
A Tensor Network Kalman filter with an application in recursive
MIMO Volterra system identification

Kim Batselier a, Zhongming Chen a, Ngai Wong a,
aThe Department of Electrical and Electronic Engineering, The University of Hong Kong

Abstract

This article introduces a Tensor Network Kalman filter, which can estimate state vectors that are exponentially large without ever having
to explicitly construct them. The Tensor Network Kalman filter also easily accommodates the case where several different state vectors
need to be estimated simultaneously. The key lies in rewriting the standard Kalman equations as tensor equations and then implementing
them using Tensor Networks, which effectively transforms the exponential storage cost and computational complexity into a linear one. We
showcase the power of the proposed framework through an application in recursive nonlinear system identification of high-order discrete-
time multiple-input multiple-output (MIMO) Volterra systems. The identification problem is transformed into a linear state estimation
problem wherein the state vector contains all Volterra kernel coefficients and is estimated using the Tensor Network Kalman filter. The
accuracy and robustness of the scheme are demonstrated via numerical experiments, which show that updating the Kalman filter estimate
of a state vector of length 109 and its covariance matrix takes about 0.007s on a standard desktop computer in Matlab.

Key words: Volterra series; tensors; Kalman filters; identification methods; system identification; time-varying systems

1 Introduction

After its publication in 1960, the Kalman filter [15] was
quickly adopted into the Apollo onboard guidance sys-
tem [18] and has found many other applications ever since.
The square-root filter is a more numerically stable imple-
mentation and was first developed by Potter [26]. It replaces
the covariance matrix in the Kalman filter equations by its
Cholesky factor, which is better conditioned. Over the next
decade other numerically stable implementations, which
also use Cholesky factors, were developed [3, 4, 19]. Ex-
tensions of the Kalman filter to nonlinear models are the
Extended Kalman filter (EKF) [11, 29], the statistically
linearized filter (SLF) [10] and the unscented Kalman fil-
ter (UKF) [12, 13]. All these filters turn out to be specific
instances of Bayesian filters [28], where the Kalman filter
solution emerges from the assumption that both the dynamic
and measurement models are linear Gaussian.

The Kalman filter is inherently limited by the length of the
state vector that is to be estimated. For example, using a
Kalman filter to estimate a state vector with a length nd will
quickly become intractable, even for moderate sizes of n and
d. In this article, we explain how Tensor Networks [6, 21]

Email addresses: kim.batselier@eee.hku.hk (Kim
Batselier), zmchen@eee.hku.hk (Zhongming Chen),
nwong@eee.hku.hk (Ngai Wong).

enable the estimation of exponentially long state vectors in a
computationally efficient manner. The main paradigm used
in the Tensor Network framework is to represent the expo-
nentially long state vectors and their corresponding covari-
ance matrices as tensors in a network. These tensors are
called the Tensor Network cores and all computations of the
Kalman filter are performed directly on the cores. We show
in Section 4 that this reduces the computational complexity
and storage cost from O(nd) to O(dn).

A particularly well-suited application of the Tensor Net-
work Kalman filter is the recursive identification of discrete-
time multiple-input-multiple-output (MIMO) Volterra sys-
tems [27, 33]. These nonlinear systems have been exten-
sively studied and applied in applications like speech mod-
eling [20], loudspeaker linearization [14], nonlinear con-
trol [8], active noise control [30], modeling of biological and
physiological systems [17], nonlinear communication chan-
nel identification and equalization [5, 9], distortion analy-
sis [31] and many others. Their applicability has been limited
however to “weakly nonlinear systems”, where the nonlinear
effects play a non-negligible role but are dominated by the
linear terms. This limitation is not inherent to the Volterra
series themselves, as they can also represent strongly non-
linear dynamical systems, but is due to the exponentially
growing number of Volterra kernel coefficients as the degree
increases. Indeed, assuming a finite memory M , the dth-
order response of a discrete-time single-input single-output

Preprint submitted to Automatica 19 October 2016

ar
X

iv
:1

61
0.

05
43

4v
1

 [
cs

.S
Y

]
 1

8
O

ct
 2

01
6

(SISO) Volterra system is given by

yd(t) =

M−1∑
k1,...,kd=0

hd(k1, . . . , kd)

d∏
i=1

u(t− ki),

where yd(t), u(t) are the scalar output and input at time t re-
spectively and the dth-order Volterra kernel hd(k1, . . . , kd)
is described by Md numbers. For a multiple-input multiple-
output (MIMO) Volterra system with p inputs the situation
gets even worse, since the dth-order Volterra kernel for one
particular output is characterized by (pM)d numbers. This
exponential growth of the number of kernel coefficients is
one particular example of the infamous curse of dimension-
ality.

In order to apply the Tensor Network Kalman filter to the
problem of recursive system identification of MIMO Volterra
systems, we first rewrite the MIMO Volterra system as a lin-
ear state space model of the Volterra kernel coefficients. The
system identification problem is in this way converted into a
state estimation problem. The linear state space description
of SISO Volterra systems for the identification of its kernel
coefficients has appeared in [32]. The curse of dimension-
ality however limits the application of their method to low
degree Volterra systems. After having converted the MIMO
Volterra system into a linear state space mode, we present a
Tensor Network description of MIMO Volterra systems [1].
This description effectively enables the use of a Tensor Net-
work Kalman filter to solve the state estimation problem.
In contrast with the system identification method described
in [1], the Kalman filter approach explicitly takes the effect
of measurements noise into account. Furthermore, we derive
how the Tensor Network cores are initialized without the
explicit construction of the prohibitively large mean vectors
and covariance matrices. In short, the main contributions of
this article are

• the Kalman filter equations are rewritten as tensor equa-
tions to accommodate for the estimation of multiple state
vectors at once,

• each of the Kalman filter tensor equations are computed
in the Tensor Network format, resulting in a significant
reduction of computational complexity and storage cost,

• the Tensor Network Kalman filter is applied for the re-
cursive identification of MIMO Volterra systems.

