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Abstract

This paper studies a stochastic extremum seeking method to steer a nonholonomic vehicle to the unknown source of a static
spatially distributed filed in a plane. The key challenge lies in the lack of vehicle’s position information and the distribution
of the scalar field. Different from the existing stochastic strategy that keeps the forward velocity constant and controls only
the angular velocity, we design a stochastic extremum seeking controller to regulate both forward and angular velocities
simultaneously in this work. Thus, the vehicle decelerates near the source and stays within a small area as if it comes to a
full stop, which solves the overshoot problem in the constant forward velocity case. We use the stochastic averaging theory to
prove the local exponential convergence, both almost surely and in probability, to a small neighborhood near the source for
elliptical level sets. Finally, simulations are included to illustrate the theoretical results.
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1 Introduction

Source seeking is a problem of steering single or mul-
tiple autonomous agents to seek the source of an un-
known scalar field, which may be thermal, electromag-
netic, acoustic, or the concentration of a chemical agent.
Source seeking is of interest in many areas, such as en-
vironmental studies, explosive detection, localizing the
sources of hazardous chemicals leakage or pollutants,
etc. There are a diversity of approaches to source seek-
ing problem. Motivated by biological chemotactic and
anemotactic behaviors, behavior-based adaptive mission
planners are proposed to trace a chemical plume to lo-
cate its source [9,18]. In an alternative approach, math-
ematical programming methods, such as gradient de-
scent method, are adopted to address this problem [7,
15, 17, 20]. Besides, source-likelihood mapping methods
are studied in [6, 16].

⋆ The material in this paper was not presented at any con-
ference.
∗ Corresponding author. Tel. +86010-62782721. Fax
+86010-62782721.

Email addresses: linjb11@mails.tsinghua.edu.cn
(Jinbiao Lin), shijis@tsinghua.edu.cn (Shiji Song),
youky@tsinghua.edu.cn (Keyou You), krstic@ucsd.edu
(Miroslav Krstic).

In this work, we consider steering a single nonholonomic
vehicle to locate a static source which creates a contin-
uous signal map in a plane. Recently there is a growing
interest in the study of locating such a source without
position information [1,3,13]. The lack of position infor-
mation is taken account for vehicles operated in environ-
ments where their position information is unavailable or
costly. Obviously, this constraint, along with the non-
holonomic constraint of the vehicle kinematics, renders
the guidance of the vehicle interesting and challenging.

Extremum seeking (ES) is a model free optimization
method for dynamical system with limited knowledge
[8]. It has been proved to an effective method for non-
holonomic source seeking problems without position in-
formation. In [21] and [3] ES was applied to tune the
forward or angular velocity of the vehicle to locate the
source. In [5] Ghods and Krstic regulated both veloci-
ties to control the vehicle to stop near the source. While
the above works focus on the 2D vehicles, Lin et al. [10]
considered the more complicated 3D case. Different from
the above perturbation-based ES methods, a novel reg-
ulator without injecting any perturbation is proposed
based on Lie bracket approximation in [4, 19].

Motivated by the chemotactic behavior of the bacterium
Escherichia coli (E. coli) [2], Liu and Krstic applied the
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stochastic averaging technique to ES [11]. In [12], the
stochastic ES algorithm is applied to the source seek-
ing problem. Thus, the seeker can successfully locate the
source but with an unpredictable, “nearly random” tra-
jectory. This feature would be useful when the seeker
itself is pursued by another hostile pursuer. Whereas
in [12] the forward velocity is chosen to be constant,
which results in complicated asymptotic behaviors. Par-
ticularly, the vehicle cannot settle when it approaches
close to the source. Instead it exhibits certain overshoots
and finally revolves around the source. A small constant
forward velocity may improve the asymptotic perfor-
mance, but it will decrease the convergence rate.

In order to improve the asymptotic performance of the
vehicle, we applied the stochastic ES to tune both for-
ward and angular velocities simultaneously, which is dif-
ferent from [12]. Note that the deterministic case has
been discussed in [5], and in this work we focus on de-
signing a stochastic excitation to modulate the veloci-
ties. Under a tunable forward velocity we can slow down
the vehicle around the source to approach the source. In
addition, the undesired overshoots are eliminated due to
a tunable forward velocity. We adopt the stochastic av-
eraging theory to establish the local exponential conver-
gence, both almost surely and in probability, to a small
neighborhood near the source, for signal fields with el-
liptical level sets. Note that in [3,5,12] only the stability
for circular level sets was proved, and in this work the
stability for elliptical level sets is firstly proved 1 .

It should be mentioned that besides stochastic ES there
are several methods to address stochastic source seek-
ing without position information. In [1] Azuma et al.
adopted the stochastic approximation technique to solve
this problem by sequentially generating waypoints which
converges to the source. Their method can work for a
switching signal field under the assumption that the
robot can move to any point in the body fixed coordinate
frame. Apparently the controller is discontinuous and it
requires accurate clocks to decide whether to enter next
step. Another representative method is proposed in [14],
where induces a swarm of autonomous vehicles to to per-
form a biased random walk and finally achieves higher
vehicle densities near the maximum. The convergence
of the agents probability density to a specified function
of the spatial profile of the measured signal was demon-
strated. Compared with these methods, the advantage
of the stochastic ES is that we can use a single vehicle
with a simple continuous controller to locate the source.
What’s more, the exponential convergence (in probabil-
ity and almost surely) to to a small attractor near the
source can be established. However, the convergence re-
sults of stochastic ES are only for static quadratic signal
maps while in [1,14] the signal map can be more general.

1 In [4,19], the stability for a general signal map was proved
under a different strategy, but their approach is inefficient
in the convergence towards the source.
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Fig. 1. Geometric interpretation of vehicle model.

