synaptic connection with population 1. We refer to this population as
“uncontrolled”. Its dynamics reads:

τ2(r)
∂z2

∂t
(r, t) = −z2(r, t) + S2

 2∑
j=1

∫
Ω

w2j(r, r
′)zj(r

′, t− dj(r, r′))dr′ + I2(r, t)

 , (3)

where I2 : Ω× R≥0 → R gathers influences from other brain structures.

2.2 Problem statement

The main question addressed in this paper is the following: is it possible to design a feedback control law u, relying
only on measurements on the controlled population, such that the coupled neural fields (2)-(3) admit an equilibrium
pattern to which all solutions converge ?

Although it may be of interest to other neuroscience problems, this question was originally motivated by the de-
velopment of innovative brain stimulation strategies to compensate motor symptoms in Parkinson’s disease. We
refer the reader to Detorakis et al. (2015) for a more detailed discussion on the employed strategy and its practical
implementability. In short, some parkinsonian motor symptoms are correlated to excessive oscillations, in the fre-
quency band 13-30Hz, in a deep brain region known as the subthalamic nucleus (STN). The mechanisms underlying
the generation of such pathological oscillations are still debated. One hypothesis, defended in e.g. Plenz and Kital
(1999); Nevado-Holgado et al. (2010); Pasillas-Lépine (2013), is that these oscillations may result from a too strong
synaptic interaction between STN and a narrow structure called external globus pallidus (GPe): these too strong
synaptic weights, combined with the inherent propagation delays between the two populations, would tend to induce
oscillating responses. It is thus of interest to study the possibility to attenuate these pathological oscillations using
closed-loop techniques. As reported in the survey paper (Carron et al., 2013), several attempts have been made in
that direction. These include adaptive and on-demand stimulation (Rosin et al., 2011; Graupe et al., 2010; San-
taniello et al., 2011; Little et al., 2016; Marceglia et al., 2007), delayed and multi-site stimulation (Lysyansky et al.,
2011; Batista et al., 2010; Pfister and Tass, 2010; Tass et al., 2012), optimal control strategies (Feng et al., 2007),
and activity regulation (Haidar et al., 2016; Wagenaar et al., 2005; Grant and Lowery, 2013).

Beyond the goal of stabilizing the coupled neural fields (2)-(3), robustness questions also need to be addressed. A
first reason for that stands in the unavoidable uncertainty and variability induced by in vivo experiments. Another
reason is more related to technological considerations, including the time needed to acquire and process the STN
activity in real time, and the limited stimulation sources available in practice.

2.3 Proposed feedback laws

The simplest closed-loop strategy one could think of in order to stabilize (2)-(3) is proportional control:

u(r, t) = −k (z1(r, t)− zref (r)) , (4)

where k is a positive control gain and zref : Ω → R represents a prescribed rate for the z1 population. At each
point of the controlled population, it generates a stimulation proportional to the difference between the measured
local activity and the prescribed one. A similar strategy was adopted in Haidar et al. (2016) on an averaged model
(meaning neglecting spatial dependency) by relying on linearization techniques.
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This control scheme is appealing due to the computational simplicity of its implementation, as it essentially involves
no other computations than the ones needed to estimate the real-time activity of the controlled population. Nev-
ertheless, it requires the measurement of the activity at each single point of the controlled population. Since the
activity is typically acquired through implanted electrodes or electrode arrays, the spatial resolution of measurements
is limited in practice. Moreover, the control signal (4) depends on r: it thus requires to deliver a stimulation that
may differ from one position to another. Despite progresses in holographic techniques (Reutsky-Gefen et al., 2013),
this may be hard to achieve in practice. A more realistic strategy would be to rely on the averaged activity of the
controlled population:

u(t) = −k
∫

Ω

α′(r)
(
z1(r, t)− zref (r)

)
dr, (5)

where α′ : Ω→ R>0 is a bounded function accounting for the possible inhomogeneity and absorption of the medium.
Contrarily to (4), this control signal can be delivered through a unique stimulation device since it is the same for
all neurons of the controlled population (although its influence on the population will locally be modulated by the
distribution α). Moreover, it does not necessarily require to record the local activity in each point of the controlled
population, but only a spatial average of its activity (weighted by the function α′).

3 ISS for spatiotemporal delayed dynamics

The approach we follow in order to study the stability of the delayed neural fields (2)-(3) under the closed-loop
stimulation (4) consists in studying separately the uncontrolled and controlled populations (Sections 4.2 and 4.3
respectively) by seeing the input arising from the other population as an exogenous input. By relying on small-gain
arguments, we conclude that the overall system is robustly asymptotically stable (Section 4.4). Then, in Section 4.5,
we establish the stabilizing properties of the uniform control law (5) by seeing it as a “perturbation” of the nominal
signal (4). This robustness analysis allows in turn to study the impact of a control delay, due to the unavoidable
time necessary to acquire and process the activity of the controlled population (Section 4.6).

All these developments require to adapt the concept of input-to-state stability (Sontag, 1989, 2008) and the corre-
sponding ISS small-gain theorem (Jiang et al., 1996) to delayed neural fields. We develop this in a wider context, by
considering delayed dynamical systems whose state is a function of space variables.

3.1 Considered class of systems

The considered delayed neural fields are infinite dimensional not only because they involve delays, but also because
of their spatiotemporal nature. As observed in e.g. Faye and Faugeras (2010), such systems can actually be casted
into the more general setup of a delayed state-space representation whose state is a function of the space variable
r. More precisely, (2)-(3) in closed loop with either (4) or (5) can be seen as a particular case of the more general
dynamics 2

ẋ(t) = f(xt, p(t)), (6)

where f : Cn × Fm → Fn is Lipschitz on each bounded set of Cn × Fm and p ∈ Um. x(t) ∈ Fn represents the
state of this system: at each time instant t, it is a function of the space variable rather than a single point of Rn.
xt ∈ Cn represents the history of this function over the latest time interval of length d̄; in other words, for each fixed
θ ∈ [−d̄; 0], xt(θ) := x(t + θ) is a function (of the space variable) belonging to Fn. Given any t ≥ 0, ẋ(t) is the
function defined as r 7→ ∂

∂t

(
[x(t)](r)

)
everywhere it exists. From now on, unless explicitly stated, Cn, Fn, and Um

will be simply written as C, F and U .

3.2 Input-to-state stability

A natural extension of input-to-state stability to the considered class of systems is as follows.

2 Due to the fact that p ∈ Um, (6) holds for almost all t ≥ 0.
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Definition 1 (ISS) The system (6) is input-to-state stable (ISS) if there exist β ∈ KL and ν ∈ K∞ such that, for
any initial condition x0 ∈ C and any input p ∈ U , the system (6) admits a unique solution defined over [−d̄; +∞)
and it satisfies, for all t ∈ R≥0,

‖x(t)‖F ≤ β(‖x0‖C , t) + ν
(

ess supτ∈[0;t] ‖p(τ)‖F
)
.

ν is then called an ISS gain for (6).

This definition of ISS is a particular case of the very general input-to-output stability notion introduced in Karafyllis
and Jiang (2007), which applies to a wide class of systems, satisfying a weak semigroup property and encompassing
in particular retarded functional differential equations, difference equations, and hybrid dynamics.

Definition 1 is also consistent with the one used for delayed systems in e.g. Pepe and Jiang (2006); Mazenc et al.
(2008). The main difference stands in the fact that, in those papers, no spatial evolution is considered. As a conse-
quence, the left hand side of the above estimate involves the L2-norm of the solution over the spatial domain (i.e.
the F-norm), rather than a Euclidean norm of the state like in the original finite-dimensional delay-free case (Son-
tag, 1989, 2008). For the same reason, the magnitude of the initial condition is here estimated through its C-norm,
meaning the maximum value of its spatial L2-norm over its interval of definition [−d̄; 0].

The above property is also similar to the ISS property for infinite dimensional systems in Banach spaces introduced
in Dashkovskiy and Mironchenko (2013) and extensively studied in Mironchenko (2012). The main difference stands
in the fact that the state estimate in Definition 1 involves the F-norm of the state as a function of the C-norm
of the initial condition, whereas the ISS notion used in Dashkovskiy and Mironchenko (2013) would involve the
C-norm on both sides of this estimate. It was shown in (Mironchenko, 2012, Proposition 1.4.2) that these estimates
are qualitatively equivalent. Nevertheless, we have preferred this two-norm estimate as the corresponding Lyapunov-
Krasovskii results presented below will rely on each of these two norms.

Similarly to the original ISS property for finite-dimensional systems and to its delayed extension, the above property
ensures the asymptotic gain property :

lim sup
t→+∞

‖x(t)‖F ≤ ν
(

lim sup
t→+∞

‖p(t)‖F
)
. (7)

This means that the steady-state error in the state, measured through its F-norm, results solely from the asymptotic
value of the applied input’s F-norm and is “proportional” to it, up to the scaling factor ν. This in turn shows that
the original “converging input-converging state” and “bounded input-bounded state” properties (Sontag, 2008) are
also preserved. Furthermore, ISS ensures asymptotic stability in the absence of input, namely:

p ≡ 0 ⇒ ‖x(t)‖F ≤ β(‖x0‖C , t), ∀t ∈ R≥0. (8)

In particular, when no exogenous input applies, the F-norm of the solution asymptotically converges to zero (at-
tractiveness), and its amplitude is arbitrarily small at all times provided that ‖x0‖C is small enough (stability).

