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Abstract

This paper deals with the robust estimation problem of a signal given
noisy observations. We assume that the actual statistics of the signal
and observations belong to a ball about the nominal statistics. This ball
is formed by placing a bound on a suitable divergence (or distance) be-
tween the actual and the nominal statistics. Then, the robust estimator
is obtained by minimizing the mean square error according to the least
favorable statistics in that ball. Therefore, we obtain a divergence-based
minimax approach to robust estimation. Choosing a set of divergences,
called Tau divergence family, we show that the Bayes estimator based on
the nominal statistics is the optimal solution. Moreover, in the dynamic
case, the optimal offline estimator is the noncausal Wiener filter based on
the nominal statistics.

Keywords: Robust filtering, minimax problem, Tau divergence family,
risk-sensitive estimation problem, minimum entropy problem.

1 Introduction

Consider the problem of estimating a signal from noisy observations. Typically
the actual statistics of the signal and observations are known only imprecisely
that is only the nominal statistics are known. In this situation, one would won-
der how to construct an estimator which is robust to this model uncertainty.
According to the minimax approach, the statistics of the signal and observa-
tions are assumed to belong to a neighborhood of the nominal ones. Then, the
robust estimator is characterized by a minimax problem consisting of finding
the estimator which minimizes the mean square error for the least favorable
statistics in the neighborhood. The latter can be specified in different ways,
e.g. it can be based on a ε-contamination model, a total variation model or
a spectral band model [8]. [5] propose to specify this neighborhood through
an uncertainty ball which is formed by placing a bound (i.e. tolerance) c on
the Kullback-Leibler divergence between the actual and the nominal statistics.
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This characterization of the uncertainty is supported by the fact that nominal
models are identified from data according to the maximum-likelihood principle
which turns out to be equivalent to the minimization of the Kullback-Leibler
divergence over a suitable parametric model class. Accordingly, the maximum-
likelihood approach provides the nominal model and the bound c. [9] showed
that if the nominal statistics is Gaussian then the least favorable statistics is
Gaussian and the robust estimator coincides with the nominal Bayes estimator,
i.e. the Bayes estimator based on the nominal statistics.

In this paper we consider a family of uncertainty balls which are formed by
placing a bound on a set of divergences, called τ divergence family, between
Gaussian statistics. Each divergence of this set is characterized by parameter τ
which is a real number belonging to the interval [0, 1]. In particular, for τ = 0
we obtain the Kullback-Leibler divergence. This characterization of the uncer-
tainty is supported by the fact that recently it has been proposed a system
identification procedure which finds the model from data by minimizing the τ
divergence family over a suitable parametric model class [19]. Accordingly, this
system identification procedure provides the nominal model and the bound c
for the proposed uncertainty ball. It turns out that the (family of) robust esti-
mators, solution to the minimax problem with this family of uncertainty balls,
coincide with the Bayes estimator based on the nominal statistics. Accordingly,
the nominal Bayes estimator is robust in this wide family of (Gaussian) uncer-
tainty classes. Our result also gives the analytical form of the least favorable
statistics of the estimation error. This result allows to define a new family of
robust Kalman filters obtained by iterating the Bayes estimator with the least
favorable statistics [21, 10]. Our minimax approach can be also relaxed express-
ing the τ divergence constraint as a soft one. We will show that this relaxation
corresponds to a new family of risk-sensitive problems (in the sense of [1]) which
is also linked to a new family of minimum entropy problems (in the sense of [13]).
These results can be extended in the dynamic case: We will prove that the nom-
inal noncausal Wiener filter is the optimal robust offline estimator according to
the minimax approach based on the τ divergence family. Finally, through a
simulation study we analyze the features of the least favorable statistics of the
estimation error for these uncertainty classes. Simulations show that the param-
eter τ tunes how the uncertainty is spread among the components (components
and frequencies for the dynamic case) of the least favorable statistics.

The outline of the paper is as follows. In Section 2 we define the τ divergence
family for Gaussian random vectors and stationary stochastic processes. Section
3 deals with the static case: We show that the nominal Bayes estimator is
the solution to the family of divergence-based minimax approaches. Section
4 deals with the dynamic case: We show that the nominal noncausal Wiener
estimator is the solution to the family of divergence-based minimax approaches.
In Section 5, we present the simulation study. Finally, in Section 6 we draw the
conclusions. In order to streamline the presentation all the proofs are deferred
to the Appendix.

In the paper, we will use the following conventions. Z,N and R denote the
set of integer, natural and real numbers, respectively. R+ denotes the set of
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positive real numbers. Given x ∈ Rq, ‖x‖ denotes its Euclidean vector norm.