The rest of the paper is organized as follows. In Section
2 we describe the nonholonomic source seeking problem
and propose the stochastic ES scheme. In Section 3 we
prove the local exponential convergence for signal fields
with elliptical level sets. We first derive an average sys-
tem to approximate the original system, then we con-
sider the local stability under different bias forward ve-
locities. After that we discuss the result for circular level
sets as a special case. In Section 4 we include simula-
tion results to illustrate the effectiveness of the control
scheme.

2 Problem Description and Control Scheme

In this section we firstly describe the vehicle model and
formulate the source seeking problem. Then we propose
a stochastic ES scheme to adjust the forward and angular
velocities of the vehicle.

2.1 Problem Description

Similar to [3], we consider an autonomous vehicle mod-
eled as a nonholonomic unicycle, see Fig. 1 for illustra-
tion. The heading angle is defined by θ, and the position
of the vehicle center is defined by rc. A sensor is mounted
at the front end rs, a distance R away from the vehi-
cle center rc. The vehicle has actuators which are used
to impart the forward velocity v and the angular veloc-
ity ψ. The kinematic equations of motion for the vehicle
center and the sensor are

ṙc = vejθ , (1)

θ̇ = ψ, (2)

rs = rc +Rejθ, (3)

where rc and rs are written as complex variables.

The task of vehicle is to seek a static source that emits
a spatially distributed signal in a plane. We denote the
signal strength at the location r by J = f (r) and make
the following assumption.

Assumption 1 The signal strength J decays away from
the source and achieves its isolated local maximum f∗ =

2
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Fig. 2. Block diagram of stochastic source seeking via tuning
of the forward and angular velocities of the vehicle.

f(r∗) at the source location r∗. What’s more, the distri-
bution f (r) is twice continuously differentiable and

∇f(r∗) = 0, (4)

∇2f(r∗) is negative definite, (5)

where ∇f(r∗) and ∇2f(r∗) denote the gradient and Hes-
sian of f at r∗ respectively.

Assumption 1 is a natural extension of Assumption 2.3
in [8]. Under this assumption, we can approximate the
signal distribution by a quadratic map when studying
the local convergence. Without loss of generality, we as-
sume the quadratic map takes the form

J = f∗ − qx(xs − x∗)2 − qy(ys − y∗)2, (6)

where rs = [xs, ys]
T , r∗ = [x∗, y∗]T , and qx and qy are

unknown positive constants.

The objective of this work is to design a control scheme
to navigate the vehicle to the unknown source. The sig-
nal strength J can be measured by the sensor, but the
position information is unavailable. The explicit form of
the signal field, such as the shape of f and the position of
r∗, is also unknown. Note that the traditional gradient
searching strategy is not suitable for the problem due to
the lack of position information.

2.2 Control Scheme

We employ the stochastic ESmethod to tune the angular
velocity ψ directly and the forward velocity v indirectly.
The control scheme is depicted in Fig. 2. The control

laws are given by

v = Vc + bξ, (7)

ψ = aη̇ + cξ sin(η), (8)

ξ =
s

s+ h
[J ], (9)

η =
g
√
ε

εs+ 1
[Ẇ ], (10)

where the parameters a, g, ε, b, c, h and Vc are positive
and will affect the performance of the approach, J is the
sensor reading, and W (t) is a standard Brownian mo-
tion defined in a complete probability space (Ω,F , P )
with the sample space Ω, the σ-field F , and the proba-
bility measure P . Here the colored noise η is used as a
stochastic perturbation in ES.

In our control scheme, the angular velocity ψ is tuned ac-
cording to the idea of the stochastic ES tuning law [11].
The perturbation term aη̇ is added to persistently excite
the system while the corresponding demodulation term
sin(η) is used to estimate the gradient of the nonlinear
map f . Different from the deterministic case which uses
a sinusoidal perturbation [3,5], the stochastic perturba-
tion results in a partly random trajectory. The forward
velocity v is designed to be positively correlated to ξ,
since ξ describes the variation of the sensor reading J in
some sense. As a result, the vehicle would speed up when
approaching the source, and slow down when deviating
from the source.

It is worthy mentioning that our control scheme is dif-
ferent from the one in [12], where a vehicle with a con-
stant forward velocity is considered. Employing the ba-
sic stochastic ES method in [11], the vehicle with a con-
stant forward velocity cannot settle even if it has reached
the source. In addition, it easily overshoots the source
and has to turn around. This process may repeat for
a while before the vehicle finally revolves around the
source. In [12] a nonlinear damping item is added to
tune the angular velocity to improve the performance
and achieve exponential stability. In this work, we tune
the forward velocity along with the angular velocity. In-
tuitively this is a better way to control the vehicle, as
we are able to smartly adjust the vehicle to speed up or
slow down depending on different circumstances. Thus
we can apply the basic stochastic ES control law to tun-
ing the angular velocity directly without employing the
nonlinear damping.

3 Stability Analysis

The dynamics of the closed-loop system is intricate on
the account of nonlinearities of the vehicle model and the
signal map and the existence of the stochastic perturba-
tion. We adopt the stochastic averaging theory in [11]
to prove the local exponential convergence for elliptical
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level sets. In Section 3.1 we derive an average system to
approximate the closed-loop system. In Section 3.2 we
prove that the vehicle converges, almost surely and in
probability, to an attractor near the source under a small
bias forward velocity. Section 3.3 we consider a special
case where the signal distribution is circular. In this case,
the local exponential convergence can be established no
matter the bias forward velocity is small or large.