3.3 Lyapunov-Krasovskii condition for ISS

We now present an extension to the class of systems (6) of the Lyapunov-Krasovskii condition for ISS. In line with
Faye and Faugeras (2010), it relies on the upper right Dini derivative of a functional V ∈ C(C,R≥0) along the

solutions of (6), as defined by V̇ (6) := lim suph→0+
V (xt+h)−V (xt)

h , where x(·) denotes any solution of (6).

Theorem 1 (Sufficient condition for ISS) Let α, α, α, γ ∈ K∞ and let V ∈ C(C,R≥0) be locally Lipschitz. As-
sume that, given any initial condition x0 ∈ C whose time derivative is continuous and any input p ∈ U , the system
(6) admits a unique solution defined over [−d̄; +∞) and satisfying, for almost all t ∈ R≥0,

α(‖x(t)‖F ) ≤ V (xt) ≤ α(‖xt‖C) (9)

V (xt) ≥ γ(‖p(t)‖F ) ⇒ V̇ (6) ≤ −α(V (xt)). (10)

Then the system (6) is ISS with gain α−1 ◦ γ.

6



This result is a spatiotemporal extension of (Pepe and Jiang, 2006, Theorem 3.1). Its proof, provided in Section
8.1, follows along the same lines as the ISS Lyapunov sufficient condition for finite-dimensional systems originally
proposed in Sontag (1989). A similar sufficient condition for ISS of infinite-dimensional systems was proposed in
Dashkovskiy and Mironchenko (2013), and further extended to integral ISS in Mironchenko and Ito (2016). The
main difference with Theorem 1 stands in the fact that, in those works, the Lyapunov functional V is assumed to
be upper and lower-bounded by a function of ‖xt‖C (whereas (9) requires only a lower-bound involving ‖x(t)‖F ).
Such a lower bound turns out to be handier for the analysis of delayed neural fields, as will be illustrated in Section
4. The fact that (9)-(10) are required to hold only for almost all t ∈ R≥0 results from the absolute continuity of
t 7→ V (xt). This results from the following observation, which can be derived similarly to (Pepe, 2007, Lemma 4) by
replacing the Euclidean norm by the F-norm.

Lemma 1 For any x0 ∈ C whose time-derivative is continuous and for any essentially bounded p ∈ U , if (6) is
forward complete then its solution x(·) is such that t 7→ xt is absolutely continuous on R≥0 with respect to the
C-norm.

Lemma 1 considers only initial conditions that are continuously differentiable in time. As observed in Pepe (2007)
in a non-spatiotemporal context, this induces no loss of generality, which explains why (9)-(10) need to be tested
only for continuously differentiable initial states. We formally state this as the following lemma, whose proof follows
readily from that of (Pepe, 2007, Proposition 3) after observing that C1([−d̄; 0],F) is dense in C.

Lemma 2 The system (6) is ISS if and only if it is ISS for all initial conditions x0 ∈ C with continuous time
derivative.

3.4 ISS small-gain theorem

We next address the stability of a feedback interconnection by extending the ISS small-gain theorem to systems of
the form (6). More precisely, we consider feedback systems of the form

ẋ1(t) = f1(x1t, x2t, p1(t)) (11a)

ẋ2(t) = f2(x2t, x1t, p2(t)), (11b)

where f1 : Cn1 × Cn2 × Fm1 → Fn1 , f2 : Cn2 × Cn1 × Fm2 → Fn2 , p1 ∈ Um1 and p2 ∈ Um2 . For these systems, we
have the following result.

Theorem 2 (ISS small gain) For each i ∈ {1, 2}, let αi, αi, αi, γi, χi ∈ K∞ and Vi ∈ C(Cni ,R≥0) be locally
Lipschitz. Assume that, given any xi0 ∈ Cni with continuous time derivative and any pi ∈ Umi , the system (11)
admits a unique solution defined over [−d̄; +∞) and satisfying, for almost all t ∈ R≥0,

αi(‖xi(t)‖F ) ≤ Vi(xit) ≤αi(‖xit‖C) (12)

V1 ≥ max {χ1(V2), γ1(‖p1(t)‖F )} ⇒ V̇
(11a)
1 ≤ −α1(V1)

V2 ≥ max {χ2(V1), γ2(‖p2(t)‖F )} ⇒ V̇
(11b)
2 ≤ −α2(V2).

Then, under the small-gain condition χ1 ◦ χ2(s) < s for all s > 0, the feedback interconnection (11) is ISS.

This result, proved in Section 8.2, is a natural extension of the main result in Pepe and Jiang (2006) to spatiotemporal
dynamics, which was already a generalization to delayed dynamics of the ISS small-gain theorem provided in Jiang
et al. (1996). It shares strong similarities with the small-gain result in Dashkovskiy and Mironchenko (2013), which
goes beyond Theorem 2 by allowing for the interconnection of more than two subsystems. As stressed before, the
main difference with that work stands in the fact that the Lyapunov function associated to each subsystem is here
required to be lower-bounded by a function of ‖x(t)‖F only (rather than ‖xt‖C). The same obstruction holds for
(Karafyllis and Jiang, 2011, Corollary 4.5), which relies on Lyapunov-Krasovskii functionals depending only on ‖x‖C .
A very general small-gain theorem for systems defined in Banach spaces was also provided in Karafyllis and Jiang
(2007). Nonetheless, the small-gain condition presented there relies on nonlinear gains involved in the estimate of
the evolution of the Lyapunov functionals Vi rather than those involved in their dissipation inequalities. Estimating
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these nonlinear gains would thus require to first integrate the dissipation inequalities assumed in the statement of
Theorem 2.

In some situations, the positive terms appearing in the dissipation inequalities cannot be easily expressed in terms
of the Lyapunov functional of the other subsystem. The following result, proved in Section 8.3, can help tackling
this situation.

Corollary 1 For each i ∈ {1, 2}, let αi, αi, αi, γi, χi ∈ K∞, Vi,Wi ∈ C(Cni ,R≥0) be locally Lipschitz, and k12, k21 ≥
0. Assume that, given any initial condition xi0 ∈ Cni with continuous time derivative and any input pi ∈ Umi , the
system (11) admits a unique solution defined over [−d̄; +∞) and satisfying, for almost all t ∈ R≥0, both (12) and

V̇
(11a)
1 ≤ −α1(V1)−W1 + k12W2 + γ1(‖p1(t)‖F )

V̇
(11b)
2 ≤ −α2(V2)−W2 + k21W1 + γ2(‖p2(t)‖F ).

Then, under the condition k12k21 ≤ 1, the feedback interconnection (11) is ISS.

4 ISS stabilization of delayed neural fields

We now rely on the above framework to address the ISS stabilization of delayed neural fields with limited actuation
and measurement.

4.1 Closed-loop system

The dynamics of the controlled population (2) and the uncontrolled populations (3) under the influence of the
closed-loop stimulation signal (4) reads

τ1(r)
∂z1

∂t
(r, t) = −z1(r, t) + S1

 2∑
j=1

∫
Ω

w1j(r, r
′)zj
(
r′, t− dj(r, r′)

)
dr′ − kα(r) (z1 − zref ) + I1(r, t)

 (13a)

τ2(r)
∂z2

∂t
(r, t) = −z2(r, t) + S2

 2∑
j=1

∫
Ω

w2j(r, r
′)zj
(
r′, t− dj(r, r′)

)
dr′ + I2(r, t)

 , (13b)

where, for notation compactness, we omitted the arguments of some functions. Given any constant inputs I1(r, t) =
I∗1 (r) and I2(r, t) = I∗2 (r), with I∗1 , I

∗
2 ∈ F , let z∗1 , z

∗
2 ∈ F denote any equilibrium pattern of the neural fields model

(13). The existence of such equilibria was ensured in (Faugeras et al., 2009) in the absence of feedback (k = 0) based
on Schaefer’s fixed point theorem. In particular, the neural fields (2)-(3) under uniform feedback (5) are guaranteed
to admit an equilibrium. The methodology does not readily extend to (13) due to the non-compactness of the
feedback term. For now on, we simply assume that such an equilibrium exists. Note that, for each i ∈ {1, 2}, z∗i (r)
is in the image of Si for all r ∈ Ω. For each t ∈ R≥0, let x1(t), x2(t) ∈ F be defined as [x1(t)](r) := z1(r, t) − z∗1(r)
and [x2(t)](r) := z2(r, t)− z∗2(r) for all r ∈ Ω. Similarly, let p1(t), p2(t) ∈ F be defined as [p1(t)](r) := I1(r, t)− I∗1 (r)
and [p2(t)](r) := I2(r, t)− I∗2 (r). Then (13) can be written as