Moreover, ‖x‖K =
√
xTKx. Iq denotes the identity matrix of dimension q.

tr(P ) denotes the trace of matrix P . Qq denotes the vector space of symmetric
matrices of dimension q × q. The i-th singular value of P ∈ Qq is denoted by
σi(P ) and we assume that σ1(P ) ≥ σ2(P ) ≥ . . . σq(P ). ‖P‖ denotes the spectral
norm of P , that is ‖P‖ = σ1(P ). Qq+ is the cone of positive definite symmetric
matrices of dimension q × q. log(P ) denotes the logarithm of matrix P and
P τ is the τ -th power of matrix P . Matrix functions defined over the unit circle
T = {ejϑ : ϑ ∈ [0, 2π]} are denoted by capital Greek letters and the dependence
upon ϑ is sometime dropped to simplify the notation, i.e. Σ instead of Σ(ϑ). A
star denotes transposition plus conjugation, that is Σ(ϑ)∗ = Σ(−ϑ)T . ‖Σ‖∞ is
the infinity matrix norm of Σ, that is ‖Σ‖∞ = supϑ σ1(Σ(ϑ)). Qq(T) denotes
the vector space of para-symmetric matrix functions of dimension q × q, i.e. if
Σ ∈ Qq(T) then Σ = Σ∗. Qq+(T) denotes the cone of para-symmetric matrix
functions of dimension q×q which are positive definite over T. Given Σ ∈ Qq(T),
the shorthand notation

∫
Σ means the integration over the unit circle with

respect to the normalized Lebesgue measure, that is (2π)−1
∫ 2π

0
Σ(ϑ)dϑ. δ(ϑ)

denotes the Dirac delta function.

2 τ Divergence for Gaussian Vectors and Pro-
cesses

Let z be a Gaussian random vector of dimension q with probability density

f̃(z) =

1√
(2π)q det K̃z

exp

(
−1

2
(z − m̃z)

T K̃−1
z (z − m̃z)

)
, (1)

where m̃z ∈ Rq and K̃z ∈ Qq+. Let ẑ denote the minimum variance predictor of
z based on the nominal probability density f

f(z) =

1√
(2π)q detKz

exp

(
−1

2
(z −mz)

TK−1
z (z −mz)

)
(2)

with mz ∈ Rq and Kz ∈ Qq+. Thus, ẑ = mz. Let e = z− ẑ be the corresponding
innovation vector. Accordingly, eN = L−1

z (z − ẑ) is the normalized innovation
vector with Lz a square root of Kz, i.e. Kz = LzL

T
z . It is not difficult to

see that eN is Gaussian with mean m = L−1
z ∆mz, ∆mz = m̃z − mz, and

covariance matrix K = L−1
z K̃zL

−T
z . If f̃ coincides with f then we have that

eN is with zero mean and identically independently distributed components, i.e.
m = 0 and K = I. Therefore, (m,K) represents a mismatch criterium which
naturally occurs in prediction error estimation [12]. This leads us to measure

3



the mismatch between f̃ and f by quantifying the mismatch between (m,K)
and (0, I):

D(f̃‖f) = `(m,K), (3)

where ` : Rq×Qq+ → R∪{∞} is a function such that ` ≥ 0 and equality holds if
and only if m = 0 and K = I. We consider the following function parametrized
by τ ∈ [0, 1]:

`(m,K) =
‖m‖2 + tr (− log(K) +K − Iq) , τ = 0

1
1−τ ‖m‖

2 + tr
(

1
τ(τ−1)K

τ + 1
1−τK + 1

τ Iq

)
, 0 < τ < 1

δ(m) + tr (K log(K)−K + Iq) , τ = 1.

(4)

There are several ways to construct `. We will motivate our choice in Remark
3.2. Substituting (4) in (3) we obtain the following family of divergences indexed
by τ :

Dτ (f̃‖f) =

‖∆mz‖2K−1
Z

+ tr
(
− log(K̃zK

−1
z )

+K̃zK
−1
z − Iq

)
, τ = 0

1
1−τ ‖∆mz‖2K−1

Z

+ tr
(

1
τ(τ−1) (L−1

z K̃zL
−T
z )τ

+ 1
1−τ K̃zK

−1
z + 1

τ Iq

)
, 0 < τ < 1

δ(∆mz) + tr
(
L−1
z K̃zL

−T
z log(L−1

z K̃zL
−T
z )

−K̃zK
−1
z + Iq

)
, τ = 1.

(5)

It is worth noting that (5) coincides with the τ divergence between covariance
matrices [20] when f̃ and f have the same mean. Moreover, (5) coincides with
the Kullback-Leibler divergence for τ = 0.

Proposition 2.1 Dτ (f̃‖f) ≥ 0 and equality holds if and only if f̃ = f .

The mismatch criterium above can be extended to the dynamic case. Let
z(t) be a stationary Gaussian process defined over t ∈ Z of dimension q with
probability measure f̃ . The latter is completely characterized by its power
spectral density S̃z(ϑ) = 2πm̃zm̃

T
z δ(ϑ) + Σ̃z(ϑ), where m̃z ∈ Rq is the mean

and Σ̃z ∈ Qq+(T) is the discrete time Fourier transform of the covariance matrix
function

Kz(s) = Ef̃ [(z(t)− m̃z)(z(t− s)− m̃z)
T ], s ∈ Z.

Let ẑ(t) be the minimum variance linear one-step-ahead predictor based on the
nominal probability measure f with power spectral density Sz(ϑ) = 2πmzm

T
z δ(ϑ)+

Σz(ϑ). It is not difficult to see that corresponding normalized innovation process

4



eN (t) is stationary Gaussian with power spectral density S(ϑ) = mmT δ(ϑ) +
Σ(ϑ), where Σz = Γ−1

z Σ̃zΓ
−∗
z , Γz is a left squared spectral factor of Σz, i.e.

