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Abstract

Determining the minimum number of sensor nodes to observe the internal state of the whole system is important in analysis of
complex networks. However, existing studies suggest that a large number of sensor nodes are needed to know the whole internal
state. In this paper, we focus on identification of a small set of sensor nodes to discriminate statically and periodically steady
states using the Boolean network model where steady states are often considered to correspond to cell types. In other words,
we seek a minimum set of nodes to discriminate singleton and periodic attractors. We prove that one node is not necessarily
enough but two nodes are always enough to discriminate two periodic attractors by using the Chinese remainder theorem.
Based on this, we present an algorithm to determine the minimum number of nodes to discriminate all given attractors. We also
present a much more efficient algorithm to discriminate singleton attractors. The results of computational experiments suggest
that attractors in realistic Boolean networks can be discriminated by observing the states of only a small number of nodes.
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1 Introduction

Knowing internal states of complex systems is important
for diagnosing various kinds of artificial, social, and bi-
ological systems. It is particularly important to identify
a small set of variables so that we can reconstruct the
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system’s complete internal state at any given time step
from time-series data of these variables. In such a case,
the system is called observable. Recent studies on com-
plex networks revealed relationships between network
properties and the number of sensor nodes correspond-
ing to those variables (Liu, Slotine, & Barabàsi, 2013;
Yan, Tsekenis, Barzel, Liu, Slotine, & Barabàsi, 2015).
However, existing studies focus on linear systems and
certain types of nonlinear systems. Since biological sys-
tems contain highly nonlinear switch-like components,
observability studies should also be done on systems with
discrete components.

The Boolean network (BN) is known as a discrete math-
ematical model of gene regulatory networks (Kauffman,
1993) and has been applied to modeling of various bio-
logical systems (Albert & Thakar, 2014). In a BN, each
node corresponds to a gene and takes one of the two
values 0 and 1, where 0 (resp., 1) means that the cor-
responding gene is inactive (resp., active). The value of
a node at a given time step is determined according to
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a regulation rule represented by a set of Boolean func-
tions. Although there exist several variants, in a widely
used model, the values of network nodes are updated
synchronously by using the Boolean functions and the
(global) state of a network at a given time step is the
vector of its node values. Beginning with any initial
state, the system eventually falls into an attractor, which
is classified into two types: a singleton attractor corre-
sponding to a stable state and a periodic attractor cor-
responding to a sequence of states that repeats periodi-
cally. Attractors are often considered as cell types: differ-
ent attractors correspond to different cell types (Kauff-
man, 1993). Based on this interpretation, extensive stud-
ies have been done on the distribution and length of at-
tractors in BNs (Samuelsson & Troein, 2003; Kauffman,
Peterson, Samuelsson, & Troein, 2004; Drossel, Mihal-
jev, & Greil, 2005).

Although attractors in synchronous BNs are either sin-
gleton or periodic, attractors in asynchronous BNs are
more complex. An attractor in an asynchronous BN is a
strongly connected component without outgoing edges
in a state transition diagram (Saadatpour, Albert, & Al-
bert, 2010), which is also called a loose attractor (Harvey
& Bossomaier, 1997), a complex loop (Garg, Di Cara,
Xenarios, Mendoza, & De Micheli, 2008). and a terminal
strongly connected component (Fauré, Naldi, Chaouiya,
& Thieffry, 2006). If we consider non-linear systems ob-
tained by extending BNs, steady states may include in-
termediate states (Mochizuki, 2008). Since such com-
plex attractors or complex steady states cannot be rep-
resented as sequences of 0-1 vectors and thus are very
difficult to handle, we focus on synchronous BNs in this
paper.

Recently, observability of BNs has also been studied
(Cheng, Qi, & Li, 2011; Laschov, Margaliot, & Even,
2015; Li, Yang, & Chu, 2015). However, due to its high
nonlinearity, it is impossible in most cases to observe
complete internal states of BNs from a small number of
nodes. For example, Li et al. showed that more than half
of the nodes are required to guarantee the observability
of internal states of all attractors in the Drosophila seg-
ment polarity network (Li et al., 2015). Therefore, we
need to consider another approach for distinguishing the
internal states of BNs.

We note here that it is important for medical diagno-
sis to identify the type of each cell by observing expres-
sion patterns of a few genes (e.g., biomarkers or marker
genes). Therefore, extensive studies have been done to
find a small number of marker genes so that disease types
or cell types can be discriminated by observing expres-
sion of these genes (Whitfield, George, Grant, & Perou,
2006). Furthermore, both gene expression data and net-
work structure data are utilized to find more reliable
marker genes (Hayashida & Akutsu, 2016). Dynamical
gene expression data are also combined with network
structure data in order to find pre-disease states (Wu,

Chen, &Wang, 2014). However, in these studies, the tar-
get types of cells or diseases are mostly limited to those
related with specific diseases. Furthermore, most of these
studies focus on practical aspects and thus it is not guar-
anteed to find the minimum set of marker genes. There-
fore, in this paper, we consider the problem of identifying
attractors by observing activities (0 or 1) of a small num-
ber of nodes using the BN model. In particular, we focus
on finding the minimum number of nodes, by which all
given attractors can be discriminated. We call this prob-
lem discrimination of attractors. Although it is compu-
tationally intractable (#P-hard) to enumerate all single-
ton attractors (Akutsu, Kuhara, Maruyama, & Miyano,
1998), some algorithms have been developed to enumer-
ate all singleton attractors for up to moderate size net-
works by using network reduction (Veliz-Cuba, Aguilar,
Hinkelmann, & Laubenbacher, 2014) and to enumerate
all singleton and periodic attractors by using network
reduction and stable motifs (Zañudo & Albert, 2013).
Therefore, it is reasonable to assume that a set of at-
tractors is given. Furthermore, we can even assume that
this set is given independently of a BN because gene ex-
pression data for each cell type can be experimentally
obtained without knowing the structure of the underly-
ing genetic network.

