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Abstract— This paper considers a distributed gossip ap-
proach for finding a Nash equilibrium in networked games on
graphs. In such games a player’s cost function may be affected
by the actions of any subset of players. An interference graph
is employed to illustrate the partially-coupled cost functions
and the asymmetric information requirements. For a given
interference graph, network communication between players
is considered to be limited. A generalized communication
graph is designed so that players exchange only their required
information. An algorithm is designed whereby players, with
possibly partially-coupled cost functions, make decisions based
on the estimates of other players’ actions obtained from local
neighbors. It is shown that this choice of communication graph
guarantees that all players’ information is exchanged after
sufficiently many iterations. Using a set of standard assumptions
on the cost functions, the interference and the communication
graphs, almost sure convergence to a Nash equilibrium is
proved for diminishing step sizes. Moreover, the case when the
cost functions are not known by the players is investigated and
a convergence proof is presented for diminishing step sizes.
The effect of the second largest eigenvalue of the expected
communication matrix on the convergence rate is quantified.
The trade-off between parameters associated with the commu-
nication graph and the ones associated with the interference
graph is illustrated. Numerical results are presented for a large-
scale networked game.

I. INTRODUCTION

Distributed seeking of Nash equilibria in networked games
has received considerable attention in recent years [1]-[2]. A
networked game can be represented by a graphical model
where the cost function of each player can be indexed as a
function of player’s own actions and those of his neighbors
in the graph. There are many real-world applications that
motivate us to generalize the Nash seeking problem to a
graphical game setup [3], [4]. For instance, the collection
of transmitters and receivers in a wireless data network can
be described by a graphical model. Interferences among
the transmitters and receivers affect the players’ signal-to-
interference ratio (SIR) [5]. Another relevant application that
can be modeled as a graphical game is optical network. The
channels are assumed to be the players and interferences,
which affect the optical signal-to-noise ratio (OSNR) of each
channel, can be modeled by graph edges, [6].

In this work a locally distributed algorithm is designed
towards Nash equilibrium seeking in a graphical game. In
such a game, the players’ cost functions may depend on
the actions of any subset of players. Players exchange the
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required information locally according to a communication
graph and update their actions to optimize their cost func-
tions. With the limited information available from local
neighbors, each player maintains an estimate of the other
players’ actions and update their estimates over time.

Literature review. A graphical game is a succinct repre-
sentation of a multi-player game which considers the local
interactions and the sparsity of the interferences. Such a
game can be simply described by an undirected graph called
interference graph in which the players are marked by the
vertices and the interferences are represented by the edges
[7], [8].

The idea of a graphical game has been used in various
areas. In congestion games, [9] considers a generalization to
graphical games. The model involves the spatial positioning
of the players which affects their performances. A conflict
graph is defined to specify the players that cause congestion
to each other. In [2] a methodology is presented for games
with local cost functions which are dependent on information
from only a set of local neighboring agents. Extra state
space variables are defined for the game to achieve a desired
degree of locality. In [10], graphical games are considered
in the context of dynamical games, where the dynamic of
each player depends only on local neighbor information.
A stronger definition of an interactive Nash equilibrium is
used to guarantee a unique Nash equilibrium. Moreover, the
information flow is described by a communication graph
which is identical to the interference graph. In an economic
setting, [11] draws attention to the problem of “who in-
teracts with whom” in a network. This paper states the
importance of communication with neighboring players in
the network. The effect of local peers on increasing the usage
level of consumers is addressed in [12]. Using word-of-
mouthcommunication, players typically form their opinions
about the quality of a product and improve their purchasing
behavior based on the information otained from local peers.

In [13] the problem of finding a Nash equilibrium is
studied for generalized convex games. The interference graph
may not necessarily be a complete graph, but the com-
munication graph is identical to the interference graph. A
connected communication graph is considered in [14] for
the class of aggregative games. In this game, it is assumed
that the interferences on each player originate from all other
players in the network which is literally the case with a com-
plete interference graph. For a large class of convex games,
[15] proposes an asynchronous gossip-based algorithm over
a connected communication graph. A complete interference
graph specifies the interferences between the players. The
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algorithm is based on projected gradient method that uses
diminishing step sizes. Thereafter, the algorithm is extended
in [16] for the case with constant step sizes and it is proved
that the algorithm can locate a small neighborhood of a Nash
equilibrium of the game over a complete interference graph.

This work is also related to the literature on distributed
optimization [17], [18], [19]. In a distributed optimization
problem, agents, who communicate over a connected graph,
minimize an aggregate of the cost functions with respect to
a common optimization variable. The method that is used
in [20], [17] is to incrementally update the optimization
variable by each agent using the gradient information cor-
responding to a single component function of that agent.
Then, the updated variable is passed to other agents and this
process is repeated until they reach a consensus which is an
optimal point of this problem. The convergence rate of these
algorithms is shown to be tightly dependent on the spectral
gap of the underlying communication graph [21]. While
the techniques we use here are similar, there are technical
difficulties due to the game context. Unlike the distributed
optimization case where each agent updates/controls the local
copy of the decision vector, in a game context each player
controls his action which is only an element of the decision
vector. However we circumvent this problem by assuming
an estimate of the other players’ decisions and update them
by the received information from the communication.

Contributions. In this work, we propose a gossip-based
algoruthm to find a Nash equilibrium of networked games.
We generalize the algorithm in [15], [16] to the case when
the interference graph is not a complete graph, i.e., when
the players’ cost functions are affected by the actions of
any subset of players. Thus, each player maintains only an
estimate of the players’ actions that interfere with his cost
function. Communications are assumed to be limited and a
communication graph is considered to be a subset of the
interference graph. Since, each player may maintain an esti-
mate of different players’ actions based on the interference
graph, the communication graph needs to be designed in a
way that all the players obtain the required information from
the neighbors to update their estimates. We prove that there
exists a lower bound for the communication graph under
which the algorithm converges to a Nash equilibrium for
diminishing step sizes. We then discuss the case when the
cost functions (models) are not available to the players but
only the realized cost values at the certain points are. Using
finite-difference technique to approximate the gradient, we
present an almost-sure convergence to a Nash equilibrium.
This method has been used in [13] to approximate the
gradient of cost functions leading toward a gradient-free
algorithm to compute a Nash equilibrium. This is referred
to as adaptiveness property in [13] when the algorithm is
able to compute equilibrium point despite the lack of game
components (e.g., cost functions) due to system policy or the
national security.

Lastly, inspired by [22], we investigate the convergence
rate of the proposed algorithm. [22] show that the conver-
gence time of an averaging algorithm under gossip constraint

is dependent on the second largest eigenvalue of a doubly
stochastic matrix characterizing the algorithm (See also [21],
[23]). We prove that the convergence rate diminishes as the
second largest eigenvalue of the expected communication
matrix grows. The results show a relation between this pa-
rameter and the ones associated with the communication and
the interference graphs. The trade-off between the parameters
associated with these two graphs is illustrated.

The paper is organized as follows. The problem state-
ment and assumptions are provided in Section II. A locally
distributed algorithm is proposed in Section III. The con-
vergence of the algorithm with diminishing step sizes is
discussed in Section IV, while the non-model based approach
is investigated in Section V. The convergence rate analysis
is then presented in Section VI. Simulation results are
demonstrated in Section VII.

A. Notations and Notions

All vector norms ‖ · ‖ are Euclidean. The cardinality of a
set A is denoted by |A|. The Euclidean projection of x onto
the set K is denoted by TK [x]. We denote by [aij ]i,j=1,...,N

an N ×N matrix with aij as the entry of the i-th row and
the j-th column. We also denote by [ai]i=1,...,N an N × 1
vector with ai as the i-th entry. The N ×N identity matrix
is denoted by IN . We denote by 1N an N × 1 vector whose
entries are all equal to 1 and by 0N an N × 1 vector whose
entries are all equal to 0. We use ei to denote a unit vector
whose i-th element is 1 and the others are 0.

The following definitions are from [24], [25]. An undi-
rected graph G, or simply graph, is a pair (V,E) with V
as a finite set of vertices and E ⊆ V × V a set of edges
such that for i, j ∈ V , if (i, j) ∈ E, then (j, i) ∈ E. The
degree of vertex i, denoted by deg(i), is the number of edges
connected to i. A path in a graph is a sequence of edges
which connects a sequence of vertices. A graph is connected
if there is a path between every pair of vertices. An adjacency
matrix A = [aij ]i,j∈V is a matrix with aij = 1 if (i, j) ∈ E
and aij = 0 otherwise.

A subgraph H of a graph G is a graph whose vertices
and edges are a subset of the vertex and edge set of G,
respectively. A supergraph H of G is a graph of which
G is a subgraph. A subgraph H is a spanning subgraph
of G, if it contains all the vertices of G. A triangle-free
spanning subgraph H of G is a subgraph in which no three
vertices form a triangle of edges. Moreover, H is a maximal
triangle-free spanning subgraph of G if adding an edge from
G − H to H creates only one triangle. Note that if G has
no triangle, the maximal triangle-free spanning subgraph H
becomes identical to G.

II. PROBLEM STATEMENT

Consider a multi-player game in a network with a set
of players V = {1, . . . , N}. Each player i ∈ V has a
real-valued cost function Ji. Players’ cost functions are not
necessarily fully coupled in the sense that they may be
affected by the actions of any number of players. To illustrate
the partially coupled cost functions, we define an interference



graph, denoted by GI(V,EI)1, with EI marking player pairs
that interfere one with another. We denote with NI(i), the set
of neighbors of player i in GI , i.e., NI(i) := {j ∈ V |(i, j) ∈
EI}. We also define ÑI(i) := NI(i) ∪ {i}.

Assumption 1. The interference graph GI is connected and
undirected.

Let Ωj ⊂ R denote the action set of player j. We denote
by Ω the action set of all players, i.e., Ω =

∏
i∈V Ωi ⊂

RN where
∏

denotes the Cartesian product. For i ∈ V ,
Ji : Ωi → R is the cost function of player i where
Ωi =

∏
j∈ÑI(i) Ωj ⊂ R|ÑI(i)| is the action set of players

interfering with the cost function of player i. The game
denoted by G(V,Ωi, Ji, GI) is defined based on the set of
players V , the action set Ωi ∀i ∈ V , the cost function Ji
∀i ∈ V and GI . For i ∈ V , let xi = (xi, x

i
−i) ∈ Ωi, with

xi ∈ Ωi and xi−i ∈ Ωi−i :=
∏
j∈NI(i) Ωj , denote the other

players’ actions which interfere with the cost function of
player i. Let also x = (xi, x−i) ∈ Ω, with xi ∈ Ωi and
x−i ∈ Ω−i :=

∏
j∈V/{i}Ωj , denote all other players’ actions

except i.
The game defined on GI is played such that for given

xi−i ∈ Ωi−i, each player i aims to minimize his own cost
function selfishly to find an optimal action,

minimize
yi

Ji(yi, x
i
−i)

subject to yi ∈ Ωi.
(1)

Note that there are N separate simultaneous optimization
problems and each of them is run by a particular player i.
We assume that the cost function Ji and the action set Ωi are
only available to player i. Thus every player knows which
other players’ actions affect his cost function.

A Nash equilibrium for the case when GI is not a complete
graph is defined as follows.