The outline of this article is as follows. In Section 2 we
give a brief overview of important tensor concepts and Ten-
sor Network theory. The Tensor Network Kalman filter is
derived in Section 3 and its implementation is discussed in
Section 4. The MIMO Volterra Tensor Network framework
from [1] is reviewed and the application of the Tensor Net-
work Kalman filter to the system identification problem is
discussed in Section 5. In Section 6, numerical experiments
demonstrate the accuracy and computational efficiency of
the Tensor Network Kalman filter when applied for recur-
sive MIMO Volterra system identification. Matlab/Octave

implementations of our algorithms are freely available from
https://github.com/kbatseli/TNKalman.

2 Preliminaries

2.1 Tensor basics

Tensors in this article are multi-dimensional arrays that gen-
eralize the notions of vectors and matrices to higher orders.
A d-way or dth-order tensor is denoted A ∈ Rn1×n2×···×nd

and hence each of its entries ai1i2···id is determined by
d indices. We use the convention that indices start from
1, such that 1 ≤ ik ≤ nk (k = 1, . . . , d). The numbers
n1, n2, . . . , nd are called the dimensions of the tensor. A
tensor is cubical if all its dimensions are equal. For practi-
cal purposes, only real tensors are considered. We use bold-
face capital calligraphic letters A,B, . . . to denote tensors,
boldface capital letters A,B, . . . to denote matrices, bold-
face letters a, b, . . . to denote vectors, and Roman letters
a, b, . . . to denote scalars. The elements of a set of d tensors,
in particular in the context of Tensor Networks, are denoted
A(1),A(2), . . . ,A(d). The transpose of a matrix A or vec-
tor a are denoted AT and aT , respectively. The unit matrix
of order n is denoted In. The tensor with all zero entries is
denoted O. We also adopt the Matlab notation diag(a) for a
diagonal matrix with entries ai. Similarly, diag(A) denotes
the diagonal entries of a matrix A.

Good introductions to tensors in scientific computing and
signal processing are [7,16]. The work in this article builds
upon the tensor framework described in [1], in which a Ten-
sor Network alternating linear scheme is derived for the
identification of MIMO Volterra systems. Due to space lim-
itation, we refer the reader to the discussion presented in [1]
on basic tensor operations. The same notation and concepts
will be used in this article. Additional important tensor op-
erations for this article that are not described in [1] are given
below.

Definition 2.1 [16, p. 462](Khatri-Rao product) Given ma-
trices A ∈ Rn×l,B ∈ Rm×l, then their Khatri-Rao product
A �B ∈ Rnm×l is defined as the column-wise Kronecker
product

A�B :=
(
A(:, 1)⊗B(:, 1) · · · A(:, l)⊗B(:, l)

)
,

where we used the Matlab-notation A(:, k) to denote the
kth column of the matrix A.

The Khatri-Rao product of two matrices A,B hence corre-
sponds with the matrix that contains the column-wise Kro-
necker product of A with B. Similarly, an operation will be
required where the Kronecker product is replaced with the
outer product.

Definition 2.2 Given matrices A ∈ Rn×l,B ∈ Rm×l, then

2

their column-wise outer product A�B ∈ Rn×m×l is de-
fined as the column-wise outer product such that

A�B(:, :, k) := A(:, k) ◦B(:, k),

for k = 1, . . . , l and where ◦ denotes the outer product [16,
p. 458].

One can obtain A�B from reshaping the matrix A � B
into a 3-way tensor. Next we will provide the definition of
the tensor Kronecker product, but before doing so, we first
need to discuss multi-indices. A d-way tensor A is essen-
tially a collection of numbers ai1···id , and there are therefore
many ways to arrange the entries. These different arrange-
ments are equivalent with the grouping of the indices into
separate groups. Consider the case where the first k indices
are grouped together into the multi-index [i1i2 · · · ik], keep-
ing all remaining indices separate. This reduces the order of
the tensor from d to d− k+1. The multi-index [i1i2 · · · ik]
is converted into a single linear index as

i1 + (i2 − 1)n1 + · · ·+ (ik − 1)n1 n2 · · · nk−1.

A particular useful case occurs when k = d, for which the
tensor A is reshaped into a vector, called the vectorization
vec(A), with entries indexed by [i1i2 · · · id]. With the nota-
tion of multi-indices explained, the definition of the tensor
Kronecker product can be given.

Definition 2.3 [2, 25](Tensor Kronecker product) Let
B ∈ Rn1×n2×···×nd ,C ∈ Rm1×m2×···×md be two d-way
tensors with entries denoted by bid+1···i2d and ci1···id , re-
spectively. The tensor Kronecker product A = B ⊗ C ∈
Rn1m1×n2m2×···×nkmk is then defined from

a[i1id+1][i2id+2]···[idi2d] = bid+1···i2d ci1···id ,

which needs to hold for all possible values of i1, . . . , i2d.

2.2 Tensor Network theory

The notion of Tensor Networks comes from physics, where
they are used to describe the wave-function of entangled
many-body quantum systems [21]. More recently, their ap-
plication in big data processing has been proposed in [6].
A Tensor Network (TN) is a set of tensors where some, or
all, indices are contracted. These contractions constitute the
network. An index contraction is the sum over all possible
values of the repeated indices of a set of tensors. For exam-
ple, the index contraction over the tensors A,B,C

di1i3i5i6i7 =
∑
i2,i4

ai1i2i3 bi2i4 ci4i5i6i7 (1)

results in a 5-way tensor D. A particular useful representa-
tion of TNs is in terms of TN diagrams. In these diagrams,
tensors are represented as nodes in a graph and the branches

A B C

i1

i3

i5

i6

i7
i2 i4

Fig. 1. A TN of three tensors A,B,C resulting in a 5-way tensor.