In this paper, we begin with the discrimination problem
for singleton attractors, and present an algorithm that
works in polynomial time of the number of genes (n) and
the exponential factor only depends on the number of at-
tractors (m). Next, we present a key result, which states
that any pair of (singleton and periodic) attractors can
be discriminated by observing time-series data of two
nodes, by making use of the Chinese Remainder Theo-
rem. This result gives an upper bound of the number of
sensor nodes to discriminate attractors. It also leads to
development of an efficient algorithm whose polynomial
degree depends only on the minimum number of sensor
nodes. Then, we perform computational experiments us-
ing artificially generated BNs and BN models of real bi-
ological systems. Finally, we conclude with future work.

Note that Qiu et al. studied the same discrimination
problem (Qiu, Cheng, Ching, Jiang, & Akutsu, 2015).
However, in their work, a very restricted model was con-
sidered: periodic attractors were not considered and dis-
crimination nodes had to be selected from consecutive
nodes. The latter restriction is too strong and is not
appropriate from a biological viewpoint. Furthermore,
such a restricted problem can be trivially solved in poly-
nomial time because it is enough to examine all pos-
sible O(n2) intervals (although some improvement was
done in their work). In this paper, we do not adopt such
a non-realistic assumption. Cheng et al. also studied
the same discrimination problem (Cheng, Qiu, Hou, &
Ching, 2017). They developed an integer programming-
based method for discrimination of singleton attractors.
Although they also assumed that discrimination nodes
had to be selected from consecutive nodes, this restric-
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tion can be easily removed and then the method might
be practically useful. However, they did not perform any
theoretical analysis and their method cannot handle pe-
riodic attractors. The main contributions of our work
are discovery of a novel and useful property on periodic
attractors, development of combinatorial algorithms for
singleton and periodic attractors, and theoretical anal-
yses of the time complexities of these algorithms. None
of these was studied in the above-mentioned works.

2 Discrimination of singleton attractors

Before defining the problem, we briefly review Boolean
networks (BNs). A BN N(V, F ) consists of a set of
n nodes V = {v1, . . . , vn} and a corresponding set of
Boolean functions F = {f (i)| vi ∈ V }. Let vi(t) ∈ {0, 1}
represent the value of a node vi at time t, and denote
by v(t) = (v1(t), . . . , vn(t)) the state of the network at
time t. The values of all nodes are updated simultane-
ously according to the corresponding Boolean functions,
vi(t + 1) = f (i)(v(t)), where f (i) may depend only on
a few nodes in V . A directed graph can be associated
with the network in which there exists a directed edge
(vj , vi) ∈ E if and only if f (i) depends on vj . Dynamics
of a BN is well represented by a state transition dia-
gram in which nodes correspond to network states and
there exists a directed edge from u to v if and only if
network state u at time t transits to network state v
at time t + 1. A sequence of states v(0),v(1), . . . , is
called an attractor with period p if v(0) = v(p) and
v(i) 6= v(j) for all i, j with 0 ≤ i 6= j < p. An attrac-
tor with period p = 1 is called a singleton attractor.
An attractor with p > 1 is called a periodic attractor
and is represented as [v(0),v(1), . . . ,v(p − 1)]. Note
that if [v(0),v(1), . . . ,v(p − 1)] is a periodic attrac-
tor, v(i) = v(i + kp) holds for all i, k with i ≥ 0
and k > 0. Therefore, [v(i),v(i + 1), . . . ,v(i + p − 1)]
and [v(j),v(j + 1), . . . ,v(j + p − 1)] represent the
same attractor for any i, j with i 6= j ≥ 0. We say
that two periodic attractors [v(0),v(1), . . . ,v(p − 1)]
and [u(0),u(1), . . . ,u(p − 1)] are identical if there
exists an integer k with 0 < k < p such that
u((i + k) mod p) = v(i) holds for all i = 0, 1, . . . , p − 1
Fig. 1 shows an example of a BN. In this BN, transition
rules are given by

v1(t+ 1) = v1(t) ∨ v3(t),

v2(t+ 1) = v2(t) ∧ v3(t),

v3(t+ 1) = v1(t)⊕ v2(t),

where x ∧ y, x ∨ y, x ⊕ y, and x denote logical AND,
OR, XOR, and NOT, respectively. There exist two sin-
gleton attractors, (0, 1, 1) and (1, 0, 1), and no periodic
attractors.

Here we introduce the problem of determining the min-
imum discriminators for singleton attractors. Let B be

v1

v2

XOR

OR

AND

v3

(a) (b)

011

010

001

000

100

101

111

110

Fig. 1. Example of (a) BN and (b) its state transition dia-
gram. T-type arrow in (a) means that the input is negated.
In this BN, there exist two singleton attractors (0, 1, 1) and
(1, 0, 1) which are shown in bold curves in (b).

an m× n binary matrix, where each row corresponds to
a singleton attractor and each column corresponds to a
node in a BN.B[i, j] denotes the element at i-th row and
j-th column. HereB[i,−] andB[−, j] denote the i-th row
and j-th column of B, respectively. Let J = {j1, . . . , jk}
be a set of column indices. Then, BJ denotes the sub-
matrix of B consisting of the j1, j2, · · · , jk-th columns.

Definition 1 (Minimum Discriminator for Singleton
Attractors [MinDiscSatt])
Input: A set of singleton attractors represented as an
m × n binary matrix B, where m > 1 and n > 0 cor-
respond to the number of singleton attractors and the
number of nodes (i.e., genes), respectively.
Output: A minimum cardinality set J of columns (i.e.,
nodes) such that BJ [i1,−] 6= BJ [i2,−] holds for all i1, i2
with 1 ≤ i1 6= i2 ≤ m.