τ1(r)[ẋ1(t)](r) = −[x1(t)](r) + S1

r,−kα(r)[x1(t)](r) +

2∑
j=1

∫
Ω

w1j(r, r
′)[xj(t− dj)](r′)dr′ + [p1(t)](r)

 (14a)

τ2(r)[ẋ2(t)](r) = −[x2(t)](r) + S2

r, 2∑
j=1

∫
Ω

w2j(r, r
′)[xj(t− dj)](r′)dr′ + [p2(t)](r)

 , (14b)

where, for all i ∈ {1, 2}, s ∈ R and all r ∈ Ω, Si(r, s) := Si
(
s + S−1

i (z∗i (r))
)
− z∗i (r). With this notation, (14) is in

the form of (6) with state x = (x1, x2) : [−d̄,+∞) → F2 and input p := (p1, p2) ∈ U2. Moreover, observing that
S1(r, 0) = S2(r, 0) = 0 for all r ∈ Ω, the dynamics (14) has an equilibrium at zero.
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We list below some useful properties of the functions Si, i ∈ {1, 2}. First, let `i > 0 denote the Lipschitz constant of
Si, then it can easily be seen that, for all r ∈ Ω and all a, b ∈ R, |Si(r, a)−Si(r, b)| ≤ `i|a− b|. For ease of reference,
we thus introduce the following terminology.

Definition 2 (Activation function) Given ` > 0, a function S : Ω × R → R is said to be an activation function
with slope ` if, given any fixed r ∈ Ω, S(r, ·) is nondecreasing, S(r, 0) = 0, and, for all a, b ∈ R, |S(r, a)− S(r, b)| ≤
`|a− b|.

It is straightforward to see that any activation function S with slope ` > 0 satisfies, for all r ∈ Ω,

|S(r, a)| ≤ `|a|, ∀a ∈ R. (15)

S(r, a+ b) ≤ S(r, 2a) + S(r, 2b), ∀a, b ∈ R. (16)

We stress that, reasoning as in the proof of (Faye and Faugeras, 2010, Theorem 3.2.1), it can be seen that the
solutions of (14b) exist, are unique, and are continuously differentiable over [0; +∞), provided that the kernels wij
and initial states are in L2, delays dj and time constants τj are continuous, and inputs Ij are continuous.

4.2 ISS of the uncontrolled population

We start by providing conditions under which the uncontrolled population (14b) is ISS with respect to inputs arising
from the controlled population (14a) and possibly exogenous structures. To that aim, we analyze the following neural
fields:

τ(r)[ẋ(t)](r) = −[x(t)](r) + S

(
r,

∫
Ω

w(r, r′)[x(t− d(r, r′))](r′)dr′ + [ρ(t)](r)

)
. (17)

This class of uncontrolled delayed neural fields was extensively studied in Faye and Faugeras (2010) and Veltz and
Faugeras (2011), with the only difference that, in those works, the time constant τ and the activation function S
were assumed homogeneous, meaning independent of r. A bifurcation analysis was also conducted in Atay and Hutt
(2004), under the additional requirement that the kernel w depends only on the distance |r − r′|, but allowing for
higher order dynamics. From all these works, it is a known fact that the product of the Lipschitz constant ` of the
activation function S by the square of the L2-norm of the kernel w regulates the stability of the origin of (17) in the
absence of inputs ρ: if this product is smaller than 1, then the origin is asymptotically stable: see (Atay and Hutt,
2004, Theorem 2.1), (Faye and Faugeras, 2010, Theorem 4.2.3) or (Veltz and Faugeras, 2011, Proposition 3.15). Here
we show that, under the same condition, the delayed neural fields (17) are actually ISS, which provides robustness
with respect to the input ρ. The proof is provided in Section 8.4.

Proposition 1 (ISS of the uncontrolled population) Let S be any activation function with slope `, let d :
Ω× Ω→ [0; d̄], τ : Ω→ R>0 and w : Ω× Ω→ R be any bounded functions satisfying

`

∫
Ω

∫
Ω

w(r, r′)2dr′dr < 1. (18)

Then (17) is ISS. Moreover, there exists β : Ω → R>0 and, for each c > 0 small enough, there exist c1, c2, c3 > 0
such that the functional V : C → R≥0 defined as

V (xt) :=

∫
Ω

τ(r)

2
[x(t)](r)2dr +

∫
Ω

β(r)

∫
Ω

∫ 0

−d(r,r′)

ecθ[x(t+ θ)](r′)2dθdr′dr (19)

satisfies, for all x0 ∈ C with continuous time derivative, all ρ ∈ U , and almost all t ∈ R≥0,

V̇ (17)≤ −c1V − c2
∫

Ω

∫
Ω

[x(t− d(r, r′))](r′)2dr′dr + c3‖ρ(t)‖2F .
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We stress that the Krasovskii-Lyapunov functional in (19) cannot be lower-bounded by a K∞ function of ‖xt‖C , thus
making the results in Dashkovskiy and Mironchenko (2013) inapplicable with this particular functional. The same
observation holds for the functionals considered in Proposition 2.

4.3 ISS of the controlled population

We now proceed to studying the controlled dynamics (14a). To this aim we consider the following class of delayed
neural fields:

τ(r)[ẋ(t)](r) = −[x(t)](r) + S

(
r,

∫
Ω

w(r, r′)[x(t− d(r, r′))](r′)dr′ − kα(r)[x(t)](r) + [ρ(t)](r)

)
. (20)

The next proposition states that this system can be made ISS regardless of the strength of w by picking a sufficiently
large gain k. Its proof is given in Section 8.5.

Proposition 2 (ISS of the controlled population) Let S be any activation function, and let α, τ : Ω → R>0,
d : Ω → [0; d̄], τ : Ω → R>0, and w : Ω × Ω → R be any bounded functions. Then there exists k∗ > 0 such that,
for all k ≥ k∗, the delayed neural fields (20) are ISS and there exist c1, c2, c3 > 0, independent of k, such that the
derivative of the functional V : C → R≥0 defined as

V (xt) :=

∫
Ω

τ(r)

2
[x(t)](r)2dr +

∫
Ω

τ(r)

2#Ω

∫
Ω

∫ 0

−d(r,r′)

eθ[x(t+ θ)](r′)2dθdr′dr (21)

satisfies, for all x0 ∈ C with continuous time derivative, all ρ ∈ U , and almost all t ∈ R≥0,

V̇ (20) ≤ −c1V − c2
∫

Ω

∫
Ω

[x(t− d(r, r′))](r′)2dr′dr +
c3
k
‖ρ(t)‖2F .

This result not only states that the proportional feedback (4) allows to robustly stabilize the controlled population,
but also that the resulting ISS gain can be made arbitrarily small by picking k large enough.

4.4 ISS stabilization of coupled neural fields

Proposition 1 provides conditions under which the uncontrolled population is ISS. Proposition 2 shows that the
controlled population can be made ISS by the proportional feedback (4) and that an arbitrarily small ISS gain can
be assigned. Based on these two results, and invoking small-gain arguments, the following result provides conditions
under which the overall closed-loop neural fields (14) can be made ISS.

Proposition 3 (ISS of the whole population) For each i, j ∈ {1, 2}, let Si be any activation function, and
consider any bounded functions wij : Ω × Ω → R, di : Ω × Ω → [0, d̄], and τi, α : Ω → R>0. Let `2 denote the slope
of S2 and assume that the internal kernel w22 of the uncontrolled population satisfies

`2

∫
Ω

∫
Ω

w22(r, r′)2dr′dr < 1. (22)

Then there exists k∗ > 0 such that, for any k ≥ k∗, the coupled neural fields (14) are ISS.

This result establishes that ISS stabilization of coupled delayed neural fields can be achieved by proportional feedback
provided that the internal synaptic weights w22 within the uncontrolled population are reasonably low. This internal
synaptic coupling is allowed to be stronger if the slope of the activation function of the uncontrolled population is
lower, thus indicating a trade-off between excitability and interconnection strength of the uncontrolled population.
Observing that condition (22) ensures global asymptotic stability of the uncontrolled population in the absence of
exogenous inputs (see Proposition 1), the above result states that proportional feedback may tackle any sustained
oscillation resulting either from the interconnection between the two subpopulations or from a too strong coupling
within the controlled population, but may fail at attenuating oscillations that endogenously take place within the
uncontrolled population. As detailed in Detorakis et al. (2015) and recalled through simulations in Section 5, this
result may prove useful to counteract pathological oscillations associated to some neurological diseases.
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4.5 Practical stabilization by a uniform input

As stressed in Detorakis et al. (2015), practical constraints may impede the use of a large number of independent
stimulation sources. In the same way, it may not be possible to precisely measure local activity at any points of the
controlled population. High spatial resolution in both measurements and actuation, in the controlled population,
being a prerequisite for the application of the feedback law (4), these two practical constraints constitute severe
threats to the experimental relevance of this stimulation scheme. It is therefore of interest to know whether oscillations
disruption can be achieved using a limited number of stimulation points and to rely on a limited number of activity
measurements. To this aim, we consider the extreme case when a single stimulation point is available and when the
only available measurement is a weighted average of the activity in the controlled population. More precisely, rather
than (4), we make use of the uniform feedback law (5). With this control law, the closed-loop system now reads

τ1(r)[ẋ1(t)](r) = −[x1(t)](r) + S1

(
r,

∫
Ω

2∑
i=1

w1i(r, r
′)[xi(t− di(r, r′))](r′)dr′ − kα(r)

∫
Ω

α′(r′)[x1(t)](r′)dr′

)
(23a)

τ2(r)[ẋ2(t)](r) = −[x2(t)](r) + S2

(
r,

∫
Ω

2∑
i=1

w2i(r, r
′)[xi(t− di(r, r′))](r′)dr′

)
, (23b)

where we may assume that
∫

Ω
α′(r)dr = 1 without loss of generality. The main difference with (14) stands in the

fact that the control signal −k[x1(t)](r), which involved infinitely many stimulation and measurement points, has
been replaced by the uniform control signal (5). We also removed exogenous disturbances p1 and p2 as these will be
taken as the difference between those two stimulation signals in the proof.