Σz = ΓzΓ
∗
z, m = Γz(0)−1∆mz, ∆mz = m̃z − mz. Clearly, the more eN (t) is

similar to white Gaussian noise, i.e. S ≈ I, the closer f̃ and f are. Accordingly,
we measure their mismatch as follows S(f̃‖f) =

∫
`(2πm,Σ). Choosing ` as in

(4), we obtain the following family of divergences indexed by τ :

Sτ (f̃‖f) =

‖∆mz‖2Σz(0)−1 +
∫

tr
(
− log(Σ̃zΣ

−1
z )

+Σ̃zΣ
−1
z − Iq

)
, τ = 0

1
1−τ ‖∆mz‖2Σz(0)−1 +

∫
tr
(

1
τ(τ−1) (Γ−1

z Σ̃zΓ
−∗
z )τ

+ 1
1−τ Σ̃zΣ

−1
z + 1

τ Iq

)
, 0 < τ < 1

δ(∆mz) +
∫

tr
(

Γ−1
z Σ̃zΓ

−∗
z log(Γ−1

z Σ̃zΓ
−∗
z )

−Σ̃zΣ
−1
z + Iq

)
, τ = 1.

(6)

Note that, for τ = 0 we obtain the Itakura-Saito distance, [7]. In the case that
f̃ and f have the same mean, we obtain the τ divergence defined in [20].

Proposition 2.2 Sτ (f̃‖f) ≥ 0 and equality holds if and only if f̃ = f .

3 Robust Static Estimation

We consider a static estimation problem where we seek to estimate a random
vector x ∈ Rn given an observation y ∈ Rp. Assume the joint vector z :=
[xT ; yT ]T is Gaussian with nominal probability density f defined in (2) where
q = n+p. We conformably partition the mean vector and the covariance matrix
of z according to x and y:

mz =

[
mx

my

]
, Kz =

[
Kx Kxy

Kyx Ky

]
.

Let f̃(z) be the actual probability density defined in (1) where q = n + p. We
consider the closed ball centered on f :

Bτ := {f̃ s.t. Dτ (f̃‖f) ≤ c}, (7)

where Dτ has been defined in (5), c ∈ R+ is a fixed tolerance which accounts for
the maximum allowable deviance. Therefore, the hope is that Bτ contains the
actual (unknown) probability density f̃ . Note that, Bτ depends on τ ∈ [0, 1].
Accordingly, by changing τ the set of all possible probability densities changes.
In this way, we have a family of uncertainty classes parametrized by τ . It is
worth noting that Bτ also depends on c. However, we dropped this dependence
to ease the notation.
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Remark 3.1 The nominal probability density function can be identified from
data by solving f = argminf̄∈CDτ (fS‖f̄) where C is a suitable parametric family
of probability densities and fS is Gaussian with mean and covariance matrix,
respectively, the sample mean and the sample covariance matrix computed from
the data [19]. Since fS is the best probability density fitting the data, it is then
realistic to specify the uncertainty with Bτ with c = Dτ (fS‖f).

We shall use the minimax viewpoint to design our robust estimator of x
[9, 5]. More precisely, whenever we seek to design an estimator minimizing a
suitable loss function, an hostile player, say “nature”, conspires to select the
worst possible probability density in Bτ . Let g(y) denote an estimator of x
based on the observation y. We evaluate its performance through the mean
square error

J(f̃ , g) = Ef̃ [‖x− g(y)‖2] =

∫
Rn+p

‖x− g(y)‖2f̃(z)dz.

Let G denote the set of estimators g(y) such that Ef̃ [‖g(y)‖2] is finite for any

f̃ ∈ Bτ . Our optimal robust estimator is the solution to the following minimax
problem

min
g∈G

max
f̃∈Bτ

J(f̃ , g). (8)

Theorem 3.1 The optimal robust estimator, according to (8), is the Bayes
estimator based on f

g◦(y) = G◦(y −my) +mx (9)

with G◦ = KxyK
−1
y . The least favorable probability density f̃◦ has mean vector

and covariance matrix

m̃◦z = mz, K̃◦z =

[
K̃x Kxy

Kyx Ky

]
, (10)

wherein only the covariance of x is perturbed with respect to the nominal covari-
ance matrix. The nominal and the least favorable estimation error have zero
mean and covariance matrix, respectively,

P = Kx −KxyK
−1
y Kyx, P̃ = K̃x −KxyK

−1
y Kyx.

Moreover,

P̃ =

{
LP
(
In − 1−τ

λ LTPLP
) 1
τ−1 LTP , 0 ≤ τ < 1

LP exp
(

1
λL

T
PLP

)
LTP , τ = 1,

(11)

where P = LPL
T
P and λ, with λ > (1−τ)‖P‖, is the unique Lagrange multiplier

such that Dτ (f̃‖f) = c.