3.1 Average System for Elliptical Level Sets

We firstly rewrite the elliptical signal map (6) as

J = f∗ − (qr + 2qp)(xs − x∗)2 − (qr − 2qp)(ys − y∗)2

= f∗ − qr|rs − r∗|2 − qp

(

(rs − r∗)
2
+ (rs − r∗)

2
)

,

where qr and qp are unknown and qr > 2|qp| ≥ 0.

Before analyzing the stability of the closed-loop system,
we define an output error variable eξ = h

s+h
[J ] − f∗ to

express the output of the washout filter as

ξ =
s

s+ h
[J ] = J − h

s+ h
[J ] = J − f∗ − eξ.

Thus, we obtain ėξ = hξ.

By inserting the control laws (7)-(10) into the system
(1)-(3) and expressing η̇ as

η̇ =
g
√
εs

εs+ 1
[Ẇ ] =

1√
ε

gεs+ g − g

εs+ 1
[Ẇ ] =

g√
ε
Ẇ − 1

ε
η,

the closed-loop system is written as

drc = (Vc + bξ)ejθdt, (11)

dθ = −a
ε
ηdt+ cξ sin(η)dt +

ag√
ε
dW, (12)

deξ = hξ, (13)

dη = −1

ε
ηdt+

g√
ε
dW, (14)

ξ = J − f∗ − eξ, (15)

rs = rc +Rejθ. (16)

To analyze the closed-loop system, we firstly re-express
it by variable transformation. Then we redefine rc in its
polar coordinates for the convenience of the calculation
of the equilibria. To this end, we start by defining shifted
variables

r̂c = rc − r∗, θ̂ = θ − aη.

The dynamics of the shifted system is given by

dr̂c = (Vc + bξ)ej(θ̂+aη),

dθ̂ = cξ sin(η)dt,

deξ = hξ,

ξ = −eξ − qr
∣

∣r̂c +Rejθ
∣

∣

2

− qp

(

(r̂c +Rejθ)2 + (r̂c +Rejθ)
2
)

,

dη = −1

ε
ηdt+

g√
ε
dW.

By (14) and the definition of Ito stochastic differen-

tial equation, we obtain η(t) = η(0) −
∫ t

0
1
ε
η(τ)dτ +

∫ t

0
g√
ε
dW (τ). Then we have η(εt) = η(0)−

∫ t

0
η(εu)du+

∫ t

0
g√
ε
dW (εu). By defining χ(t) = η(εt) and B(t) =

1√
ε
W (εt), we have dχ(t) = −χ(t)dt+gdB(t), whereB(t)

is a standard Brownian motion and the process χ(t) is
an Ornstein–Uhlenbeck (OU) process which is ergodic

with invariant distribution µ(dy) = 1√
πg

e
− y2

g2
dy
.

We redefine r̂c by its polar coordinates

−r̂c = |r̂c| ejθ
∗

= r̃ce
jθ∗

,

θ∗ = arg(−r̂c) = arg(r∗ − rc),

where r̃c is the distance between the vehicle center and
the source, θ∗ represents the heading angle from the ve-
hicle center towards the source. We also define ẽξ =
eξ + qrR

2 for convenience. Using these new definitions,
ξ is expressed as

ξ = −ẽξ − 2qpR
2 cos(2θ̂ + 2aχ(t/ε))

− r̃2 (qr + 2qp cos(2θ
∗))

+ 2r̃R
(

qr cos(θ̂ − θ∗ + aχ(t/ε))

+ 2qp cos(θ̂ + θ∗ + aχ(t/ε))
)

. (17)

Now we obtain the following shifted error system

dr̃c
dt

= −(Vc + bξ) cos(θ̂ − θ∗ + aχ(t/ε)), (18)

dθ∗

dt
= −Vc + bξ

r̃c
sin(θ̂ − θ∗ + aχ(t/ε)), (19)

dθ̂

dt
= cξ sin(χ(t/ε)), (20)

dẽξ
dt

= hξ, (21)

dχ(t) = −χ(t)dt+ gdB(t). (22)

According to the stochastic averaging theory [11], the
error system can be approximated by an average system,
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which is given by

dr̃avc
dt

= (bφ0 − Vc) cos(θ̂
av − θ∗av)I1(a, g)

+ bqpR
2φ1 − br̃avc Rφ2, (23)

dθ∗av

dt
=
bφ0 − Vc
r̃avc

sin(θ̂av − θ∗av)I1(a, g)

+
bqpR

2

r̃avc
φ3 − bRφ4, (24)

dθ̂av

dt
= 2cqpR

2 sin(2θ̂av)I2(2a, g)

− 2cr̃Rφ5I2(a, g), (25)

dẽξ
dt

= −2hqpR
2 cos(2θ̂av)I1(2a, g)− hφ0

+ 2hr̃avc Rφ6I1(a, g), (26)

where I1(a, g) =
∫

ℜ
cos(ay)µ(dy) = e−

a2g2

4 , I2(a, g)=

∫

ℜ
sin(ay) sin(y)µ(dy) = 1

2

[

e−
(a−1)2g2

4 − e−
(a+1)2g2

4

]

and

φ0 = ẽavξ + (r̃avc )2(qr + 2qp cos(2θ
∗av)),

φ1 = cos(3θ̂av − θ∗av)I1(3a, g)

+ cos(θ̂av + θ∗av)I1(a, g),

φ2 = qr cos(2θ̂
av − 2θ∗av)I1(2a, g) + 2qp cos(2θ

∗av)

+ 2qp cos(2θ̂
av)I1(2a, g) + qr,

φ3 = sin(3θ̂av − θ∗av)I1(3a, g)− sin(θ̂av + θ∗av)I1(a, g),

φ4 = qr sin(2θ̂
av − 2θ∗av)I1(2a, g)− 2qp sin(2θ

∗av)

+ 2qp sin(2θ̂
av)I1(2a, g),

φ5 = qr sin(θ̂
av − θ∗av) + 2qp sin(θ̂

av + θ∗av),

φ6 = qr cos(θ̂
av − θ∗av) + 2qp cos(θ̂

av + θ∗av).

