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Theory and Applications of Matrix-Weighted

Consensus
Minh Hoang Trinh† and Hyo-Sung Ahn†

Abstract

This paper proposes the matrix-weighted consensus algorithm, which is a generalization of the consensus

algorithm in the literature. Given a networked dynamical system where the interconnections between agents are

weighted by nonnegative definite matrices instead of nonnegative scalars, consensus and clustering phenomena

naturally exist. We examine algebraic and algebraic graph conditions for achieving a consensus, and provide

an algorithm for finding all clusters of a given system. Finally, we illustrate two applications of the proposed

consensus algorithm in cluster consensus and in bearing-based formation control.

Index Terms

consensus, clustered consensus, fixed undirected graph, matrix-weighted consensus

I. INTRODUCTION

Consensus algorithm has been extensively studied in the literature as a main tool for solving the cooperative

control problems in multiagent systems [1]–[3]. In fact, consensus algorithm and its modifications are found in

broad applications, for examples, in control of unmanned vehicle formations [4]–[7], network synchronization

[8], [9], modeling social networks [10], [11], and coordination of power distribution systems and automated

traffic networks [12], [13].

Given a system of n single-integrator agents whose interconnections between agents are characterized by an

weighted undirected graph G, the consensus algorithm [1] is defined as1

ẋi =

n∑
j=1

aij(xj − xi),∀i = 1, . . . , n, (1)

where xi, xj ∈ Rd are the state vectors of agents i and j, and aij is a positive scalar (or zero) if i and j are

connected (or disconnected, respectively). It is well-known that under the consensus protocol (1), an average

consensus is globally achieved if and only if G is connected [1].

†School of Mechanical Eng., Gwangju Institute of Science and Technology, Gwangju, Korea. E-mails:

{trinhhoangminh,hyosung}@gist.ac.kr
1Formal definitions will be provided in the next section.
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This paper generalizes the consensus algorithm (1) by using matrix weight Aij instead of the scalar weight

aij to describe the interconnection between two agents i and j. Here, a matrix weight could be a positive

definite matrix (strong connection), a positive semidefinite matrix (weak connection), or a zero matrix (no direct

connection). Thus, the matrix-weight consensus covers a larger set of problems in multi-agent systems.

In the literature, matrix weights arise in many problems to describe the interconnections between agents. For

example, the author of [14] used matrix weights to describe interconnections between coupled linear oscillators

and provided conditions to synchronize these networks in some situations. The concept of deviated cyclic

pursuit introduced in [15], and orientation estimation in [16], [17] can be considered as consensus protocols

with rotation matrix weights. Also, the bearing-based formation control setup in [18] can be formulated as a

special case of the matrix-weighted consensus protocol proposed in this paper. In the context of social networks,

suppose that a group of people are discussing multiple topics, matrix weights were used to describe the logical

inter-dependency of the topics [19], [20]. However, the works [19], [20] only considered a discrete-time model

in which the matrix weights are the same for all edges.

In this paper, we study the matrix-weight consensus algorithm with undirected graphs. We firstly define

several terminologies (for e.g., positive/semipositive connections, positive tree, matrix-weighted Laplacian, etc),

and prove some basic algebraic properties of the matrix-weighted graph. Secondly, we propose the matrix-

weight consensus protocol and provide a necessary and sufficient condition for globally exponentially reaching

an average consensus based on the nullspace of the matrix-weighted Laplacian. Next, due to the existence

of semidefinite matrix weights, clustered consensus happens naturally even when the graph is connected. We

examine the algebraic graph theory of consensus and clustering phenomena. Further, an algorithm to determine

all clusters in the network is provided. The algorithm initially partitions the graph into a set of clusters associated

with the positive trees in the graph. If two clusters satisfy several algebraic conditions on their connections,

they will be merged together at each iteration of the algorithm. The algorithm gradually reduces the number

of clusters in the graph, and it ends when no two clusters can be further merged together. If there is a cluster

containing all vertices in the graph, under matrix-weighted consensus protocol, a consensus is globally achieved.

Otherwise, we know the exact number of clusters in the system under the matrix-weight consensus protocol.

Finally, two examples are given to illustrate applications of the proposed matrix-weight consensus algorithm.

The first example demonstrates how clustered consensus can be used to gather a group of agents into several

clusters. The second example is taken from the bearing-based formation control in the literature [18], [21].

The rest of this paper is organized as follows. Section II defines basic terminologies and introduces the

matrix-weighted consensus algorithm. The algebraic condition for globally reaching a consensus in undirected

networks is presented in Section III. Section IV further studies the consensus and clustered consensus phenomena

under the matrix-weighted consensus algorithm. Section V provides two applications of the proposed algorithm.

Finally, Section VI summarizes the paper and discusses several further research directions.
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A. Notations

In this paper, Rd denotes the Euclidean d-dimensional space. Vectors and matrices are denoted by bold-font

letters, while sets are denoted by calligraphic characters. Note 1n ∈ Rn denotes the vector of all entries 1s, Id

denotes the identity matrix in of dimension d× d, and ⊗ denotes the Kronecker product.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Matrix-Weighted Graphs

This subsection sets a framework for introducing the matrix-weighted consensus protocol and the main analysis

of this paper. Most of definitions are analogous to the definitions of algebraic graph theory [22].

A fixed undirected graph with matrix weights is denoted by G. The graph G is characterized by a triple

(V, E ,A). Here, V = {1, . . . , n} denotes the set of |V| = n vertices, E = {eij = (i, j)| i, j ∈ V, and i 6= j}

denotes the set of |E| = m edges, and A = {Aij ∈ Rd×d| (i, j) ∈ E ,Aij = AT
ij ≥ 0} denotes the set of matrix

weights, one for each edge in E .2 The dimension d (d ≥ 1) of the matrix weights in A depends on the problem.