In order to analyze this closed-loop system, we introduce the following measure of spatial heterogeneity: given a
function q : Ω→ R, it is defined as

H(q) :=

√∫
Ω

∫
Ω

(q(r)− q(r′))2dr′dr. (24)

Moreover, for a function q : Ω× Ω→ R, it is defined as

H(q) :=

√∫
Ω

∫
Ω

∫
Ω

(q(r, r′′)− q(r′, r′′))2dr′′dr′dr. (25)

The following result shows that oscillations disruption can be achieved with the uniform control law (5), up to
a steady-state error whose magnitude is somewhat proportional to the spatial heterogeneity of the controlled-
population kernels and of the function α.

Proposition 4 (Uniform feedback) Under the assumptions of Proposition 3, consider any k ≥ k∗. Assume that
the activation functions Si, i ∈ {1, 2}, are bounded and let Si := infx∈R,r∈Ω Si(r, x) and Si := supx∈R,r∈Ω Si(r, x).
Assume further that the delays d1 and d2 and the time constant τ1 are uniform (meaning that d1(r, r′) = d∗1, d2(r, r′) =
d∗2 and τ1(r) = τ∗1 for all r, r′ ∈ Ω). Then there exist ν1, ν2 ∈ K∞ such that, for all x10 ∈ C([−d∗1; 0], (S1;S1)) and
all x20 ∈ C([−d∗2; 0], (S2;S2)), the solutions of (23) satisfy

lim sup
t→∞

‖x(t)‖F ≤ ν1 (H(w11) +H(w12)) + ν2 (H(α)) .

This result, proved in Section 8.7, states that a single stimulation disrupts oscillations in coupled neural fields
provided that the spatial heterogeneity of the kernels w1j , j ∈ {1, 2}, of the controlled population and that of the
input function α are sufficiently small. Practical stability is achieved, in the sense that the spatial L2-norm of the
steady-state error can be made arbitrarily small provided that those spatial heterogeneities are sufficiently small. In
particular, asymptotic convergence to zero is ensured if the function α and the kernels w1j are constant over Ω. This
result is established under the assumptions that the delay distributions and the time constant distribution of the
controlled population are uniform and that the activation functions are bounded. We stress that this result imposes
no restriction on the spatial heterogeneity of initial conditions or the kernels w2j .

11



4.6 Robustness to acquisition and processing delays

In practice, the real-time estimation of the controlled population activity requires some acquisition and processing
time. In presence of such acquisition and processing delays, the control signal reads

[u(t)](r) = −k[x1(t− dc(t, r))](r) (26)

where dc : R≥0 × Ω → R≥0 is a bounded function representing the feedback delay: we authorize it be time- and
space-dependent for the sake of generality. With this feedback law, the closed-loop system reads

τ1(r)[ẋ1(t)](r) = −[x1(t)](r) + S1

(
(r,

∫
Ω

2∑
i=1

w1i(r, r
′)[xi(t− di(r, r′))](r′)dr′ − kα(r)[x1(t− dc(t, r))](r)

)
(27a)

τ2(r)[ẋ2(t)](r) = −[x2(t)](r) + S2

(
r,

∫
Ω

2∑
i=1

w2i(r, r
′)[xi(t− di(r, r′))](r′)dr′

)
. (27b)

The only difference with (14) stands in the fact that the control signal (4) has been replaced by its delayed version
(26). Similarly to the above section, we also removed exogenous disturbances p1 and p2 as these will be taken as the
difference between those two stimulation signals in the proof (provided in Section 8.8).

Proposition 5 (Robustness to feedback delays) Under the assumptions of Proposition 3, consider any k ≥ k∗.
Assume further that the function S1 is bounded and let S1 := infx∈R, r∈Ω S1(r, x) and S1 := supx∈R, r∈Ω S1(r, x). Then

there exists a function ν ∈ K∞ such that, for all x10 ∈ C([−d̄; 0], (S1;S1)) and all x20 ∈ C, the solutions of (27)
satisfy

lim sup
t→∞

‖x(t)‖F ≤ ν
(

sup
t≥0, r∈Ω

dc(t, r)

)
.

As already stressed in Detorakis et al. (2015); Haidar et al. (2016), the feedback delay dc may compromise the
efficiency of the proposed feedback stimulation. The above result states that the steady-state error is arbitrarily small
provided that the feedback delay is sufficiently small. In other words, if the hardware technology and the associated
software authorize reasonable acquisition and processing delays, oscillations disruption will remain efficient. We
stress that this result relies on the technical assumption that the activation function of the controlled population
is bounded. More importantly, the asymptotic gain ν may depend on k, meaning that a higher feedback gain may
result in a lower robustness to feedback delays.

5 Numerical simulations

5.1 Parameters choice

In order to illustrate the theoretical contributions of this paper, we simulate two spatiotemporal delayed neural
fields representing the network composed of two subcortical structures, namely the STN and the GPe. As mentioned
earlier, this network plays a key role in the generation of pathological oscillations related to motor symptoms in
Parkinson’s disease (Plenz and Kital, 1999). A spatiotemporal extension of the model Nevado-Holgado et al. (2010)
was proposed in Detorakis et al. (2015), with a (mostly numerical) analysis of its behavior in the presence and
absence of closed-loop stimulation. The model parameters were tuned based on data from the literature. We refer
the reader to this latter reference for further biological justifications on this choice of parameters.

In this setup, the controlled population (2) is the STN whereas the uncontrolled population (3) is the GPe. The physi-
cal space Ω = [0, 15] mm is divided in two regions Ω1 = [0, 2.5] mm corresponding to STN, and Ω2 = [12.5, 15] mm cor-
responding to GPe. I1 and I2 are the external inputs from cortex and striatum, respectively. They are taken as white
noises with variance 0.05 centered at 27 spk/s and 2 spk/s, respectively. The activation functions Si, i ∈ {1, 2}, are
taken as sigmoids, namely Si(x) = mibi/(bi+(mi−bi)e−4x/mi), where m1 = 300 spk/s, b1 = 17 spk/s, m2 = 400 spk/s
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and b2 = 75 spk/s. These functions are globally Lipschitz with Lipschitz constants `i = 1, which is in line with Defi-

nition 2. The delays di are given by di(r, r
′) = |r−r′|

ci
, for all r, r′ ∈ Ω, where ci denotes the conductance velocity for

neurons projecting on population i. Their nominal values are c1 = 2.5 m/s and c2 = 1.4 m/s. The synaptic coupling
within STN w11 was taken as zero. The kernels w12 and w21, modeling synaptic weights between the two populations,
were taken as w12(r1, r2) = −g12(|r1− r2−µ2|) and w21(r2, r1) = g21(|r2− r1−µ1|) for all r1 ∈ Ω1, r2 ∈ Ω2, whereas
the synaptic coupling within GPe was picked as w22(r, r′) = −|r− r′|g22(|r− r′|) for all r, r′ ∈ Ω2 and zero anywhere
else, where µ1 = 1.25 mm and µ2 = 13.25 mm indicate the centers of STN and GPe respectively, and the functions gij

are Gaussian functions: gij(x) := Kij exp
(
− x2

2σij

)
. The nominal values of these parameters are K12 = 30, K21 = 38,

K22 = 2.55, σ12 = σ21 = 0.03, and σ22 = 0.015. The function α, modeling sensitivity to light stimulation, was taken
as a Gaussian function (zero outside Ω1) of amplitude 1, centered at the middle of the STN population (1.25 mm),
and of variance 1.25. The source code, written in Python (Numpy,Scipy, Matplotlib), is freely distributed under the
GPL License and can be found on-line at Github 3 .