For example, consider the following matrix B:

























0 0 0 0 1 1

1 1 1 1 0 0

0 1 1 1 0 1

0 0 1 0 1 1

1 0 1 1 0 1

1 0 1 1 0 0

























.

Then, J = {2, 3, 5, 6} is a solution of MinDiscSatt for
B because any pair of rows are different in

B{2,3,5,6} =

























0 0 1 1

1 1 0 0

1 1 0 1

0 1 1 1

0 1 0 1

0 1 0 0

























.

We remark that MinDiscSatt is a special case (i.e., bi-
nary case) of the minimum key problem (Akutsu & Bao,
1996; Licchesi &Osborn, 1978), and even the special case
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is known to be computationally intractable (NP-hard)
(Motwani & Xu, 2007).

The MinDiscSatt problem can be trivially solved in
O(2nPoly(m,n)) time by examining all possible 2n sub-
sets of columns, where Poly(m,n) means some polyno-
mial function of m and n. However, n is usually large
and m is usually small because n corresponds to the
number of genes andm corresponds to the number of at-
tractors (the number of different types of cells). In this
case, mm < 2n may hold. In this paper, we present a
simple dynamic programming algorithm that works in
O(mmPoly(m,n)) time.

Let s be an m-dimensional vector of integers between
0 to m − 1, which we call a signature vector. Note that
there are mm possible signature vectors. Here 0 denotes
the signature vector consisting only of 0’s, and si denotes
the i-th element of s.

If each element of s is at most 2k − 1 for some integer
k (i.e., each element of s is represented using k bits),
s is called a k-bit signature vector. Then, we identify
such s with an m × k binary matrix by regarding the
i-th element of s as the i-th row consisting of k bits.
Let M(s) denote such a matrix. Conversely, we can
construct a k-bit signature vector s from a given m× k
binary matrix M by identifying each row with a k bit
number. However, we use a compact form of s by re-
naming the numbers appearing in s (with the ordering
being kept) so that only consecutive numbers beginning
from 0 are used. Let the resulting vector be v(M). For
an m × k1 matrix M1 and m × k2 matrix M2, M1 ·M2

denotes m × (k1 + k2) matrix obtained by concate-
nating M1 and M2. For example, consider the matrix
B given in the above. Then, for s = (1, 6, 6, 3, 2, 2),
M(s) is a matrix consisting of the first three columns of
B{2,3,5,6} and M(s) · B[−, 6] = B{2,3,5,6}. While signa-
ture vectors corresponding to B{2,3,5} is (1, 6, 6, 3, 2, 2),
v(B{2,3,5}) = (0, 3, 3, 2, 1, 1) (i.e., 1, 6, 3, 2 are replaced
by 0, 3, 2, 1, respectively). Similarly, while signature
vectors corresponding to B{2,3,5,6} is (3, 12, 13, 7, 5, 4),
v(B{2,3,5,6}) = (0, 4, 5, 3, 2, 1). The reason why the com-
pact form of a vector is employed is to use a dynamic
programming table (explained below) of sizemm(n+1).

We define a binary table D[s, k] by: D[s, k] = 1 if and
only if there exists J with |J | = k such that v(BJ) =
s. D[s, k] can be computed by the following dynamic
programming procedure. Although it returns only the
minimum size of J , such J can be obtained by using the
standard traceback procedure. AllD[s, k]s are initialized
to be 0.

Procedure SolveMinDiscSatt(B)
D[0, 0]← 1;
for k = 1 to n do

for all s such that D[s, k − 1] = 1 do

for all column j of B do
M ′ ←M(s) ·B[−, j];
s′ ← v(M ′);
D[s′, k]← 1;
if s′i1 6= s′i2 holds for all i1, i2 with
1 ≤ i1 6= i2 ≤ m then
return k.

Since the total number of the compact forms of s should
be smaller than or equal to mm and the other parts
of SolveMinDiscSatt clearly work in O(Poly(m,n))
time, we can see that MinDiscSatt can be solved by
SolveMinDiscSatt in O(mmPoly(m,n)) time.

This time complexity can be theoretically improved
by identifying equivalent signatures (e.g., identifying
(0, 1, 2, 2, 3) and (2, 1, 3, 3, 0)). The result is summarized
as below, where the algorithm, proof, and other details
are given in Appendix A.

Theorem 1 MinDiscSatt can be solved inO((m/1.146)m

Poly(m,n)) time.

3 Discrimination of attractors

In the above, we have considered discrimination of sin-
gleton attractors. Here, we consider the main problem:
discrimination of periodic attractors, where singleton at-
tractors can also be included. If we handle the discrim-
ination problem as in MinDiscSatt, we may not give
a correct solution. For example, suppose that two peri-
odic attractorsA1 = [00, 11] andA2 = [01, 10] are given.
If we focus on 11 and 10, the solution of MinDiscSatt
is {v2}. However, the corresponding infinite time series
data are [0, 1, 0, 1, · · · ] and [1, 0, 1, 0, · · · ] for A1 and A2,
respectively. These two time series are identical by ignor-
ing the starting states. Since we cannot know which is
the starting state in practice, we cannot discriminate A1

from A2 by looking at time series data for v2. The situa-
tion is the same for v1. However, if we look at both v1 and
v2, the time series are clearly different, [00, 11, 00, 11, · · · ]
versus [01, 10, 01, 10, · · · ], and thus we can discriminate
A1 from A2.