The average error system has eight equilibria as follows 2

eq1 = [ρ(qp), 0, 0, e(qp)] , (27)

eq2 = [ρ(qp), π, π, e(qp)] , (28)

eq3 = [ρ(−qp), π/2, π/2, e(−qp)] , (29)

eq4 = [ρ(−qp),−π/2,−π/2, e(−qp)] , (30)

eq5 = [−ρ(qp), π, 0, e(qp)] , (31)

eq6 = [−ρ(qp), 0, π, e(qp)] , (32)

eq7 = [−ρ(−qp),−π/2, π/2, e(−qp)] , (33)

eq8 = [−ρ(−qp), π/2,−π/2, e(−qp)] , (34)

2 We have implicitly assumed θ∗
ave

∈ (−π, π] and θ̂ave ∈

(−π, π] to exclude repetitive equilibria.

where eqi is of the form [r̃avc , θ
∗av, θ̂av, ẽavξ ] and

ρ(qp)
∆
=

−VcI1(a, g) + bqpR
2γ2

bR(qr + 2qp)γ1
,

e(qp)
∆
= 2R(qr + 2qp)I1(a, g)ρ(qp)− (qr + 2qp)ρ

2(qp)

− 2qpR
2I1(2a, g),

γ1 = 1 + I1(2a, g)− 2I21 (a, g),

γ2 = I1(3a, g) + I1(a, g)− 2I1(2a, g)I1(a, g).

Note that with positive a and g, we have I1(a, g) > 0,
I2(a, g) > 0, γ1 > 0 and γ2 > 0.

Each of the equilibria (27)-(34) represents an attractor
around the source. The value of r̃avc should be real and
positive as it represents the average distance between
the vehicle center and the source. Note the difference
between θ̂av and θ∗av is either 0 or π, which indicates
the average heading of the vehicle points either directly
towards or away from the source.

3.2 Stability for Elliptical Level Sets

Before we declare the stability, we define an index vari-
able ι as

ι =



























1, if qpγ3 < 0 and ρ(qp) > 0

3, if qpγ3 > 0 and ρ(−qp) > 0

5, if qpγ3 < 0 and ρ(qp) < 0

7, if qpγ3 > 0 and ρ(−qp) < 0

,

where

γ3 = (I1(3a, g)− I1(a, g)) I2(a, g)

+ (1− I1(2a, g)) I2(2a, g).

Theorem 2 Consider the system (6), (11)-(16) with
positive parameters a, g, b, c, h, and ε ∈ (0, ε0). The
parameters a, g, b, c, h, Vc are chosen such that either

qpγ3 < 0, (35)

V l
c (qp) < Vc < V u

c (qp), and Vc 6= Vio, (36)

or

qpγ3 > 0, (37)

V l
c (−qp) < Vc < V u

c (−qp), and Vc 6= Vio, (38)
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where

V l
c (qp)

∆
=

−1

2I21 (a, g)

(

bR2 (qr + 2qp) γ1 (1 + I1(2a, g))

+ hRγ1 − 2bR2qpγ2I1(a, g)
)

,

V u
c (qp)

∆
=
b2R(qr − 2qp)γ4 + 2bcqpR

2γ5
2cI1(a, g)I2(a, g)

,

Vio
∆
= −sgn(γ3qp)bqpR

2γ2/I1(a, g),

γ4 = γ1 (1− I1(2a, g)) ,

γ5 = γ2I2(a, g)− 2γ1I2(2a, g).

If the initial conditions rc(0), θ(0), eξ(0) are such that ei-
ther |Ξ(0)− eqι| or |Ξ(0)− eqι+1| is sufficiently small,
where

Ξ(t) =
[

|rc(t)− r∗|, arg(r∗ − rc(t)), θ(t), eξ(t)− qrR
2
]

,

then there exist constants C0, γ0 > 0, T (ε) : (0, ε0) → N

such that for any δ > 0, the trajectory of the vehicle
center rc(t) satisfies the following properties,

lim
ε→∞

inf
{

t ≥ 0 : ||rc(t)− r∗| − r̃ι|
> C0e

−γ0t + δ
}

= ∞, a.s.,

lim
ε→∞

P
{

||rc(t)− r∗| − r̃ι| ≤ C0e
−γ0t + δ,

∀t ∈ [0, T (ε)]
}

= 1 with lim
ε→∞

T (ε) = ∞,

where r̃ι denotes the first element of eqι, the constant
C0 is dependent on the initial condition (rc(0), θ(0), e(0))
and on the parameters a, g, b, c, h, Vc, R, qr, qp, and the
constant γ0 is dependent on the parameters a, g, b, c, h,
Vc, R, qr, qp.

PROOF. The Jacobians of the equilibria (27)-(34) are
as follows,

Aeq1 = Aeq2 = J1(qp), Aeq3 = Aeq4 = J1(−qp),
Aeq5 = Aeq6 = J2(qp), Aeq7 = Aeq8 = J2(−qp),

where J1(qp) and J2(qp) are defined as

J1(qp)
∆
=















a11(qp) 0 0 a14

0 a22(qp) a23(qp) 0

0 a32(qp) a33(qp) 0

a41(qp) 0 0 −h















,

J2(qp)
∆
=















a11(qp) 0 0 −a14
0 a22(qp) a23(qp) 0

0 a32(qp) a33(qp) 0

−a41(qp) 0 0 −h















,

and the explicit forms of aij are given in Appendix B.