6



Theorem 3.1 shows that the Bayes estimator based on the nominal statistics
f is robust with respect to the τ divergence constraint. The worst situation
occurs when all the mismodeling budget is allocated in a perturbation of the
covariance matrix Kx. In Problem (8) several divergence families can be used
to characterize Bτ , such as the α divergence, [18], and the β divergence fam-
ily [2]. Although the existence of the solution to (8) with those uncertainty
classes is guaranteed, the optimal Bayes estimator is not necessarily based on
the nominal statistic and such a solution does not admit a closed form. The
mean square error (MSE) corresponding to the nominal probability density is
MSE = Ef [‖e‖2] = tr(P ), while the MSE corresponding to the least favorable

probability density f̃◦ is M̃SE = Ef̃◦ [‖e‖2] = tr(P̃ ). In view of (11), it follows

that P̃ − P ∈ Qn+ therefore M̃SE > MSE and the additional MSE occasioned

by the least favorable model perturbation is ∆MSE = tr(P̃ − P ).

Remark 3.2 One would wonder why in (5) we consider 1
1−τ ‖∆mz‖2K−1

z
instead

of the simpler term ‖∆mz‖2K−1
z

. Indeed, it is not difficult to see that Theorem

3.1 still holds with 1
1−τ ‖∆mz‖2K−1

z
replaced by ‖∆mz‖2K−1

z
in (5). The unique

difference is that λ must be such that λ > ‖P‖ for any τ ∈ [0, 1]. Therefore, with
the choice ‖∆mz‖2K−1

z
we restrict the allowable values for the Lagrange multiplier

λ and thus the allowable least favorable covariance matrices K̃z. Accordingly,
taking the term ‖∆mz‖2Kz , the freedom of the nature (i.e. the hostile player) is
restricted.

It is worth comparing our result with the one in [9]. Theorem 3.1 generalizes
the case τ = 0 analyzed in Theorem 1 in [9]. On the other hand, Theorem
1 shows the least square estimator is robust over the more general allowable
set {f̃ : DKL(f̃‖f) ≤ c}, where DKL(f̃‖f) is the Kullback-Leibler divergence
among probability densities, and f̃ is not necessarily Gaussian. However, our
result cannot be extended to such general case because Dτ is a divergence family
which only measures the deviation among Gaussian vectors.

In oder to understand the influence of parameter τ on the uncertainty ball
Bτ , we consider the case in which z is a Gaussian random variable, i.e. q = 1,
with nominal mean mz = 0.5 and nominal variance Kz = 0.03. We consider
Bτ with τ = 0 and c = 0, left panel of Figure 1, and Bτ with τ = 0.8 and
c = 0.454, right panel of Figure 1. The tolerance c for the two balls is chosen
in such a way that their measure is the same. As we can see, increasing τ the
uncertainty increases for the variance while it decreases for the mean. This
observation holds also with q > 1, indeed the first term in (5) measures the
deviance between the actual and the nominal mean, and, increasing τ , this
term becomes preponderant than the second one when mz 6= m̃z. In other
words through parameter τ we tune how to allocate the mismodeling budget
between the mean and the covariance matrix.

Problem (8) can be relaxed in the following way

min
g∈G

max
f̃∈B∞τ

J(f̃ , g) + λ(c−Dτ (f̃‖f)), (12)

7
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Figure 1: In orange the uncertainty ball with τ = 0, c = 0.2 (left panel) and
τ = 0.8 and c = 0.454 (right panel); the blue point is the nominal statistics.
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where B∞τ = {f̃ s.t. Dτ (f̃‖f) <∞} and G is the set of all estimators such that
Ef̃ [‖g(y)‖2] is finite for any f̃ ∈ B∞τ . Here, λ > 0 is a priori fixed and such that
λ > (1 − τ)‖P‖. In this way the mismodeling tolerance is expressed as a soft
constraint adding the penalty term λ(c−Dτ (f̃‖f)).

Corollary 3.1 The optimal estimator, according to (12), is still the nominal
Bayes estimator. The least favorable probability density f̃◦ has mean vector
m̃z = mz and covariance matrix K̃◦z as in (10). The least favorable estimation
error has zero mean and covariance matrix P̃ as in (11) where λ now has been
chosen a priori.

In the perspective presented in [1, 3, 4, 5, 9], Problem (12) represents a
generalization of the risk-sensitive static estimation problem [15, 14, 6, 16, 22,
11]. Thus, the nominal Bayes estimator is also optimal for the τ risk-sensitive
static estimation problem.

Now we show that Problem (12) is the solution to a new minimum entropy
problem in the sense of [13]. Let g(y) = Gy + h be an estimator of x. Under
the nominal model, the estimation error e = x− g(y) is Gaussian with

me = Ef [e] =
[
In −G

]
mz − h

Ke =
[
In −G

]
Kz

[
In
−GT

]
.

Note that, the mean and covariance matrix of e depends on g(y). The idea is
to characterize the robust estimator through the following minimum entropy
problem

min
g∈G
Hτ (e, λ), (13)

where Hτ is an entropy-like function which guarantees that the mean and the
covariance matrix of e are bounded in some sense. Such boundedness is tuned
by parameter λ ∈ R+. Next, we characterize Hτ .