Clearly, if d = 1, the graph G becomes an usual undirected scalar-weighted graph.

Depending on the matrix weights, the interconnection between vertices in G are classified into two types. If

the matrix weight Aij corresponding to edge (i, j) ∈ E is positive definite, we say that (i, j) is a positive definite

edge and i and j are connected via a positive definite connection. If the weight matrix Aij corresponding to

an edge (i, j) ∈ E is positive semidefinite, we say that (i, j) is a semi-positive definite edge and i and j are

connected via a positive definite connection. Apparently, if i and j are disconnected, Aij = 0. We also assume

that the interconnections between any two vertices are symmetric, i.e., Aij = Aji, ∀(i, j) ∈ E .

A path is a sequence of vertices in G, denoted by P = i1i2 . . . il, such that ik 6= il, ∀ik, il ∈ P , and each edge

(ik, ik+1), k = 1, . . . , l− 1, is a positive definite or a positive semidefinite connection. The graph G is positive

semiconnected if and only if there exists a path between any two vertices in G. Otherwise, G is disconnected.

In this paper, we mostly focus on positively semiconnected graphs. Graphs with disconnected components

can be studied similarly. Assuming that G is positive semi-connected, we have the following definitions.

Definition 1 (Positive path). A positive path is a sequence of vertices in G, denoted by P = i1i2 . . . il, such

that ik 6= il, ∀ik, il ∈ P , and each edge (ik, ik+1), k = 1, . . . , l − 1, is a positive definite edge.

A tree is an undirected graph containing at least one vertex in which any two vertices are connected by

exactly one path. We have the following definition.

Definition 2 (Positive tree). A positive tree T is a tree contained in V having all positive connections.

2From the definition, (i, j) and (j, i) denote the same connection between two vertices i and j.
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Equivalently, for all i, j ∈ T , there exists a positive path in T connecting i and j.

Definition 3 (Positive spanning tree). A positive spanning tree T of G is a positive tree containing all vertices

in V .

Note that a tree of k vertices (k ≥ 1) contains exactly k − 1 edges. Thus, a positive spanning tree of G

contains exactly n − 1 positive connections. An example of positive spanning tree is depicted in Figure 1.

Next, we define several algebraic structures corresponding to the matrix weighted graph G. The matrix-weighted

adjacency matrix of G is defined as follows:

A =


0 A12 · · · A1n

A21 0 · · · A2n

...
...

. . .
...

An1 An2 · · · 0

 ∈ Rdn×dn. (2)

Since G is undirected and Aij = Aji, it is easy to see that A is symmetric. For each vertex i, the neighbor set

of vertex i is defined as Ni = {j ∈ V| (i, j) ∈ E}. Let the matrix Di =
∑

j∈Ni
Aij be the degree matrix of the

vertex i. Further, we define D = blkdiag(Di), the block diagonal matrix of all vertices, as the degree matrix

of the graph G. The matrix-weighted Laplacian is defined as follows:

L = D−A =



∑
j∈N1

A1j −A12 · · · −A1n

−A21
∑

j∈N2

A2j · · · −A2n

...
...

. . .
...

−An1 −An2 · · ·
∑

j∈Nn

Anj


∈ Rdn×dn.

Consider an arbitrary index of the edges of G. We can write the edge set and the matrix-weight set as E =

{ekij
}k=1,...,m and A = {Akij

}k=1,...,m, correspondingly. From now on, if it is not important to specify the

end-vertices explicitly, we will dropout the subscript ij and write ek and Ak without ambiguity.

Let H = [hij ] ∈ Rm×n denote the incidence matrix corresponding to an arbitrary orientation of the edges in

E . The entries of H are given as follows:

hki =


1

−1

0

if vertex i is the tail of ek,

if vertex i is the head of ek,

otherwise.

An edge ek is called adjacent to a vertex i if and only if i is a head or a tail of ek, and this adjacency relationship

is denoted by ek ∼ i.

Lemma 1. The matrix-weighted Laplacian can be written in the following form:

L = H̄Tblkdiag(Ak)H̄, (3)
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Fig. 1: T is a positive spanning tree of G. The edges in E(T ) are in red color.

where H̄ = (H⊗ Id), and ⊗ denotes the Kronecker product.

Proof: Considering the ij-th d× d block matrix of H̄T blkdiag(Akij
)H̄, we have

[H̄T blkdiag(Ak)H̄]ij = (i-th block column of H̄)T ·blkdiag(Ak)·(j-th block column of H̄) =

m∑
k=1

[H̄]TkiAk[H̄]kj .

There are three cases:

• If i = j, since [H̄]ki = hki ⊗ Id×d = hkiId×d,

[H̄T diag(Ak)H̄]ij =

m∑
k=1

[H̄]TkiAk[H̄]ki =

m∑
k=1

(hkiId×d)Ak(hkiId×d) =

m∑
k=1

(hki)
2Ak =

∑
k|ek∼i

Ak =
∑
j∈Ni

Akij
.

• If i 6= j and no edge exists between i and j,

[H̄T diag(Ak)H̄]ij =

m∑
k=1

[H̄]TkiAk[H̄]kj =

m∑
k=1

(hkihkj)Ak = 0.

• If i 6= j and (i, j) ∈ E(G),

[H̄T diag(Ak)H̄]ij =

m∑
k=1

[H̄]TkiAk[H̄]kj =

m∑
k=1

(hkihkj)Ak = (hkihkj)Akij
= −Akij

.

Corollary 1. For any vector v = [vT
1 , . . . ,v

T
n ]T ∈ Rdn,

vTLv =
∑

(i,j)∈E

(vi − vj)
TAij(vi − vj).