The JacobiansAeq1,Aeq2,Aeq5 andAeq6 have the same
characteristic equation, which is given by

[

λ2 + (h− a11(qp))λ− a11(qp)h− a14(qp)a41(qp)
]

×
[

λ2 − (a22(qp) + a33(qp))λ+ a22(qp)a33(qp)

− a23(qp)a32(qp)
]

= 0. (39)

To guarantee that all roots of characteristic equation
(39) have negative real parts, we need

a11(qp)− h < 0,

a11(qp)h+ a14a41(qp) < 0,

a22(qp) + a33(qp) < 0,

a23(qp)a32(qp)− a22(qp)a33(qp) < 0.

All the above requirements are satisfied under condi-
tions (35) and (36), which implies the Jacobians Aeq1,
Aeq2, Aeq5 and Aeq6 are Hurwitz. Hence, equilibria
eq1, eq2, eq5 and eq6 are exponentially stable. Simi-
larly we can prove that equilibria eq3, eq4, eq7 and eq8

are exponentially stable under conditions (37) and (38).

By Theorem 2 in [11], there exist constants c
(i)
0 > 0,

r
(i)
0 > 0, γ

(i)
0 > 0 and a function T (i)(ε) : (0, ε0) → N,

i = 1, · · · , 8, such that for any δ > 0 and any initial

condition |Λ(i)
ε (0)| < r

(i)
0 ,

lim
ε→∞

inf
{

t ≥ 0 : |Ξ(i)
ε (t)|

> c
(i)
0 |Ξ(i)

ε (0)|e−γ
(i)
0 t + δ

}

= ∞, a.s.,

lim
ε→∞

P
{

|Ξ(i)
ε (t)| ≤ c

(i)
0 |Ξ(i)

ε (0)|e−γ
(i)
0 t + δ,

∀t ∈ [0, T (i)(ε)]
}

= 1 with lim
ε→∞

T (i)(ε) = ∞,

where Ξ
(i)
ε (t) = |Ξ(t)− eqi|. With the fact |r̃c(t)− r̃ι| <

|Ξ(ι)
ε (t)|, we obtain

lim
ε→∞

inf
{

t ≥ 0 : |r̃c(t)− r̃ι|

> C
(ι)
0 e−γ

(ι)
0 t + δ

}

= ∞, a.s.,

lim
ε→∞

P
{

|r̃c(t)− r̃ι| ≤ C
(ι)
0 e−γ

(ι)
0 t + δ,

∀t ∈ [0, T (ι)(ε)]
}

= 1 with lim
ε→∞

T (ι)(ε) = ∞,

where C
(ι)
0 = c

(ι)
0 |Ξ(ι)

ε (0)|. The proof is completed. ✷

Theorem 2 indicates the vehicle can locate a source in an
elliptical signal map under small Vc. The vehicle finally
points either directly towards or away from the source
on the average. In fact the averaging heading of the ve-
hicle is finally aligned with one of the coordinate axes.
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In other words, the vehicle converges to one point at the
major or minor axis of the elliptical map. Note that the
stability for the elliptical map under a constant forward
velocity remains outstanding [3, 12], since in that case
there is not a stable equilibrium to analyze (in the po-
lar coordinates). For the case under large Vc, we cannot
figure out an analytic solution due to the complexity of
the average error system (23)-(26), though simulation
in Section 4 indicates the vehicle can also approach the
source in this case. In Section 3.3 we shall study the re-
sult in a circular signal map, and compare it against the
result in [12].

Next we give a brief discussion on the parameter selec-
tion for Theorem 2. Without loss of generality, we as-
sume qp > 0. We also assume a ∈ (0, 3) and g ∈ (0, 3) to
constrain the strength of the stochastic perturbation.

Using the fact that 2γ1 (1 + I1(2a, g)) > γ2I1(a, g)
and qr > 2qp, one can easily derive that V l

c (±qp) <
− hRγ1

2I2
1 (a,g)

< 0. We also have V u
c (sgn(−γ3)qp) > 0 under

the condition

b >
2cRsgn(γ3)qpγ5

(qr + 2sgn(γ3)qp)γ4
. (40)

Thus under condition (40), we can always find an appro-
priate Vc for Theorem 2 by choosing Vc small enough.

The sign of Vc − Vio decides the average heading of the
vehicle around the equilibria. The averageheading would
point inward when Vc < Vio and outward when Vc > Vio.
In addition, we have V l

c (qp) < 0 < Vio when γ3 < 0 and
V l
c (−qp) < Vio < 0 when γ3 > 0. Observing that γ3 > 0

if a ∈ (0, 1) and γ3 < 0 if a ∈ (1, 3), we obtain the
following corollary by summarizing the above analysis.

Corollary 3 Consider the system in Theorem 2 with
qp > 0, a ∈ (0, 1) ∪ (1, 3) and g ∈ (0, 3), assume condi-
tions in Theorem 2 and (40) are satisfied.

(i) When a ∈ (0, 1), the vehicle center converges to a
point at the major axis of the elliptical level sets. Spe-
cially, the vehicle eventually points away from the source
on the average under a small positive Vc.

(ii) When a ∈ (1, 3), the vehicle center converges to a
point at the minor axis of the elliptical level sets. Spe-
cially, the vehicle eventually points towards the source on
the average under a small negative Vc.

3.3 Stability for Circular Level Sets

One can easily derive the stability for circular level sets
under a small Vc by setting qp = 0 in Theorem 2. Due
to the special structure of the circular level sets, we can

also prove the stability under a large Vc. We write the
signal distribution as

J = f(rs) = f∗ − qr|rs − r∗|2, (41)

and rewrite the expression of ξ as

ξ = −qr
(

r̃2c − 2Rr̃c cos(θ̂ − θ∗ + aχ(t/ε))
)

− ẽξ.