Definition 1. Consider an N -player game G(V,Ωi, Ji, GI),
each player i minimizing the cost function Ji : Ωi → R. A
vector x∗ = (x∗i , x

∗
−i) ∈ Ω is called a Nash equilibrium of

this game if for every given xi∗−i ∈ Ωi−i

Ji(x
∗
i , x

i∗
−i) ≤ Ji(xi, xi∗−i) ∀xi ∈ Ωi, ∀i ∈ V. (2)

Definition 1 is a restatement of a Nash equilibrium defini-
tion so that when GI is not a complete graph, Ji(xi, x−i) and
Ji(x

∗
i , x
∗
−i) are replaced with Ji(xi, x

i
−i) and Ji(x

∗
i , x

i∗
−i),

respectively.
We assume that players exchange some information in

order to update their actions. A communication graph
GC(V,EC) is defined where EC ⊆ V × V denotes the set
of communication links between the players. (i, j) ∈ EC if
and only if players i and j communicate together. The set of
neighbors of player i in GC , denoted by NC(i), is defined
as NC(i) := {j ∈ V |(i, j) ∈ EC}. In order to reduce the
number of communications between the players, we design
an assumption on GC in such a way that only the required
information is obtained by the players. Particularly, for each

1In this paper, we assume that GI is not a complete graph.

player i, the required information that needs to be obtained
is {xj : j ∈ NI(i)}.

Let Gm be a maximal triangle-free spanning subgraph of
GI . Then we have the following assumption for GC .

Assumption 2. The communication graph GC satisfies

Gm ⊆ GC ⊆ GI .

Remark 1. Note that the maximal triangle-free subgraph
Gm is only a lower bound for GC (in other words, Gm is a
sparsest possible GC). If Gm does not exist, Assumption 2
could be replaced by the following condition:
• Check that for every i ∈ V and j ∈ NI(i), there is a

path of length 1 or 2 between i and j in GC .

Remark 2. Gm is not unique in the sense that any selection
of a maximal triangle-free subgraph of GI could be consid-
ered in Assumption 2. Since Gm is connected and undirected,
by Assumption 2, GC is connected and undirected.

A Nash equilibrium can be characterized in terms of
a variational inequality problem for the pseudo-gradient
mapping F : Ω→ RN ,

F (x) := [∇xiJi(xi)]i∈V , (3)

as in the following lemma (Proposition 1.5.8, page 83 in
[26]).

Lemma 1. x∗ is a Nash equilibrium of the game represented
by (1) if and only if

x∗ = TΩ[x∗ − αF (x∗)] (4)

for α > 0, where TΩ : RN → Ω is an Euclidean projection.

We state a few assumptions for the existence and the
uniqueness of a Nash equilibrium.

Assumption 3. For every i ∈ V , the action set Ωi is a non-
empty, compact and convex subset of R. Ji(xi, xi−i) is a
continuously differentiable function in xi, jointly continuous
in xi and convex in xi for every xi−i.

The compactness of Ω implies that ∀i ∈ V and xi ∈ Ωi,

‖∇xiJi(xi)‖ ≤ C, for some C > 0. (5)

Assumption 4. F : Ω→ RN is strictly monotone,

(F (x)− F (y))T (x− y) > 0 ∀x, y ∈ Ω, x 6= y. (6)

Note that the strict monotonicity of F implies the unique-
ness of Nash equilibrium.

Assumption 5. ∇xiJi(xi, u) is Lipschitz continuous in xi,
for every fixed u ∈ Ωi−i and for every i ∈ V , i.e., there exists
σi > 0 such that

‖∇xiJi(xi, u)−∇xiJi(yi, u)‖ ≤ σi‖xi−yi‖ ∀xi, yi ∈ Ωi.
(7)

Moreover, ∇xiJi(xi, u) is Lipschitz continuous in u with a
Lipschitz constant Li > 0 for every fixed xi ∈ Ωi, ∀i ∈ V .



Remark 3. Assumption 5 implies that ∇xiJi(xi) is a
Lipschitz continuous in xi ∈ Ωi with a Lipschitz constant
ρi =

√
2L2

i + 2σ2
i for every i ∈ V . Moreover, F (x) is

also Lipschitz continuous in x ∈ Ω with a Lipschitz constant
ρ =

√∑
i∈V ρ

2
i .

Our objective is to find an algorithm for computing a Nash
equilibrium of G(V,Ωi, Ji, GI) with partially coupled cost
functions as described by GI(V,EI) using only imperfect
information over the communication graph GC(V,EC).

III. ASYNCHRONOUS GOSSIP-BASED ALGORITHM

We propose a distributed algorithm, using an asynchronous
gossip-based method in [15]. We obtain a Nash equilibrium
of G(V,Ωi, Ji, GI) by solving the associated V I problem
by a projected gradient-based approach with diminishing
step size. The mechanism of the algorithm can be briefly
explained as follows: Each player builds and maintains an
estimate of the actions which interfere with his cost function
specified by GI and locally communicates with his neighbors
over GC to exchange his estimates and update his action. The
algorithm is inspired by [15] except that only the required
information is exchanged according to GI . Thus, when GI
is not complete, the proposed algorithm can offer substantial
savings. The convergence proof depends on a generalized
weight matrix, whose properties need to be investigated and
proved.

The algorithm is elaborated in the following steps:
1- Initialization Step: Each player i maintains an initial
temporary estimate x̃i(0) ∈ Ωi for the players whose actions
interfere with his cost function. Let x̃ij(0) ∈ Ωj ⊂ R be
player i’s initial temporary estimate of player j’s action, for
i ∈ V, j ∈ ÑI(i). Then, x̃i(0) = [x̃ij(0)]j∈ÑI(i).
2- Gossiping Step: At the gossiping step, player ik wakes up
at T (k) uniformly at random and selects a communication
neighbor with an equal probability indexed by jk ∈ NC(ik).
They exchange their temporary estimate vectors and con-
struct their final estimates. Let x̃ij(k) ∈ Ωj ⊂ R be player
i’s temporary estimate of player j’s action at T (k). Then
he constructs his estimate x̂i(k) ∈ Ωi of the players whose
actions interfere with his cost function. Let x̂ij(k) ∈ Ωj ⊂ R
be player i’s estimate of player j’s action, for i ∈ V, j ∈
ÑI(i).

The estimates are computed as in the following:

1)

x̂ikl (k) =
x̃
ik
l (k)+x̃

jk
l (k)

2 , l ∈ (NI(ik) ∩ ÑI(jk))

x̂jkl (k) =
x̃
ik
l (k)+x̃

jk
l (k)

2 , l ∈ (NI(jk) ∩ ÑI(ik)).
(8)

2)

{
x̂ikr (k) = x̃ikr (k), r ∈ ÑI(ik)\(NI(ik) ∩ ÑI(jk))

x̂jkr (k) = x̃jkr (k), r ∈ ÑI(jk)\(NI(jk) ∩ ÑI(ik)).
(9)

3) For all other i /∈ {ik, jk},

x̂ij(k) = x̃ij(k), ∀i /∈ {ik, jk}, ∀j ∈ ÑI(i). (10)

Note that x̃ii(k) = xi(k) for all i ∈ V , since no estimation
is needed for its own action.

By the following lemma, we show that to update the
temporary estimates and construct the final estimates, each
player i ∈ V obtains all necessary information about the
players in NI(i).

Lemma 2. Let GI and GC satisfying Assumptions 1 and 2.
Then ∀i ∈ V , ⋃

j∈NC(i)

(
NI(i) ∩ ÑI(j)

)
= NI(i). (11)

Proof . See Appendix.

Remark 4. By Lemma 2, all the information obtained by
player i from ∀j ∈ NC(i), i.e.,

⋃
j∈NC(i)

(
NI(i) ∩ ÑI(j)

)
is equal to the necessary information that this player needs
to update his estimates.

Remark 5. We show via a counter example that the bound
Gm is needed, since otherwise, if players communicate
via a path of length greater than 2, they may lose some
information. Consider a 4-player game in a network with the
interference graph GI and the communication graph GC as
in Fig. 1. In this example GC + Gm. Note that players 3

1 2

34

1 2

34

Fig. 1: (a) Interference graph GI (b) Communication graph
GC .

and 4 do not have direct communication but through a path
of length 3 via players 2 and 1. Let player 3 communicate
with player 2. According to GI , the cost functions of player 2
and 3 are J2(x2, x1, x3) and J3(x3, x1, x2, x4), respectively.
Since x4 does not interfere with the cost function of player
2, player 3 cannot obtain any information about player 4
from player 2.

3- Local Step
At this moment all the players update their actions ac-

cording to a projected gradient-based method. Let x̂i =
(x̂ii, x̂

i
−i) ∈ Ωi, with x̂ii ∈ Ωi as player i’s estimate of his

action and x̂i−i ∈ Ωi−i as the estimate of the other players
whose actions interfere with player i’s cost function. Because
of his imperfect available information, player i uses x̂i−i(k)
and updates his action as follows: if i ∈ {ik, jk},

xi(k + 1) = TΩi [xi(k)− αk,i∇xiJi(xi(k), x̂i−i(k))], (12)

otherwise, xi(k + 1) = xi(k). In (12), TΩi : R → Ωi is
an Euclidean projection and αk,i are diminishing step sizes
such that

∞∑
k=1

α2
k,i <∞,

∞∑
k=1

αk,i =∞ ∀i ∈ V. (13)

Note that αk,i is inversely dependent on the number of
updates νk(i) that each player i has made until time k (i.e.,
αk,i = 1

νk(i) ). In (12), players not involved in communication



at T (k) maintain their actions unchanged. At this moment
the updated actions are available for players to update their
temporary estimates for every i ∈ V, j ∈ ÑI(i) as follows:

x̃ij(k + 1) =

{
x̂ij(k), if j 6= i

xi(k + 1), if j = i.
(14)

In (14), for j 6= i, player i’s estimate of player j’s action
remains unchanged at the next iteration. However, for j = i,
player i’s temporary estimate is updated by his action.

At this point, the players are ready to begin a new iteration
from step 2. �

In the following we write the algorithm in a compact form.
Let B = A + IN ∈ RN×N , where A = [aij ]i,j∈V is the
adjacency matrix associated with GI . Let also

sij :=

j∑
l=1

B(i, l) + δi 6=1

i−1∑
r=1

mr, (15)

where δi 6=1 =

{
1, if i 6= 1

0, if i = 1
. Let esij be a unit vector in

Rm. For each pair i, j ∈ V , we assign a vector Eij ∈ Rm,

Eij =

{
esij , if i ∈ V, j ∈ ÑI(i)
0m, if i ∈ V, j /∈ ÑI(i).

(16)

The communication matrix W (k) is defined as

W (k) :=Im−
1

2

∑
l∈ind(ik,jk)

(Eikl − E
jk
l )(Eikl − E

jk
l )T , (17)

where ind(ik, jk) := {d ∈ V : B(ik, d) ·B(jk, d) = 1} is the
index set belong to ÑI(ik) ∩ ÑI(jk) for ik, jk ∈ NC .

Remark 6. Each player i can only pass x̃i to his local
neighbors. Since the dimension of the information that each
player passes is different and dependent on the size of NI(i),
we are unable to use the communication weight matrix for
the fully coupled case W (k) =

(
IN − (eik − ejk)(eik −

ejk)T
)
⊗ IN with ei ∈ RN as in [16], [17].

Remark 7. W (k) is a (m×m) generalized communication
matrix, N < m ≤ N2. From (17) it follows that W (k) is a
doubly stochastic matrix such that W (k)T1m = W (k)1m =
1m.