Definition 3.1 The τ entropy family of e is defined as

Hτ (e, λ) = (14)
mT
e

(
In − 1

λKe

)−1
me − λ log det

(
In − 1

λKe

)
, τ = 0

mT
e

(
In − 1−τ

λ Ke

)−1
me

+λ
τ tr

((
In − 1−τ

λ Ke

) τ
τ−1 − In

)
, 0 < τ < 1

mem
T
e + λ tr

(
exp

(
1
λKe

)
− In

)
, τ = 1

for λ > (1− τ)‖Ke‖ otherwise Hτ (e, λ) =∞.

It is not difficult to see that Hτ is continuous with respect to τ ∈ [0, 1]. Note
that, H0 is the usual entropy, see [13], used in H∞ control.

Proposition 3.1 The following properties hold:
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• Hτ (e, λ) ≥ 0 and equality holds if and only if e = 0

• Hτ (e, ·) is a monotone decreasing function.

The Theorem below states the connection between our minimax approach
for robust estimation and the minimum entropy estimation.

Theorem 3.2 Problem (12) and Problem (13) are equivalent.

4 Noncausal Robust Filtering

Let x(t) and y(t) be two jointly stationary Gaussian processes defined over
t ∈ Z of dimension n and p, respectively. We consider the noncausal filtering
problem, that is to estimate x(t) given the observations {y(s), s ∈ Z}. We
define z(t) = [x(t)T y(t)T ]T . The nominal probability measure of z(t), say f ,
has power spectral density Sz(ϑ) = 2πmzm

T
z δ(ϑ) + Σz(ϑ), where

mz =

[
mx

my

]
, Σz(ϑ) =

[
Σx(ϑ) Σxy(ϑ)
Σyx(ϑ) Σy(ϑ)

]
.

The actual one, say f̃ , has power spectral density S̃z(ϑ) = 2πm̃zm̃
T
z δ(ϑ)+Σ̃z(ϑ),

where

m̃z =

[
m̃x

m̃y

]
, Σ̃z(ϑ) =

[
Σ̃x(ϑ) Σ̃xy(ϑ)

Σ̃yx(ϑ) Σ̃y(ϑ)

]
.

Suppose that the actual power spectral density belongs to the following closed
ball parametrized by τ

Bτ = {f̃ s.t. Sτ (f̃‖f) ≤ c}, (15)

where Sτ has been defined in (6) and c ∈ R+ is a fixed tolerance. Similarly to
the static case, we design the robust noncausal filter according to the minimax
point of view. Let G denote class of estimators of x(t) having the following
structure

g(y, t) =

∞∑
k=−∞

Gky(t− k) + h, (16)

where the filter Λ(ϑ) =
∑∞
k=−∞Gke

−jϑk is Bounded Input Bounded Output
(BIBO) stable. Our robust noncausal filter is the solution to the following
minimax problem

min
g∈G

max
f̃∈Bτ

J(f̃ , g), (17)

where J(f̃ , g) = Ef̃ [‖x(t)− g(y, t)‖2].

10



Theorem 4.1 Let τ be such that 1
1−τ ∈ N and Σz have bounded McMillan

degree. The robust estimator g◦(y, t), according to (17), is the noncausal Wiener
filter based on f , that is

h =
[

1 −Λ(0)
]
mz, Λ = ΣxyΣ−1

y .

The least favorable probability measure f̃◦ has power spectral density S̃◦z (ϑ) =
2πmzm

T
z δ(ϑ) + Σ̃◦z(ϑ) with

Σ̃◦z =

[
Σ̃x Σxy
Σyx Σy

]
,

where only Σ̃x is perturbed. The power spectral density of the estimation error
with respect to the nominal and the least favorable probability measure, respec-
tively, are

Σe = Σx − ΣxyΣ−1
y Σyx, Σ̃e = Σ̃x − ΣxyΣ−1

y Σyx.

Then, Σ̃e can be expressed in terms of Σe as

Σ̃e =

{
Γe
(
In − 1−τ

λ Γ∗eΓe
) 1
τ−1 Γ∗e, 0 ≤ τ < 1

Γe exp
(

1
λΓ∗eΓe

)
Γ∗e, τ = 1,

where Σe = ΓeΓ
∗
e. Here, λ, with λ > (1 − τ)‖Σe‖∞, is the unique Lagrange

multiplier such that Sτ (f̃‖f) = c.

Therefore, the noncausal Wiener filter is robust with respect to the τ diver-
gence constraint. Similarly to the static case, the worst situation occurs when all
the mismodeling budget is allocated in a perturbation of the covariance matrix
function Σx. The connection with the results in [9] is analogous to the static
case. Moreover, the additional MSE occasioned by the least favorable model
perturbation is ∆MSE = tr

∫
(Σ̃e − Σe).

Problem (17) can be relaxed in the following way

min
g∈G

max
f̃∈B∞τ

J(f̃ , g) + λ(c− Sτ (f̃‖f)), (18)

where B∞τ = {f̃ s.t. Sτ (f̃‖f) < ∞}. Here, λ is fixed a priori and such that
λ > (1− τ)‖Σe‖∞.

Remark 4.1 Also in this case, it is possible to show that Problem (18) is a
minimum entropy problem in the sense of [13].