Proof: We can write

xTLx = xT H̄T blkdiag(Akij
)H̄x = (H̄x)T blkdiag(Akij

)(H̄x). (4)

The result follows immediately by observing that the k-th block matrix of H̄x corresponds to the edge ek =

(i, j) ∈ E and is (xj − xi).
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B. Matrix-Weighted Consensus Protocols

Consider a networked dynamic system consisting of n agents. Each agent i in the system has a state vector

xi = [xi1, . . . , xid]T ∈ Rd, where d ≥ 1. The overall system’s states are described by a stacked column vector

x = [xT
1 , . . . ,x

T
d ]T ∈ Rdn.

The matrix-weighted undirected graph G = (V(G), E(G),A(G)) describes the interconnection between the

agents in the system. Assume that G is positive semi-connected. An edge eij ∈ E exists if and only if agent i

and agent j can sense their relative state information in at least one state variable.

In this paper, we consider the agents with single-integrator model. Each agents in the system updates its states

under the following protocol:

ẋi =
∑
j∈Ni

Aij(xj − xi), ∀i = 1, . . . , n, (5)

where xi ∈ Rd is the state and the right-hand side of (5) is the control input of agent i, i = 1, . . . , n at time

instance t ≥ 0. Using the matrix-weighted Laplacian, we can express the dynamics of n agents in the following

matrix form:

ẋ = −Lx. (6)

We have the following definitions.

Definition 4 (Consensus). The n-agent system is said to achieve a consensus if and only if xi = xj , for all

i, j ∈ V , i 6= j.

Define R = Range{1n ⊗ Id} as the consensus space. A consensus of the n-agent system is globally/locally

asymptotically achieved if and only if x(t) globally/locally asymptotically approaches R. Although consensus

is important objective, in some applications, the agents’ states are desired to converge to some different values.

Under the consensus protocol (5), clustering behaviors appear naturally. This phenomenon is due to the existence

of some positive semidefinite edges in the graph. A partition of V(G) is given by C1, . . . , Cl, (1 ≤ l ≤ n)

satisfying two properties: (i) Ci
⋂
Cj = ∅, for i 6= j, and (ii)

⋃l
k=1 Ck = V(G). We have the following definition.

Definition 5 (Cluster Consensus). The n-agent system is said to achieve a clustered consensus if there exists a

partition C1, . . . , Cl, such that all agents belonging to the same partition achieve consensus, while for any two

agents i and j belonging to two different partitions, xi 6= xj . Each Ci, i = 1, . . . , l, is referred to as a cluster.

III. ALGEBRAIC CONDITION FOR REACHING A CONSENSUS

This section aims to find an algebraic condition of the matrix-weighted Laplacian for reaching consensus.

We firstly state several properties of the matrix-weighted Laplacian and the dynamical system (6).
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Lemma 2 (Nullspace of the matrix-weighted Laplacian). The matrix-weighted Laplacian L is symmetric, positive

semidefinite, and N (L) = span{1n ⊗ Id, {v = [vT
1 , . . . ,v

T
n ]T ∈ Rdn|(vj − vi) ∈ N (Aij), ∀(i, j) ∈ E}}.

Proof: The symmetric property of L follows immediately from its definition. From (3), we can write

L = H̄T blkdiag(Ak)H̄ = H̄T blkdiag(A
1/2
k ) blkdiag(A

1/2
k )H̄ = MTM, (7)

where M = blkdiag(A
1/2
k )H̄. Equation (7) shows that L is positive semidefinite. Moreover, we have N (L) =

N (MTM) = N (M). As a result, N (L) = N (M) ⊇ N (H̄) = span{1n ⊗ Id}. Consider v = [vT
1 , . . . ,v

T
n ]T /∈

span {1n ⊗ Id} such that Lv = 0. It follows vTLv = 0. Thus, from Corollary 1, we have∑
(i,j)∈E

(vi − vj)
TAij(vi − vj) = 0. (8)

Since Aij is symmetric and positive semidefinite, (8) implies that (vi − vj) ∈ N (Aij), for all (i, j) ∈ E . This

concludes the proof.

Remark 1. Based on Lemma 2, it follows that dim(N (L)) ≥ dim(R). Thus, the matrix weighted Laplacian L

has at least d zero eigenvalues. Let {λi}i=1,...,dn be the eigenspectra of L; then we have 0 = λ1 = . . . = λd ≤

λd+1 ≤ . . . ≤ λdn.

Lemma 3. Under the consensus protocol (5), the average x̄ = 1
n

∑n
i=1 xi is invariant.

Proof: The average state can be written as x̄ = 1
n(1T

n ⊗Id)x. Taking the derivative of x̄ along the trajectory

of (6) yields

˙̄x =
1

n
(1T

n ⊗ Id)ẋ = − 1

n
(1T

n ⊗ Id)Lx. (9)

Since L is symmetric, if v ∈ N (L), then vT belongs to the right nullspace of L. As a result, (1T
n ⊗ Id)L = 0

and it follows ˙̄x = 0, i.e. the system’s average is invariant.

The following theorem characterizes the dynamical behavior of the consensus protocol (6).

Theorem 1 (Stability). Assume that G is positive semi-connected. Then any trajectory of (6) asymptotically

approaches the invariant set N (L).

Proof: Consider the potential function V = 1
2‖x‖

2, which is positive definite, radially unbounded, and

continuously differentiable. The derivative of V along the trajectory of (6) is given by

V̇ = −xTLx = −
∑

(i,j)∈E(G)

(xi − xj)
TAij(xi − xj) ≤ 0.

It follows that ‖x‖ ≤ ‖x(0)‖, or i.e., x(t) is bounded. Further, V̇ is negative semidefinite and V̇ = 0 if and

only if x ∈ N (L). Based on LaSalle’s invariance principle, any trajectory of (6) asymptotically approaches the

invariant set N (L) as described in Lemma 2.
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Lemma 4. If N (L) = span{1n ⊗ Id}, the system (6) has a unique equilibrium point x∗ = 1n ⊗ x̄.