5.2 Stabilization by proportional feedback

Figure 1 shows that the model reproduces sustained β-band oscillations in the absence of stimulation, as observed
in the STN and GPe of parkinsonian patients (Little et al., 2016). At time t = 0.5 s the proportional feedback (4) is
applied with gain k = 2. As anticipated by Proposition 3, oscillations are ruled out by this proportional stimulation
and the activity converges to an equilibrium configuration. This suggests that the considered distributed proportional
stimulation (4) is a good candidate for the attenuation of pathological oscillations.
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Fig. 1. Spatiotemporal evolution of STN and GPe activity. Proportional feedback (4) with k = 2 is activated at t = 0.5 s.

5.3 Uniform feedback

Figure 2 represents the magnitude of steady-state oscillations in STN (as measured though the F-norm of z1(t))
under the uniform stimulation signal (5), as a function of the feedback gain k. The weighting function α′ in (5)
was picked uniformly equal to 1, meaning that all neurons in STN contribute equally to the measured average
activity. This figure goes beyond Proposition 4 by suggesting that the magnitude of steady-state oscillations can
be arbitrarily reduced by uniform proportional feedback, provided that a sufficiently large gain k is used. This
observation is encouraging from a implementation viewpoint as, despite the development of holographic techniques
(Reutsky-Gefen et al., 2013), uniform photostimulation remains more realistic.

5.4 Robustness to acquisition and processing delays

Finally, we assess the impact of acquisition and processing delays on the closed-loop performance. To this end, we
consider the delayed feedback (26) with a constant and uniform delay dc. Figure 3 shows the magnitude of STN
oscillations after transients, as measured through the F-norm of z1(t), for increasing valued of the feedback delay

3 https://github.com/gdetor/neuralfieldDBSmodel
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Fig. 2. Magnitude of the F-norm of steady-state oscillations in STN as a function of the applied control gain k for the uniform
control law (5).

dc. Three different values of the feedback gain k were considered (namely, k = 2, 6 and 12). This figure illustrates
the theoretical predictions of Proposition 5: the magnitude of steady-state oscillations is arbitrarily small provided
that the feedback delay dc is sufficiently small. Not surprisingly, it also suggests that a better robustness to feedback
delays is ensured if lower feedback gains are employed. The magnitude of steady-state oscillations in the absence of
stimulation (meaning for k = 0) is indicated by a red dashed line. It can be seen that, if the feedback delay dc is too
large, then the closed-loop stimulation not only fails at attenuating pathological oscillations, but actually increases
them. This observation suggests that strong attention should be paid on the delays needed to acquire and process
neuronal activity in real time and pleads for the development of control strategies that allow for more robustness to
feedback delays as the one proposed in Haidar et al. (2016).
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Fig. 3. Steady-state magnitude of the F-norm of the activity in STN as a function of the feedback delay dc in (26), for different
values of the feedback gain k.

6 Conclusion and perspectives

By invoking small-gain arguments, we have shown that a simple proportional feedback, relying on partial measure-
ment and actuation, can robustly stabilize delayed neural fields provided that the inner synaptic coupling within the
uncontrolled population is reasonably low. These findings rely on an extension of the framework of input-to-state
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stability to spatiotemporal delayed dynamics. The induced robustness allowed in turn to assess the performance
of the oscillations attenuation in the case when a single non-local measurement is available and when the whole
controlled population is stimulated by the same input. The effect of feedback delays was also assessed. All the results
were confirmed by simulation.

This work opens several lines of research. First, in the present setup, the dynamics of the actuation was not precisely
taken into account. In the case of optogenetics, the impact of light impulses on neuronal activity is not immediate,
but rather follows a first-order dynamics (Grossman et al., 2011). Moreover, the maximum activity generated by
light stimulation is limited as neurons tend to respond less when the stimulation frequency is too high. Second, while
the present paper constitutes a first stabilizability result for neural fields (even in the non-delayed case), it would be
interesting to conduct a formal controllability and observability analysis of such models. Third, efficient oscillations
disruption is achieved if a sufficiently large feedback gain is used. The Lyapunov methods used here impede a precise
estimate of the minimum gain needed to achieve this goal. An adaptive strategy would be of practical interest.
Fourth, the strategy developed here attenuates all oscillations. Finer strategies, that aim at canceling oscillations
lying in a targeted frequency band would be needed. Finally, the presented small-gain results involve only two
subpopulations. In our setup, this is justified by the fact that the first population is defined as the one receiving
direct stimulation, whereas all other neurons are embedded in the second subpopulation. For other applications, it
might however be of interest to consider more than two subpopulations, in which case large-scale small gain results,
in the spirit of Dashkovskiy et al. (2010); Dashkovskiy and Mironchenko (2013), could be derived in order to reduce
the conservatism of the approach.
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8 Proofs

8.1 Proof of Theorem 1

In view of Lemma 2, we can restrict our attention to continuously differentiable initial states x0 ∈ C. Given any
essentially bounded p ∈ U and any such initial state, let x(·) denote the solution of (6), whose existence and uniqueness

hold by assumption. Let p̄ := ess supt≥0‖p(t)‖F and consider the set M := {φ ∈ C : φ̇ ∈ C, V (φ) ≤ γ(p̄)}. In view of
Lemma 1 and since V is locally Lipschitz, the function t 7→ V (xt) is absolutely continuous. Since, in view of (9) and

(10), V̇ ≤ 0 at almost all times for which V (xt) > γ(p̄), the set M is forward invariant, in the sense that if xt0 ∈M
then xt ∈M for all t ≥ t0. In particular, observing that ‖x(t)‖F ≤ ‖xt‖C , it holds that

‖x(t)‖F ≤ α−1 ◦ γ(p̄), ∀t ≥ 0, ∀x0 ∈M, (28)

thus making the statement proved for all initial conditions in M . Now, consider any continuously differentiable
x0 ∈ C \M . Let T > 0 be any time instant such that xt ∈ C \M for all t ∈ [0;T ). Then it holds from (9) that

V (xt) ≥ γ(p̄) for all t ∈ [0, T ) and (10) therefore ensures that V̇ (6) ≤ −α(V (xt)) ≤ −α ◦ α−1(V (xt)) for almost all

t ∈ [0, T ). Invoking (Mironchenko and Ito, 2016, Lemma 3.2) it follows that there exists β̃ ∈ KL (depending only on

α and α) such that V (xt) ≤ β̃(V (x0), t) for all t ∈ [0, T ). We conclude from (9) that

‖x(t)‖F ≤ β(‖x0‖C , t), ∀t ∈ [0;T ), (29)

where β(s, t) := α−1 ◦ β̃(α(s), t) for all s, t ≥ 0. If the supremum of all such T ’s is infinity, then the above estimate
holds for all t ∈ [0; +∞) and the conclusion follows. Otherwise, it necessarily holds that xT ∈ M for some finite
T > 0 and we conclude from (28) and (29) that ‖x(t)‖F ≤ β(‖x0‖C , t) + α−1 ◦ γ(p̄) for all t ≥ 0, which concludes
the proof due to causality.
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8.2 Proof of Theorem 2 (sketch)

One strength of the proofs of the main results in Jiang et al. (1996) is that they mostly rely on the functions αi, αi, γi
and χi : the fact that the arguments of Vi are vectors or functions plays no significant role. Consequently, those
results can easily be extended to Lyapunov functionals. More precisely, following the steps of the proof of (Jiang
et al., 1996, Theorem 3.1), one can construct a locally Lipschitz functional V ∈ C(Cn1+n2 ,R≥0) and α, α, α, γ ∈ K∞
such that

α(‖x(t)‖F ) ≤ V (xt) ≤ α(‖xt‖C)
V (xt) ≥ γ(‖p(t)‖F ) ⇒ V̇ (11) ≤ −α(V )

where x := (x1, x2) and p := (p1, p2). The conclusion then follows from Theorem 1.

8.3 Proof of Corollary 1

Let σ := k21

2 + 1
2k12

. Then, under the small-gain condition k12k21 ≤ 1, it holds that k21 ≤ σ ≤ 1
k12

. Consider

the functional defined as V (xt) := σV1(x1t) + V2(x2t), where xt := (x1t, x2t). Then V satisfies (12) with α(s) :=

min{σα1(s/
√

2);α2(s/
√

2)} for all s ∈ R≥0 (as can be seen by considering separately the cases ‖x1(t)‖F ≥ ‖x2(t)‖F
and ‖x1(t)‖F ≤ ‖x2(t)‖F ) and α := σα1 + α2. Moreover its derivative reads, for almost all t ≥ 0,

V̇ (11) =σV̇
(11a)
1 + V̇

(11b)
2

≤− σα1(V1)− α2(V2)− (σ − k21)W1 − (1− σk12)W2 + σγ1(‖p1(t)‖F ) + γ2(‖p2(t)‖F )

≤− σα1(V1)− α2(V2) + γ(‖p(t)‖F ),

where γ := σγ1 + γ2 is clearly a K∞ function. Let α(s) := min {σα1(s/2σ) ; α2(s/2)} for all s ∈ R≥0, then α is
also a K∞ function and it holds that α(V ) = α(σV1 + V2) ≤ α(2σV1) + α(2V2) ≤ σα1(V1) + α2(V2). It follows that

V̇ (11) ≤ −α(V ) + γ(‖p(t)‖F ). In particular, the following implication holds for almost all t ≥ 0:

V (xt) ≥ α−1 ◦ 2γ(‖p(t)‖F ) ⇒ V̇ (11) ≤ −1

2
α(V (xt)),

which concludes the proof in view of Theorem 1.