A(1) A(2) A(d)

Fig. 2. A TT of d linearly connected cores A(1), . . . ,A(d) result-
ing in a d-way tensor.

represent indices. Branches that are fully connected repre-
sent the contraction of the corresponding index. We will re-
fer to the tensors inside a TN as the TN-cores and the di-
mensions of the contracted indices as the corresponding TN-
ranks. The term TN-ranks is reserved in the literature for
the minimal dimensions of the contracted indices such that
the TN represents the underlying tensor exactly. Therefore,
if one chooses dimensions for the contracted indices that are
smaller than the TN-ranks, an approximation of the under-
lying tensor is obtained. The TN diagram of equation (1) is
shown in Figure 1, where all indices are explicitly indicated.
In this example, the contracted indices are i2, i4 and the cor-
responding TN-ranks are hence denoted r2, r4. The order of
the resulting tensor in the TN can be quickly deduced from
counting the number of “free” indices in the diagram. Two
important TNs for the Kalman filter are the Tensor Train
(TT) [23] and the Tensor Train matrix (TTm) [22]. A TT,
represented by its TN diagram in Figure 2, is a TN of d
linearly connected cores A(1), . . . ,A(d). The border cores
are 2-way tensors (matrices) and the remaining cores are 3-
way. A TTm extends the notion of a TT by increasing the
order of each of the cores by 1. The notion of a TN allows
for a compact representation of a given tensor, thus avoid-
ing the potential curse of dimensionality. The following ex-
ample illustrates how a TT can be used to store a vector of
exponential length.

Example 1 Suppose we have a vector a of length 1010.
Each entry of a can be indexed by a multi-index [i1, . . . , i10].
We now reshape a into a 10 × 10 × · · · × 10 tensor A
such that ai1···i10 := a[i1···i10]. The TN representation of A
then consists of 10 TN-cores A(1), . . . ,A(10) with TN-ranks
r1, . . . , r9. If we denote the maximal TN-rank by r then the
total storage requirement for the vector a is reduced from
1010 to O(100 r2), which can be a significant reduction
when r is small. This conversion into the TT format assigns

3

each index ik of the multi-index to the core A(k).

Similarly, the TTm format represents an nd × nd matrix,
where each TTm-core A(k) now is a 4-way tensor, with 2
free indices ik, jk, one denoting a row index and one de-
noting a column index, respectively. Using the TTm format
reduces the storage requirement from n2d to O(dn2r2). In
the context of MIMO Volterra systems, a modification of
the TT and TTm concepts will be made where the order of
the border tensor A(1) is increased by one. This extension is
further explained in Section 5. In the following two sections
both the derivation and implementation of the TN Kalman
filter is given.

3 Tensor Network Kalman filter

Consider the following linear discrete-time state space
model

X(t+ 1) = A(t)X(t) +W (t),

y(t) = c(t)X(t) + r(t), (2)

where X(t) ∈ Rnd×l is the matrix containing l exponen-
tially long state vectors, y(t) ∈ R1×l is a vector of l mea-
surements, A(t) ∈ Rnd×nd

is the state transition matrix,
c(t) ∈ R1×nd

converts the state vectors into measurements
and W (t) ∈ Rnd×l, r(t) ∈ R1×l denote process and mea-
surement noise, respectively. It is possible to generalize c(t)
to a matrix, thus allowing for matrices of measurements but
we leave this for future work. For compactness the time-
dependence in the notation is removed and the following
assumptions are made:

• Each column xk (k = 1, . . . , l) of the matrix X(0) fol-
lows a multivariate Gaussian distribution

N(mk,Pk) =
1

Z
exp

(
−1

2
(xk −mk)

T Pk (xk −mk)

)
,

with normalization constant Z := ((2π)n
d/2 |Pk|1/2)−1,

where |Pk| denotes the determinant of Pk. The vectors
mk are collected in the matrix M ∈ Rnd×l and similarly
all covariance matrices are collected into a 3-way tensor
P ∈ Rnd×nd×l,

• each column of the process noise matrix W is a multi-
variate Gaussian white noise process. This implies zero
means and diagonal covariance matrices, which are col-
lected into a 3-way tensor Q ∈ Rnd×nd×l,

• the measurement noise r is a multivariate Gaussian white
noise process with diagonal covariance matrix R ∈ Rl×l.
The row vector containing the diagonal entries of R is
denoted diag(R).

In Bayesian filtering, one is interested in computing the
distribution of the current state given the current and all pre-
vious measurements of the output p(xk(t)|y(1), . . . ,y(t)).

The linearity of the state space model together with a
Markov-Gaussian assumption of the distributions results in
the Kalman filter equations as the solution to the Bayesian
filtering problem for each of the columns of X [28, p. 56].
However, it is not necessary to run a Kalman filter for each
of the l columns of X separately. The whole Bayesian fil-
tering problem can be solved with one Kalman filter, where
both the prediction and update steps are rewritten as tensor
equations. We reintroduce the time-dependence in the no-
tation and denote the matrix of predicted means M(t) and
tensor of predicted covariance matrices P(t) by M+ and
P+, respectively. The tensor-times-matrix k-mode product
is denoted by ×k [16, p. 460]. The Kalman filter prediction
step is then rewritten as

M+ = M(t− 1)×1 A(t− 1),

P+ = P(t− 1)×1 A(t− 1)×2 A(t− 1) +Q(t− 1).
(3)

Similarly, the Kalman filter update step is rewritten as

v = y(t)−M+ ×1 c(t),

s = P+ ×1 c(t)×2 c(t) + diag(R(t)),

K = P+ ×2 c(t)×3 diag(s)−1,

M(t) = M+ +K ×2 diag(v),
P(t) = P+ − (K �K)×3 diag(s). (4)