A. Example
Consider a 4-player game in a network with the inter-

ference graph GI and the communication graph GC as in
Fig. 2. Note that for GI in Fig. 2 (a), a selection of Gm
could be depicted as in Fig. 2 (c). One can verify that as
Gm ⊆ GC ⊆ GI , Assumption 2 holds. In this setup m1 = 4,
m2 = 3, m3 = 4, m4 = 3 and m =

∑4
i=1mi = 14.

In the following tables we show the assignment of each
vector Eij ∈ R14 to each x̃ij ∈ Ωj ⊂ R.

E1
1 = e1 E1

2 = e2 E1
3 = e3 E1

4 = e4

E2
1 = e5 E2

2 = e6 E2
3 = e7 E2

4 = 014

E3
1 = e8 E3

2 = e9 E3
3 = e10 E3

4 = e11

E4
1 = e12 E4

2 = 014 E4
3 = e13 E4

4 = e14

1 2

34

1 2

34

1 2

34

Fig. 2: (a) Interference graph GI (b) Communication graph
GC (c) A maximal triangle-free subgraph of GI , Gm.

↓
x̃1

1 x̃1
2 x̃1

3 x̃1
4

x̃2
1 x̃2

2 x̃2
3 –

x̃3
1 x̃3

2 x̃3
3 x̃3

4

x̃4
1 – x̃4

3 x̃4
4

Note that ei is a unit vector in R14 and 014 is an 14 × 1
vector whose entries are all 0. Assume that players 2 and 3
communicate at T (k), i.e., ik = 2, jk = 3. The set of indices
in ÑI(2)∩ ÑI(3) is denoted by ind(2, 3) = {1, 2, 3} and the
communication matrix W (k) is

W (k)=I14−
1

2

{
(e5 − e8)(e5 − e8)T +(e6 − e9)(e6 − e9)T

+(e7 − e10)(e7 − e10)T
}
. �

Let x̄(k) be an intermediary variable. Let also x̃(k) :=[
x̃1T , . . . , x̃N

T ]T
be the stack vector with the temporary

estimates of all players and

x̄(k) = W (k)x̃(k). (18)

Then,
x̂i−i(k) = [x̄r(k)]r∈I(i), (19)

where I(i) := {d : d = sij , j ∈ NI(i)} and sij as in (15).
The algorithm is as follows:

Algorithm 1

1: initialization x̃i(0) ∈ Ωi ∀i ∈ V
2: for k = 1, 2, . . . do
3: ik ∈ V and jk ∈ NC(ik) communicate.
4: x̄(k) = W (k)x̃(k), (18), x̂i−i = [x̄r(k)]r∈I(i), (19).
5: xi(k+1) =TΩi [xi(k)−αk,i∇xiJi(xi(k),x̂i−i(k))] if i ∈
{ik, jk}, (12)
xi(k + 1) = xi(k), otherwise.

6: x̃i(k + 1) = x̂i(k) + (xi(k + 1) − x̂ii(k))ei, ∀i ∈ V ,
(14).

7: end for

IV. CONVERGENCE FOR DIMINISHING STEP SIZE

In this section we prove the convergence of the algorithm
for diminishing step sizes.

The convergence proof has two parts:
1) In Section IV-A, we prove almost sure convergence

of the temporary estimate vector x̃(k) to an average
consensus which is shown to be Z(k), the average of
all temporary estimate vectors.

2) In Section IV-B, we prove almost sure convergence of
the players actions toward the Nash equilibrium.



A. Convergence of Temporary Estimates to An Average Con-
sensus

In this section, we define the average of all temporary
estimates and prove that all the temporary estimates converge
almost surely towards this point.

Consider a memory Mk to denote the sigma-field gener-
ated by the history up to time k − 1 with M0 = M1 =
{x̃i(0), i ∈ V },

Mk =M0 ∪
{

(il, jl); 1 ≤ l ≤ k − 1
}
, ∀k ≥ 2.

For player i, let mi := deg(i)+1 where deg(i) is the degree
of vertex i ∈ V in GI . Let also m :=

∑N
i=1mi and m :=

[m1, . . . ,mN ]T ∈ RN .

Remark 8. Assumption 1 implies that mi > 1, ∀i ∈ V and
m > N . If the interference graph GI is a complete graph,
i.e., fully coupled cost functions, then m = N2.

Let x̃(k) ∈ Rm be the stack vector with temporary
estimates of all players and z(k) ∈ RN be the average of
all temporary estimate vectors, z(k) := H̄x̃(k) where

H̄ := diag(1./m)HT ∈ RN×m, (20)

1./m := [
1

m1
, . . . ,

1

mN
]T ,

H := [

N∑
i=1

Ei1, . . . ,

N∑
i=1

EiN ] ∈ Rm×N . (21)

Let also Z(k) ∈ Rm denote the augmented average of all
temporary estimates, defined as follows:

Z(k) := Hz(k) = HH̄x̃(k) ∈ Rm. (22)

We aim to prove almost sure convergence of x̃(k) to Z(k).
Note that H and H̄ are non-square matrices.

Remark 9. Since every temporary estimate vector is not
a full vector, the average of temporary estimates is not
computed by Z(k) = 1

N (1TN ⊗ IN )x̃(k) as in [16]. Rather,
H and H̄ are defined to take element-wise average of the
different number of temporary estimates associated with a
specific player (mi = degGI (i) + 1).

The convergence proof depends on some key properties of
W and H given in Lemma 3-6.

Lemma 3. Let W(k) and H be defined in (17) and (21). The
following properties hold:

i) WT (k)W (k) = W (k), (23)
ii) W (k)H = H, (24)
iii) HTW (k) = HT . (25)

Proof . See Appendix.

Lemma 4. Let Q(k) := W (k) − HH̄W (k). Then
Q(k)Z(k) = 0m.

Proof . See Appendix.

Lemma 5. Let R := Im−HH̄ where H , H̄ defined in (21),
(20). Then ‖R‖ = 1, where the induced norm of R is defined
as ‖R‖ :=

√
λmax(RTR).

Proof . See Appendix.
In the following, we define a parameter γ which is related to
W (k) and plays an important role in the convergence proof
of the players’ actions to the Nash equilibrium, as well as
in the convergence rate of the algorithm. Lemma 6 gives a
strict upper bound on γ.

Lemma 6. Let Q(k) := W (k) − HH̄W (k) and γ =
λmax

(
E[Q(k)TQ(k)]

)
. Then γ < 1.

Proof . See Appendix.

Remark 10. Note that Lemma 2 in [17] cannot be used
instead because Q(k) is related to the matrices H and H̄
which are not vectors of all ones as in [17].

In the convergence proof we use the following lemma from
[27] (Lemma 11, Chapter 2.2).

Lemma 7. Let Vk, uk, βk and ζk be non-negative random
variables adapted to σ-algebra Mk. If

∑∞
k=0 uk <∞ a.s.,∑∞

k=0 βk <∞ a.s., and E[Vk+1|Mk] ≤ (1+uk)Vk−ζk+βk
a.s. for all k ≥ 0, then Vk converges a.s. and

∑∞
k=0 ζk <∞

a.s.
Using Lemma 3-7, we show in the following that x̃(k)

converges to Z(k).

Theorem 1. Let x̃(k) be the stack vector with temporary
estimates of all players and Z(k) be its average as in (22).
Let also αk,max = maxi∈V αk,i. Then under Assumptions 1-
3,

i)
∑∞
k=0 αk,max‖x̃(k)− Z(k)‖ <∞ a.s.,

ii)
∑∞
k=0 ‖x̃(k)− Z(k)‖2 <∞ a.s.

Proof . See Appendix.
Note that by Theorem 1, ‖x̃(k) − Z(k)‖ is almost surely
square summable which implies the almost sure convergence
of x̃(k) to Z(k).

Theorem 1 yields the following corollary for x(k), repre-
sented as x(k) = [x̃1

1, . . . , x̃
N
N ]T .

Corollary 1. Let z(k) := H̄x̃(k) ∈ RN be the average of
all players’ temporary estimates. Under Assumptions 1-3, the
following hold for players’ actions x(k):

i)
∑∞
k=0 αk,max‖x(k)− z(k)‖ <∞ a.s.,

ii)
∑∞
k=0 ‖x(k)− z(k)‖2 <∞ a.s.

Proof . The proof follows by taking into account x(k) =
[x̃ii(k)]i∈V and Z(k) = Hz(k) (22), and also using Theo-
rem 1. �

By Theorem 1 and Corollary 1, the stack vector with
temporary estimates of all players x̃(k) converge to Z(k)
and all players’ actions x(k) converge to z(k) as k →∞.

Remark 11. Corollary 1 implies that for any i ∈ V and
any j ∈ ÑI(i), xj converges toward Zsij (k) where sij is as
defined in (15).

The next result shows almost sure convergence of x̄(k)
toward Z(k).

Lemma 8. Let x̃(k) and Z(k) be as in Theorem 1. Then for
x̄(k), (18), the following holds under Assumptions 1-3,



∞∑
k=0

E
[
‖x̄(k)− Z(k)‖2

∣∣∣Mk

]
<∞ a.s. (26)

Proof . See Appendix.

B. Convergence of Players Actions to A Nash Equilibrium

In this section, we use the result of Section IV-A to
prove that all the players’ actions converge towards a Nash
equilibrium of the game.

Let pi be the probability with which player i updates his
temporary estimate. The following theorem shows conver-
gence to a Nash equilibrium of G.

Theorem 2. Let x(k) and x∗ be all players’ actions and the
Nash equilibrium of G, respectively. Under Assumptions 1-5,
the sequence {x(k)} generated by the algorithm converges
to x∗, almost surely.

Proof .
Procedure: First, we find an upper bound for E

[
‖x(k+1)−

x∗‖2
∣∣∣Mk

]
and simplify it to a similar format as in Lemma 7.

Then we apply Lemma 7 after verifying the conditions step by
step and show that ‖x(k+1)−x∗‖2 converges almost surely
to a non-negative limit point. Finally, we use

∑∞
k=0 ζk <∞

as a result of Lemma 7 and the strict monotonicity of F to
show that the limit point is 0.

Firstly, using (12), (4) and the projection’s non-expansive
property, yields for i ∈ {ik, jk},

‖xi(k + 1)− x∗i ‖2 ≤ ‖xi(k)− x∗i ‖2

+α2
k,i

∥∥∥∇xiJi(xi(k), x̂i−i(k))−∇xiJi(x∗i , xi ∗−i)
∥∥∥2

(27)

−2αk,i

(
∇xiJi(xi(k), x̂i−i(k))−∇xiJi(x∗i , xi ∗−i)

)T
(xi(k)−x∗i ).