5 Simulation study

We analyze the impact of parameters c and τ on the least favorable statistics
of the estimation error corresponding to the least favorable model in Bτ . In the
static case, given τ and c, λ is given by solving equation (30)-(32) in Appendix.
The latter computation can be efficiently performed using the bisection method.
Then, the least favorable statistics of the estimation error is given by Theorem
3.1. The same strategy is applied in the dynamic case.
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5.1 Static Estimaton

We consider a bidimensional Gaussian random vector x, that is n = 2. We
assume that the nominal covariance matrix of the estimation error is

P =

[
0.15 0.05
0.05 0.1

]
.

We consider the least favorable statistics f̃◦ ∈ Bτ where Bτ has been defined in
(7) with τ = 0, τ = 0.5 and τ = 1. In Figure 2 we show the additional MSE
occurred when c ∈ [0.001, 0.1]. We see that, for each value of τ , the larger c

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
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τ=1

Figure 2: Additional MSE occasioned by the least favorable perturbation in Bτ
defined in (7) with τ = 0, τ = 0.5 and τ = 1.

is, the larger ∆MSE is, as expected. Moreover, for c fixed, the larger τ is, the
smaller ∆MSE is. Therefore, smaller values of τ corresponds to least favorable
statistics with a larger ∆MSE. In order to compare the features of the three
different balls Bτ , with τ = 0, τ = 0.5 and τ = 1, we fix the tolerance c for each

12



ball in such a way that ∆MSE = 0.08 for the least favorable statistics. The
tolerances, respectively, are cτ=0 = 0.0692, cτ=0.5 = 0.0728 and cτ=1 = 0.0767.
The corresponding covariance matrices of the least favorable estimation error
are

P̃τ=0 =

[
0.2041 0.0783
0.0783 0.1259

]
, P̃τ=0.5 =

[
0.2039 0.0779
0.0779 0.1261

]
,

P̃τ=1 =

[
0.2037 0.0775
0.0775 0.1263

]
.

One can see that the least favorable statistics in Bτ=0 tends to concentrate the
perturbation on the component with larger nominal variance. On the contrary,
the least favorable statistics in Bτ=1 tends to spread such perturbation among
the two components. Finally, the least favorable statistics in Bτ=0.5 mitigates
those two features.

5.2 Noncausal Filtering

We consider a Gaussian scalar process x(t), that is n = 1. The spectral density
of its nominal estimation error e(t) is depicted in Figure 3. We consider three
different balls Bτ , see (15), with τ = 0, τ = 0.5 and τ = 1. Also in this case
we noticed that smaller values of τ corresponds to least favorable probability
measures with a larger ∆MSE. Similarly to the static case, we fix the tolerance
c for each ball in such a way that ∆MSE = 0.2 for the least favorable statistics.
The tolerances, respectively, are cτ=0 = 0.022, cτ=0.5 = 0.025 and cτ=1 =
0.028. The corresponding least favorable spectral densities of e(t) are depicted
in Figure 3. One can see that the least favorable spectral density in Bτ=0

tends to concentrate the perturbation on the frequency band where the spectral
density takes larger values. On the contrary, the least favorable spectral density
in Bτ=1 tends to spread such perturbation over the entire frequency band. Also
in this case, the least favorable spectral density in Bτ=0.5 mitigates those two
features. Next, we consider a bidimensional Gaussian process x(t), i.e. n = 2.
The nominal spectral density of e(t) is depicted in Figure 4. As before, we
fix c for each ball in such a way that the least favorable statistics is such that
∆MSE = 1.7. We found cτ=0 = 0.076, cτ=0.5 = 0.088 and cτ=1 = 0.1. The
corresponding least favorable spectral density in Bτ , with τ = 0, τ = 0.5 and
τ = 1, is depicted in Figure 4. One can see that the least favorable spectral
density in Bτ=0 allocates most of the perturbation in the second component,
more precisely in the frequency band where the nominal spectral density takes
the largest values (also compared with respect to the first component). On the
contrary, the least favorable spectral density in Bτ=1 allocates more perturbation
in the first component than the former; again, the latter tends to spread the
perturbation among the two components and on the entire frequency band.
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Figure 3: Spectral density of e(t) with respect to the nominal statistics and with
respect to the least favorable statistics in Bτ defined in (15) with τ = 0, τ = 0.5
and τ = 1.
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Figure 4: Spectral density of e(t) with respect to the nominal statistics and with
respect to the least favorable statistics in Bτ defined in (15) with τ = 0, τ = 0.5
and τ = 1.
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6 Conclusions

In this paper, we showed that the Bayes estimator and the noncausal Wiener
filter based on the nominal statistics are robust according to the minimax ap-
proach where the uncertainty is specified by a ball formed by placing a bound
on the τ divergence family between the actual and the nominal statistics. Inter-
estingly, the relaxation of this minimax problem can be understood as a family
of risk-sensitive estimation problems which is also linked to a family of mini-
mum entropy problems. Finally, through a simulation study, we have analyzed
the features of this family of uncertainty classes. These results represent the
starting point to derive a new family of robust Kalman filters characterized by
the τ divergence family [21].