Proof: We prove that 1n ⊗ x̄ is the unique equilibrium of (6) if N (L) = span{1n ⊗ Id} by contradiction.

Let {ei}i=1,...,d be a basis of Rd, where ei = [0, . . . , 1, . . . , 0]T is a vector with all zero entries except for an 1

on the ith row. Suppose that there exists x′ ∈ span{1n ⊗ Id} such that x′ 6= x∗. Since x′ ∈ span{1n ⊗ Id}, we

write

x′ =

d∑
i=1

x̄′i(1n ⊗ ei) = 1n ⊗ x̄′ = (1n ⊗ Id)x̄′,

where x̄′ = [x̄′1, . . . , x̄
′
d]T . It follows from Lemma 3 that

x̄ =
1

n
(1T

n ⊗ Id)x′ =
1

n
(1T

n ⊗ Id)(1n ⊗ Id)x̄′ =
1

n
(1T

n1n ⊗ Id)x̄′ =
1

n
(n⊗ Id)x̄′ = x̄′.

Thus, x′ = 1n ⊗ x̄ = x∗, which is a contradiction. This contradiction implies that x∗ = 1n ⊗ x̄ is the unique

equilibrium of (6).

The following theorem gives a necessary and sufficient condition for (6) to globally achieve an average

consensus.

Theorem 2 (Average Consensus). The system (6) globally exponentially converges to the system’s average

x∗ = 1n ⊗ x̄ if and only if N (L) = span{1n ⊗ Id}.

Proof: (Necessity). We prove by contradiction. Assume that (6) globally asymptotically converges to x∗ =

1n ⊗ x̄ but N (L) 6= R. From Lemma 2, there exists x′ ∈ Rdn such that Lx′ = 0 and x′ /∈ R. Thus, x = x′

is also an equilibrium point of (6), and any trajectory with x(0) = x′ stays at x′ for all t ≥ 0. Thus, x∗ is not

globally asymptotically stable, which contradicts the assumption.

(Sufficiency). Suppose that N (L) = R. Following the proof of Theorem 1, any trajectory of (6) converges to

N (L) = {1n⊗ Id}. It follows from Lemma 4 that x∗ = 1n⊗ x̄ ∈ N (L) is the unique equilibrium point of (6).

Consider the potential function V = 1
2δ

Tδ, where δ = x − 1n ⊗ x̄ is the disagreement vector. Then, V is

positive definite, radially unbounded, and continuously differentiable. The derivative of V along the trajectory

of (6) is

V̇ = δT δ̇ = −δTLx = −δTLδ ≤ 0, (10)

where in the third equality, we have used the fact that Lδ = Lx− L(1n ⊗ x̄) = Lx− L(1n ⊗ Id)x̄ = Lx.

Moreover, δ ⊥ R since (1n ⊗ Id)Tδ = (1n ⊗ Id)Tx − (1T
n1n ⊗ Id)x̄ = nx̄ − nx̄ = 0. Therefore, we can

write

V̇ = −δTLδ ≤ −λd+1(L)δTδ ≤ −αV ≤ 0, (11)

where α = 2λd+1(L) > 0. Further, V̇ = 0 if and only if δ = 0, or x = x∗ = 1n⊗ x̄. Therefore, the equilibrium

x∗ is globally exponentially stable, i.e. (6) globally exponentially achieves an average consensus.
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Remark 2. Equation (11) shows that λd+1, the smallest positive eigenvalue of L, determines the convergence

rate of the matrix-weighted consensus protocol (6). Thus, λd+1 is a performance index of the network, and this

index is analogous to the algebraic connectivity of G in the usual consensus algorithm [2], [23].

In the usual consensus algorithm, the average consensus is asymptotically achieved if and only if the graph

is connected and the weights are positive scalars [1], [2]. Thus, we expect (6) to reach a consensus when all

matrix weights are positive definite.

Corollary 2. Under the consensus protocol (5), if Aij > 0 for all (i, j) ∈ E , all agents globally exponentially

achieve a consensus.

Proof: Since Ak, k = 1, . . . ,m, are positive definite from the assumption, it follows that N (L) = N (M) =

N (diag(A
1/2
k )H̄) = N (H̄) = {1n ⊗ Id}. Thus, it follows from Theorem 2 that (6) globally exponentially

achieves a consensus.

IV. ALGEBRAIC GRAPH THEORY OF CONSENSUS AND CLUSTERED CONSENSUS PHENOMENA

In the previous section, Theorem 2 provides an algebraic condition for reaching a consensus. However, that

condition requires finding the nullspace of L. Corollary 2 gives a sufficient condition for achieving consensus.

The condition is a quite clear and straightforward. However, since the condition is only sufficient, it might be

conservative. In this section, we aim to find some conditions for consensus and clustered consensus related with

the matrix-weighted graph G.

Lemma 5. If there exists a positive spanning tree in G, then an average consensus is globally exponentially

achieved.

Proof: Suppose G has a spanning tree T having all edges with positive definite matrix weights. We can

label the edges of G such that the n− 1 edges in T are e1, e2, . . . , en−1 and the remaining m− n+ 1 edges in

E are en, en+1, . . . , em. The incidence matrix corresponding to this labeling can be written as

H =

 HE(T )

HE\E(T )

 ,
where HE(T ) ∈ R(n−1)×n represents n − 1 edges of T and HE\E(T ) ∈ R(m−n+1)×n represents the remaining

edges in the graph. Note that the rows of HE\E(T ) are linearly dependent on the rows of HE(T ) [24]. Specifically,

there exists a matrix T ∈ R(m−n+1)×m such that:

THE(T ) = HE\E(T ),
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where T = HE\E(T )H
T
E(T )(HE(T )H

T
E(T ))

−1. Thus, we can rewrite the incidence matrix as

H =

 HE(T )

THE(T )