Adding and subtracting ∇xiJi(xi(k), [Zt(k)]t∈I(i)) and
∇xiJi(xi(k), xi−i(k)) from the inner product term, using (5)
and ±2aT b ≤ ‖a‖2 + ‖b‖2, yields for i ∈ {ik, jk},

‖xi(k + 1)− x∗i ‖2 ≤ (1 + 2α2
k,i)‖xi(k)− x∗i ‖2 + 4C2α2

k,i

+
∥∥∥∇xiJi(xi(k), x̂i−i(k))−∇xiJi(xi(k), [Zt(k)]t∈I(i))

∥∥∥2

+
∥∥∥∇xiJi(xi(k), [Zt(k)]t∈I(i))−∇xiJi(xi(k), xi−i(k))

∥∥∥2

(28)

−2αk,i

(
∇xiJi(xi(k), xi−i(k))−∇xiJi(x∗i , xi ∗−i)

)T
(xi(k)−x∗i ),

where I(i) is as defined in (19). For i /∈ {ik, jk}, xi(k+1) =
xi(k) and ‖xi(k + 1) − x∗i ‖2 = ‖xi(k) − x∗i ‖2. One can
combine these two cases together noting that for all i ∈ V ,
player i updates his action with a given probability pi. After
taking the expected value, we obtain for i ∈ V :

E
[
‖xi(k + 1)− x∗i ‖2

∣∣∣Mk

]
≤ (1 + 2piα

2
k,i)‖xi(k)− x∗i ‖2

+4C2piα
2
k,i + piE

[∥∥∥∇xiJi(xi(k), x̂i−i(k)) (29)

−∇xiJi(xi(k), [Zt(k)]t∈I(i))
∥∥∥2∣∣∣Mk

]
+pi

∥∥∥∇xiJi(xi(k), [Zt(k)]t∈I(i))−∇xiJi(xi(k), xi−i(k))
∥∥∥2

−2piαk,i

(
∇xiJi(xi(k), xi−i(k))

−∇xiJi(x∗i , xi ∗−i)
)T

(xi(k)− x∗i ).

Let pmax = maxi∈V pi and pmin = mini∈V pi. Let also
αk,min = mini∈V αk,i. After a simplification step (see the
proof of Theorem 2 in [16]) and summing over i ∈ V , for
large enough k, we obtain the following using Assumption 5,

E
[
‖x(k + 1)− x∗‖2

∣∣∣Mk

]
≤

(1 + 2pmaxα
2
k,max +

2pmax

k3/2−qp2
min

+
2pmaxρ

2

k3/2−qp2
min

).

.‖x(k)− x∗‖2 + 4NC2pmaxα
2
max

+pmaxL
2
∑
i∈V

E
[
‖x̂i−i(k)− [Zt(k)]t∈I(i)‖2

∣∣∣Mk

]
+pmaxL

2.
∑
i∈V
‖[Zt(k)]t∈I(i) − xi−i(k)‖2

−2

k
(F (x(k))−F (x∗))T (x(k)−x∗).

We then apply Lemma 7 for

Vk := ‖x(k)− x∗‖2,

uk := 2pmaxα
2
k,max +

2pmax

k3/2−qp2
min

+
2pmaxρ

2

k3/2−qp2
min
,

βk := pmaxL
2
(∑
i∈V

E
[∥∥∥x̂i−i(k)− [Zt(k)]t∈I(i)

∥∥∥2∣∣∣Mk

]
+
∑
i∈V

∥∥∥[Zt(k)]t∈I(i) − xi−i(k)
∥∥∥2)

+ 4NC2pmaxα
2
k,max,

ζk :=
2

k

(
F (x(k))− F (x∗)

)T
(x(k)− x∗).

By (13),
∑∞
k=0 uk < ∞, and also by x̄(k) = W (k)x̃(k)

(18), Lemma 8 and Corollary 1,
∑∞
k=0 βk < ∞ a.s. Then

by Lemma 7, Vk converges almost surely to some positive
limit and also

∑∞
k=0 ζk <∞ a.s., hence

1) ‖x(k)− x∗‖2 converges almost surely,

2)
∑∞
k=0

2
k

(
F (x(k))− F (x∗)

)T
(x(k)− x∗) <∞ a.s.

To complete the proof it only remains to show that ‖x(k)−
x∗‖ → 0 a.s. This follows by the compactness of Ω
(Assumption 3) and the strict monotonicity of F . �

V. NON-MODEL-BASED APPROACH FOR CONVERGENCE
TO A NASH EQUILIBRIUM

We generalize the algorithm to the case when the players
are not aware of their own cost functions (models) but use the
measured values of their own realized costs at certain points.
We employ the finite difference approximation method of the
gradient (see [27], Chapter 3.4).

Let ∇̃xiJi(xi(k), xi−i(k)) denote the symmetric approxi-
mation of ∇xiJi(xi(k), xi−i(k)) as the following:

∇̃xiJi(xi(k), xi−i(k)) :=

Ji
(
xi(k) + ck,i, x

i
−i(k)

)
− Ji

(
xi(k)− ck,i, xi−i(k)

)
2ck,i

,



where ck,i > 0 is a scalar perturbation on
xi(k). By Taylor expansion, for a smooth cost
function Ji(·), we obtain Ji(xi(k) ± ck,i, x

i
−i(k)) =

Ji(xi(k), xi−i(k)) ± ck,i∇xiJi(xi(k), xi−i(k)) + 1
2c

2
k,i∇2

xixi

Ji(xi(k), xi−i(k)) ± O(c3k,i). This implies that
‖∇̃xiJi(xi(k), xi−i(k))−∇xiJi(xi(k), xi−i(k))‖ = O(c2k,i).
However, smoothness of cost functions is a stringent
assumption on this problem. A relaxation of this assumption
is provided in the following:

Assumption 6. For every i ∈ V , Ji(xi(k), ·) is twice differ-
entiable function in xi(k) and ∇2

xixiJi(xi(k), ·) satisfies a
Lipschitz condition with constant η > 0 in a ck,i-ball around
xi(k).

As in Lemma 1 in [27], Chapter 3.4, one can show that,

‖∇̃xiJi(xi(k), ·)−∇xiJi(xi(k), ·)‖ ≤ η

6
c2k,i. (30)

Note also that, by Assumption 3 for i ∈ V and xi ∈ Ωi we
have,

‖∇̃xiJi(xi)‖ ≤ H, for some H > 0. (31)

Theorem 3. Let x(k) and x∗ be as in Theorem 2. Let also
αk,i be as in (13) and ck,i be a positive scalar such that,

∞∑
k=1

αk,ic
2
k,i <∞, ∀i ∈ V. (32)

Under Assumptions 1-6, the sequence {x(k)}, which is
generated by the algorithm with the approximation of the
gradient ∇̃xiJi(.), converges to x∗, almost surely.

Proof . As in (27), we find an upperbound for ‖x(k +
1) − x∗‖2 considering that the gradient is approximated by
∇̃xiJi(.) and then we use Lemma 7 to prove the conver-
gence.

‖xi(k + 1)− x∗i ‖2 ≤ ‖xi(k)− x∗i ‖2

+α2
k,i

∥∥∥∇̃xiJi(xi(k), x̂i−i(k))− ∇̃xiJi(x∗i , xi ∗−i)
∥∥∥2

(33)

−2αk,i

(
∇̃xiJi(xi(k), x̂i−i(k))−∇̃xiJi(x∗i , xi ∗−i)

)T
(xi(k)−x∗i ).

Using (31) to estimate the 2nd term in the RHS of (33)
and also adding and subtracting ∇xiJi(xi(k), x̂i−i(k)),
∇xiJi(xi(k), [Zt(k)]t∈I(i)), ∇xiJi(xi(k), xi−i(k)) and
∇xiJi(x∗i , xi∗−i) from the inner product term and using
±2aT b ≤ ‖a‖2 + ‖b‖2, yields for i ∈ {ik, jk},

‖xi(k + 1)− x∗i ‖2 ≤ (1 + 2α2
k,i)‖xi(k)− x∗i ‖2 + 4H2α2

k,i

+4αk,ixmax

∥∥∥∇̃xiJi(xi(k), x̂i−i(k))−∇xiJi(xi(k), x̂i−i(k))
∥∥∥

+
∥∥∥∇xiJi(xi(k), x̂i−i(k))−∇xiJi(xi(k), [Zt(k)]t∈I(i))

∥∥∥2

+
∥∥∥∇xiJi(xi(k), [Zt(k)]t∈I(i))−∇xiJi(xi(k), xi−i(k))

∥∥∥2

(34)

+4αk,ixmax

∥∥∥∇xiJi(xi(k), xi−i(k))− ∇̃xiJi(xi(k), xi−i(k))
∥∥∥

−2αk,i

(
∇xiJi(xi(k), xi−i(k))−∇xiJi(x∗i , xi ∗−i)

)T
(xi(k)−x∗i ),

where I(i) is as defined in (19). In (34), we used the
compactness of Ωi (Assumption 3) which implies,

‖xi(k)‖ ≤ xmax. (35)

Using (30), yields for i ∈ {ik, jk},

‖xi(k + 1)− x∗i ‖2 ≤ (1 + 2α2
k,i)‖xi(k)− x∗i ‖2

+4H2α2
k,i +

4ηxmax

3
αk,ic

2
k,i (36)

+
∥∥∥∇xiJi(xi(k), x̂i−i(k))−∇xiJi(xi(k), [Zt(k)]t∈I(i))

∥∥∥2

+
∥∥∥∇xiJi(xi(k), [Zt(k)]t∈I(i))−∇xiJi(xi(k), xi−i(k))

∥∥∥2

−2αk,i

(
∇xiJi(xi(k), xi−i(k))−∇xiJi(x∗i , xi ∗−i)

)T
(xi(k)−x∗i ),

The rest of the proof is similar to that of Theorem 2, noting
that by (32)

∑∞
k=1

4ηxmax

3 αk,ic
2
k,i <∞, ∀i ∈ V . �

VI. CONVERGENCE RATE

In this section we compare the convergence rate of the
algorithm proposed in Section III (denoted as Algorithm 1)
with the algorithm in [15] (denoted as Algorithm 2). Al-
gorithm 1 is an extension of Algorithm 2 which considers
partially-coupled cost functions via an interference graph
GI . Algorithm 2 operates as if all cost functions are fully-
coupled, or the interference graph is a complete graph G.
By Assumption 2, any feasible communication graph for
Algorithm 1 has a lower bound Gm, however, the communi-
cation graph for Algorithm 2 can be any minimally connected
subgraph of G, denoted as Gmin. Thus, since Gmin ⊆ Gm,
we expect more iterations for Algorithm 1 than Algorithm 2
for the corresponding communication graphs from the point
of view of parameters associated with GC . In TABLE I
we summarize the differences between the parameters of
Algorithms 1 and 2. Note that we distinguish between the
parameters for Algorithms 1, 2 by using subscripts 1, 2 (su-
perscripts 1, 2 for GC , NC and Eij). To avoid any confusion
note also that λ2 denotes the second largest eigenvalue and
its index has nothing to do with the subscript associated with
Algorithm 2.