8.4 Proof of Proposition 1

In order to avoid cumbersome notation, we will omit to write the arguments of some functions in the proof. In
particular, it should be kept in mind that the delay d and the kernel w depends on both r and r′. Also, unless
explicitly specified, we will denote [x(t)](r) (resp. [ρ(t)](r)) as simply x (resp. ρ). In the same way, S(r, x) will simply
be denoted as S(x). First notice that the right-hand side of (17) is globally Lipschitz, ensuring forward completeness
and uniqueness of solutions (see also Faye and Faugeras (2010)). Moreover, the functional V defined in (19) is locally
Lipschitz. Considering any continuously differentiable x0 ∈ C, it follows from Lemma 1 that t 7→ V (xt) is absolutely
continuous. We decompose V as V (xt) = Va(x(t)) + Vb(xt) where

Va(x(t)) :=

∫
Ω

τ(r)

2
[x(t)](r)2dr (30)

Vb(xt) :=

∫
Ω

β(r)

∫
Ω

∫ 0

−d(r,r′)

ecθ[x(t+ θ)](r′)2dθdr′dr. (31)

With the variable change θ ← t+ θ, it can be seen that the time derivative of Vb reads, for almost all t ≥ 0,

V̇
(17)
b =

∫
Ω

β(r)

∫
Ω

(
[x(t)](r′)2 − e−cd[x(t− d)](r′)2

)
dr′dr − cVb

≤
∫

Ω

β(r)dr

∫
Ω

[x(t)](r)2dr − e−cd̄
∫

Ω

∫
Ω

[x(t− d(r, r′))](r′)2dr′dr − cVb. (32)
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Furthermore, the derivative of Va can be computed as follows. First, exploiting the fact that |S(r, a)| ≤ `|a| for all
a ∈ R and all r ∈ Ω, as recalled in (15), it holds that

V̇ (17)
a =−

∫
Ω

[x(t)](r)2dr +

∫
Ω

[x(t)](r)S

(
r,

∫
Ω

w(r, r′)[x(t− d(r, r′))](r′)dr′ + [ρ(t)](r)

)
dr

≤−
∫

Ω

x2dr + `

∫
Ω

|x|
∣∣∣∣∫

Ω

wx(t− d)dr′ + ρ

∣∣∣∣ dr
≤−

∫
Ω

x2dr + `

∫
Ω

∫
Ω

|x||w||x(t− d)|dr′dr + `

∫
Ω

|x||ρ|dr.

Using the fact ab ≤ 1
2 (λa2 + b2

λ ) for all a, b ≥ 0 and all λ > 0, it follows that for any functions λ1, λ2 : Ω→ R>0,

V̇ (17)
a ≤−

∫
Ω

x2dr +

∫
Ω

`

2λ1(r)

∫
Ω

x2w2dr′dr +

∫
Ω

`λ1(r)

2

∫
Ω

x(t− d)2dr′dr +

∫
Ω

`

2λ2(r)
x2dr +

∫
Ω

`λ2(r)

2
ρ2dr

≤−
∫

Ω

(
1− `

2λ1

∫
Ω

w2dr′ − `

2λ2

)
x2dr +

∫
Ω

`λ1

2

∫
Ω

x(t− d)2dr′dr +

∫
Ω

`λ2

2
ρ2dr

≤−
∫

Ω

(
1− w̄

2λ1
− `

2λ2

)
x2dr +

∫
Ω

`λ1

2

∫
Ω

x(t− d)2dr′dr +

∫
Ω

`λ2

2
ρ2dr, (33)

where w̄ : Ω→ R>0 denotes any function satisfying

w̄(r) ≥ `
∫

Ω

w(r, r′)2dr′, ∀r ∈ Ω. (34)

Under condition (18), w̄ can be picked in such a way that∫
Ω

w̄(r)dr < 1. (35)

This can be seen by picking for instance w̄(r) = ε
2#Ω + `

∫
Ω
w(r, r′)2dr′, where ε := 1− `

∫
Ω

∫
Ω
w(r, r′)2dr′dr.

We claim that the proposition holds with β(r) = w̄(r)/2, where w̄ is any positive function satisfying (34) and (35).
With this choice, recalling that V = Va + Vb, the combination of (32) and (33) yields

V̇ (17) ≤ −
∫

Ω

(
1− w̄

2λ1
− `

2λ2
−
∫

Ω

w̄

2
dr′
)
x2dr −

∫
Ω

(
e−cd̄ − `λ1

2

)∫
Ω

x(t− d)2dr′dr − cVb +

∫
Ω

`λ2

2
ρ2dr. (36)

Thus, the result is proved if we can find positive functions λ1, λ2 and a constant c > 0 such that

w̄

2λ1(r)
+

`

2λ2(r)
+

∫
Ω

w̄(r′)

2
dr′ < 1, e−cd̄ >

`λ1(r)

2
.

It can be checked that these conditions are fulfilled with

λ1(r) =
w̄(r)(3−

∫
Ω
w(r′)dr′)

2(2−
∫

Ω
w̄(r′)dr′)

λ2(r) = λ∗2 >
`

2− w̄(r)λ1(r)−
∫

Ω
w̄(r′)dr′

c ≤ 1

d̄
ln

(
1

`λ1(r)

)
.
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It follows from (36) that there exists c′1 > 0 such that

V̇ (17) ≤ −c′1
∫

Ω

x2dr − cVb −
e−cd̄

2

∫
Ω

∫
Ω

x(t− d)2dr′dr +
`λ∗2
2
‖ρ‖2F

≤ −2c′1
τ̄
Va − cVb −

e−cd̄

2

∫
Ω

∫
Ω

x(t− d)2dr′dr +
`λ∗2
2
‖ρ‖2F ,

where τ̄ := maxr∈Ω τ(r). The conclusion follows by letting c1 = min{2c′1/τ̄ ; c}, c2 = e−cd̄/2, and c3 = `λ∗2/2.

8.5 Proof of Proposition 2

For the sake of readability, we rely on the same notation simplifications as the ones used in the proof of Proposition
1 everywhere the context is explicit enough. We decompose V in (21) as V (xt) = Va(x(t)) + Vb(xt) where

Va(x(t)) :=

∫
Ω

τ(r)

2
[x(t)](r)2dr (37)

Vb(xt) :=
1

2#Ω

∫
Ω

∫
Ω

∫ 0

−d(r,r′)

eθ[x(t+ θ)](r′)2dθdr′dr. (38)

Reasoning as in the proof of Proposition 1, the map t 7→ V (xt) is absolutely continuous for any continuously
differentiable initial condition. The derivative of Va along the solutions of (20) reads, for almost all t ≥ 0,

V̇ (20)
a =−

∫
Ω

[x(t)](r)2dr +

∫
Ω

[x(t)](r)S

(
r,

∫
Ω

w(r, r′)[x(t− d(r, r′))](r′)dr′ − kα(r)[x(t)](r) + [ρ(t)](r)

)
dr

=−
∫

Ω

x2dr +

∫
Ω

xS

(∫
Ω

w[x(t− d)](r′)dr′ − kαx+ ρ

)
dr. (39)

Let α := minr∈Ω α(r) > 0. We consider two cases. First, consider the case when kα|x| ≥
∣∣∫

Ω
w[x(t− d)](r′)dr′ + ρ

∣∣.
Recalling that S(r, ·) is nondecreasing and has the same sign as its argument for all r ∈ Ω, it holds that S(a+ b) has
the same sign as a whenever |a| ≥ |b|. Consequently,

xS

(∫
Ω

w[x(t− d)](r′)dr′ − kαx+ p

)
≤ 0. (40)

On the other hand, when kα|x| <
∣∣∫

Ω
w[x(t− d)](r′)dr′ + ρ

∣∣, the fact that |S(x)| ≤ `|x|, where ` is the slope of S
(see (15)), ensures that

xS

(∫
Ω

w[x(t− d)](r′)dr′ − kx+ ρ

)
≤ |x|

∣∣∣∣S (∫
Ω

w[x(t− d)](r′)dr′ − kαx+ ρ

)∣∣∣∣
≤ `|x|

∣∣∣∣∫
Ω

w[x(t− d)](r′)dr′ − kαx+ ρ

∣∣∣∣
≤ `|x|

(∣∣∣∣∫
Ω

w[x(t− d)](r′)dr′
∣∣∣∣+ kα|x|+ |ρ|

)
≤ `

αk

∣∣∣∣∫
Ω

w[x(t− d)](r′)dr′ + ρ

∣∣∣∣ (2

∣∣∣∣∫
Ω

w[x(t− d)](r′)dr′
∣∣∣∣+ |ρ|

)
≤ 2`

αk

(∣∣∣∣∫
Ω

w[x(t− d)](r′)dr′
∣∣∣∣+ |ρ|

)2

≤ 4`

αk

(∣∣∣∣∫
Ω

w[x(t− d)](r′)dr′
∣∣∣∣2 + ρ2

)