Observing the expression of ξ and the shifted error sys-
tem (18)-(22), the system order can be reduced by defin-

ing θ̃ = θ̂ − θ∗, which results in the following reduced
shifted error system

dr̃c
dt

= −(Vc + bξ) cos(θ̃ + aχ(
t

ε
)), (42)

dθ̃

dt
= cξ sin(χ(

t

ε
)) +

(Vc + bξ)

r̂c
sin(θ̃ + aχ(

t

ε
)), (43)

dẽξ
dt

= hξ, (44)

ξ = −qrr̃2c − ẽξ + 2qrRr̃c cos(θ̃ + aχ(
t

ε
)), (45)

dχ(t) = −χ(t)dt+ gdB(t). (46)

The corresponding average error system is

dr̃avc
dt

=
(

bqrr̃
av2
c + bẽavξ − Vc

)

cos(θ̃av)I1(a, g)

− bqrRr̃
av
c cos(2θ̃av)I1(2a, g)− bqrRr̃

av
c , (47)

dθ̃av

dt
= −2cqrRr̃

av
c sin(θ̃av)I2(a, g)

+
Vc − b(qr r̃

av2
c + ẽavξ )

r̃avc
sin(θ̃av)I1(a, g)

+ bqrR sin(2θ̃av)I1(2a, g), (48)

dẽavξ
dt

= −hqrr̃av2c − hẽavξ + 2hqrRr̃
av
c cos(θ̃av)I1(a, g),

(49)

The average error system has four equilibria defined by 3

[

r̃av
eq1

c , θ̃av
eq1

, ẽav
eq1

ξ

]

= [ρ1, π, e1] , (50)
[

r̃av
eq2

c , θ̃av
eq2

, ẽav
eq2

ξ

]

= [−ρ1, 0, e1] , (51)
[

r̃av
eq3

c , θ̃av
eq3

, ẽav
eq3

ξ

]

= [ρ2, α, e2] , (52)
[

r̃av
eq4

c , θ̃av
eq4

, ẽav
eq4

ξ

]

= [ρ2,−α, e2] , (53)

3 We have implicitly assumed θ̃ave ∈ (−π, π] to exclude
repetitive equilibria.
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where

ρ1 =
VcI1(a, g)

bqrRγ1
,

ρ2 =

√

cVcI1(a, g)I2(a, g) + b2qrRγ6
2c2I22 (a, g)qrR

,

α = arccos

(

γ7
ρ2

)

= π − arctan

( √
γ8

b
√
qrR (1− I1(2a, g) )

)

,

e1 = −2VcI
2
1 (a, g)

bγ1
− V 2

c I
2
1 (a, g)

qrR2b2γ21
,

e2 = 2qrRγ7I1(a, g)−
cVcI1(a, g)I2(a, g) + b2qrRγ6

2c2I22 (a, g)R
,

γ6 = (1− I1(2a, g))
(

I21 (a, g)− I1(2a, g)
)

,

γ7 =
b (I1(2a, g)− 1)

2cI2(a, g)
,

γ8 = 2cVcI1(a, g)I2(a, g)− b2qrRγ4.

Each of the equilibria (50)-(53) represents an attractor
around the source. Similar to the proof of Theorem 2, we
can prove the local stability for the circular signal map.

Theorem 4 Consider the system (11)-(16), (41) with
positive parameters a, g, b, c, h, and ε ∈ (0, ε0).

(i) If the bias forward velocity Vc is chosen such that

either Vc ∈ (V̄ l
c , 0) or Vc ∈ (0, V̄ u

c ), (54)

where

V̄ l
c

∆
= V l

c (0) = −bqrRI1(2a, g) + bqrR+ h

2I21 (a, g)
Rγ1,

V̄ u
c

∆
= V u

c (0) =
b2qrRγ4

2cI1(a, g)I2(a, g)
,

then the system achieves the local convergence, both al-
most surely and in probability, to equilibrium (50) or
equilibrium (51).

(ii) If the bias forward velocity Vc is chosen such that

Vc > V̄ u
c , (55)

then the system achieves the local convergence, both al-
most surely and in probability, to equilibrium (52) or
equilibrium (53).

PROOF. The proof is given in Appendix A.

Theorem 4 describes the behavior of the vehicle in a
circular signal map under different Vc.

When Vc is small, the vehicle finally converges to an
annular attractor near the source, whose radius can be
small by choosing a small Vc close to zero. In the mean-
time, the convergence rate would not decrease severely
due to the tuning of the forward velocity. From (50) and
(51) we infer that the limit of the vehicle’s average head-
ing is directly towards the source under small negative Vc
and away from the source under small positive Vc. The
vehicle stays in the attractor as if it comes to a full stop.
Note that in this case the vehicle may converge to any
point at the annular attractor while in the elliptical case
the attractor must be at the major or minor axis of the
elliptical level sets. These phenomena are quite different
from the result in [12], though both control scheme suc-
ceed in navigating the vehicle to the source with a partly
random trajectory.

When Vc is large, the vehicle converges to an annular at-
tractor near the source while its average heading relative
to the annulus is more outward than inward. It finally
revolves around the source clockwise or counterclock-
wise on the average, depending on the initial conditions.
This behavior is similar to the result in [12], but the ve-
hicle revolves around the source with an non-tangential
average heading due to the metabolic forward velocity.

4 Simulation

In this section we present simulation results to illustrate
the behaviors of the vehicle in a signal map with circular
or elliptical level sets. We also consider locating a source
in a non-quadratic signal field. In all simulations we use
band-limitedwhite noise to approximate the white noise.