3.1 Problem formulation

For a set U ⊆ V and an n-dimensional 0-1 vector v,
vU denotes the |U |-dimensional vector consisting of el-
ements of v that correspond to U . For vi ∈ V , vi de-
notes the i-th coordinate value of v. For example, if
n = 5, v = (1, 0, 1, 1, 0), and U = {v2, v4, v5}, then
vU = (0, 1, 0) and v5 = 0. Let

Ah = [v(0),v(1), . . . ,v(p(Ah)− 1)]

be an attractor of period p(Ah) (i.e., v(0) = v(p(Ah)))
on N(V, F ). Then, Ser(Ah, U, t) denotes an infinite se-
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quence of vectors defined by

Ser(Ah, U, t) = [vU (t),vU (t+ 1),vU (t+ 2), · · · ].

Note that two periodic attractors Ah and Ak are identi-
cal if and only if Ser(Ah, V, 0) = Ser(Ak, V, t) holds for
some t ≥ 0. Then, our main problem is defined as below
(see also Fig. 2).

Definition 2 (Minimum Discriminator for Attractors
[MinDiscAtt])
Input: A set of attractors A = {A1, A2, . . . , Am}, where
each Ah consists of p(Ah) network states represented as
a p(Ah) × n binary matrix, p(Ah) denotes the period of
Ah, n > 0 denotes the number of nodes, and m > 1.
Output:Aminimum cardinality setU of nodes such that
Ser(Ah, U, 0) 6= Ser(Ak, U, t) for any t ≥ 0 when h 6= k.

10110 10100 10101

00010

10001

01010

11001

00001

11010

01001

10010

Fig. 2. Example of MinDiscAtt (Minimum Discriminator
for Attractors). In this example, three singleton attractors
and two periodic attractors are given as an input. The solu-
tion, {v1, v4, v5}, is shown by dotted lines.

3.2 Discrimination of two periodic attractors

Before presenting an algorithm for MinDiscAtt, we
show the key lemma which states that two periodic at-
tractors can be discriminated by observing time series
data of at most two nodes, by using the Chinese Re-
mainder Theorem and its variant. Recall that the Chi-
nese Remainder Theorem states that if p1, p2, . . . , pm are
pairwise coprime, for any integers a1, a2, . . . , am (0 ≤
ai < pi), there exists a non-negative integer x satisfying
x ≡ ai (mod pi) for all i = 1, . . . ,m. Furthermore, the
following variant is straight-forward from Theorem 10-3
and Theorem 10-4 of (Ore, 1988).

Proposition 1 If there exists a non-negative integer xij

satisfying xij ≡ ai (mod pi) and xij ≡ aj (mod pj) for
each pair (i, j) with 1 ≤ i 6= j ≤ m, then there exists a
non-negative integer x satisfying x ≡ ai (mod pi) for all
i.

Lemma 1 For any two distinct (i.e., non-identical)
attractors Ah = [v(0), . . . ,v(ph − 1)] and Ak =
[w(0), . . . ,w(pk − 1)], there exists U ⊆ V of |U | = 2 for
which Ser(Ah, U, 0) 6= Ser(Ak, U, t) holds for any t ≥ 0.

Proof: If ph = 1 or pk = 1 holds, Ah and Ak can clearly
be discriminated by looking at one node. Therefore, we
assume ph > 1 and pk > 1.

For each node vi and a non-negative integer t, we define
an infinite 0-1 sequence Dif(i,−) by 1

Dif(i, t) =



























0, if [vi(0),vi(1),vi(2), · · · ] =

[wi(t),wi(t+ 1),wi(t+ 2), · · · ]

holds,

1, otherwise,

where t ≥ 0. For a subset U ⊆ V , Dif(U,−) denotes a
0-1 table consisting of Dif(i,−)s for all vi ∈ U , where
each column corresponds to vi (see Table ??). Note that
Dif(V, t) = 00 . . . 0 holds for some t if and only if Ah

and Ak are identical.

We can see that for any fixed i, Dif(i, t) = 1 holds for
all t, orDif(i,−) has some period p > 1 that is a divisor
of the least common multiple of p(Ah) and p(Ak). In the
latter case, 0 appears exactly once within each period p
(property (#1)).

We can also see that Dif(U, t) 6= 00 · · · 0 holds for all t
if and only if Ser(Ah, U, 0) 6= Ser(Ak, U, t) holds for all
t ≥ 0.

Here we note that since Ah and Ak are distinct periodic
attractors, Ser(Ah, V, 0) 6= Ser(Ak, V, t) holds for all
t ≥ 0, which also means that Dif(V, t) 6= 00 · · · 0 holds
for all t ≥ 0. If both Dif(i,−) and Dif(j,−) have the
same period p but Dif(i, t) 6= Dif(j, t) holds for some
t, Dif({vi, vj}, t) 6= 00 holds for all t from (#1). Then,
we have a required U (i.e., U = {vi, vj}).

Let pi be the period ofDif(i,−), and let ai be the small-
est t ≥ 0 such that Dif(i, t) = 0 (clearly, ai < pi holds).

If pis (i = 1, . . . , n) are pairwise coprime. There ex-
ists a non-negative integer x such that x ≡ ai (mod pi)
from theChinese Remainder Theorem. Then,Dif(V, x) =
00 · · · 0 must hold, which means that Ah and Ak are
identical periodic attractors. This contradicts with that
Ah and Ak are non-identical.

If pis are not pairwise coprime (i.e., there exists
some non-coprime pair (pi, pj)). Suppose that Ah and
Ak are not identical but, for any U = {vi, vj} ⊆ V ,
Dif(U, tij) = 00 holds for some tij (it means tij ≡
ai (mod pi) and tij ≡ aj (mod pj)). We can see from
Prop. 1 that there exists a non-negative integer x satis-
fying x ≡ ai (mod pi) for all i = 1, . . . , n, from which
Dif(V, x) = 00 · · · 0 follows. It contradicts the assump-
tion that Ah and Ak are not identical. Therefore, if Ah

1 We use Dif(i,−) to denote a sequence for t ≥ 0 and
Dif(i, t) to denote a specific item at time t in the sequence.
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and Ak are not identical, there exists U of |U | = 2 such
that Dif(U, t) 6= 00 holds for all t. ✷

Lemma 1 indicates that the minimum number of nodes
for discriminating two different periodic attractors is at
most two. Therefore, we can see that the size of U in
MinDiscAtt is upper-bounded by m · (m− 1).