≤ 4`

αk

(∫
Ω

w2dr′
∫

Ω

[x(t− d)](r′)2dr′ + ρ2

)
, (41)
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where we used Cauchy-Schwarz inequality for the latter step. In view of (40), we conclude that this bound (41) holds
in any case. Plugging it into (39), we get that

V̇ (20)
a ≤ −

∫
Ω

x2dr +
4`

αk

∫
Ω

(∫
Ω

w2dr′
∫

Ω

[x(t− d)](r′)2dr′ + ρ2

)
dr. (42)

Let us now move to the computation of the functional Vb introduced in (38). Proceeding as in the proof of Proposition
1 (see (38) and subsequent equations), we get that

V̇
(20)
b =

1

2#Ω

∫
Ω

∫
Ω

[x(t)](r′)2dr′dr − 1

2#Ω

∫
Ω

∫
Ω

e−d(r,r′)[x(t− d(r, r′))](r′)2dr′dr − Vb(xt)

≤ 1

2

∫
Ω

x2dr − e−d̄

2#Ω

∫
Ω

∫
Ω

[x(t− d)](r′)2dr′dr − Vb.

Combining this with (42), we get that the derivative of the functional V = Va + Vb satisfies

V̇ (20) ≤ −1

2

∫
Ω

x2dr − Vb −
∫

Ω

(
e−d̄

2#Ω
− 4`

αk

∫
Ω

w2dr′

)
[x(t− d)](r′)2dr′dr +

4`

αk

∫
Ω

ρ2dr

≤ −1

τ̄
Va − Vb +

4`

αk
‖ρ(t)‖2F −

∫
Ω

( e−d̄
2#Ω

− 4`

αk

∫
Ω

w2dr′
)

[x(t− d)](r′)2dr′dr,

where τ̄ := maxr∈Ω τ(r). Thus, by picking k ≥ k∗ := 16`#Ωe
d̄

α maxr∈Ω

∫
Ω
w(r, r′)dr′ and by letting c1 := min{1/τ̄ ; 1},

c2 := ed̄

4#Ω and c3 = 4`/α, we obtain

V̇ (20) ≤ −c1V − c2
∫

Ω

∫
Ω

[x(t− d)](r′)2dr′dr +
c3
k
‖ρ(t)‖2F .

8.6 Proof of Proposition 3

First note that the subsystems (14a) and (14b) can be respectively written in the form of the systems addressed by
Propositions 2 and 1, namely (20) and (17), by considering the inputs ρ1, ρ2 ∈ U defined, for all t ∈ R≥0, as

ρ1(t) :=

∫
Ω

w12(·, r′)[x2(t−d2(·, r′))](r′)dr′ + p1(t) (43)

ρ2(t) :=

∫
Ω

w21(·, r′)[x1(t−d1(·, r′))](r′)dr′+p2(t). (44)

Under the assumptions of Proposition 3, those of Propositions 2 and 1 are satisfied for each relevant subsystem, and
we get that there exist globally Lipschitz functionals V1, V2 : C → R≥0 (respectively defined as in (21) and (19)) and
cij > 0, i ∈ {1, 2}, j ∈ {1, 2, 3}, such that, for all k > 0 large enough, and almost all t ≥ 0,

V̇
(14a)
1 ≤ −c11V1 − c12

∫
Ω

∫
Ω

[x1(t− d1)](r′)2dr′dr +
c13

k
‖ρ1(t)‖2F (45)

V̇
(14b)
2 ≤ −c21V2 − c22

∫
Ω

∫
Ω

[x2(t− d2)](r′)2dr′dr + c23‖ρ2(t)‖2F . (46)
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In view of (43) and using Cauchy-Schwarz inequality,

‖ρ1(t)‖2F =

∫
Ω

(∫
Ω

w12(r, r′)[x2(t− d2(r, r′))](r′)dr′ + [p1(t)](r)

)2

dr

≤ 2

∫
Ω

(∫
Ω

w12(r, r′)[x2(t− d2(r, r′))](r′)dr′
)2

dr + 2

∫
Ω

[p1(t)](r)2dr

≤ 2

∫
Ω

(∫
Ω

w12(r, r′)2dr′
∫

Ω

[x2(t− d2(r, r′))](r′)2dr′
)
dr + 2‖p1(t)‖2F

≤ 2 ¯̄w12

∫
Ω

∫
Ω

[x2(t− d2(r, r′))](r′)2dr′dr + 2‖p1(t)‖2F ,

where ¯̄w12 := maxr∈Ω

∫
Ω
w12(r, r′)2dr′. In the same way, defining ¯̄w21 := maxr∈Ω

∫
Ω
w21(r, r′)2dr′, we get that

‖ρ2(t)‖2F ≤ 2 ¯̄w21

∫
Ω

∫
Ω

[x1(t− d1(r, r′))](r′)2dr′dr + 2‖p2(t)‖2F .

Plugging these bounds into (45)-(46) yields

V̇
(14a)
1 ≤ −c11V1 − c12

∫
Ω

∫
Ω

[x1(t− d1)](r′)2dr′dr +
2c13 ¯̄w12

k

∫
Ω

∫
Ω

[x2(t− d2)](r′)2dr′dr +
2c13

k
‖p1(t)‖2F

V̇
(14b)
2 ≤ −c21V2 − c22

∫
Ω

∫
Ω

[x2(t− d2)](r′)2dr′dr + 2c23 ¯̄w21

∫
Ω

∫
Ω

[x1(t− d1)](r′)2dr′dr + 2c23‖p2(t)‖2F .

Letting W1(x1t) := c12

∫
Ω

∫
Ω

[x1(t−d1(r, r′))](r′)2dr′dr and W2(x2t) := c22

∫
Ω

∫
Ω

[x2(t−d2(r, r′))](r′)2dr′dr, we finally
get that

V̇
(14a)
1 ≤ −c11V1 −W1 +

2c13 ¯̄w12

kc22
W2 +

2c13

k
‖p1(t)‖2F

V̇
(14b)
2 ≤ −c21V2 −W2 +

2c23 ¯̄w21

c12
W1 + 2c23‖p2(t)‖2F .

Invoking Corollary 1, the system is thus ISS provided that 4c13c23 ¯̄w12 ¯̄w21/kc12c22 ≤ 1, which can always be satisfied
by picking k sufficiently large.

8.7 Proof of Proposition 4

The proof is made of two steps. The first one (Claim 1) consists in showing that the spatial heterogeneity of solutions
is eventually small provided that the spatial heterogeneity of the kernels w1i, i ∈ {1, 2}, and of the function α is
sufficiently small. The second step (Claim 2) consists in showing that, if the spatial heterogeneity of solutions is
small, then the difference between the original control signal (4) and the one considered here (5) is small too. For

each i ∈ {1, 2}, let `i > 0 denote the slope of Si and ¯̄Si := max{|Si|; |Si|}. Let also ¯̄S := max{ ¯̄S1; ¯̄S2}.

Claim 1 Under the assumptions of Proposition 4, the spatial heterogeneity of solutions of (23) satisfies, for all
t0 ≥ 0 and all t ≥ t0,

H(x1(t))2 ≤H(x1(t0))2e−(t−t0)/τ∗1 +
2`21

¯̄S2#Ω

τ∗1

(
2

2∑
i=1

H(w1i)
2 + k‖α′‖2FH(α)2

)
.
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Proof In view of (24), consider the functional W : F → R≥0 defined as W (x1(t)) :=
τ∗1
2 H(x1(t))2. Its derivative

along the solutions of (23a) reads

Ẇ (23a)= − 2

τ∗1
W +

∫
Ω

∫
Ω

(
[x1(t)](r)− [x1(t)](r′)

)
×
[
S1

(
r,

∫
Ω

2∑
i=1

w1i(r, r
′′)[xi(t− d∗i )](r′′)dr′′ − kα(r)

∫
Ω

α′(r′′)[x1(t)](r′′)dr′′
)

− S1

(
r′,

∫
Ω

2∑
i=1

w1i(r
′, r′′)[xi(t− d∗i )](r′′)dr′′ − kα(r′)

∫
Ω

α′(r′′)[x1(t)](r′′)dr′′
)]
dr′dr.