We compare Algorithms 1 and 2 relative to the interference
graph GI . We can show that for each iteration, Algorithm 1
takes less time than Algorithm 2 since less information
(fewer estimates) is needed to be exchanged. For the sake
of comparison, we assume that both algorithms run over the
same GC ⊇ Gm. Let r be the time required to exchange
an estimate, and let s be the time required to process a
full gradient. Note that the processing time for the gradient
is linearly dependent on the data set. We ignore the time
required to compute the projection in the local step. Thus
for each iteration, the average time required to exchange all
the estimates between players and to update the actions under
Algorithm 1 is

T 1
av :=

∑
i∈V

∑
j∈NC(i)

1

N
pij

(
|NI(i) ∩ ÑI(j)|r +

mi

N
s
)
, (37)

where pij is the probability that players i and j contact each
other. |NI(i) ∩ ÑI(j)|r is the time required for player i



Algorithm 1 Algorithm 2 [[15]]
GC Gm ⊆ G1

C ⊆ GI 6= G Gmin ⊆ G2
C ⊆ G

Deg(i) + 1
mi Nin GI & G∑

i

(Deg(i) + 1) ∑
i∈V mi = m

∑
i∈V N = N2

in GI & G

B B1 := AGI + IN B2 := AG + IN = 1N1TN

Eij ∈ Rm (16) Ei,1j =

{
esij , if i ∈ V, j ∈ ÑI(i)
0m×1, if i ∈ V, j /∈ ÑI(i)

Ei,2j = e(i−1)N+j , i, j ∈ V

W (k) (17) W1(k) := Im −
1

2

∑
l∈ind(ik,jk)

(Eik,1l − Ejk,1l )(Eik,1l − Ejk,1l )T

W2(k) := IN2 − 1

2

∑
l∈V

(e(ik−1)N+l − e(jk−1)N+l)(e(ik−1)N+l − e(jk−1)N+l)
T

H (21) H1 := [
∑N
i=1E

i,1
1 , . . . ,

∑N
i=1E

i,1
N ] ∈ Rm×N H2 := IN ⊗ 1N ∈ RN2×N

H̄ (20) H̄1 := diag(1./m)HT
1 ∈ RN×m H̄2 := 1

NH
T
2 = 1

N (IN ⊗ 1TN ) ∈ RN×N2

Q(k) Q1(k) := W1(k)−H1H̄1W1(k) = W1(k)−H1diag(1./m)HT
1

(Lemma 4) Q2(k) := W2(k)− 1
NH2H

T
2 = W2(k)− 1

N (IN ⊗ 1N1TN )

R (Lemma 5) R1 := Im −H1H̄1 = Im −H1diag(1./m)HT
1 R2 := IN2 − 1

NH2H
T
2 = IN ⊗ (IN − 1

N 1N1TN )

Table I

to obtain all the necessary estimates of player j. mi
N s is

the time required to compute ∇xiJi(xi, xi−i), noting that
s is the processing time for computing the full gradient
∇xiJi(xi, x−i). In Algorithm 2 the average time for each
iteration is computed by replacing |NI(i) ∩ ÑI(j)| and mi

in (37) with N − 1 and N , respectively. Then,we obtain,

T 2
av :=

∑
i∈V

∑
j∈NC(i)

1

N
pij

(
(N − 1)r + s

)
, (38)

Note that |NI(i) ∩ NI(j)| ≤ N − 1 and mi ≤ N which
implies T 1

av ≤ T 2
av.

Next, we discuss the convergence time (in number of itera-
tions) required for each algorithm. To simplify the analysis,
we assume constant step sizes (i.e., αk,i = αi). Note that
for constant step sizes there exists a steady-state offset
between x(k) and the Nash equilibrium x∗, see [16]. Let this
minimum value of error be denoted by d∗, i.e., infk ‖x(k)−
x∗‖ = d∗. We use a modified ε-averaging time similar to
Definition 1 in [22] for the convergence time.

Definition 2. For any 0 < ε < 1, the ε-averaging time of an
algorithm, Nav(ε), is defined as

Nav(ε) :=sup
x(0)

inf
{
k :Pr

(‖x(k)−x∗‖−d∗

‖x(0)‖
≥ε
)
≤ε
}
. (39)

By Definition 2, Nav(ε) is the minimum number of itera-
tions it takes for ‖x(k)− x∗‖ to approach an ε-ball around
d∗ with a high probability, regardless of the initial condition
x(0). The following assumption guarantees Nav(ε) to be
well-defined.

Assumption 7. We assume a non-zero minimum value,
denoted by xmin(0) 6= 0, for the norm of the initial action of
player i for i ∈ V , i.e., ‖xi(0)‖ ≥ xmin(0) > 0.

We obtain a lower bound for the ε-averaging time under
Algorithms 1 and 2 by applying Markov’s inequality: for any
non-negative random variable X and ε > 0, the following
holds:

Pr(X ≥ ε) ≤ E[X]

ε
. (40)

For constant step sizes we consider the following assumption
rather than Assumption 4.

Assumption 8. F : Ω → RN is strongly monotone on Ω
with a constant µ > 0, i.e.,

(F (x)− F (y))T (x− y) ≥ µ‖x− y‖2 ∀x, y ∈ Ω. (41)

Theorem 4. Let αi be constant step sizes which satisfy 0 <
φ < 1 where,

φ := 1 + (1 + ρ2 + 2αmax)pmaxαmax− (1 + ρ2 + 2µ)pminαmin,
(42)

with pmax = maxi∈V pi, pmin = mini∈V pi, αmax =
maxi∈V αi, αmin = mini∈V αi, ρ be the Lipschitz constant of
F and µ be the positive constant for the strong monotonicity
property of F . Under Assumptions 1-3, 5, 7, 8, the ε-
averaging time Nav(ε) has a lower bound as follows:

Nav(ε) ≥
log a

ε3−b

log 1√
γ

,

where γ = λmax

(
E[Q(k)TQ(k)]

)
(as in Lemma 6), Q(k) :=

W (k)−HH̄W (k), and a, b are positive and increasing with
γ.

Proof .
Procedure: The proof follows by bounding E

[
‖x(k + 1) −

x∗‖2
]

using an upper bound for E
[
‖x̃(k+ 1)−Z(k+ 1)‖

]
.



Then we use Markov’s inequality (40) to obtain a lower
bound for the ε-averaging time Nav(ε).

First, we start to find an upper bound for E
[
‖x̃(k + 1)−

Z(k + 1)‖
]
. As in the proof of Theorem 1 (Equation (77)),

one can obtain,

E
[
‖x̃(k + 1)− Z(k + 1)‖

]
≤ √γE

[
‖x̃(k)− Z(k)‖

]
+

√
2

2

∑
i∈{ik,jk}

E
[
‖x̃ii(k)− x̃ji (k)‖

]
+2αmaxC. (43)

In (43), we upper bound E
[
‖x̃ii(k)− x̃ji (k)‖

]
. By (8), (12),

(14) and (35) we obtain for i, j ∈ {ik, jk},

E
[
‖x̃ii(k + 1)− x̃ji (k + 1)‖

]
≤ E

[
‖ x̃

i
i(k)− x̃ji (k)

2
− αi∇xiJi(xi(k), x̂i−i(k))‖

]
≤ 1

2
E
[
‖x̃ii(k)− x̃ji (k)‖

]
+ αmaxC

≤ (
1

2
)k+1E

[
‖x̃ii(0)− x̃ji (0)‖

]
+

k∑
t=0

(
1

2
)tαmaxC

≤ (
1

2
)kxmax +

k∑
t=0

(
1

2
)tαmaxC ≤ C1

k∑
t=0

(
1

2
)t ≤ 2C1,(44)

where C1 := max{αmaxC, xmax}. Substituting (44) into
(43), one can obtain,

E
[
‖x̃(k + 1)− Z(k + 1)‖

]
≤ √γE

[
‖x̃(k)− Z(k)‖

]
+
√

2
∑

i∈{ik,jk}

C1 +2αmaxC ≤
√
γ
k+1E

[
‖x̃(0)− Z(0)‖

]

+(2
√

2C1 +2αmaxC)

k∑
t=0

√
γ
t ≤ C2

√
γ
k+1

+ C21, (45)

where C2 :=
√
Nxmax, C21 := 2

√
2C1+2αmaxC

1−√γ and we used√
Nxmin ≤ ‖x‖ ≤

√
Nxmax, by (35). Taking (43) into

account, one can upper bound the following squared-norm
term:

E
[
‖x̃(k + 1)− Z(k + 1)‖2

]
≤ γE

[
‖x̃(k)− Z(k)‖2

]
+

1

2

∑
i∈{ik,jk}

E
[
‖x̃ii(k)− x̃ji (k)‖2

]
+ 4α2

maxC
2

+2E
[(√

γ‖x̃(k)− Z(k)‖
)

.
(√2

2

∑
i∈{ik,jk}

‖x̃ii(k)− x̃ji (k)‖+ 2αmaxC
)]
. (46)

To simplify (46), we first deal with the second term and then
with the last term of the RHS. By (44) we arrive at,

E
[
‖x̃ii(k + 1)− x̃ji (k + 1)‖2

]
≤ 1

4
E
[
‖x̃ii(k)− x̃ji (k)‖2

]
(47)

+α2
maxC

2 + αmaxCE
[
‖x̃ii(k)− x̃ji (k)‖

]
≤ C3

k+1∑
t=0

(
1

4
)t ≤ 4

3
C3,

where C3 := max{x2
max, α

2
maxC

2 + 2αmaxCC1}. Multiplica-
tion of (43) and (44) yields,

E
[(1

2

∑
i∈{ik,jk}

‖x̃ii(k + 1)− x̃ji (k + 1)‖
)

(
‖x̃(k + 1)− Z(k + 1)‖

)]
≤
√
γ

2
E
[(1

2

∑
i∈{ik,jk}

‖x̃ii(k)− x̃ji (k)‖
)
‖x̃(k)− Z(k)‖

]
+

√
2

4

∑
i∈{ik,jk}

E
[
‖x̃ii(k)− x̃ji (k)‖2

]
+

1 +
√

2

2
αmaxC

∑
i∈{ik,jk}

E
[
‖x̃ii(k)− x̃ji (k)‖

]
(48)

+
√
γαmaxCE

[
‖x̃(k)− Z(k)‖

]
+2α2

maxC
2 ≤ C4

√
γ
k+1

+ C41,

where C41 := 1

1−
√
γ

2

(
2
√

2
3 C3 + 2(1 +

√
2)αmaxCC1 +

CC21αmax
√
γ + 2α2

maxC
2
)

+ Nx2
max

√
γ

2 and C4 :=
CC2αmax

1−
√
γ

2

. Using (47), (48) and (45) on the RHS of (46),
one can obtain,

E
[
‖x̃(k + 1)− Z(k + 1)‖2

]
≤

≤ γE
[
‖x̃(k)− Z(k)‖2

]
+

4

3
C3 + 4α2

maxC
2

+2
√

2γ(C4
√
γ
k

+ C41) + 4
√
γαmaxC(C2

√
γ
k

+ C21)

≤ C5
√
γ
k+1

+ C51, (49)

where C51 :=
4
3C3+4α2

maxC
2+(2

√
2C41+4αmaxCC21)

√
γ

1−γ +
γNx2

max and C5 := 2
√

2C4+4αmaxCC2

1−γ . We put the last
piece of the puzzle in place by finding an upper bound
for E

[
‖x(k + 1) − x∗‖2

]
. Using (12), for i ∈ {ik, jk} and

bringing in Z(k) it follows that for i ∈ {ik, jk},

‖xi(k + 1)− x∗i ‖2 ≤∥∥∥xi(k)−x∗i−αi
(
∇xiJi(xi(k), x̂i−i(k))−∇xiJi(x∗i , xi ∗−i)

)∥∥∥2

≤ (1 + 2α2
max)‖xi(k)− x∗i ‖2 + 4C2α2

max

+L2
i

∥∥∥x̂i−i(k)− [Zt(k)]t∈I(i)

∥∥∥2

+ L2
i

∥∥∥xi−i(k)− [Zt(k)]t∈I(i)

∥∥∥2

−2αi

(
∇xiJi(xi(k), xi−i(k))−∇xiJi(x∗i , xi ∗−i)

)T
(xi(k)−x∗i ),(50)

where I(i) is as defined in (19). For i /∈ {ik, jk}, xi(k+1) =
xi(k). Similar to the proof of Theorem 2, we combine these
two cases for i ∈ V and take conditional expected value to
obtain,

E
[
‖xi(k + 1)− x∗i ‖2

∣∣∣Mk

]
≤ (1 + 2piα

2
max)‖xi(k)− x∗i ‖2

+4C2piα
2
max + L2

i piE
[∥∥∥x̂i−i(k)− [Zt(k)]t∈I(i)

∥∥∥2∣∣∣Mk

]
+L2

i pi

∥∥∥xi−i(k)− [Zt(k)]t∈I(i)

∥∥∥2

(51)

−2piαi

(
∇xiJi(xi(k), xi−i(k))−∇xiJi(x∗i , xi ∗−i)

)T
(xi(k)−x∗i ).