3.3 Discrimination of m attractors

Here we present an algorithm to select a minimum set of
nodes for discriminating given m attractors, which are
singleton or periodic. Let A = {A1, . . . , Am} be a set of
singleton and periodic attractors. We use Dif(h,k)(i, t)
to denote Dif(i, t) for a pair (Ah, Ak). We employ two
matrices PA andRA to record the information of thesem
attractors. The sizes of PA and RA are the same, which
equals to (m(m − 1)/2) × n. The rows of PA and RA

are indexed by the pairs G = {(h, k)|0 ≤ h < k ≤ m}.
In order to explicitly represent the index, we employ a
function g that gives a one-to-one mapping from a set of
(h, k)s with 1 ≤ h < k ≤ m to a set of integers between
1 and m(m−1)/2. For example, we can use g defined by

g(h, k) = {
h−1
∑

t=1

(m− t)}+ (k − h)

= (h− 1)m−
h(h− 1)

2
+ (k − h).

The elements of PA[g(h, k), i] and RA[g(h, k), i] are de-
fined by

• If Ser(Ah, i, 0) = Ser(Ak, i, t) for all t, (it means that
Ser(Ah, i, 0) and Ser(Ak, i, 0) are infinite sequences
of the same number (0 or 1)), PA[g(h, k), i] = 1 and
RA[g(h, k), i] = 0.

• If Ser(Ah, i, 0) = Ser(Ak, i, t) not for all t but for
some t, PA[g(h, k), i] is the period of Dif(h,k)(i,−) of
these two attractors and RA[g(h, k), i] equals to the
position of 0 (mod PA[g(h, k), i]).

• Otherwise (i.e., Ser(Ah, i, 0) 6= Ser(Ak, i, t) for all t),
PA[g(h, k), i] = RA[g(h, k), i] = 0.

For MinDiscAtt, we should find a minimum set
J such that for all g = g(h, k), either there ex-
ists 0 in PA[g, j] for some j ∈ J , or, RA[g, i] 6=
RA[g, j](mod gcd(PA[g, i], PA[g, j])) holds for some
i, j ∈ J with i 6= j.

Example 1 Suppose {A1, A2, A3} are given in Table ??,
then PA and RA are given as follows.

PA =









6 3 2 2

0 0 2 0

0 0 2 0









RA =









0 0 1 0

0 0 0 0

0 0 1 0









Now, we have the algorithm SolveMinDiscAtt as fol-
lows.

Procedure SolveMinDiscAtt(PA, RA)
for s = 1 to m(m− 1) do
for all J ⊆ {1, 2, . . . , n} such that |J | = s do

sig ← 0;
for all (h, k) ∈ G do
g ← g(h, k);
if PA[g, j] = 0 for some j ∈ J then sig ← sig + 1;
else if there exists (i, j) such that i, j ∈ J with i 6= j,
PA[g, i] > 1, PA[g, j] > 1 and RA[g, i] 6= RA[g, j]
(mod gcd(PA[g, i], PA[g, j])) then

sig ← sig + 1;
if sig = m(m− 1)/2 then
return U = {vj |j ∈ J}.

Here is an example to illustrate the above algorithm.

Example 2 Suppose that PA and RA are the same as
in Example 1. First, we consider the case of s = 1. Since
|J | = 1, the condition of else if part is trivially not sat-
isfied. Since there is no column consisting of only 0s, any
J of |J | = 1 cannot satisfy the condition of if part in for
loop form(m−1)/2 times. Therefore, any J with |J | = 1
is not a solution. Next, SolveMinDiscAtt examines J
with |J | = 2. For each J , it checks whether one of the fol-
lowing conditions is satisfied for each g = g(h, k) (i.e.,
a pair of attractors), where each row of PA (resp., RA)
corresponds to a pair of attractors.

(1) There exists j ∈ J such that PA[g, j] = 0.
(2) There exists (i, j) such that i 6= j ∈ J , PA[g, i] > 1,

PA[g, j] > 1, andRA[g, i] 6= RA[g, j](mod gcd(PA[g, i],
PA[g, j])).

Let sig represent the total number of pairs of attrac-
tors satisfying one of these two conditions. Initially,
sig is set as 0. Suppose that we consider the relation
between A1 and A2, which is represented by the first
row of PA. When J = {1, 2}, we have RA(1, 1) =
RA(1, 2)(mod gcd(PA(1, 1), PA(1, 2))). Therefore,
J = {1, 2} cannot discriminate A1 and A2. Similar
results can be obtained for J = {1, 4}, {2, 4}, {2, 3}.
As for J = {3, 4}, we can check that RA[1, 3] 6=
RA[1, 4](mod gcd(PA[1, 3], PA[1, 4])). Furthermore, for
the second and third rows, we have PA[2, 4] = PA[3, 4] =
0. Since m(m − 1)/2 = 3 for m = 3 and sig reaches
3, these 3 periodic attractors can be distinguished from
each other by observing v3 and v4.

By using SolveMinDiscAtt, we have the following the-
orem where the proof is given in Appendix B.

Theorem 2 MinDiscAtt can be solved in O(n|Umin|

Poly(m,n, p)) time, where Umin is an optimal solution
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of MinDiscAtt and p is the longest period of input at-
tractors. Furthermore, |Umin| ≤ m(m− 1) holds.