Using successively (15), the fact that ab ≤ (a2 + b2)/2 for all a, b ∈ R, and Cauchy-Schwarz inequality, it can be seen
that

Ẇ (23a) ≤− 2

τ∗1
W + `1

∫
Ω

∫
Ω

∣∣∣[x1(t)](r)− [x1(t)](r′)
∣∣∣

×

∣∣∣∣∣
∫

Ω

2∑
i=1

(
w1i(r, r

′′)− w1i(r
′, r′′)

)
[xi(t− d∗i )](r′′)dr′′ − k

(
α(r)− α(r′)

) ∫
Ω

α′(r′′)[x1(t)](r′′)dr′′

∣∣∣∣∣ dr′dr
≤− 1

τ∗1
W +

`21
2

∫
Ω

∫
Ω

(∫
Ω

2∑
i=1

(
w1i(r, r

′′)− w1i(r
′, r′′)

)
[xi(t− d∗i )](r′′)dr′′

−k
(
α(r)− α(r′)

) ∫
Ω

α′(r′′)[x1(t)](r′′)dr′′
)2

dr′dr

≤− 1

τ1
W + `21

∫
Ω

∫
Ω

(∫
Ω

2∑
i=1

(
w1i(r, r

′′)− w1i(r
′, r′′)

)
[xi(t− d∗i )](r′′)dr′′

)2

dr′dr

+ k`21

∫
Ω

∫
Ω

((
α(r)− α(r′)

) ∫
Ω

α′(r′′)[x1(t)](r′′)dr′′
)2

dr′dr

≤− 1

τ∗1
W + 2`21

∫
Ω

∫
Ω

( 2∑
i=1

∫
Ω

(
w1i(r, r

′′)− w1i(r
′, r′′)

)2
dr′′

∫
Ω

[xi(t− d∗i )](r′′)2dr′′
)
dr′dr

+ k`21

∫
Ω

∫
Ω

((
α(r)− α(r′)

)2 ∫
Ω

α′(r′′)2dr′′
∫

Ω

[x1(t)](r′′)2dr′′
)
dr′dr.

Furthermore, since the activation functions Si are bounded, for all initial conditions lying in their image, the solutions
remain in it. More precisely, for all xi0 ∈ C([−d∗i ; 0], (Si;Si)), it holds that Si ≤ [xi(t)](r) ≤ Si for all t ≥ 0 and all

r ∈ Ω. In particular, it holds that |[xi(t)](r)| ≤ ¯̄S for all t ≥ −d∗i and all r ∈ Ω. It follows that

Ẇ (23a) ≤− 1

τ∗1
W + 2`21

¯̄S2#Ω

∫
Ω

∫
Ω

∫
Ω

2∑
i=1

(
w1i(r, r

′′)− w1i(r
′, r′′)

)2
dr′′dr′dr

+ k`21
¯̄S2#Ω

∫
Ω

∫
Ω

((
α(r)− α(r′)

)2 ∫
Ω

α′(r′′)2dr′′
)
dr′dr.

Using the notation of (24)-(25) and letting c := `21
¯̄S2#Ω, we obtain Ẇ (23a) ≤ − 1

τ∗1
W+2c

∑2
i=1H(w1i)

2+kc‖α′‖2FH(α)2.

The conclusion follows by integrating and replacing W by its expression. �

Claim 2 Letting ᾱ := maxr∈Ω α(r), it holds that, for all t ≥ 0 and all r ∈ Ω,

∫
Ω

(∫
Ω

α′(r′)[x1(t)](r′)dr′ − [x1(t)](r)

)2

dr ≤ ᾱ2‖α′‖2FH(x1(t))2.
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Proof For each t ≥ 0 and each r, r′ ∈ Ω, let ξ(r, r′, t) := [x1(t)](r′)− [x1(t)](r). Recalling that
∫

Ω
α′(r)dr = 1,∫

Ω

(
α(r)

∫
Ω

α′(r′)[x1(t)](r′)dr′ − [x1(t)](r)

)2

dr =

∫
Ω

α(r)2

(∫
Ω

α′(r′)
(
[x1(t)](r) + ξ(r, r′, t)

)
dr′ − [x1(t)](r)

)2

dr

≤
∫

Ω

α(r)2

(
[x1(t)](r)

∫
Ω

α′(r′)dr′ +

∫
Ω

α′(r′)ξ(r, r′, t)dr′ − [x1(t)](r)

)2

dr

≤
∫

Ω

α(r)2

(∫
Ω

α′(r′)ξ(r, r′, t)dr′
)2

dr

≤ ‖α′‖2F
∫

Ω

α(r)2

∫
Ω

ξ(r, r′, t)2dr′dr

≤ ‖α′‖2F ᾱ2

∫
Ω

∫
Ω

ξ(r, r′, t)2dr′dr.

The conclusion follows by observing that, in view of (24),
∫

Ω

∫
Ω
ξ(r, r′, t)2dr′dr = H(x1(t))2. �

Based on these two claims, we are now ready to complete the proof of Proposition 4. Recalling that the delay
distributions d1 and d2 are uniform, the coupled neural fields (23) studied here can be written as

τ1(r)[ẋ1(t)](r) = S1

(
r,

∫
Ω

2∑
i=1

w1i(r, r
′)[xi(t− d∗1)](r′)dr′ − kα(r)[x1(t)](r) + [p1(t)](r)

)
− [x1(t)](r)

τ2(r)[ẋ2(t)](r) = −[x2(t)](r) + S2

(
r,

∫
Ω

2∑
i=1

w2i(r, r
′)[xi(t− d∗2)](r′)dr′

)
,

where [p1(t)](r) = −kα(r)
∫

Ω
α′(r′)[x1(t)](r′)dr′ + kα(r)[x1(t)](r). Since k ≥ k∗, we know from Proposition 3 that

this system is ISS. In particular, due to the asymptotic gain property induced by ISS (see (7)), there exists ν ∈ K∞
such that

lim sup
t→∞

‖x(t)‖F ≤ ν
(

lim sup
t→∞

‖p1(t)‖F
)
. (47)

Furthermore, using Claim 2, ‖p1(t)‖2F ≤ k2ᾱ2‖α′‖2FH(x1(t))2. Consequently, Claim 1 gives that

lim sup
t→∞

‖p1(t)‖F ≤ kᾱ‖α′‖F`1S

√
2#Ω

τ∗1

√√√√2

2∑
i=1

H(w1i)2 + k‖α′‖2FH(α)2.

It thus follows from (47) that

lim sup
t→∞

‖x(t)‖F ≤ ν

kᾱ‖α′‖F`1S
√

2#Ω

τ∗1

√√√√2

2∑
i=1

H(w1i)2 + k‖α′‖2FH(α)2


≤ ν

kc
√√√√2

2∑
i=1

H(w1i)2 + k3/2c‖α′‖FH(α)


≤ ν

2kc

√√√√2

2∑
i=1

H(w1i)2

+ ν
(

2k3/2c‖α′‖FH(α)
)

≤ ν

(
4kc

2∑
i=1

H(w1i)

)
+ ν

(
2k3/2c‖α′‖FH(α)

)
,

where c := ᾱ‖α′‖F`1S
√

2#Ω

τ∗1
. The conclusion follows by picking ν1(s) := ν (4kcs) and ν2(s) := ν

(
2k3/2c‖α′‖s

)
for

all s ≥ 0.
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8.8 Proof of Proposition 5

Omitting some arguments for the sake of clarity, the coupled neural fields (27) studied here can be written as

τ1(r)[ẋ1(t)](r) = −[x1(t)](r) + S1

(
r, [p1(t)](r) +

∫
Ω

2∑
i=1

w1i(r, r
′)[xi(t− di)](r′)dr′ − kα(r)[x1(t)](r)

)
τ2(r)[ẋ2(t)](r) = −[x2(t)](r) + S2

(
r,

∫
Ω

2∑
i=1

w2i(r, r
′)[xi(t− di)](r′)dr′

)
,

where [p1(t)](r) = −kα(r)
(
[x1(t − dc(t, r))](r) − x1(t)](r)

)
. Since k ≥ k∗, we know from Proposition 3 that this

system is ISS. The asymptotic gain property (7) then ensures the existence of ν̃ ∈ K∞ such that

lim sup
t→∞

‖x(t)‖F ≤ ν̃
(

lim sup
t→∞

‖p1(t)‖F
)
. (48)

Now, let ¯̄S1 := max{|S1|; |S1|}. Then as stressed in the proof of Proposition 4, for all x10 ∈ C([−d̄; 0], (S1;S1)),

it holds that S1 ≤ [x1(t)](r) ≤ S1 for all t ≥ 0 and all r ∈ Ω. In particular, it holds that |[x1(t)](r)| ≤ ¯̄S1 for all t ≥ −d̄
and all r ∈ Ω. In view of (27a), it follows that |[ẋ1(t)](r)| ≤ 2 ¯̄S1/τ1(r). Consequently, |[x1(t)](r)− [x1(t− dc(t, r))](r)| ≤
2 ¯̄S1d̄c/τ1(r), where d̄c := supt≥0, r∈Ω dc(t, r). It follows from (48) that lim supt→∞ ‖x(t)‖F ≤ ν̃

(
2k‖α‖F ¯̄S1d̄c ‖1/τ1‖F

)
.

Letting ν(s) := ν̃
(

2k‖α‖F ¯̄S1 ‖1/τ1‖F s
)

for all s ≥ 0, the conclusion follows.
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