 =

In−1

T

HE(T ), (12)

Any equilibrium point of (6) must satisfy

ẋ = −H̄T blkdiag(Ak)H̄x = 0. (13)

It follows that xT H̄T blkdiag(Ak)H̄x = 0, or ‖blkdiag(A
1/2
k )H̄x‖2 = ‖Mx‖2 = 0. Denoting T̄ = T⊗ Id, this

equation is equivalent to

Mx =

 blkdiag(A
1/2
k )n−1k=1H̄E(T )x

blkdiag(A
1/2
k )mk=nT̄H̄E(T )x

 = 0. (14)

Observe that blkdiag(A
1/2
k )H̄E(T )x = 0 is equivalent to H̄E(T )x = 0 since Ak, k = 1, . . . , n− 1, are positive

definite (the corresponding edges are in the positive spanning tree). Further, since HE(T ) is the incidence matrix

corresponding to a tree, we have N (HE(T )) = span{1n}, which means N (H̄E(T )) = span{1n ⊗ Id} = R.

It follows from Lemma 4 that the equilibrium is unique and is x∗ = 1n ⊗ x̄. Also, it is easy to check that

blkdiag(A
1/2
k )mk=nT̄H̄E(T )x

∗ = 0.

Finally, the stability of x = x∗ follows from Theorem 2.

Lemma 6. Suppose there exists a positive tree T ⊂ G of l vertices. Under the consensus protocol 5, xi(t)→

xj(t), ∀i, j ∈ T , as t→∞.

Proof: Let the state vector be indexed as x = [xT
T ,x

T
V\V(T )]

T . We express the incidence matrix in the

following form

V(T ) V(G) \ V(T )

E (T )

E (V (T )) \E (T )

E\E (V (T ))


H1 0

H2 0

H3 H4

 = H,

where [H1 0] ∈ R(l−1)×n associates with the l edges belonging to the tree T , [H2 0] associates with the

r − l + 1 edges between vertices in V(T ) which do not belong to the tree, and [H3 H4] associates with the

remaining edges in E . Similarly to the proof of Lemma 5, H2 is linearly dependent on H1 and this dependency

is characterized by H2 = TH1. Therefore, the equilibrium set of (6) must satisfy

Mx =


blkdiag(A

1/2
k )l−1k=1H̄1xT

blkdiag(A
1/2
k )rk=lT̄H̄1xT

blkdiag(A
1/2
k )mk=r+1(H̄3xT + H̄4xV\V(T ))

 = 0. (15)

Since T is a positive tree, blkdiag(A
1/2
k )l−1k=1 is positive definite. It follows H̄1x = 0. Further, since H1 is

the incidence matrix associated with a tree, N (H̄1) = {1l ⊗ Id}. Hence, any equilibrium x∗ of (6) must have



TECHNICAL REPORT 11

x∗T ∈ N (H̄1), i.e., all equilibrium states of l agents belonging to the positive tree T are the same. Based on

Theorem 1, the agents in T asymptotically reach a consensus.

The following result provides a condition to determine whether or not two vertices belong to a same cluster.

Theorem 3. Given a positive tree T , let the cluster C(T ) generated from T be containing:

i. all vertices in T ,

ii. any vertex i /∈ T , which defines the set Si = {Pk = {vk1 . . . vk|Pk|}|v
k
1 = i, vk|Pk| ∈ T , and ∀j =

1, . . . , |Pk| − 1, vkj /∈ T }, satisfying the following conditions:

a. for each path Pk, denoting N (Pk) =
⋃|Pk|−1

j=1 N (Avk
j v

k
j+1

), it holds

dim(
⋂|Si|

k=1
N (Pk)) = 0 (16)

b. each path Pk ∈ Si has no loop, i.e. vl 6= vm, ∀vl, vm ∈ Pk

Then, under the consensus protocol (5), all agents in the cluster C(T ) have the same equilibrium state.

Furthermore, in algorithmic perspective, the set Si is finite.

Proof: First, all vertices in T converge to a same value due to Lemma 6. Denote that the common value

by x∗T .

Next, consider a vertex i /∈ T satisfying the condition (ii). Now, we consider the condition (ii.a). Let x∗i be

the equilibrium state of agent i. Then, from the definition of N (Pk), we can write

x∗i − x∗T ∈ N (Pk), ∀Pk ∈ Si. (17)

It follows from (16) that the only solution for |Si| equations (17) is x∗i −x∗T = 0, or x∗i = x∗T . Thus, the cluster

C(T ) reaches a consensus. But, in the above condition (ii.a), there could be infinitely many paths from i to T

if there are loops. The condition (ii.b) ensures that the number of paths from i to T is finite. To show this,

suppose that P1 and P2 are two paths, and P2 is obtained by adding loops to P1. Then, N (P1) ⊆ N (P2). It

follows N (P1)∩N (P2) = N (P1); thus it is not necessary to consider loops when checking the condition (16),

which means that |Si| is finite.

Finally, consider a vertex i which does not satisfy both (i) and (ii). Let Si be the set of paths from i to T

with dim(
⋂|Si|

k=1N (Pk)) ≥ 1. Then clearly there exists a nontrivial solution, i.e., x∗i − x∗T 6= 0.

The following result follows immediately from Proposition 3.

Corollary 3. Consider a positive tree T and a vertex i /∈ T . From i to j ∈ T , if there exist at least two paths,

which include positive semi-definite weighting matrices, such that eq. (15) holds, then agent i can be added

into the cluster C(T ).