3.4 Remark on feedback vertex set

Akutsu et al. introduced the Feedback Vertex Set (FVS)
to BNs for efficiently identifying singleton attractors
(Akutsu et al., 1998). FVS is a well-known concept in
graph theory and is a set of nodes whose removal makes
a graph acyclic. Mochizuki et al. showed that all sin-
gleton and periodic attractors can be identified by ob-
serving states of nodes in an FVS (Mochizuki, Fiedler,
Kurosawa, & Saito, 2013). This fact implies that an FVS
gives a discriminator set for singleton and periodic at-
tractors only from the network structure, independently
of Boolean functions assigned to nodes. Moreover, Ara-
cena showed that if a BN is a network with signs on
arcs, a minimum positive feedback vertex set (a mini-
mum set of nodes whose removal leaves a digraph with-
out positive cycles) discriminates singleton attractors,
which is often smaller than a minimum FVS (Aracena,
2008). Here we give a very simple example showing that
the minimum FVS does not necessarily give an optimal
solution of MinDiscSatt or MinDiscAtt (i.e., a min-
imum discriminator), depending on Boolean functions
assigned to nodes. Consider a BN shown in Fig. 1. In
this BN, there exist two singleton attractors: (0, 1, 1) and
(1, 0, 1). These two attractors can be discriminated by
observing the state of v1 (or v2). Therefore, the size of
the minimum discriminator node set is 1. On the other
hand, the minimum FVS is {v1, v2}. Therefore, we can
see that the minimum FVS does not necessarily give an
optimal solution ofMinDiscSatt orMinDiscAtt. It is
interesting to note that a similar observation was done
on a kind of control problem on attractors (Zañudo &
Albert, 2015).

Of course, if other Boolean functions are assigned
even with keeping the network structure, the situation
changes. For example, consider the following BN:

v1(t+ 1) = v1(t) ∨ v3(t),

v2(t+ 1) = v2(t) ∧ v3(t),

v3(t+ 1) = v1(t) ∨ v2(t).

Then, the singleton attractors of this BN are (1, 1, 1),
(0, 1, 1), and (1, 0, 1). In this case, the minimum FVS
{v1, v2}, which is also the minimum positive FVS, gives
an optimal solution of MinDiscSatt. These examples
imply that the minimum discriminator set depends not
only on the network structure but also on Boolean func-
tions assigned to nodes of a BN. Although self loops are
included in this BN, we can construct a BN without self-
loop. For example, consider the BN defined by

v1(t+ 1) = v2(t) ∧ v3(t),

v2(t+ 1) = v1(t) ∧ v3(t),

v3(t+ 1) = v1(t) ∧ v2(t).

Then, there exist two singleton attractors ((0, 0, 0) and
(1, 1, 1)) and no periodic attractor, whereas the size of
the minimum FVS is 2. Of course, all the theoretical
results in this paper hold regardless of existence of self-
loops.

4 Results of computational experiments

In order to evaluate our developed algorithms, we con-
ducted numerical experiments with Intel FORTRAN on
a PC with Intel dual-core 2.6GHz processor and 4G
RAM, where SolveMinDiscAtt was slightly modified
to improve the practical efficiency. The source and ex-
ecutable codes of the developed programs are available
from http://hkumath.hku.hk/~wkc/Cheng/Discrimination-of-Attractors.zip .

4.1 Results on artificial data

We tested the efficiency of our proposed algorithms us-
ing randomly generated attractors. Results by Solve-
MinDiscSatt and SolveMinDiscAtt are shown in Ta-
bles 3 and ??, respectively.

We have generated a couple of m×n matrices, where m
is the number of singleton attractors and n is the num-
ber of nodes. It is seen from Table 3 that the minimum
number of nodes to discriminate m attractors is around
⌈log(m)⌉, which is reasonable since the binary matrices
are randomly generated.

For each experiment of SolveMinDiscAtt, there exist
5 periodic attractors, whose lengths are bounded by 10.
Each case is represented by a 1 × 5 vector p in which
each element represents the length of a periodic attrac-
tor. For a fixed p, we randomly generated 10 sets of pe-
riodic attractors (same length but different matrices).
The number of nodes was set as 100 or 1000. For each
case, we computed the average over 10 trials. The results
are shown in Table ??. The size of each solution was 1,
which is much smaller than the theoretically derived up-
per bound,m(m−1). It is not surprising that 5 periodic
attractors can be discriminated by looking at only one
node because it is expected that randomly generated 0-1
sequences are pairwise non-identical even for one node.

Table 3
Time cost of SolveMinDiscSatt applied to randomly gen-
erated attractors.

m n Time(s) Min Node

5 100 < 10−5 3

5 10000 < 10−5 3

7 10000 0.1875 3

10 10000 15294 4
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4.2 Results on biological data

We also applied SolveMinDiscSatt and Solve-
MinDiscAtt to four biological processes: the expres-
sion pattern of the segment polarity genes in Drosophila
Melanogaster (Albert & Othmer, 2003), which includes
60 genes (15 genes each for four different cells) and
10 singleton attractors, the control of the mammalian
cell cycle (Fauré et al., 2006), which includes 10 genes,
one singleton attractor and one periodic attractor of
length 7, the logical model analyzing T-cell activation
(Klamt, Saze-Rodriguez, Lindquist, Simeoni, & Gilles,
2006), which includes 40 genes, 8 singleton attractors
and one periodic attractor of length 6, and a Boolean
model of IGVH mutational status in chronic lympho-
cytic leukemia (Alvarez-Silva, Yepes, Torres, & Barrios,
2015), which includes 90 genes, 6 periodic attractors all
with period 4.