Adding and subtracting αminpmin from αipi in the last term,



we obtain after some manipulation,

E
[
‖xi(k + 1)− x∗i ‖2

∣∣∣Mk

]
≤

(1 + pmaxαmax − pminαmin + 2piα
2
max)‖xi(k)− x∗i ‖2

+4C2piα
2
max + L2

i piE
[∥∥∥x̂i−i(k)− [Zt(k)]t∈I(i)

∥∥∥2∣∣∣Mk

]
+L2

i pi

∥∥∥xi−i(k)− [Zt(k)]t∈I(i)

∥∥∥2

+ (pmaxαmax − pminαmin)

.‖∇xiJi(xi(k), xi−i(k))−∇xiJi(x∗i , xi ∗−i)‖2 − 2pminαmin

.
(
∇xiJi(xi(k), xi−i(k))−∇xiJi(x∗i , xi ∗−i)

)T
(xi(k)−x∗i ).

Summing the foregoing over all i ∈ V , and using L =
maxi∈V Li we arrive at,

E
[
‖x(k + 1)− x∗‖2

∣∣∣Mk

]
≤

(1 + pmaxαmax − pminαmin + 2pmaxα
2
max)‖x(k)− x∗‖2

+4NC2pmaxα
2
max

+L2pmax

∑
i∈V

E
[∥∥∥x̂i−i(k)− [Zt(k)]t∈I(i)

∥∥∥2∣∣∣Mk

]
+L2pmax

∑
i∈V

∥∥∥xi−i(k)− [Zt(k)]t∈I(i)

∥∥∥2

+(pmaxαmax − pminαmin)‖F (x(k))− F (x∗)‖2

−2pminαmin

(
F (x(k))− F (x∗)

)T
(x(k)−x∗). (52)

Using Remark 3 in the fifth term and Assumption 8 in the
last term and taking the expected value, yields,

E
[
E
[
‖x(k + 1)− x∗‖2

∣∣∣Mk

]]
= E

[
‖x(k + 1)− x∗‖2

]
≤ φE

[
‖x(k)− x∗‖2

]
+ 4NC2pmaxα

2
max

+L2pmax

∑
i∈V

E
[∥∥∥x̂i−i(k)− [Zt(k)]t∈I(i)

∥∥∥2]
+L2pmax

∑
i∈V

E
[∥∥∥xi−i(k)− [Zt(k)]t∈I(i)

∥∥∥2]
, (53)

where φ is as in (42), ρ > 0 and µ > 0 are the Lipschitz and
the strong monotonicity constants, respectively. Using (49)
into (53), yields the following upper bound:

E
[
‖x(k + 1)− x∗‖2

]
≤ φE

[
‖x(k)− x∗‖2

]
+4NC2pmaxα

2
max + 2L2pmax(C5

√
γ
k

+ C51)

≤ C6

(1− φk+2

1− φ

)
+

k∑
t=0

φt(2C5L
2pmax

√
γ
k
)

≤ C7 + C8
√
γ
k
, (54)

where C7 := C6

1−φ , C8 := 2L2pmaxC5

1−φ and C6 :=

max{Nx2
max, 4NC

2pmaxα
2
max + 2L2pmaxC51}. Recall that

infk ‖x(k)− x∗‖ = d∗. Then,

d∗2 = inf
k
‖x(k)− x∗‖2 ≤ lim

k→∞
E[‖x(k)− x∗‖2] ≤ C7.

(55)
Since 0 < φ < 1, by using Markov’s inequality (40) and

(54) the following inequality follows,

Pr
(‖x(k)− x∗‖ − d∗

‖x(0)‖
≥ ε
)

= Pr
( (‖x(k)− x∗‖ − d∗)2

‖x(0)‖2
≥ ε2

)
≤ ε−2

E
[
‖x(k)− x∗‖2

]
− d∗2

‖x(0)‖2
≤ ε−2C8

√
γk + C7 − d∗2

‖x(0)‖2
. (56)

From (56), it follows that,

ε−2x−2
min(C8

√
γ
k

+ C7 − d∗2) ≤ ε⇒

Pr
(‖x(k)− x∗‖ − d∗

‖x(0)‖
≥ ε
)
≤ ε. (57)

Using Definition 2 and Assumption 7, one can obtain a lower
bound for Nav(ε) from (57),

Nav(ε) ≥
log a

ε3−b

log 1√
γ

, (58)

where a := C8x
−2
min and b := (C7−d∗2)x−2

min. By Lemma 6,
(55) and the condition on φ, 0 < φ < 1, a and b are positive
and increasing functions of γ. �

Remark 12. The lower bound for Nav(ε) is an increasing
function of γ defined in Lemma 6. Therefore, as γ increases,
more iterations are required to converge to a Nash equilib-
rium. d∗ is not dependent on the topology of the interference
and communication graphs as long as Assumptions 1 and 2
are met. Thus, d∗ does not change with γ.

Remark 13. As (58) shows, since ε3 − b has to be positive
we are not able to find a lower bound for the number of
iterations for any value of ε. However, for the case when
d∗2 = C7, Nav(ε) is the minimum number of iterations it
takes for ‖x(k) − x∗‖ to approach an ε-ball around

√
C7,

and Nav(ε) ≥
log a

ε3

log 1√
γ

. Thus as γ increases, Nav(ε) increases
for any value of ε.

Characterizing γ and its relation with the communication
and interference graphs shed light on the convergence rate
of the algorithm. The following lemma characterizes γ.

Lemma 9. Let W̄ := E[W (k)] be the expected communica-
tion matrix. Then W̄ is doubly stochastic with λmax(W̄ ) = 1.
Let λ2(W̄ ) be the second largest eigenvalue of W̄ , i.e.,
λ2(W̄ ) := maxλ6=1 λ(W̄ ). Then γ as defined in Lemma 6,
γ = λmax

(
E[Q(k)TQ(k)]

)
, satisfies γ = λ2(W̄ ).

Proof . See Appendix.
By Lemma 9, γ is the second largest eigenvalue of W̄ , hence
Nav(ε) depends on the structure of the expected communi-
cation matrix. It can be seen in the proof of Lemma 9 that
W̄ depends on parameters associated with the interference
and the communication graphs. In general it is difficult to
see the effect of each parameter on λ2 of W̄ . Note that for
an irreducible doubly stochastic W̄ , we can find an upper
bound for the spectral gap (i.e. 1 − λ2), [28]. However, W̄
could be reducible which prevents us from using such a
powerful tool. Later on in the simulation section, we will
compute γ numerically and we will see the effect of γ on
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Fig. 3: (a) Wireless Ad-Hoc Network. (b) Interference graph
GI (the bottom left figure). (c) Communication graph GC
(the bottom right figure).

the convergence rate. Another parameter that Nav(ε) (57) is
dependent on is φ, (42), which is associated with the cost
functions.

To sum up, from the perspective of parameters associated
with GI , we can conclude that each iteration is shorter
when the interference graph is considered. Moreover, the
number of iterations is tightly dependent on the second
largest eigenvalue of the expected communication matrix
hence on GC .

VII. SIMULATION RESULTS

In this section we present a numerical example and
compare Algorithm 1 and Algorithm 2. Consider a Wireless
Ad-Hoc Network (WANET) which consists of 16 mobile
nodes interconnected by multi-hop communication paths
[29]. Consider Nah = {1, . . . , 16} as the set of wireless
nodes and Lah = {Ll}l∈L as the set of links connecting
the nodes, L = {1, . . . , 16} the set of link indices. Let
V = {U1, . . . , U15} denote the set of users (players) who
want to use this wireless network to transfer data. Fig. 3 (a)
represents the topology of the WANET in which a unique
path is assigned to each user to transfer his data from the
source to the destination node. Each Ui is characterized by
a set of links (path), Ri, i ∈ V . The interferences between
users are represented in Fig. 3 (b). Nodes specify the users
and edges show which users have a common link in their
paths. Each link Lj ∈ Lah has a positive capacity Cj > 0,
j ∈ L. Each Ui, Ui ∈ V , sends a non-negative flow xi,
0 ≤ xi ≤ 10, over Ri, and has a cost function Ji defined as

Ji(xi, x
i
−i) :=

∑
j:Lj∈Ri

κ

Cj −
∑
w:Lj∈Rw xw

−χi log(xi+1),
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Fig. 4: Flow rates of the selected users and total flow rates
at the selected links by Algorithm 1.
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Fig. 5: Flow rates of the selected users and total flow rates
at the selected links by Algorithm 2.

where κ is a positive network-wide known parameter and χi
is a positive user-specific parameter. The notation a : b ∈ c
translates into “set of a’s such that b is contained in c”.
We run Algorithm 1 over the communication graph GC in
Fig. 3 (c), and compare its convergence rate with that of
Algorithm 2 over the same GC . Let χi = 10, i ∈ V and
Cj = 10, j ∈ L. Fig. 4 and Fig 5 show convergence of
Algorithm 1 and Algorithm 2 for diminishing step sizes. The
dashed lines represent the Nash equilibrium. The normalized
error (‖x−x

∗‖
‖x∗‖ × 100%) is 3.93% after 6000 iterations for

Algorithm 1, and after 30000 iterations for Algorithm 2.
Algorithm 1 needs 5 times fewer iterations, and each iteration
is 6 times shorter. Thus, Algorithm 1 is 30 times faster
than Algorithm 2 in this example. In order to verify the
analysis in Section VI (Theorem 4), we run Algorithms 1
and 2 with constant step sizes αk,i = 0.1. We compute γ for
Algorithms 1,2 using Lemma 9: γ1 = 0.983, γ2 = 0.994.
Fig. 6 shows how the lower bound on Nav(ε), (4), varies
with γ, for ε = 0.01. This confirms that Algorithm 2 (with
greater γ) requires more iterations to converge to a Nash
equilibrium.
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Fig. 6: Lower bound on Nav(ε) for αk,i = 0.1 and ε = 0.01
versus γ.



VIII. CONCLUSIONS

In this paper we proposed a gossip algorithm to find
a Nash equilibrium in a networked game. An interference
graph is used to illustrate the locality of the cost functions.
Players exchange only their required information over a
communication graph. We proved convergence to a Nash
equilibrium. We also presented convergence proof for the
case when the component functions are not known by the
players. Moreover, we showed the effect of the second largest
eigenvalue of the expected communication matrix on the
convergence rate.

APPENDIX
Proof of Lemma 2. In the following, we prove NI(i) ⊆⋃
j∈NC(i) ÑI(j) for i ∈ V from which it is straightforward

to deduce (11).
For the case when GC = GI , we obtain,⋃
j∈NC(i)

ÑI(j)=
⋃

j∈NI(i)

ÑI(j)⊇
⋃

j∈NI(i)

{j}=NI(i). (59)

In (59), we used the fact that {j} ⊆ ÑI(j) by the definition
of ÑI(j).