Example 1. To illustrate Proposition 3, consider a four-agent system in R3 with the interaction graph as

depicted in Figure 2. The matrix-weight corresponding to each connections between the agents in the system
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Fig. 2: Illustration of the four-agent system in Example 1.

are given by A12 =


0 0 0

0 1 0

0 0 1

 , A13 =


1 0 0

0 0 0

0 0 0

 , and A23 =


1 0 0

0 0 0

0 0 1

 and A14 =


1 0 0

0 2 0

0 0 1

. It is easy

to see that A14 is positive definite while other matrix weights are positive semidefinite. As a result, there is a

positive tree T in the graph containing vertex 1 and vertex 4. Moreover, we have N (A12) = span{[1, 0, 0]T },

N (A13) = span{[0, 1, 0]T , [0, 0, 1]T }, and N (A23) = span{[0, 1, 0]T }.

There are two paths (without loop) from vertex 2 to vertex 1 (also to the tree T ): P1 = 21, and P2 =

231. By definition, we have N (P1) = N (A12) = span{[1, 0, 0]T }, and N (P2) = N (A13)
⋃
N (A23) =

span{[0, 1, 0]T , [0, 0, 1]T }. It follows N (P1)
⋂
N (P2) = {0}, which further implies that agent 2 is in the same

cluster C(T ) due to Proposition 3 (ii).

On the other hand, consider the vertex 3. There are two paths from vertex 3 to the cluster C = {1, 2, 4}:

P3 = 31 and P4 = 32. Since N (P3)
⋂
N (P4) = N (A23) = span{[0, 1, 0]T }, the vertex 3 does not belong to

the cluster C. Trajectories of the states of three agents under consensus protocol (5) are depicted in Figure 3.

0 5 10 15

time [s]

-4

-2

0

2

4

6

x

States trajectories in x-axis

1

2

3

4

(a) The x-axis dynamics. (b) The y-axis dynamics. (c) The z-axis dynamics.

Fig. 3: Simulation: The states’ dynamics of four agents under the consensus protocol (5).

Observe that x∗1 = x∗2 = x∗4 6= x∗3, as expected from the above discussion.

Based on Proposition 1, we can further develop the following Corollaries.
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Corollary 4. Suppose a vertex i connects to a positive tree T ⊂ G via the edge set Si = {(i, j), j ∈ Ni∩V(T )}.

If
∑

(i,j)∈S Aij is positive definite, then under the consensus protocol (5), the equilibrium state of agent i is the

same with the equilibrium state of all agents in T .

Proof: From Lemma 6, we know that at equilibrium, all the states of all agents in the positive tree T are

the same. Let x∗T denote this value. Also, let x∗i denote the equilibrium value of agent i. For each semi-positive

connection between (i, j) ∈ S (see Fig. 4 for an illustration), from Lemma 2, we have

Aij(x
∗
i − x∗T ) = 0, ∀(i, j) ∈ S.

By adding the above equations, we can have∑
j∈S

Aij

 (x∗i − x∗T ) = 0. (18)

Since
∑

(i,j)∈S Aij is positive definite, i.e. dim(
⋂

j∈S N (Aij)) = 0, equation (18) is satisfied if and only if

x∗i = x∗T .

Corollary 5. Suppose two positive trees T1, T2 in G are connected via the edge set Si = {(i, j)|i ∈ T1, j ∈ T2}.

If
∑

(i,j)∈S Aij is positive definite, then under the consensus protocol (5), the equilibrium states of all agents

in T1 and T2 are the same.

Proof: Based on Lemma 6, under (5), the equilibrium states of each agents belonging to the same positive

tree are the same. Let x∗T1 and x∗T2 be the equilibrium states corresponding to each positive trees T1 and T2.

For each semi-positive connection between (i, j) ∈ S (see Fig. 5 for an illustration), from Lemma 2, we have

Aij(x
∗
T1 − x∗T2) = 0, ∀(i, j) ∈ S.

Adding the above equations, and following the same procedure as the proof of Corollary 4, the proof can be

completed.

Fig. 4: The vertex i connects to the positive tree T through two semi-positive connections.
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Figure 5 illustrates a scenario of Corollary 5. Two positive trees T1 and T2 are connected through three semi-

positive connections. If the summation of three matrices associated with these connections is positive definite,

the equilibrium states of agents in both trees are the same.

Lemma 7 (Partitioning a graph into positive trees). Given a graph G, consider a set of positive trees {T1, . . . , Tp}

(1 ≤ p ≤ n), where

(i) V(Tm)
⋂
V(Tl) = ∅,

⋃p
m=1 V(Tm) = V(G),

(ii) For each Tk (1 ≤ k ≤ p), i, j ∈ V(Tk) if and only if there exists a positive path from i to j.

Then, the partition of G defined by {V(T1), . . . ,V(Tp)} is unique.

Proof: The following process gives a constructive way to find the partition:

We first select vertex 1. The tree T1 contains vertex 1 and all vertices that have a positive path to vertex 1

is unique. We then cross out all vertices in T1. The remaining vertices in V(G) \ V(T1) do not have a positive

path to any vertices in V(T1). Note T1 contains at least one vertex (vertex 1). Thus, |V(G) \ V(T1)| < |V(G)|.

Next, we choose the vertex in V(G)\V(T1) with the smallest indexing. Similar to Step 1, we find the positive

tree T2 associated with this vertex, and then cross out all vertices in T2 from the current vertex set. The remaining

vertices are V(G) \ (V(T1) ∪ V(T2)), which has less vertices than V(G) \ V(T1).

We continue these processes, until there is no leftover vertex after crossing out all vertices from the last

positive tree, say Tp. At this point, we obtain a set of positive trees {T1, . . . , Tp} (1 ≤ p ≤ n). Obviously, this

set satisfies both conditions (i) and (ii).

Because in each step, the vertex and the corresponding positive tree are unique, the partition {V(T1), . . . ,V(Tp)}

is unique.