The prediction and update equations (3) and (4) reduce to
the standard matrix equations of a Kalman filter for a scalar
output y(t) when l = 1. Both the mean M and the Kalman
gain K reduce to column vectors for this case. Note that
diag(s) and diag(v) both denote diagonal matrices contain-
ing the entries of s,v, respectively. The notation diag(R(t))
on the other hand denotes a row vector, containing the diag-
onal entries of the matrix R(t). The dimensions of the ma-
trices and tensors in both (3) and (4) suffer from the curse of
dimensionality. The Kalman filter steps can therefore only
be computed for small values of n and d. In the next section
we show how each iteration of this tensor Kalman filter can
be efficiently computed using TNs, enabling much larger
values of n and d. In practice, one would use a square-root
filter for improved numerical conditioning. Similarly to (3)
and (4), one can rewrite the square root predict and update
equations as tensor equations and compute them in the TN
format. This will be reported in our future work.

4 Implementation

In this section we explain how each tensor equation of the
tensor Kalman filter (3) and (4) is computed in terms of TNs.
The key idea is here that all computations are done in terms
of TNs and all results stay in the TN format. This means that
at no point in time the matrices and tensors in (3) and (4)
are explicitly constructed. Starting the computations requires
the matrices M(0),A(0) and the tensors P(0),Q(0) in the
TN format. It is therefore crucial to be able to initialize these

4

TNs efficiently. The following additional assumptions are
therefore made:

• l� nd,
• the matrix of initial mean vectors M(0) is the zero matrix,
• each of the l covariance matrices inside P(0) is a diagonal

matrix with a constant value σ2
k (k = 1, . . . , l) on the

diagonal,
• the matrix A(t) is given in the TTm format,
• the row vector c(t) is given in the TT format.

The TN representation of the nd × l matrix M(t) can be
thought of as a TT where the first core M(1)(t) is a l×n×r1
tensor. The covariance tensor P(t) can be represented by
a TN similar to the TTm format where the first core is
an l × n × n × R1 tensor. The following lemmas explain
how M(0) and P(0) can be directly initialized in their
corresponding TN formats when the previously mentioned
assumptions hold.

Lemma 1 All d TN-cores M(1), . . . ,M(d) of M(0) have
unit TN-ranks with

M(1) = O ∈ Rl×n×1,

M(k) = O ∈ R1×n×1 (k = 2, . . . , d).

The total storage cost to store M(0) is hence reduced from
nd to (l + d − 1)n. The next lemma explains how the TN
of P(0) can be initialized.

Lemma 2 The TN of P(0) consists of the following TN-
cores with all unit TN-ranks

P(1)(i, :, :, 1) = σ2
i In (i = 1, . . . , l),

P(k)(1, :, :, 1) = In (k = 2, . . . , d).

The total storage cost for P(0) is in this way reduced from
n2d to (l+d−1)n2. Lemma 2 can also be used to construct
the tensor Q(t) directly into the TN format. The proofs of
Lemmas 1 and 2 rely on the fact that a TN with all unit
TN-ranks is equivalent with the outer product of the TN-
cores. Table 1 compares the storage cost between the stan-
dard and the TN approach where the maximal TN-ranks
of M(t),P(t),A(t), c are denoted rM , rP , rA, rc, respec-
tively. From Table 1 one can see that using TNs transforms
the storage cost from exponential into linear in the degree d.
When the above assumptions do not hold, then alternative
methods to initialize the TNs are required. These are the TT-
SVD [23, p. 2301] and TT-cross approximation [24, p. 80]
algorithms. We now discuss the implementation of each step
of the TN Kalman filter.

Table 1
Storage cost for the standard and TN approach.

Storage cost

Storage Standard TN

M(t) lnd O((d− 1)nr2M + lnrM)

P(t) n2d O((d− 1)n2r2P + ln2rP)

Q(t) n2d (l + d− 1)n2

A(t) n2d O((d− 1)n2r2A + lnrA)

c nd O(dnr2c)

M(1) M(2) M(d)

A(1) A(2) A(d)

Fig. 3. The operation M(t− 1)×1 A(t− 1) as a TN.

M+(1) M+(2) M+(d)

Fig. 4. The TN for M(t − 1) ×1 A(t − 1) after contraction of
the indices between M(k) and A(k) (k = 1, . . . , d).

4.1 TN implementation of M+ = M(t− 1)×1 A(t− 1)

The computation of M+ = M(t − 1) ×1 A(t − 1) in
the TN representation is shown in Figure 3. Note the extra
index of the first border core M(1), which runs from 1 to
l. There are many ways to contract the TN of Figure 3 and
the total computational complexity depends on the chosen
order in which the contractions happen [21, p. 126]. For the
TN Kalman filter however, the order of contractions is fixed
since the resulting TN needs to consist of d TN-cores. This
implies that the only allowable contractions are those of
M(k) with the corresponding A(k)-core. This contraction is

m
+(k)
αk−1βk−1jkαkβk

=
∑
ik

m
(k)
αk−1ikαk

a
(k)
βk−1jkikβk

, (5)

with a computational complexity of O(r2Mn
2r2A). Note that

we have permuted the indices after the contraction into the
order αk−1βk−1jkαkβk. In this way, (5) is consistent with
the contractions as shown in Figure 4. The horizontal con-
tractions between consecutive M(k) and A(k) cores now
appear as double contractions between consecutive M+(k)

5

P(1) P(2) P(d)

A(1) A(2) A(d)

A(1) A(2) A(d)

Fig. 5. The operation P(t−1)×1A(t−1)×2A(t−1) as a TN.

cores, which implies that the TN-rank rM has increased to
rMrA. This increase of the TN-rank can also be understood
from considering both αk−1βk−1 and αkβk as multi-indices.
The TN-ranks will therefore grow exponentially during the
filtering if no measures are taken. Fortunately, it is possible
to reduce the TN-ranks without the loss of accuracy by the
process of TN-rounding. The rounding procedure for TTs
is described in [23, p. 2301-2305] and is easily adapted to
work for TNs. It involves a right-to-left “sweep” of QR de-
compositions over all cores M+(k), followed by a left-to-
right sweep of singular value decompositions (SVDs). The
computational complexity of the whole rounding process is
O(dnr3), where r is the maximal TN-rank. The use of a
truncated SVD in the rounding algorithm results in a further
reduction of the TN-ranks, at the expense of obtaining only
an approximated TN. This can, however, drastically reduce
the computation time, as is demonstrated in the experiments
in Section 6.