Now assume that Gm ⊆ GC ⊂ GI . To prove (11), it
is sufficient to show that NI(i) ⊆

⋃
j∈Nm(i) Ñm(j), where

Nm(i) is the set of neighbors of player i in Gm and Ñm(i)
in addition to Nm(i) contains {i}. In other words we need
to show that any neighbor of player i in GI (any vertex with
a path of length 1 away from i in GI ) is either a neighbor
or a “neighbor of a neighbor” of player i in Gm (a vertex
with a path of length 1 or 2 away from i in Gm).

We prove this claim by contradiction: Assume that there
exists j ∈ NI(i) such that j /∈ Nm(i) and j /∈ Nm(l) ∀l ∈
Nm(i). Then, there exists no path of length 1 or 2 between
i and j in Gm. Thus, adding that missing edge to Gm does
not form a triangle which violates the maximal triangle free
property of Gm. This is a contradiction and hence our claim
is true. �

Proof of Lemma 3 Part i). Using the definition of W (k)
(17) we obtain,

WT (k)W (k) = Im −
∑

l∈ind(ik,jk)

(Eikl − E
jk
l )(Eikl − E

jk
l )T

+
1

4

( ∑
l∈ind(ik,jk)

(Eikl − E
jk
l )(Eikl − E

jk
l )T

)2

= W (k),

where we used (Eikl −E
jk
l )T (Eikl′ −E

jk
l′ ) =

{
2, if l = l′

0, if l 6= l′
.

Proof of Part ii). Using the definitions of H and W (k)
(21), (17), we expand W (k)H as

W (k)H =

[ N∑
i=1

Eij −
1

2

∑
l∈ind(ik,jk)

(
(Eikl − E

jk
l )

.

N∑
i=1

(Eikl − E
jk
l )TEij

)]
j∈V

.

Note that Eikl
T
Eij = 1 if i = ik, j = l and Eikl

T
Eij = 0

otherwise. Similarly Ejkl
T
Eij = 1 if i = jk, j = l

and Ejkl
T
Eij = 0 otherwise. Consequently,

∑N
i=1(Eikl

T −
Ejkl

T
)Eij = 0 for all j ∈ V and (24) is immediately

obtained. Part iii follows similarly. �

Proof of Lemma 4. From (24) in Lemma 3, (22) and the
definition of H̄ (20), we obtain,

Q(k)Z(k) = (W (k)−HH̄W (k))HH̄x̃(k)

= (W (k)HH̄ −HH̄W (k)HH̄)x̃(k)

= (HH̄ −Hdiag(1./m)HTW (k)Hdiag(1./m)HT )x̃(k).

By Lemma 3 Part ii and (21), one can verify that,

HTW (k)H = HTH = diag(m). (60)

This yields, Q(k)Z(k) = (HH̄ −Hdiag(1./m)HT )x̃(k) =
(HH̄ −HH̄)x̃(k) = 0m. �

Proof of Lemma 5. By the definition of H̄ (20) and
HTH = diag(m) (60), one can obtain,

RTR = (Im−HH̄)T (Im−HH̄) = Im−Hdiag(1./m)HT .

To find the eigenvalues of RTR, we solve the following
characteristic equation for λ.

det(RTR− λIm) = 0

⇔ det((1− λ)Im −Hdiag(1./m)HT ) = 0. (61)

We claim that there exists at least one eigenvalue equal to
1, and all the eigenvalues of RTR are either 1 or 0. We
prove the first claim in the following. By (21), we have the
following for λ = 1:

det((1− λ)Im −Hdiag(1./m)HT )

= (−1)mdet
( N∑
j=1

( 1

mj

N∑
i=1

Eij

N∑
i=1

Eij
T ))

.

By critically observing
∑N
j=1

(
1
mj

∑N
i=1E

i
j

∑N
i=1E

i
j
T ), it

follows that this matrix consists of the rows 1
mj

∑N
i=1E

i
j
T

each repeated mj times for j ∈ V . By Remark 8 (mj > 1,
∀j ∈ V ), the repetition of each row is at least 2 times, thus
det
(∑N

j=1

(
1
mj

∑N
i=1E

i
j

∑N
i=1E

i
j
T ))

= 0 and there exists
at least one λ = 1. Next, we prove the claim that all non-
one eigenvalues are 0. For now, assume that there exist k
eigenvalues, k ∈ N, 1 ≤ k ≤ m, equal to 1 for RTR. For
λ 6= 1, we have,

det((1− λ)Im −Hdiag(1./m)HT ) = 0⇔

(1− λ)m−kdet(Im −
1

1− λ
Hdiag(1./m)HT ) = 0.

Multiplying and dividing by det(diag(m)) =
∏N
i=1mi (non-

zero by Remark 8), yields,

(1− λ)m−k

det(diag(m))
det(diag(m))det(Im −

1

1− λ
.Hdiag(1./m)HT ) = 0. (62)

Let A, B and X be m × n, n × m and m × m matrices,
respectively. Let also X be an invertible matrix. By the
generalized Sylvester’s determinant theorem, the following



equality holds:

det(X +AB) = det(X) det(In +BX−1A). (63)

Let X := diag(m), A := HT and B := − H
1−λ , so that from

(63) and (62) we obtain,

(1− λ)m−k∏N
i=1mi

det(diag(m)− HTH

1− λ
) = 0.

Since HTH = diag(m) (60), this is equivalent to

(1− λ)m−k∏N
i=1mi

det(
−λ

1− λ
diag(m)) = 0 ⇔ (−λ)m−k = 0.

This verifies that there exist m−k eigenvalues, 0 ≤ m−k <
m, equal to 0 as we claimed. Thus, λmax(RTR) = 1 and
‖R‖ = 1. �

Proof of Lemma 6. Using Lemma 3 and (60), we obtain,
Q(k)TQ(k) = W (k)−HH̄.

Since E[Q(k)TQ(k)] is an m×m symmetric matrix, then,
γ = sup

x∈Rm,‖x‖=1

xTE[Q(k)TQ(k)]x.

We find γ for the vector subspace {x ∈ Rm : x = c1m, c ∈
R} and moreover, for its orthogonal complement vector
subspace {x ∈ Rm : xT 1m = 0}. Let for now x = c1m.
By the doubly stochastic property of W (k) we obtain,

γ = c2E[1TmQ(k)TQ(k)1m]

= c2E[1TmW (k)TW (k)1m]− c2E[1TmHH̄1m]

= c21Tm1m − c21TmHdiag(1./m)HT 1m.

Note that from the definition of H (21) we obtain 1TmH =
mT . Then,

γ = c2m− c2mT diag(1./m)m = c2m− c2m = 0. (64)

Thus, γ = 0 for x = c1m. Consider now that x belongs to
{x ∈ Rm : xT 1m = 0} and compute

γ = sup
x∈Rm,
‖x‖=1,

xT 1m=0

xTE[Q(k)TQ(k)]x = sup
x∈Rm,
‖x‖=1,

xT 1m=0

E[xTQ(k)TQ(k)x]

= sup
x∈Rm,
‖x‖=1,

xT 1m=0

(
E[‖W (k)x‖2]− xTHH̄x

)
. (65)

Note that ‖W (k)x‖2 ≤ ‖x‖2 = 1. As a result

E[‖W (k)x‖2] ≤ 1. (66)

Note also that the minimum eigenvalue of HH̄ is 0 and the
associated normalized eigenvector vmin satisfies HH̄vmin =
0, vTmin1m = 0 and ‖vmin‖ = 1. Then we achieve,

inf
x∈Rm,
‖x‖=1,

xT 1m=0

xTHH̄x = vTminHH̄vmin = 0. (67)

By (66) and (67), it is straightforward to show using (65)
that γ ≤ 1. We now claim that γ < 1. To prove our claim

we need to verify

E[‖W (k)vmin‖2] 6= 1.

By (17) we obtain,

E[‖W (k)vmin‖2]

= E
[
vTmin

(
Im −

1

2

∑
l∈ind(ik,jk)

(Eikl − E
jk
l )(Eikl − E

jk
l )T

)
vmin

]
= 1− 1

2
E
[ ∑
l∈ind(ik,jk)

∥∥(Eikl − E
jk
l )T vmin

∥∥2]
.

We expand the expected value considering that each player
i ∈ V communicates with player j ∈ NC(i) with probability

1
degGC (i) .

E[‖W (k)vmin‖2] = 1− 1

2N

∑
i∈V

1

degGC (i)

.
∑

j∈NC(i)

∑
l∈ind(i,j)

∥∥(Eil − E
j
l )
T vmin

∥∥2
. (68)

By contradiction, we assume that E[‖W (k)vmin‖2] = 1.
From (68), it follows that (Eil−E

j
l )
T vmin = 0, for all i ∈ V ,

j ∈ NC(i) and l ∈ ind(i, j). Moreover, by Lemma 2, we
simply have

⋃
j∈NC(i) ind(i, j) = ÑI(i) which shows that

the indices l ∈ ind(i, j) for every i ∈ V , j ∈ NC(i) span
all the elements of vmin. Thus, for ∀i ∈ V , ∀j ∈ NC(i) and
l ∈ ind(i, j), we obtain,

(Eil − E
j
l )
T vmin = 0⇒ vminz = vminr , (69)

where z, r ∈ {t : t = sin, i ∈ V, n ∈ ÑI(i)}, z 6= r where
sin is as defined in (15). On the other hand, by (67), we
obtain,

vTminHH̄vmin = 0⇔ vTmin

[ N∑
i=1

Ei1, . . . ,

N∑
i=1

EiN
]
diag(1./m)

.
[ N∑
i=1

Ei1
T
, . . . ,

N∑
i=1

EiN
T ]T

vmin = 0⇔

N∑
j=1

1

mj

∥∥ N∑
i=1

Eij
T
vmin

∥∥2
= 0⇔

N∑
i=1

Eij
T
vmin = 0,∀j ∈ V

⇔
∑

z∈{t:t=sin,i∈V,n∈ÑI(i)}

vminz = 0. (70)

From (69) and (70) we obtain that vminz = 0 for z ∈
{1, . . . ,m} which contradicts ‖vmin‖ = 1. Thus, the as-
sumption E[‖W (k)vmin‖2] = 1 is false which implies
E[‖W (k)vmin‖2] < 1. This concludes that γ < 1 for the
vector subspace {x ∈ Rm : xT 1m = 0}. Moreover, (64)
verifies that γ = 0 for the orthogonal complement vector
subspace {x ∈ Rm : x = c1m, c ∈ R} which completes the
proof. �

Proof of Theorem 1 Part i).
Procedure: First, we find an upper bound for E

[
‖x̃(k +

1)− Z(k + 1)‖
∣∣∣Mk

]
and simplify it to a similar format as

in Lemma 7. Then we verify the conditions of Lemma 7 step



by step and apply it to the achieved upper bound.