Let C(Tm) be the cluster generated from the positive tree Tm. If there exists a vertex i ∈ C(Tm) satisfying

the condition (ii) in Proposition 3 with a cluster C(Tl), we can form a new cluster C(Tm) ∪ C(Tl) by merging

C(Tm) and C(Tl) together. By this way, we can extend the positive trees in the graph. All vertices in the new

cluster will reach a consensus under (5). To check whether two clusters C(Tm) and C(Tl) can be merged or not,

Fig. 5: Two positive trees T1 and T2 are connected through three semi-positive connections.
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it is sufficient to check condition (ii) in Proposition 3 for only one vertex i ∈ C(Tm) with regard to C(Tl). This

property comes from the fact that (16) is invariant for all vertices belonging to a same cluster.

Algorithm 1 proposes a solution for finding all clusters in the graph by iteratively checking condition (ii) in

Proposition 3 and merging clusters together. The algorithm terminates after some finite steps and the output is

a set of clusters CG = {C1, . . . , Cq} (1 ≤ q ≤ p) satisfying

• Cm
⋂
Cl = ∅,

⋃q
m=1 Cm = V(G),

• For 1 ≤ m 6= l ≤ q, Cm and Cl cannot be merged together, or i.e. @i ∈ Cm satisfying the condition (ii) in

Proposition 3 with Cl.

We can now state the main result of this section.

Theorem 4. Under the consensus protocol (6), the average consensus is achieved if and only if G is spanned

by a cluster.

Proof: If G is spanned by a cluster, it follows from Proposition 3 that the equilibrium state of all agents in

the graph are the same, i.e., x∗ is the only equilibrium point of (6). Thus, the consensus is achieved globally

exponentially based on Lemma 1. On the other hand, if there is no cluster spanning G, it follows that the agents

belonging to two different clusters of G may not agree. Thus, a consensus cannot be globally achieved.

Remark 3. Obviously, if the graph G has some disconnected components, under consensus protocol (5), the dy-

namics of each disconnected component do not influence the others. Suppose G is positive semiconnected and has

p clusters after Algorithm 1 terminates. Define Sij := {Pk| the starting (end) vertex of Pk is in Ci (resp., Cj)},

the end states of each cluster satisfy:
q∑

i=1

|Ci|x∗Ci = nx̄, (19)

x∗Ci − x∗Cj ∈
|Sij |⋂
k=1

N (Pk). (20)

The solutions of equations (19)–(20) depend on matrix weights. Thus, we can design the matrix weights to

obtain the desired number of clusters.

The following result follows from Theorems 2 and 4.

Theorem 5. Given a matrix-weighted graph G, there is a cluster spanning all vertices of G if and only if

N (L) = R.

Before ending this section, we refer readers to Table I, which gives a comparison between the usual consensus

algorithm and the matrix-weighted consensus algorithm proposed in this paper. Note that in Table I, we find

the computational cost as follow: Suppose an agent i has an average number of neighbor |N̄i|. Each matrix
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Algorithm 1 Finding clusters of a matrix-weighted graph G
Require: G(V, E ,A)

1: i← 0;

2: Find the set of positive trees {T1, . . . , Tp} in G;

3: CG(0)← {Cm = {V(Tm)},m = 1, . . . , p};

4: repeat

5: CG(i+ 1)← CG(i);

6: check ← false;

7: for all Cm ∈ CG(i) do

8: for all Cl ∈ CG(i), l 6= m do

9: if ∃i ∈ Cl satisfies Theorem 3(ii) then

10: Vtemp ← V(Tm) ∪ V(Tl);

11: Etemp ← E(Tm) ∪ E(Tl) ∪ S;

12: Ctemp ← Cm ∪ Cl;

13: CG(i+ 1)← (CG(i+ 1) \ {Cm, Cl}) ∪ {Ctemp};

14: check ← true;

15: break;

16: end if

17: end for

18: if check == true then

19: break;

20: end if

21: end for

22: i ← i+ 1;

23: until CG(i) == CG(i− 1)

multiplication Aijxi needs d2 multiplications and d(d−1) summations. Thus, in average, we needs O(n×d2×

|N̄i|) calculations for each update.

V. APPLICATIONS

A. Clustered consensus

This subsection presents an example of designing a clustered consensus network based on the matrix-weighted

consensus algorithm. Consider a system of nine autonomous agents in the plane. We would like to gather the

agents into three clusters and then rendezvous to the system’s average. Assume that the agents can sense the
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TABLE I: Comparison between the scalar-weighted consensus and the matrix-weighted consensus.

Property Scalar-weighted consensus Matrix-weighted consensus

Information flow Fixed undirected connected Fixed undirected semipositively connected

scalar-weighted graph: G = (V, E ,A) matrix-weighted graph: G = (V, E ,A)

Edge’s weights aij > 0: (i, j) exists. Aij > 0: (i, j) is a positive definite edge.

aij = 0: (i, j) does not exist. Aij ≥ 0: (i, j) is a positive semidefinite edge.

Aij = 0: (i, j) does not exist.

Graph Laplacian L = HT diag(ak)H L = (HT ⊗ Id)blkdiag(Ak)(H⊗ Id)

dim(N (L)) ≥ 1 dim(N (L)) ≥ d

Consensus protocol ẋi =
∑

j∈Ni
(xj − xi) ẋi =

∑
j∈Ni

Aij(xj − xi)

ẋ = −Lx ẋ = −Lx

Consensus space span(1n) span(1n ⊗ Id)

Conditions for reaching There is a tree spanning all vertices of G. There is a cluster spanning all vertices in G.

an average consensus N (L) = span(1n). N (L) = span(1n ⊗ Id).

Cluster consensus Happens if and only if G is not connected. Happens if and only if G is not connected

or there does not exist a cluster spanning

all vertices of G.

Average computational cost O(n× d× |N̄i|) O(n× d2 × |N̄i|)

relative position with regard to its neighbor and there is a common reference frame for all agents in the system.