4.2 TN implementation of P+ = P(t−1)×1A(t−1)×2

A(t− 1) +Q(t− 1)

The computation of the predicted covariance matrices con-
sists of two steps. First, there is the contraction P(t−1)×1

A(t− 1)×2 A(t− 1) given by

p
+(k)
αk−1βk−1γk−1j1i2αkβkγk

=
∑
i1,j2

p
(k)
αk−1i1j2αk

a
(k)
βk−1i1j1βk

a
(k)
γk−1i2j2γk

, (6)

and shown as a TN in Figure 5. Again, since we want to ob-
tain the result as a TN of d cores, the order of the contractions
is uniquely determined with a computational complexity of
O(r2Pn

3r4A). Note that also here the indices of P+(k) in
(6) are permuted into the order αk−1βk−1γk−1j1i2αkβkγk.
The TN-ranks rP are now increased to rP r2A, which means
that another rounding step is required. The d cores obtained

from the contractions then need to be added to the corre-
sponding d cores of Q(t). The addition of tensors in the TT
representation is described in [23, p. 2308] and its exten-
sion is also straightforward for the TN case. It entails the
concatenation of the respective cores of the two summands,
which means that the TN-ranks of corresponding cores are
summed. An additional rounding step is hence required.

4.3 TN implementation of v = y(t)−M+ ×1 c(t)

The dominating computational step in the computation of v
is the contraction M+ ×1 c(t), which in the TN format is∑

i1

m
+(k)
αk−1i1αk

c
(k)
βk−1i1βk

.

The computational complexity of each core contraction is
O(r2M r2c n). If the TN-ranks are too large one can at this
point apply the rounding procedure. After rounding the
whole TN is then contracted, resulting in a vector of length
l that can be subtracted from y(t).

4.4 TN implementation of s = P+ ×1 c(t) ×2 c(t) +
diag(R(t))

This step involves the contraction of the covariance tensor
P+ with the vector c(t) on its first two modes, resulting in
a vector of length l. In terms of the TN representation, this
is achieved through the contraction∑

i1,j1

p
+(k)
αk−1i1j1αk

c
(k)
βk−1i1βk

c
(k)
γk−1j1γk

,

for each of the d cores with a computational complexity of
O(r2P r

2
c n

2 + r2P r
4
c n). After rounding and contracting the

resulting TN one obtains a row vector of length l, which is
added with the diagonal entries of the matrix R(t).

4.5 TN implementation of K = P+×2 c(t)×3 diag(s)−1

The contraction P+×2c(t) in the TN format is for all cores
except the first ∑

j1

p
+(k)
αk−1i1j1αk

c
(k)
βk−1j1βk

and has a computational complexity of O(r2P r
2
c n

2). If we
denote the l × l matrix diag(s)−1 by S, then the scaling
operation ×3 S corresponds with a contraction on only the
first core P(1) such that all contractions on it are∑

j1,α0

p
+(1)
α0i1j1α1

c
(1)
β0j1β1

sα0γ1 .

An additional rounding step can be applied to reduce the
TN-ranks of the resulting Kalman gain TN.

6

4.6 TN implementation of M(t) = M+ +K ×2 diag(v)

The updated mean matrix M(t) is obtained from adding
M+ with a scaled version of the Kalman gain. The scaling
of the Kalman gain in the TN format is performed in an iden-
tical way as the scaling ×3 S from the previous step with a
computational complexity of O(l2nrK). All TN-cores K(k)

are then concatenated with the cores M+(k) to obtain the
TN representation of M(t). The concatenation adds all cor-
responding TN-ranks together, which implies that a round-
ing step is required.

4.7 TN implementation of P(t) = P+ − (K �K) ×3

diag(s)

In this step the column-wise outer product of the Kalman
gain matrix K with itself needs to be computed in the TN
format. The following lemma describes how this can be
done.

Lemma 3 Let K1 be the l × nrK matrix obtained from
reshaping the K(1) core, then the first TN core of K �K
is obtained by the following procedure:

(1) compute the matrix K11 := KT
1 �KT

1 ,
(2) reshape K11 into a n× rK × n× rK × l tensor K11,
(3) permute K11 into a l× n× n× rK × rK tensor K̃11,
(4) reshape K̃11 into the desired l× n2 × r2K tensor core.

The remaining d− 1 cores are K(k)⊗K(k) (k = 2, . . . , d).

Proof 1 If we fix the row indices i1, . . . , id and column in-
dices id+1, . . . , i2d of (K �K) and fix the index j for its
third mode, then we have that

(K �K)[i1···id][id+1···i2d]j = k[i1···id]j k[id+1···i2d]j .

In the TN representation fixing these indices results in

(k
(1)
ji1
⊗ k

(1)
jid+1

) (K
(2)
i2
⊗K

(2)
id+2

) · · · (k(d)
id
⊗ k

(d)
i2d

), (7)

where k
(1)
ji1

denotes the row vector obtained from fixing the

indices of the first two modes of K(1). Similarly, K(2)
i2

de-
notes the matrix obtained from fixing the second index of
K(2). Fixing the second index of K(d) results in a column
vector k

(d)
id

. The Kronecker products of these vectors and
matrices in (7) can be rewritten using the mixed product
property of the Kronecker product into

(k
(1)
ji1

K
(2)
i2
· · ·k(d)

id
)⊗ (k

(1)
jid+1

K
(2)
id+2
· · ·K(d)

i2d
),

= k[i1···id]j k[id+1···i2d]j ,

which concludes the proof.