We have applied SolveMinDiscSatt to the Drosophila
Melanogaster model and SolveMinDiscAtt to the
other three processes. Recall that SolveMinDiscAtt
can also handle singleton attractors. The results are
shown in Table ??. In the table, “Time” means the
time needed for finding the minimum set of nodes, “Min
Node” means the size of the minimum set of nodes,
and “Genes” means gene names of these nodes. As for
the first process, we do not record the minimum set of
nodes but only maintain its size via D[s, k] when apply-
ing SolveMinDiscSatt, but the set can be obtained
by tracing back.

It seems that biologically important genes were identi-
fied for these network models. Here, we briefly discuss
the roles of identified genes. The wg genes activate WG
(wingless genes), and WG genes regulate en genes. Note
that in Table ??, subscripts 1 and 2 correspond to the
first and second cells, respectively (e.g., wg1 denotes
the wg gene in the first cell). The engrailed (en) muta-
tion leads to the transformation of the posterior struc-
tures of the dorsal mesothoracic disc into those charac-
teristic of the anterior region of the same disc (Garćıa-
Bellido & Santamaŕıa, 1972). PTC (Patched) regulates
itself and SMO. SMO (Smoothened) is segment polar-
ity gene required for correct patterning of every segment
in Drosophila (Alcedo, Ayzenzon, Von Ohlen, Noll, &
Hooper, 1996).

Mammalian cell division starts after CycD (Cyclin D) is
activated by positive signals or growth factor. CycD is
not active in the stable state, but active in the dynamic
cycle for the synchronous model (Fauré et al., 2006).

CD45 is a leucocyte common antigen glycoprotein,
which binds with T-cell receptor (TCR) and activates
Fyn. CD8 is known to be active in cytotoxic T-cells. TR-
Cbind represents whether TCR is bound with antigen
(Klamt, Saez-Rodriguez, & Gilles, 2007).

AEBP1 (AE binding protein) plays a key role in mod-
ulation of adiposity via fat-cell proliferation (Zhang,
Reidy, Nicholson, Lee, Majdalawieh, Webber, Stew-
art et al., 2005). CCND2 (Cyclin D2) is implicated
in cell cycle regulation, differentiation, and oncogenic
transformation (Meyyappan, Wong, Hull, & Riabowol,
1998). INPP5D (Inositol Polyphosphate-5-Phosphatase
D) regulates diverse cellular processes such as protein
trafficking, phagocytosis and synaptic vesicle recycling
(Ooms, Horan, Rahman, Seaton, Gurung, Kethesparan
et al., 2009).

5 Conclusion

Observability of complex networks plays an important
role in diagnosing complex systems, especially for com-
plex biological systems. If we need to know the states
of the whole system, a lot of nodes should be selected
as sensor nodes, which is not realistic. Therefore, we
have introduced the concept of discrimination of attrac-
tors in this paper, which might be useful to identify cell
types. We defined MinDiscSatt and MinDiscAtt for
selecting the minimum set of sensor nodes to discrimi-
nate singleton and periodic/singleton attractors, respec-
tively, and developed corresponding algorithms.

The results of computational experiments on artificially
generated data and biological network data suggest that
we need a small number of sensor nodes in practice, espe-
cially for discrimination of periodic attractors. This ob-
servation might lead to development of efficient diagno-
sis methods of cell types and/or biological networks. Of
course, in order to handle real data such as gene expres-
sion data, Boolean modeling is not enough. Real data
contain noises and are usually given as real valued ones.
Therefore, further studies should be done to extend the
methodologies introduced in this paper to continuous
models and stochastic models.

Appendix A. Improved algorithm for discrimina-
tion of singleton attractors

This section presents an improved algorithm for discrim-
ination of singleton attractors. As mentioned in the main
text, the key idea is to identify equivalent signatures
(e.g., (0, 1, 2, 2, 3) and (2, 1, 3, 3, 0)), where two signa-
tures are called equivalent if they have the same canon-
ical form (which is defined below). In order to analyze
the time complexity while identifying equivalent signa-
tures, we only consider vectors in the canonical form.
For a vector s, let N(s) denotes the set of integer num-
bers appearing in s. For example, N(s) = {0, 1, 2, 3}
for s = (2, 1, 3, 3, 0). We consider a one-to-one map-
ping φ from N(s) to the set of integers between 0 and
|N(s)| − 1 and let φ(s) be the vector obtained by re-
placing the ith element si of s with φ(si) for all i. Then,
φ(s) is called the canonical form if the first occurrence
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of an integer i in φ(s) precedes the first occurrence of
an integer j for any j > i. It is obvious that the canon-
ical form is uniquely determined for each vector s. We
use α(s) to denote the canonical form of s. For example.
α(s1) = (0, 1, 2, 2, 3, 0, 0) for s1 = (2, 1, 3, 3, 0, 2, 2) and
α(s2) = (0, 1, 1, 2, 3, 2, 2) for s2 = (5, 2, 2, 7, 1, 7, 7).

By using this canonical form, we obtain an improved
algorithm ImpSolveMinDiscSatt as below, where we
consider table entries D[s,−] only for canonical vec-
tors s. Note that ImpSolveMinDiscSatt differs from
SolveMinDiscSatt only in that α(v(M ′)) is used in-
stead of v(M ′).

Procedure ImpSolveMinDiscSatt(B)
D[0, 0]← 1;
for k = 1 to n do

for all s such that D[s, k − 1] = 1 do
for all column j of B do
M ′ ←M(s) ·B[−, j];
s′ ← α(v(M ′));
D[s′, k]← 1;
if s′i1 6= s′i2 holds for all i1 6= i2 then

return k.

Proof of Theorem 1: Since the correctness of Imp-
SolveMinDiscSatt is obvious, we consider the time
complexity.

First of all, we analyze the number of canonical forms for
vectors of lengthm. If an integer i appears multiple times
(more than one time) in a vector s, i is called a repeater.
We calculate the total number of canonical forms having
k repeaters. For example, s = (0, 1, 2, 3, 1, 4, 3, 1) has two
repeaters: 1 and 3. Let f(k,m) denote the total number
of canonical vectors of length m having k repeaters.