The state of each agent is represented by a vector pi = [xi, yi]
T ∈ R2, and the consensus protocol is explicitly

written as

ṗi =
∑
j∈Ni

Aij(pj − pi), ∀i = 1, . . . , 9.

In case 1, we would like to gather the agents into three clusters. For this, the matrix weights are chosen as fol-

lows: A12 =

2 0

0 1

 , A13 =

2 3

3 5

 , A47 =

0 0

0 1

 , A14 =

 0.75 −0.433

−0.433 0.25

 , A17 =

 0.75 0.433

0.433 0.25

 ,
A45 =

 1 0.5

0.5 1

 , A46 =

 0.9518 −0.2142

−0.2142 0.0482

 , A56 =

1 0

0 0

 , A78 =

3 2

2 3

 , and A89 =

2 0

0 2

 .
Observe that (1, 4), (1, 7), (4, 7), and (5, 6) are semi-positive connections while other connections are positive.

Thus, G has three clusters: C1 = {1, 2, 3}, C2 = {4, 5, 6}, C3 = {7, 8, 9}. The equilibrium positions of three clus-

ters satisfy:
∑3

i=1 |Ci|p∗Ci =
∑9

i=1 pi(0), p∗C1−p∗C2 ∈ N (A14), p∗C1−p∗C3 ∈ N (A17), and p∗C1−p∗C3 ∈ N (A47).

In case 2, we want all agents to rendezvous at a point. To this end, we change the graph a little by adding a

semipositive connection between vertices 2 and 8. The corresponding matrix weight is given by A28 =

0 0

0 1

.

This additional connection makes two clusters C1 and C3 satisfy Corollary 5 (i.e., (A17+A28) is positive definite);

thus they can be merged into a cluster, called C13. It is also due to Corollary 5 that the clusters C13 and C2 can
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Fig. 6: Two graphs used in simulations: graph (a) has three clusters, graph (b) has a spanning cluster.

(a) Trajectories of 9 agents. (b) The x-axis dynamics. (c) The y-axis dynamics.

Fig. 7: Case 1: The 9-agent system in Fig. 6 under the consensus protocol (5).

be merged together (i.e. (A14 + A17) is positive definite). It follows that the graph has a spanning cluster C in

this case. Therefore, the agent will reach to an average consensus.

We simulate the nine-agent system under the consensus protocol (5). Simulation results in case 1 are shown in

Figure 7. The state trajectories in x- and y-axes are depicted in Figures 7b and 7c, respectively. The corresponding

positions of nine agents are shown in Figures 7a. It can be seen that all agents belong to a cluster converge to

a same point in R2.

Simulation results in case 2 are shown in Figure 8. Figure 8a depicts the nine agent trajectories after the

interaction graph is switched to Fig. 6 (b). All agents asymptotically reach to a point in the plane.
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(a) Trajectories of 9 agents. (b) The x-axis dynamics. (c) The y-axis dynamics.

Fig. 8: Case 2: All agents rendezvous to a point after the interaction graph switched to the graph in Fig. 6 (ii).

B. The bearing-constrained formation control problem

The bearing-based formation control problem in [18] can be considered as a special application of the matrix-

weighted consensus problem. Here, the proposed formation control law for each agent is given by

ṗi = −
∑
j∈Ni

Pg∗
ij

(pi − pj), (21)

where pi ∈ Rd is the position of agent i. The control law (21) is exactly the consensus protocol (5) where the

matrix weights are chosen to be the projection matrices Pg∗
ij

. Here, g∗ij is a unit bearing vector which has been

chosen to impose a constraint for the formation. Also, the projection matrix is defined as Pg∗
ij

:= Id×d−g∗ijg
∗T
ij ,

and thus it is symmetric, positive semidefinite. Moreover, the nullspace of Pg∗
ij

is spanned by the bearing vector

g∗ij , i.e., N (Pg∗
ij

) = span{g∗ij}.

By specifying a set of desired bearing vectors {g∗ij}(i,j)∈E to a desired formation p∗, we can design the

nullspace of the bearing Laplacian matrix LB(p∗) ∈ Rdn×dn. Note that the ijth block sub-matrix of LB is

given by 
[LB]ij = 0, i 6= j, (i, j) /∈ E ,

[LB]ij = −Pg∗
ij
, i 6= j, (i, j) ∈ E ,

[LB]ii =
∑

j∈Ni
Pg∗

ij
, i ∈ V.

Based on Theorem 1, the formation converges to the nullspace of LB which is span {R, {v = [vT
1 , . . . ,v

T
n ]T ∈

Rdn|(vj − vi) = αg∗ij), α ∈ R,∀(i, j) ∈ E}. More detailed analysis and discussions on the bearing-based

formation control can be found in [18], [21], [25].

VI. CONCLUSION

In this paper, the matrix-weighted consensus algorithm was proposed. It was shown that the matrix-weighted

consensus algorithm exhibits both common and unique characteristics compared with the usual consensus
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algorithm in [1]. More specifically, under the matrix-weighted consensus algorithm, connectedness of the

undirected graph is not enough to guarantee the system to globally achieve a consensus. In fact, due to the

existence of semipositive connections, the clustered consensus phenomena can easily happen in the network. It

was proved that a global consensus can be achieved if and only if the network is spanned by only one cluster.

Further, an algorithm for finding all clusters in the network was also provided. We illustrated two possible

applications of the matrix-weighted consensus protocol in clustered consensus and in bearing-based formation

control problem.

There are still several open problems on matrix-weighted consensus. An immediate problem is finding a

necessary and sufficient condition for achieving a consensus in directed networks. For this, matrix-weighted

consensus with leader-following graphs have been recently studied in [26]. Examining the consensus algorithm

with communication delays, or time-varying matrix weights, or switching topologies along the works [27], [28],

can be several further research directions. Finally, the matrix-weighted consensus protocol can have applications

in cyber-physical systems and in modeling of social networks.
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