Table 2
Computational complexity of the standard and TN approach.

Computational complexity (flops)

Computation Standard TN

M+ O(ln2d) O(d r2M r2A n2)

P+ O(ln3d) O(d r2P r4A n3)

v O(lnd) O(d r2M r2c n)

s O(ln2d) O(d(r2P r2c n
2 + r2P r4c n))

K O(ln2d) O(d r2P r2c n
2)

M(t) O(lnd) O(l2 rK n)

P(t) O(ln2d) O(d r4K n2)

The tensor Kronecker product sets the computational com-
plexity of computing each core to r4Kn

2. The scaling of
K �K with S is exactly the same as the scaling of the
Kalman gain, which is via a contraction of the first core.
After the result of the scaling is added to P+, an additional
rounding step can be applied to reduce the TN-ranks. A com-
plete overview of the computational complexity of each of
the TN Kalman filter steps computed in both the standard
and TN ways is given in Table 2. From this table one can
see that using TNs transforms the computational complex-
ity from exponential to linear in the degree d. The impor-
tance of the rounding procedure also becomes clear since
the computational complexity is polynomial in the TN-ranks
rM , rP , rK , rA, rc. Having derived the TN Kalman filter,
we now move on to discuss its application in the recursive
identification of MIMO Volterra systems.

5 Recursive MIMO Volterra system identification

The first required step in applying a TN Kalman filter to
the recursive identification of the Volterra kernel coefficients
is writing the Volterra system as a TN. What follows is
a brief review of the TN representation of a discrete-time
MIMO Volterra system presented in [1]. A discrete-time p-
input l-output Volterra system of degree d and memory M
is described by

y(t) :=
(
y1(t) y2(t) · · · yl(t)

)
= (ut

d©)TV , (8)

where the vector

ut :=
(
1 u1(t) u2(t) · · · up(t−M + 1)

)T
∈ RpM+1

contains all p input values at times t down to t−M +1 and
ut

d© denotes its d-times repeated Kronecker product. Each
column of the (pM + 1)d × l matrix V contains all coef-
ficients from the Volterra kernels of degree 0 up to degree
d for a particular output. The repeated Kronecker product
structure of ut can be exploited to rewrite (8) as

y(t) = V ×2 u
T
t ×3 u

T
t · · · ×d+1 u

T
t , (9)

7

V(1) V(2) V(d)

ut ut ut

Fig. 6. A TN representation of a discrete-time MIMO Volterra
system.

where V is the tensor obtained from reshapingV T in (8) into
an l×(pM+1)×· · ·×(pM+1) tensor. The MIMO Volterra
tensor V consists of l (pM + 1)d entries, which quickly
becomes infeasible to store even for moderately large values
of p,M and d. We therefore represent the Volterra tensor V
as a TN V(1), . . . ,V(d), where the first TN-core V(1) has
dimensions l × (pM + 1) × r1. The other TN-cores have
sizes ri−1 × (pM + 1)× ri, with rd := 1 for the last core.
The TN reduces to a TT for the MISO case (l = 1). This
change in representation reduces the storage requirement
from l (pM +1)d to O((d− 1)(pM +1)r2 +(pM +1)lr).
In [1] it is also described how the l output samples at time
t can be all be computed at once in the TN format as

y(t) = (V(1) ×2 u
T
t) (V

(2) ×2 u
T
t) · · · (V

(d) ×2 u
T
t),

(10)

with a computational complexity of O(d(pM +1)r+ dr3).
The corresponding TN diagram is shown in Figure 6 and is
essentially the TN representation of a discrete-time MIMO
Volterra system. The connecting branches between the ut
nodes in Figure 6 represent unit TN-ranks and correspond
with d outer products of the ut vector with itself, resulting
in a d-way tensor U . An alternative way of writing (10) is
therefore

yi1(t) =
∑

i2,i3,··· ,id+1

vi1i2i3···id+1
ui2i3···id+1

.

where the summation runs over all repeated indices
i2, i3, i4, i5, . . . , i2d−1, i2d. The only index that remains af-
ter the contraction is 1 ≤ i1 ≤ l, which runs over all entries
of the y(t) vector. Next, we reformulate the MIMO Volterra
system as a linear state space system such that the system
identification problem can be recursively solved using a
Kalman filter in the TN format. In [32], a time-varying
discrete-time SISO Volterra system is described as a linear
state space model, which can be extended to the MIMO
case as

V (t+ 1) = A(t)V (t) +W (t),

y(t) = (ut
d©)TV (t) + r(t). (11)

The row vector c in (2) is for this particular case replaced
with (ut

d©)T . The Volterra system is time-invariant when

A(t) = I and W (t) = O. If W (t) is a nonzero matrix
instead, then the Volterra kernel coefficients follow a random
walk. As mentioned earlier, the repeated Kronecker product
structure of ut gives rise to a tensor U with the following
TN representation.

Lemma 4 All d TN-cores U (1), . . . ,U (d) of U have unit
TN-ranks with

U (k)(1, :, 1) = ut (k = 1, . . . , d).

The TN for U therefore consists of ut repeated d times, with
a total storage cost ofO(pM+1) since we only need to store
the ut vector once. The fact that all its TN-ranks are equal
to 1 for any time instance t is very fortunate as this signifi-
cantly reduces both the storage cost and computational com-
plexity. Indeed, one can set rc := 1 and n := (pM + 1) in
Tables 1 and 2 to obtain the storage cost and computational
complexity for each step of the recursive system identifica-
tion with the TN Kalman filter.