4.1 Signal Maps with Circular Level Sets

In this part, we examine the performance of the vehicle
in a circular map. The map parameters are set as f∗ = 0,
r∗ = (0, 0) and qr = 1.5, and the initial conditions of
the vehicle are set as rc(0) = (1, 1), and θ(0) = −π/2.
The distance between the sensor and the vehicle center
is set as R = 0.1. The controller parameters are chosen
as a = 2, g = 1, ε = 0.01, b = 2, c = 500 and h = 2.

Fig. 3 illustrates the behavior of the vehicle dictated by
Theorem 4 under small positive Vc. The bias forward
velocity is chosen as Vc = 0.0005. As shown in Fig. 3(a),
the vehicle center converges to a small neighbourhood
very close to the sourcewith its heading points away from
the source on the average. The trajectory of the vehicle
center is partly random due to the using of the stochastic
perturbation. Fig. 3(b) shows the sensor reading and the
forward velocity of the vehicle.
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ward velocity v = Vc + bξ.

Fig. 3. Simulation results for circular level sets under small
positive Vc.

In Fig. 3 the vehicle finally moves in a small area near the
source as if it comes to a full stop. This is quite different
from the result of [12], where the vehicle finally drifts in
an annulus around the source. In addition, the attractor
in Fig. 3 is very close to the source under a small Vc
since r̃av

eq1

c is positively correlated to |Vc|. Note that the
vehicle does not strictly stop at the source, though its
stop seems evident from Fig. 3(a). We can see it keeps
moving in the attractor with a small forward velocity
from Fig. 3(b).

Fig. 4 illustrates the behavior of the vehicle dictated by
Theorem 4 under large Vc. The bias forward velocity is
chosen as Vc = 0.01. The vehicle converges to an annu-
lar attractor and revolves around the source, which is
similar to the result in [12]. The average heading is more
outward than inward, which coincides with the theoret-
ical result.

4.2 Signal Maps with Elliptical Level Sets

In this part, we examine the performance of the vehicle in
an elliptical map. The map parameters are set as f∗ = 0,
r∗ = (0, 0), qr = 2 and qp = 0.5 and the initial conditions
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Fig. 4. Vehicle trajectory for circular level sets under large
Vc.
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Fig. 5. Vehicle trajectory for elliptical level sets under small
Vc.

of the vehicle are set as rc(0) = (1, 1), and θ(0) = −π/2.
The distance between the sensor and the vehicle center
is set as R = 0.1. The controller parameters are chosen
as ε = 0.01, b = 2, c = 500 and h = 2.

Fig. 5 and Fig. 6 illustrate the behavior of the vehicle
dictated by Theorem 2. In Fig. 5 and Fig. 6(a), we chose
a = 2, g = 1.5 and Vc = −0.015. In Fig. 6(b), we chose
a = 2, g = 1.5 and Vc = 0.015. In Fig. 6(c), we chose
a = 0.5, g = 2 and Vc = −0.01. In Fig. 6(d), we chose
a = 0.5, g = 2 and Vc = 0.001. As depicted in Fig. 5
and Fig. 6, the vehicle converges to a small area near the
source under small Vc. Fig. 6 illustrates the convergence
to different equilibria under different parameters in the
same signal map.

Fig. 7 illustrates the behavior of the vehicle under large
Vc. The parameters are chosen as a = 2, g = 1, qp =
0.5 and Vc = 0.01. In this case, the vehicle can also
approaches the source. As shown in Fig. 7, it overshoots
the source, turns back and overshoots the source again,
and so on.
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Fig. 6. Vehicle trajectories for elliptical level sets under dif-
ferent parameters.
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Fig. 7. Vehicle trajectory for elliptical level sets under large
Vc.

4.3 Non-Quadratic Signal Maps

Our control scheme also exhibits abilities to seek the
sources of signal fields with non-quadratic maps. In
Fig. 8 we assume the signal distribution is a Rosenbrock
function, which takes the form J = −x2s − (ys − x2s)

2.
The Rosenbrock function has an isolated maximum at
(0, 0) and its Hessian at (0, 0) is negative definite. The
initial conditions of the vehicle and controller parame-
ters are chosen to be the same as those in Fig. 3 except
Vc = −0.0005. As depicted in Fig. 8, the vehicle can
also well approach the source.

5 Conclusion

We have studied the nonholonomic source seeking prob-
lem in a plane. In our control scheme, both forward and
angular velocities are tuned according to the stochas-
tic extremum method [11]. As a result, the vehicle well
approaches the source with a partly random trajectory.
We adopted the stochastic averaging theory for nonlin-
ear continuous-time systems to prove the local stability
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Fig. 8. Vehicle trajectory for a Rosenbrock function signal
map.

for static signal fields with elliptical level sets. We have
established the local exponential convergence, both al-
most surely and in probability, to attractors in an annu-
lus around the source. Under a small bias forward veloc-
ity the vehicle may virtually “stop” at the source with-
out sacrificing the convergence rate.

A Proof of Theorem 4

We complete the proof of the first part of Theorem 4 in
Section A.1, which establishes the convergence to equi-
libria (50) and (51). Then we prove the second part in
Section A.2, which corresponds to equilibria (52) and
(53).

A.1 Under Small Vc

The Jacobians of equilibria (50) and (51) are as follows,
respectively,

Aeq1 =









m11 0 −m13

0 m22 0

−m31 0 −h









, Aeq2 =









m11 0 m13

0 m22 0

m31 0 −h









,

where

m11 = −2bqrI1(a, g)ρ1 − bqrRI1(2a, g)− bqrR,

m13 = bI1(a, g),

m22 =
2cVcI1(a, g)I2(a, g)

bγ1
− bqrR (1− I1(2a, g)) ,

m31 = 2hqrρ1 + 2hqrRI1(a, g).