Appendix

A Proof of Proposition 2.1 and Proposition 2.2

To prove Proposition 2.1 it is sufficient to note that

Dτ (f̃‖f) =
1

1− τ
‖∆mz‖2K−1

Z

+Dτ (K̃z‖Kz), (19)

where Dτ is the τ divergence between K̃z and Kz [20]. The latter is nonnegative
and is equal to zero if and only if K̃z = Kz. Since Kz ∈ Qq+, the first term in
(19) is nonnegative and is equal to zero if and only if ∆mz = 0, that is m̃z = mz.
Therefore, Dτ is nonnegative and equality holds if and only if m̃z = mz and
K̃z = Kz, that is f̃ = f . The proof for cases τ = 0 and τ = 1 is similar. Finally,
Proposition 2.2 can be proved along the same lines.

B Proof of Theorem 3.1

The proof is divided in three cases.
Case τ = 0. Dτ is equivalent to the Kullback-Leibler divergence and the

statement has been proved in [9, Theorem 1].

Case 0 < τ < 1. We have to show that J(f̃ , g◦) ≤ J(f̃◦, g◦) ≤ J(f̃◦, g) for
any (f̃ , g) ∈ Bτ ×G. Since f̃◦ ∼ N (m̃◦z, K̃

◦
z ), the inequality J(f̃◦, g◦) ≤ J(f̃◦, g)

implies that g◦ is the Bayesian estimator (9). Next, we show the inequality
J(f̃ , g◦) ≤ J(f̃◦, g◦) holds. Therefore, it is sufficient to show

f̃◦ = arg max
f̃∈Bτ

J(f̃ , g◦). (20)

Let e = x − g◦(y) =
[
In −G◦

]
(z − mz). Therefore, m̃e := Ef̃ [e] =
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[
In −G◦

]
∆mz and

K̃e := Ef̃ [(e− m̃e)(e− m̃e)
T ]

=

([
In −G◦

]
K̃z

[
In

−(G◦)T

])
.

Moreover,

J(f̃ , g◦) = tr(m̃em̃
T
e + K̃e)

= tr

([
In −G◦

]
(K̃z + ∆mz∆m

T
z )

[
In

−(G◦)T

])
.

In order to characterize f̃ , we exploit the duality theory. The Lagrangian is

L(m̃z, K̃z, λ) = J(f̃ , g◦) + λ(c−Dτ (f̃‖f))

= ∆mT
zWλ∆mz + tr

([
In −G◦

]
K̃z

[
In

−(G◦)T

])
+ λ

(
c+ tr

(
1

τ(1− τ)
(L−1

z K̃zL
−T
z )τ

− 1

1− τ
K̃zK

−1
z −

1

τ
In+p

))
, (21)

where

Wλ =

[
In

−(G◦)T

] [
In −G◦

]
− λ

1− τ
K−1
z

and λ ≥ 0 is the Lagrange multiplier. Note that, L is bounded above and
strictly concave in K̃z when λ > 0. Moreover, L is bounded above and strictly
concave in m̃z if Wλ is negative definite. Define M =

[
In −G◦

]
Lz. Since

G◦ = KxyK
−1
y and Kz = LzL

T
z , it is easy to check that

MMT =
[
In −G◦

]
Kz

[
In

−(G◦)T

]
= Kx −KxyK

−1
y Kyx = P.

Moreover, Wλ is congruent to MTM − λ
1−τ In+p which is negative definite when

λ > (1− τ)‖MTM‖ = (1− τ)‖MMT ‖ = (1− τ)‖P‖. (22)

Therefore, under assumption (22), L is bounded above and strictly concave
in (m̃z, K̃z), and it is maximized by the points (m̃◦z, K̃

◦
z ) annihilating its first

variations

∇m̃z,uL = 2∆mT
zWλu

∇K̃z,V L = tr

(([
In

−(G◦)T

] [
In −G◦

]
+

λ

1− τ
(L−Tz (L−1

z K̃zL
−T
z )τ−1L−1

z −K−1
z )

)
V

)
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for any direction u ∈ Rn+p and V ∈ Qn+p, respectively. To compute ∇K̃z,V L
we exploited the formula for the first variation of the exponentiation of a matrix
given in [17]. Since Wλ is negative definite, it follows that ∆mz = 0, and thus
m̃◦z = mz. Regarding K̃◦z , we have

λ

1− τ
L−Tz (L−1

z K̃◦zL
−T
z )τ−1L−1

z

=
λ

1− τ
K−1
z −

[
In

−(G◦)T

] [
In −G◦

]
moreover,

(L−1
z K̃◦zL

−T
z )τ−1

= In+p −
1− τ
λ

LTz

[
In

−(G◦)T

] [
In −G◦

]
Lz, (23)

where the right hand side of (23) is positive definite by (22). Accordingly, under
assumption (22), we have

K̃◦z =

Lz

(
In+p −

1− τ
λ

LTz

[
In

−(G◦)T

] [
In −G◦

]
Lz

) 1
τ−1

LTz . (24)

Note that, Kz admits the following block upper diagonal lower (UDL) factor-
ization