6 Application

We demonstrate the effectiveness of the proposed TN
Kalman filter through its application to the system iden-
tification problem of MIMO Volterra systems. All com-
putations were performed in Matlab on an Intel i5
quad-core processor running at 3.3 GHz with 16 GB
RAM. All TN computations are implemented in Mat-
lab/Octave and our algorithms are freely available from
https://github.com/kbatseli/TNKalman.

6.1 Degree-4 SISO time-invariant Volterra system

As a first experiment we compare the use of a standard
Kalman filter with the TN Kalman filter to confirm its cor-
rectness. We also demonstrate the effect of using a truncated
SVD in the rounding process on the runtime of the filter.
The applicability of the standard Kalman filter is limited by
the length of the state vector. We therefore consider the fol-
lowing time-invariant SISO Volterra system

v(t+ 1) 4© = v(t) 4©,

y(t) = (ut
4©)T v(t) 4© + r(t),

where v(0) ∈ R5 and each entry is drawn from a standard
normal distribution. The measurement noise is described by
r(t) ∼ N(0, 10−2). The memory M is set to 4 and all input
samples u(t) are also drawn from a standard normal dis-
tribution. This linear state space system corresponds with a
degree-4 Volterra system. Since the number of outputs l is 1,
we have that the state V (t) is reduced to a vector v(t). The
absence of process noise w(t), together with the fact that
A(t) := I implies that the Volterra system is time-invariant.

8

Fig. 7. Relative errors from both standard and TN Kalman filters
for different values of the rounding parameter.

The state vector v of Volterra kernel coefficients has a length
of (4+1)4 = 625 and the standard Kalman filter is therefore
well-suited for the recursive estimation of the kernel coeffi-
cients. The mean vector m(0) is initialized as the zero vector
and the covariance matrix P (0) := 1000 I625. A standard
Kalman filter is then run for 1000 iterations. The median of
the runtime over the 1000 iterations of the Kalman filter is
0.0018 seconds. Graph A in Figure 7 shows the relative error

||v(0) 4© −m(t)||2
||v(0) 4©||2

as a function of the iterations for the standard Kalman filter.
When the TN Kalman filter is initialized with the same mean
m(0) and covariance matrix P (0) and no truncated SVD
is used in the rounding step, then the exact same graph A
is reproduced, which confirms the correctness of the TN
Kalman filter. The TN-ranks for the TN representing m and
P converge to 5, 15, 5 and 25, 226, 25, respectively. The
relatively large TN-rank of 226 in the TN of P sets the
median computation time to 0.1456 seconds, which is about
80 times slower than a standard Kalman filter. Graphs B,C
and D in Figure 7 show the relative error for the TN Kalman
filter where tolerances of 0.9, 0.5 and 0.1 are used to truncate
the SVD in the rounding step, resulting in a median runtime
of 0.0026 seconds per iteration, which is the same order of
magnitude as the standard Kalman filter. These tolerances
reduce all TN-ranks of m and P to 1 and come at the
cost of slower convergence as demonstrated in Figure 7.
Setting the rounding parameter higher than 10−1 results in
this example in a convergence of the TN Kalman filter to
estimated Volterra coefficients with a higher relative error.

6.2 Double balanced mixer

In this example we consider a double balanced mixer used
for upconversion. The output radio-frequency (RF) signal is
determined by a 100Hz sine low-frequency (LO) signal and
a 300Hz square-wave intermediate-frequency (IF) signal. A

Fig. 8. Reference and simulated output from the TN Kalman filter
for three different SNRs.

phase difference of π/8 is present between the LO and IF
signals. All time series were sampled at 5 kHz for a total
of 6000 samples. The output signal is corrupted with Gaus-
sian noise such that three different outputs with respective
signal-to-noise ratios (SNRs) of 12 dB, 17 dB and 26 dB
are obtained. A TN Kalman filter is then used to estimate a
two-input one-output Volterra system with d = 7,M = 10
by filtering the first 5900 samples for the three noisy outputs
separately. The state vector containing the Volterra kernel
coefficients consists of 217 ≈ 1.801× 109 entries, which is
well beyond the reach of a standard Kalman filter.

The initial mean vector is initialized as the zero vector and
the initial variance of each of the coefficients is set to 1000.
A rounding parameter of 10−1 is used to keep the TN-ranks
small. The maximal TN-ranks of M when filtering the out-
put with SNRs of 12 db, 17 dB and 26 dB are 11, 13 and
14, respectively. All TN-ranks of P are equal to one. The
median runtime for one TN Kalman filter step is 0.0068 sec-
onds and the total runtime to filter 5900 samples is about 40
seconds. The obtained mean vectors in the TN format were
then used to simulate the remaining 100 samples. The sim-
ulated outputs are shown together with the reference output,
which is not corrupted by noise, in Figure 8. Figure 8 demon-
strates that a higher SNR results in better performance of
the TN Kalman filter. For the outputs with a SNR of 12 dB,
17 dB and 26 dB, the root-mean-square errors (RMSE) of
the simulated outputs are 0.1778, 0.097 and 0.034, respec-
tively. The reference output, the 12 dB output used in the
identification and the simulated output are shown in Figure
9, where one can see that the simulated output follows the
reference more closely.

7 Conclusions

This article presented a Tensor Network Kalman filter with
an application in the recursive identification of high-order
discrete-time nonlinear MIMO Volterra systems. Tensor
Network theory enables the estimation of exponentially

9

Fig. 9. Reference, corrupted (SNR of 12 dB) and simulated output.

large state vectors, without ever needing to explicitly con-
struct them. This allows the Kalman filter to be applied to
previously prohibitive problem scales. The correctness of
the Tensor Network Kalman filter and its efficient computa-
tion were demonstrated via numerical experiments. Future
improvements are the implementation of a square-root TN
Kalman filter, together with the extension to matrix outputs.