We derive an upper bound for E
[
‖x̃(k + 1) − Z(k +

1)‖
∣∣∣Mk

]
. Using (14), (15) and (19), we obtain x̃ij(k+ 1) =

x̂ij(k) = [x̄r(k)]r=sij for i ∈ V , j ∈ NI(i), i 6= j and
x̃ii(k + 1) = xi(k + 1) for i ∈ V . Then we have,

x̃(k + 1) = W (k)x̃(k) + µ(k + 1), (71)

where µ(k+ 1) := [(xi(k+ 1)− x̄sii(k))ei]i∈V . Using (22),
we obtain,

x̃(k + 1)− Z(k + 1)

= W (k)x̃(k) + µ(k + 1)−HH̄x̃(k + 1)

= W (k)x̃(k) + µ(k + 1)−HH̄W (k)x̃(k)−HH̄µ(k + 1)

= Q(k)x̃(k) +Rµ(k + 1), (72)

with Q(k) and R as in Lemma 4 and Lemma 5, respectively.
Using Lemma 4, we arrive at

x̃(k + 1)− Z(k + 1) = Q(k)(x̃(k)− Z(k)) +Rµ(k + 1)

⇒ E
[
‖x̃(k + 1)− Z(k + 1)‖

∣∣∣Mk

]
= (73)

E
[
‖Q(k)(x̃(k)− Z(k))‖

∣∣∣Mk

]
︸ ︷︷ ︸

Term 1

+E
[
‖Rµ(k + 1)‖

∣∣∣Mk

]
︸ ︷︷ ︸

Term 2

.

Let γ = λmax

(
E[Q(k)TQ(k)]

)
be as in Lemma 6. We obtain

an upper bound for Term 1 in (73) as the following:

Term 1 ≤
√

E
[
‖Q(k)(x̃(k)− Z(k))‖2

∣∣∣Mk

]
≤ √

γ‖x̃(k)− Z(k)‖. (74)

Note that by Lemma 6, γ < 1. This fact will be used as a
key to bound Term 1.

To bound Term 2, we use ‖R‖ = 1 and xi(k + 1) =
xi(k) = x̄sii for i /∈ {ik, jk}. Then,

Term 2 ≤ E
[
‖µ(k + 1)‖

∣∣∣Mk

]
= E

[√∑
i∈V
‖xi(k + 1)− x̄sii(k)‖2

∣∣∣Mk

]

= E

[√ ∑
i∈{ik,jk}

‖xi(k + 1)− x̄sii(k)‖2
∣∣∣Mk

]

≤ E

[√ ∑
i∈{ik,jk}

(
2‖xi(k)− x̄sii(k)‖2 + 2α2

k,iC
2
)∣∣∣Mk

]

≤
√

2E

[ ∑
i∈{ik,jk}

‖xi(k)− x̄sii(k)‖
∣∣∣Mk

]
+ 2αk,maxC(75)

The second inequality is obtained by using (12), the non-
expansive property of projection, Assumption 3 (equation
(5)) and (a+ b)2 ≤ 2a2 + 2b2.

We simplify (76) using x̄sii(k) =
x̃ii(k)+x̃ji (k)

2 for i, j ∈

{ik, jk} which is deduced implicitely from (18). Then,

Term 2 ≤
√

2

2

∑
i∈{ik,jk}

‖x̃ii(k)− x̃ji (k)‖+ 2αk,maxC(76)

From (73), (74) and (76) it follows that

E
[
‖x̃(k + 1)− Z(k + 1)‖

∣∣∣Mk

]
≤ √γ‖x̃(k)− Z(k)‖

+

√
2

2

∑
i∈{ik,jk}

‖x̃ii(k)− x̃ji (k)‖+ 2αk,maxC. (77)

Multiplying the LHS and RHS of (77) by αk+1,max and
αk,max, respectively and spliting

√
γ into 1 and 1−√γ, we

obtain,

αk+1,maxE
[
‖x̃(k + 1)− Z(k + 1)‖

∣∣∣Mk

]
︸ ︷︷ ︸

E[Vk+1|Mk]

≤ αk,max‖x̃(k)− Z(k)‖︸ ︷︷ ︸
(1+uk)Vk

−αk,max(1−√γ)‖x̃(k)− Z(k)‖︸ ︷︷ ︸
ζk

+

√
2

2
αk,max

∑
i∈{ik,jk}

‖x̃ii(k)− x̃ji (k)‖+ 2α2
k,maxC︸ ︷︷ ︸

βk

. (78)

We apply Lemma 7 to (78) to show that
∑∞
k=0 αk,max‖x̃(k)−

Z(k)‖ < ∞ (
∑∞
k=0 ζk < ∞) a.s. We already assigned the

parameters in (78). We need to verify that all the conditions
of Lemma 7 are met. Clearly Vk ≥ 0 and uk = 0. Using
γ < 1 (Lemma 6) ζk > 0. To show

∑∞
k=0 βk <∞ a.s., we

use (13) and we need to verify that
∑∞
k=0 αk,max‖x̃ii(k) −

x̃ji (k)‖ <∞ a.s. for i, j ∈ {ik, jk}.

Using (12), (14), (8), projection’s non-expansive property
and (5), it yields

‖x̃ii(k+1)−x̃ji (k+1)‖≤ 1

2
‖x̃ii(k)−x̃ji (k)‖+αk,maxC. (79)

To obtain the inequality, we use x̃ji (k + 1) = x̂ji (k) =
x̃ji (k)+x̃ii(k)

2 for i, j ∈ {ik, jk}. Take expected value of (79)
and multiply its LHS and RHS by αk+1,max and αk,max,
respectively (since αk+1,max < αk,max).

αk+1,maxE
[
‖x̃ii(k + 1)− x̃ji (k + 1)‖

∣∣∣Mk

]
≤ (80)

αk,max‖x̃ii(k)− x̃ji (k)‖ − αk,max

2
‖x̃ii(k)− x̃ji (k)‖+ α2

k,maxC,

where we split αk,max

2 into αk,max and −αk,max

2 . Applying
Lemma 7 for Vk = αk,max‖x̃ii(k) − x̃ji (k)‖,uk = 0, βk =
α2
k,maxC, ζk =

αk,max

2 ‖x̃ii(k)− x̃ji (k)‖, and using also (13)
and (5) it follows that

∞∑
k=0

αk,max‖x̃ii(k)− x̃ji (k)‖ <∞ a.s. (81)

Proof of Part ii). The proof has similar steps as in the
proof of Part i and it is ommited due to space limitation. �



Proof of Lemma 8. By (18), (22) and (24) we obtain,
∞∑
k=0

E
[
‖x̄(k)− Z(k)‖2

∣∣∣Mk

]
=

∞∑
k=0

E
[
‖W (k)x̃(k)−Hz(k)‖2

∣∣∣Mk

]
=

∞∑
k=0

E
[
‖W (k)x̃(k)−W (k)Hz(k)‖2

∣∣∣Mk

]
≤
∞∑
k=0

E
[
‖W (k)‖2‖x̃(k)− Z(k)‖2

∣∣∣Mk

]
, (82)

where the second equality holds by (24). The proof follows
from Theorem 1 part ii and the doubly stochastic property
of W (k) (Remark 7) which results ‖W (k)‖ = 1. �

Proof of Lemma 9. Similar to the method used in (68), we
can derive the following for W̄ .

W̄ = E[W (k)] = Im −
1

2N

∑
i∈V

1

degGC (i)

.
∑

j∈NC(i)

∑
l∈ind(i,j)

(Eil − E
j
l )(E

i
l − E

j
l )
T . (83)

It is straightforward to show that (83) is doubly stochastic
with the maximum eigenvalue of 1. Note that the multiplicity
of λ = 1 may be more than one. We find γ by solving the
characteristic equation associated with E[Q(k)TQ(k)]. From
the definition of Q(k) (Lemma 6) and Lemma 3 we obtain,

E[Q(k)TQ(k)] = E[W (k)TW (k)]−HH̄ = W̄ −HH̄.

We solve the following characteristic equation for λ to find
γ which is equal to λmax

(
E[Q(k)TQ(k)]

)
.

det
(

(1− λ)Im −HH̄ + W̄ − Im
)

= 0. (84)

By the generalized Sylvester’s determinant theorem, for any
Y and any invertible X ,

det(X + Y ) = det(X)det(I +X−1Y ). (85)

Let X := (1− λ)Im −HH̄ and Y := W̄ − Im. Therefore,
using (84) and (85), we arrive at the following two equations:

det((1− λ)Im −HH̄) = 0, (86)

det
(
Im − ((1− λ)Im −HH̄)−1(Im − W̄ )

)
= 0.(87)

We will solve (86), (87) after we derive conditions for X to
be invertible and find X−1. Let A, U , B and V be m×m,
m×N , N ×N and N ×m matrices, respectively. Let also
B be invertible. By the Woodbury matrix identity we have,

(A+UBV )−1 =A−1−A−1U(B−1+VA−1U)−1VA−1,(88)

where A and B−1 + V A−1U are nonsingular matrices. Let
A := (1 − λ)Im, U := H , B := diag(−1./m) and V :=
HT . Thus, X = A + UBV . Using (88), we find X−1 and
conditions under which X−1 exists.

X−1 =
(

(1− λ)Im −HH̄
)−1

=
(

(1− λ)Im +Hdiag(−1./m)HT
)−1

=
1

1− λ
Im −

1

(1− λ)2
H
(

diag(−m) +
HTH

1− λ

)−1

HT .

It is straightforward to verify that the nonsingularity condi-
tions for A and B−1 + V A−1U are λ 6= 1 and λ 6= 0. Note
that HTH = diag(m) (60). For λ 6= 0, 1 we obtain,

X−1 =
1

1− λ
Im −

1

(1− λ)2
H
(

diag(m)
( λ

1− λ
))−1

HT

=
1

1− λ
Im −

1

λ(1− λ)
HH̄ =

1

λ(1− λ)

(
λIm −HH̄

)
.

Recall (86), (87) for λ, λ 6= 0, 1. Note that by Lemma 5, all
the solutions of (86) are either 0 or 1. Thus, there is no λ
satisfying (86). Let’s simplify (87) and solve it for λ 6= 0, 1.

det
(
Im − ((1− λ)Im −HH̄)−1(Im − W̄ )

)
= 0⇔ (89)

det
(
Im −

1

1− λ
(Im − W̄ ) +

1

λ(1− λ)
HH̄(Im − W̄ )

)
= 0.

In the following we show that 1
λ(1−λ)HH̄(Im − W̄ ) = 0N .

Using (83) and (20), for every i ∈ V , j ∈ NC(i) and l ∈
ind(i, j) we have,

1

λ(1− λ)
HH̄(Im − W̄ ) =

1

2Nλ(1− λ)
HH̄

∑
i∈V

1

degGC (i)

.
∑

j∈NC(i)

∑
l∈ind(i,j)

(Eil − E
j
l )(E

i
l − E

j
l )
T

=
1

2Nλ(1− λ)
Hdiag(1./m)

∑
i∈V

1

degGC (i)

.
∑

j∈NC(i)

∑
l∈ind(i,j)

[ N∑
i=1

Eiτ
T
]T
τ∈V

(Eil − E
j
l )(E

i
l − E

j
l )
T = 0N .

The last equality holds because
∑N
i=1E

i
l
T

(Eil ) =∑N
i=1E

i
l
T

(Ejl ) = 1 for every i ∈ V , j ∈ NC(i) and
l ∈ ind(i, j). Then for λ 6= 0, 1, using the definition of W̄ ,
(89) becomes,

det
(
Im−

1

1− λ
(Im−W̄ )

)
= 0⇔det

(
λIm− W̄

)
= 0. (90)

Note that γ is contained in the solution set of (90) because
γ < 1 by Lemma 6. Thus, we can conclude that γ =
maxλ 6=1 λ(W̄ ) := λ2(W̄ ). �
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