Kz =

[
In G◦

0 Ip

] [
P 0
0 Ky

] [
In 0

(G◦)T Ip

]
(25)

and we choose Lz as

Lz =

[
In G◦

0 Ip

] [
LP 0
0 Ly

]
, (26)

where Ky = LyL
T
y and P = LPL

T
P . Accordingly,

(
In+p −

1− τ
λ

LTz

[
In

−(G◦)T

] [
In −G◦

]
Lz

) 1
τ−1

=

(
In+p −

1− τ
λ

[
LTP
0

] [
LP 0

]) 1
τ−1

=

([
In − 1−τ

λ LTPLP 0
0 Ip

]) 1
τ−1

=

[
(In − 1−τ

λ LTPLP )
1

τ−1 0
0 Ip

]
(27)

18



and by (24), (26) and (27) we have

K̃◦z =

[
In G◦

0 Ip

] [
P̃ 0
0 Ky

] [
In 0

(G◦)T Ip

]
, (28)

where

P̃ = LP

(
In −

1− τ
λ

LTPLP

) 1
τ−1

LTP . (29)

Moreover,

K̃◦z =

[
P̃ +KxyK

−1
y Kyx Kxy

Kyx Ky

]
accordingly, K̃x = P̃ +KxyK

−1
y Kyx. Since λ > 0, the duality gap between the

primal and the dual is zero if and only if Dτ (f̃◦‖f) = c. It remains to be shown
that there exists λ > (1 − τ)‖P‖ such that Dτ (f̃◦‖f) = c. By considering the
factorizations (25), (28) and (29), we obtain

Dτ (f̃◦‖f)

= tr

(
1

τ(τ − 1)
(L−1

z K̃◦zL
−T
z )τ +

1

1− τ
K̃◦zK

−1
z +

1

τ
In+p

)
= tr

(
1

τ(τ − 1)
(L−1

P P̃L−TP )τ +
1

1− τ
L−1
P P̃L−TP +

1

τ
In

)
= tr

(
1

τ(τ − 1)

(
In −

1− τ
λ

LTPLP

) τ
τ−1

+
1

1− τ

(
In −

1− τ
λ

LTPLP

) 1
τ−1

+
1

τ
In

)
. (30)

Let LTPLP = UDUT be the eigenvalue decomposition of LTPLP , where UUT =
In and D = diag(d1, d2, . . . , dn) with di = σi(L

T
PLP ). Therefore, we get

Dτ (f̃◦‖f)

= tr

(
1

τ(τ − 1)

(
In −

1− τ
λ

D

) τ
τ−1

+
1

1− τ

(
In −

1− τ
λ

D

) 1
τ−1

+
1

τ
In

)

=

n∑
i=1

γ(λ, di)
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with

γ(λ, di) =
1

τ(τ − 1)

(
1− 1− τ

λ
di

) τ
τ−1

+
1

1− τ

(
1− 1− τ

λ
di

) 1
τ−1

+
1

τ
.

For λ > (1− τ)di > 0, we have

d

dλ
γ(λ, di) = −d

2
i

λ3

(
1− 1− τ

λ
di

) 2−τ
τ−1

< 0

and

lim
λ→∞

γ(λ, di) = 0, lim
λ→((1−τ)di)+

γ(λ, di) =∞

so that γ(λ, di) is a monotone decreasing function of λ. Since Dτ (f̃◦‖f) is the
the sum of γ(λ, di) with i = 1 . . . n, it is also a monotone decreasing function of
λ over ((1− τ)‖P‖,∞) and

lim
λ→∞

Dτ (f̃◦‖f) = 0, lim
λ→((1−τ)‖P‖)+

Dτ (f̃◦‖f) =∞. (31)

We conclude, for any c > 0 there exists a unique λ > (1 − τ)‖P‖ such that
Dτ (f̃◦‖f) = c.

Case τ = 1. The Lagrangian L can be formed as in (21). Then, one can see
that L is bounded below if and only if m̃z = mz. Accordingly, the least favorable
density f̃◦ has mean mz. Then, the least favorable K̃◦z can be characterized
using the duality theory similarly to the case 0 < τ < 1. In particular, it is not
difficult to see that

D1(f̃◦‖f)

= tr

(
exp

(
1

λ
LTPLP

)(
1

λ
LTPLP − In

)
+ In

)
. (32)

C Proof of Proposition 3.1

The statement can be proved along the same lines of Proposition 2.3.1 and
Proposition 2.3.2 in [13].
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D Proof of Theorem 3.2

Exploiting similar argumentations used in the proof of Proposition 1 in [9], we
have that

max
f̃∈B∞τ

L(f̃ , λ, g) = Hτ (e, λ) + λc,

where L(f̃ , λ, g) = J(f̃ , g) + λ(c−Dτ (f̃‖f)). Since g does not depend on λ, we
conclude that

min
g∈G

max
f̃∈B∞τ

L(f̃ , λ, g) = min
g∈G
Hτ (e, λ).

E Proof of Theorem 4.1

The proof is similar to the one of Theorem 3.1. The unique peculiarity follows.
Since Σz has bounded McMillan degree and 1

1−τ ∈ N, then the integrand func-

tion in Sτ (f̃◦‖f) is rational. Moreover, as λ→ ((1− τ)‖Σe‖∞)+ this integrand
function has at least one pole tending to T. Accordingly, these assumptions
allow to conclude that

lim
λ→((1−τ)‖Σe‖∞)+

Sτ (f̃◦‖f) =∞.
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