References

[1] K. Batselier, Z. M. Chen, and N. Wong. Tensor Train alternating
linear scheme for MIMO Volterra system identification. ArXiv e-
prints, 2016.

[2] K. Batselier and N. Wong. A constructive arbitrary-degree Kronecker
product decomposition of tensors. ArXiv e-prints, July 2015.

[3] G. J. Bierman. Factorization methods for discrete sequential
estimation. 1977.

[4] N. A Carlson. Fast triangular formulation of the square root filter.
AIAA journal, 11(9):1259–1265, 1973.

[5] C. H. Cheng and E. J. Powers. Optimal Volterra kernel estimation
algorithms for a nonlinear communication system for PSK and QAM
inputs. IEEE Transactions on Signal Processing, 49(1):147–163,
2001.

[6] A. Cichocki. Era of Big Data Processing: A New Approach via
Tensor Networks and Tensor Decompositions. ArXiv e-prints, 2014.

[7] A. Cichocki, D. Mandic, H.A. Phan, C. Caiafa, G. Zhou, Q. Zhao,
and L. De Lathauwer. Tensor decompositions for signal processing
applications: From two-way to multiway component analysis. IEEE
Signal Processing Magazine, 32(2):145–163, March 2015.

[8] Doyle F. J. III, R. K. Pearson, and B. A. Ogunnaike. Identification
and control using Volterra models. Springer Science & Business
Media, 2002.

[9] C. A. R. Fernandes, J. C. M. Mota, and G. Favier. MIMO Volterra
Modeling for Nonlinear Communication Channels. Learning &
Nonlinear Models, 8(2):71–92, 2010.

[10] A. Gelb. Applied optimal estimation. MIT press, 1974.

[11] A. H. Jazwinski. Stochastic processes and filtering theory. Courier
Corporation, 2007.

[12] S. J. Julier and J. K. Uhlmann. Unscented filtering and nonlinear
estimation. Proceedings of the IEEE, 92(3):401–422, 2004.

[13] S. J. Julier, J. K Uhlmann, and H. F. Durrant-Whyte. A new approach
for filtering nonlinear systems. In American Control Conference,
Proceedings of the 1995, volume 3, pages 1628–1632. IEEE, 1995.

[14] Y. Kajikawa. Subband parallel cascade Volterra filter for linearization
of loudspeaker systems. In 2008 16th European Signal Processing
Conference, pages 1–5, Aug 2008.

[15] R. E. Kalman. A new approach to linear filtering and prediction
problems. Journal of Basic Engineering, 82(1):35–45, 1960.

[16] T. Kolda and B. Bader. Tensor decompositions and applications.
SIAM Review, 51(3):455–500, 2009.

[17] M. J. Korenberg and I. W. Hunter. The identification of nonlinear
biological systems: Volterra kernel approaches. Annals of Biomedical
Engineering, 24(2):250–268, 1996.

[18] L. A. McGee and S. F. Schmidt. Discovery of the Kalman filter as
a practical tool for aerospace and industry. Technical Memorandum
86847, National Aeronautics and Space Administration, 1985.

[19] M. Morf and T. Kailath. Square-root algorithms for least-squares
estimation. IEEE Transactions on Automatic Control, 20(4):487–497,
1975.

[20] E. Mumolo and D. Francescato. Adaptive predictive coding of
speech by means of Volterra predictors. In IEEE Winter Workshop
on Nonlinear Digital Signal Processing, 1993, pages 2.1.4.1–2.1.4.4,
1993.

[21] R. Orús. A practical introduction to tensor networks: Matrix product
states and projected entangled pair states. Annals of Physics, 349:117
– 158, 2014.

[22] I. V. Oseledets. Approximation of 2d × 2d matrices using tensor
decomposition. SIAM J. Matrix Anal. Appl., 31(4):2130–2145, June
2010.

[23] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput.,
33(5):2295–2317, 2011.

[24] I. V. Oseledets and E. Tyrtyshnikov. TT-cross approximation for
multidimensional arrays. Linear Algebra and its Applications,
432(1):70–88, 2010.

[25] A. H. Phan, A. Cichocki, P. Tichavský, D. P. Mandic, and
K. Matsuoka. On Revealing Replicating Structures in Multiway Data:
A Novel Tensor Decomposition Approach, pages 297–305. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[26] J. E. Potter and R. G. Stern. Statistical filtering of space navigation
measurements. In Proceedings of the 1963 AIAA Guidance and
Control Conference, 1963.

[27] W. Rugh. Nonlinear System Theory – The Volterra-Wiener Approach.
Baltimore, MD: Johns Hopkins Univ. Press, 1981.

[28] S. Särkkä. Bayesian Filtering and Smoothing. Cambridge University
Press, New York, NY, USA, 2013.

[29] G. T. Schmidt and ed. Practical aspects of Kalman filtering
implementation. AGARD-LS-82, NATO Advisory Group for
Aerospace Research and Development, London, 386, 1976.

[30] L. Tan and J. Jiang. Adaptive Volterra filters for active control of
nonlinear noise processes. IEEE Transactions on Signal Processing,
49(8):1667–1676, Aug 2001.

[31] P. Wambacq and W.M. Sansen. Distortion Analysis of Analog
Integrated Circuits. Kluwer Academic Publishers, Norwell, MA,
USA, 1998.

[32] B. Weng and K. E. Barner. Time-Varying Volterra System
Identification Using Kalman Filtering. In 2006 40th Annual
Conference on Information Sciences and Systems, pages 1617–1622,
March 2006.

[33] N. Wiener, J. A. Stratton, and M.I.O. Technology. Nonlinear
Problems in Random Theory. Literary Licensing, LLC, 2013.

10