The two Jacobians have the same characteristic equa-
tion, which is given by

(λ−m22)
(

λ2 + (h−m11)λ−m11h−m13m31

)

= 0.
(A.1)
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To guarantee that all roots of characteristic equation
(A.1) have negative real parts, we need

m22 < 0, (A.2)

m11 − h < 0, (A.3)

−m11h−m13m31 > 0. (A.4)

The inequality (A.4) holds for all γ1 > 0 and the inequal-
ities (A.2) and (A.3) are satisfied under condition (54).
Hence, the Jacobians Aeq1 and Aeq2 are Hurwitz under
condition (54), which implies that both equilibria (50)
and (51) are exponentially stable. Applying Theorem 2
in [11], we finish the proof through an inference similar
to the latter part of the proof of Theorem 2.

A.2 Under Large Vc

We first prove that under condition (55) equilibria

(52) and (53) are valid, i.e., γρ2

∆
= cVcI1(a, g)I2(a, g) +

b2qrRγ6 > 0 and γ8 > 0. When Vc > V̄ u
c , we have

γρ2 > cV̄ u
c I1(a, g)I2(a, g) + b2qrRγ6

=
1

2
b2qrR(1− I1(2a, g))

2 > 0,

γ8 > 2cV̄ u
c I1(a, g)I2(a, g)− b2qrRγ4 = 0.

Thus the two equilibria are well defined.

The Jacobians of equilibria (52) and (53) are given by

Aeq3 =









k11 k12 k13

k21 k22 k23

k31 k32 −h









, Aeq4 =









k11 −k12 k13

−k21 k22 −k23
k31 −k32 −h









,

where the coefficients of the Jacobians are provided in
Appendix B. The two Jacobians have the same charac-
teristic equation, which is given by

λ3 + l2λ
2 + l1λ+ l0 = 0, (A.5)

where

l0 = 2hqrRγ8,

l1 = 2qrRγ8 + bqr
I1(a, g)

cI2(a, g)
γ8 + hbqrRγ1,

l2 = h+ bqrR (I1(2a, g) + 1)− 2bqrγ7I1(a, g).

Invoking the Routh-Hurwitz test, it’s easily to verify the
Jacobians Aeq2 and Aeq3 are Hurwitz under condition
(55). Hence, equilibria (50) and (51) are exponentially
stable. Applying Theorem 2 in [11], we finish the proof
through an inference similar to the latter part of the
proof of Theorem 2.

B Coefficients of the Jacobians

The coefficients of J1(qp) and J2(qp) are as follows

a11(qp) = 2b (qr + 2qp) ρ(qp)I1(a, g)

− bR (qr + 2qp) (1 + I1(2a, g)) ,

a14 = bI1(a, g),

a22(qp) = −bR(qr − 2qp)(1− I1(2a, g)),

a23(qp) = 2bR(qr + 2qp)
(

I21 (a, g)− I1(2a, g)
)

+
1

ρ(qp)

×
(

(3I1(3a, g)− I1(a, g)− 2I1(2a, g)I1(a, g))

× bqpR
2 − VcI1(a, g)

)

,

a32(qp) = 2cR (qr − 2qp) ρ(qp)I2(a, g),

a33(qp) = 4cqpR
2I2(2a, g)− 2cR (qr + 2qp) ρ(qp)I2(a, g),

a41(qp) = 2hR (qr + 2qp) I1(a, g)− 2h (qr + 2qp) ρ(qp).

The coefficients of Aeq3 and Aeq4 are as follows

k11 = 2bqrγ7I1(a, g)− 2bqrRcos
2(α)I1(2a, g)

+ bqrR (I1(2a, g)− 1) ,

k12 = 2cqrRρ
2
2 sin(α)I2(a, g) + bqrRρ2 sin(2α)I1(2a, g)

k13 = b cos(α)I1(a, g),

k21 = −4cqrR sin(α)I2(a, g)− 2bqr sin(α)I1(a, g)

+ bqrR
sin(2α)

ρ2
I1(2a, g),

k22 = −2bqrRsin
2(α)I1(2a, g),

k23 =
−b
ρ2

sin(α)I1(a, g),

k31 = −2hqrρ2 + 2hqrR cos(α)I1(a, g),

k32 = −2hqrRρ2 sin(α)I1(a, g).
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with bounded update rates. Systems & Control Letters,
63:25–31, 2014.

[20] Andrew R Teel and Dobrivoje Popović. Solving smooth and
nonsmooth multivariable extremum seeking problems by the
methods of nonlinear programming. In American Control

Conference, 2001. Proceedings of the 2001, volume 3, pages
2394–2399. IEEE, 2001.

[21] Chunlei Zhang, Daniel Arnold, Nima Ghods, Antranik
Siranosian, and Miroslav Krstic. Source seeking with non-
holonomic unicycle without position measurement and with
tuning of forward velocity. Systems & control letters,
56(3):245–252, 2007.

12


	1 Introduction
	2 Problem Description and Control Scheme
	2.1 Problem Description
	2.2 Control Scheme

	3 Stability Analysis
	3.1 Average System for Elliptical Level Sets
	3.2 Stability for Elliptical Level Sets
	3.3 Stability for Circular Level Sets

	4 Simulation
	4.1 Signal Maps with Circular Level Sets
	4.2 Signal Maps with Elliptical Level Sets
	4.3 Non-Quadratic Signal Maps

	5 Conclusion
	A Proof of Theorem ??
	A.1 Under Small Vc
	A.2 Under Large Vc

	B Coefficients of the Jacobians
	References