If k = 0, all the elements of s are different. Since such
a canonical vector is unique (i.e., s = (0, 1, 2, . . . ,m)),
f(0,m) = 1. If k = 1, there exists only one repeater.
Let j denote the number of occurrences of this repeater.
Then j ∈ {2, 3, . . . ,m}, and all other elements are differ-
ent and are determined uniquely. Therefore, f(1,m) =
∑m

i=2

(

m
i

)

.

For a general k, we have

f(k,m)≤
∑m−2(k−1)

i=2

(

m

i

)

f(k − 1,m− i).

For a fixed m, let F (m) denote the total number of
canonical vectors of length m. Then, we have

F (m) =
∑⌊m/2⌋

k=0
f(k,m)

≤ 1 +
∑⌊m/2⌋

k=1

m−2(k−1)
∑

i=2

(

m

i

)

f(k − 1,m− i)

= 1 +
∑m

i=2

∑⌊(m−i+2)/2⌋

k=1

(

m

i

)

f(k − 1,m− i)

= 1 +
∑m

i=2

(

m

i

) ⌊(m−i)/2⌋
∑

k=0

f(k,m− i)

= 1 +
∑m−2

j=0

(

m

j

)

F (j).

Here F (0) = F (1) = 1, F (2) = 2, and F (3) = 5. By
mathematical induction, we will prove F (m) < (m/a)m

for all m ≥ 2, where a is a constant to be determined as
below. For a while, we assume a < 1.15. Clearly, it holds
for m = 2 and m = 3. Suppose that F (i) < (i/a)i holds
for 2 ≤ i < m− 1. Then,

F (m) ≤ 1 +
∑m−2

j=0

(

m

j

)

F (j)

< 1 + F (0) +m · F (1) +
∑m−2

j=2

(

m

j

)

(j/a)j

<
∑m−2

j=0

(

m

j

)

(m/a)j

= (m/a+ 1)m − (m/a)m − (m/a)m−1 ·m

holds for m ≥ 4. Now, we have to prove

(m/a+ 1)m − (m/a)m − (m/a)m−1 ·m < (m/a)m,

which is equivalent to

(m/a+ 1)m < 2(m/a)m + (m/a)m−1 ·m.

By dividing both sides by (m/a)m, we obtain

{(1 + a/m)m/a}a < 2 + a.

Since {(1 + a/m)m/a}a < ea, it is enough to guarantee
ea < 2 + a. By numerical calculation, we can see that
ea < 2 + a holds for a ≤ 1.146.

Since O(Poly(m,n)) time is required per canonical vec-
tor in ImpSolveMinDiscSatt, the total time complex-
ity is O((m/1.146)mPoly(m,n)). ✷

Although this result improves the theoretical time com-
plexity fromO(mmPoly(m,n)) toO((m/1.140)mPoly(m,n)),
there isO(m) additional factor hidden in the Poly(m,n)
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notation for computing α(v(M ′)) (e.g., by radix sort),
Therefore, ImpSolveMinDiscSatt is better than
SolveMinDiscSatt only if (1, 146)m ≥ m holds (ignor-
ing a constant factor). Since (1, 146)m ≥ m is satisfied
only for m > 23, ImpSolveMinDiscSatt is not bet-
ter than SolveMinDiscSatt and the time complexity
of ImpSolveMinDiscSatt is too high for m > 23,
ImpSolveMinDiscSatt is not practical and is only of
theoretical interest.

Appendix B. Proof of Theorem 2

First we show the correctness of the algorithm. From
Lemma 1, it is seen that for each pair (h, k) with
1 ≤ h 6= k ≤ m, there exists {vi, vj} ⊆ V such that
Ser(Ah, {vi, vj}, 0) 6= Ser(Ak, {vi, vj}, t) holds for all
t ≥ 0.

As a special case, suppose that Ser(Ah, {vi}, 0) 6=
Ser(Ak, {vi}, t) holds for all t ≥ 0. From the definition of
PA[g(h, k), i], it is equivalent to PA[g(h, k), i] = 0. Fur-
thermore, it corresponds to the case that PA[g(h, k), j] =
0 holds for some j ∈ J . Note that this case includes the
case of p(Ah) = 1 or p(Ak) = 1.

Next, we consider the case that Ser(Ah, {vi, vj}, 0) 6=
Ser(Ak, {vi, vj}, t) holds for all t, which is equivalent to
Dif(h,k)({vi, vj}, t) 6= 00 for all t. Recall that RA[g, i] =
ai means that ai is the minimum number such that
Dif(h,k)(i, ai) = 0 holds. Thus, Dif(h,k)(i, t) = 0 holds
if and only if t = ai + nipi for some integer ni ≥ 0.
Therefore, Dif(h,k)({vi, vj}, t) = 00 holds if and only if
ai+nipi = aj+njpj = t. Let d = gcd(pi, pj). We assume
without loss of generality that ai ≥ aj holds. Then, we
have

ai + nipi = aj + njpj ,

ai + niqid= aj + njqjd,

ai − aj = (njqj − niqi)d.

The last equality is equivalent to ai ≡ aj (mod gcd(pi, pj)).
Therefore, the algorithm correctly identifies the mini-
mum U .

Finally, we consider the time complexity. Clearly, the
algorithm examines O(n|Umin|) combinations of J .
Since the other parts of SolveMinDiscAtt work in
O(Poly(m,n, p)) time per J , the total time complexity
isO(n|Umin|Poly(m,n, p)). Furthermore, since two nodes
are enough to discriminate two attractors and there
are m(m − 1)/2 pairs of attractors, |Umin| ≤ m(m − 1)
holds. ✷
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