
Supplementary material for “Continuous-action planning for discounted

infinite-horizon nonlinear optimal control with Lipschitz values”

List of main notations

x,X, u, U state, state space, action, action space
f,u dynamics, sequence of actions
γ, r, ρ, v discount factor, reward, reward fcn., value
Lf , Lρ, Lv Lipschitz constants of respective fcns.
U box in the space of action sequences
i, k; i†, k† box and dimension indices; selected indices
K number of discretized box dimensions
µ, d action interval, interval length
n computation budget
M number of subintervals for splitting
T , T ∗,L tree, near-optimal tree, set of leaves
h, s depth in tree, number of splits
b(i), δ(i) b-value, diameter of box i
m branching factor of near-optimal tree
hmax(n) maximum depth function
τ, c, C constants

O(·), Õ(·) bounded by · up to const., log. terms
⌈·⌉ ceiling (smallest integer still larger than ·)
diag[·] diagonal matrix with · on diagonal

A Proofs

Proof of Lemma 3: We will prove the inequality from
the theorem for any two sequences u∞ and u

′
∞, which

directly implies it for the particular case u
′
∞ = u

∗
∞ from

(3). Denote by xk, x′
k, rk, r′k for k ≥ 0 the state and

reward trajectories generated by the two sequences, with
x′

0 = x0. Then, by induction:

‖xk − x′
k‖ ≤

k−1
∑

j=0

Lk−j
f

∣

∣uj − u′
j

∣

∣ (A.1)

Indeed, at k = 1, we have:

‖x1 − x′
1‖ ≤ Lf (‖x0 − x′

0‖ + |u0 − u′
0|) = Lf |u0 − u′

0|

and assuming the relation holds at k − 1, we get:

‖xk − x′
k‖ ≤ Lf (

∥

∥xk−1 − x′
k−1

∥

∥+
∣

∣uk−1 − u′
k−1

∣

∣)

≤ Lf

k−2
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Lk−1−j
f
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∣uj − u′
j

∣

∣+ Lf

∣

∣uk−1 − u′
k−1

∣

∣

equivalent to (A.1).

Then:

|v(u∞) − v(u′
∞)| ≤

∑

k=0

γk |rk − r′k|

≤
∞
∑

k=0

γkLρ(‖xk − x′
k‖ + |uk − u′

k|)

≤ Lρ

∞
∑

k=0

γk
k
∑

j=0

Lk−j
f

∣

∣uj − u′
j

∣

∣

= Lρ

∞
∑

k=0

|uk − u′
k|

∞
∑

j=0

γk+jLj
f

=
Lρ

1 − γLf

∞
∑

k=0

γk |uk − u′
k|

Here, we used the Lipschitz continuity of ρ, and then ap-
plied (A.1). The three equalities simply rewrite the right
hand side, isolating the contribution of each |uk − u′

k|;
the middle equality swaps indices k and j, and can be
verified by writing out explicitly the summations. The
last step holds because γLf < 1. Thus the inequality is

proven with Lv =
Lρ

1−γLf
. �

Proof of Theorem 6: Our goal is to find an upper bound
for the diameter of an arbitrary box i at some depth h.
Since we deal with this single box, we will omit its index
i for most of the derivation. Indeed, due to dimension
selection (7), all the boxes at a given depth have the
same shape. Recall function s(k), the number of splits
per dimension k, which is clearly decreasing, see Fig. A.1
for an example. In addition s decreases in steps of at
most 1. To see this, consider k like in the figure, the
first dimension in a constant-s range, which will always
be preferred to later dimensions in the same range. To
increase the gap to 2, dimension k−1 must be expanded
before k, which means γk−1M−(s(k)+1) ≥ γkM−s(k), or
M ≤ 1/γ. This contradicts Assumption 5(ii).

Denote now the lengths of the ranges in s by τ0, τ1, . . . , τN

where N is the last, infinitely long range where s = 0.
Let j be the index of the range starting with k. By di-
rect computation like above, we find that if node k is
expanded:

τj ≥ log M

log 1/γ
, τj−1 <

log M

log 1/γ
if j ≥ 1 (A.2)

Recall that τ =
⌈

log M
log 1/γ

⌉

≥ 2, so (A.2) implies τj ≥
τ, τj−1 < τ − 1. Keeping in mind that s (and so N , τj)
depend on h, we prove by induction that at any depth
h, we have:







τ0 ≤ τ

τj ∈ {τ − 1, τ} for 1 ≤ j < N

τN = ∞
(A.3)



For any τ , the first h = 3τ +2 are done in the same order,
shown in the figure. To see this, consider any step and
try to expand any other dimension; one finds that (A.2)
is violated. Clearly any function s so far obeys (A.3).
Consider now an arbitrary h ≥ 3τ+2 that satisfies (A.3).
To study h + 1, four cases must be considered for the
next expanded dimension, denoted (a)-(d) inside dotted
squares in the figure. Call the next function s′, with N ′

ranges τ ′
j .

Case (a): Since k = 1 is expanded, τ0 = τ due to (A.2),
(A.3). Hence τ ′

0 = 1, τ ′
1 = τ −1, and later ranges remain

unchanged. Case (b): We must have τ0 ≤ τ − 1, τ1 = τ .
Hence, τ ′

0 ≤ τ , τ ′
1 = τ − 1, and the later ranges are

unchanged. Case (c): Some arbitrary k in some range
1 < j < N is expanded. We must have τj−1 = τ , τj =
τ − 1, leading to τ ′

j−1 = τ − 1, τ ′
j = τ , and the other

ranges remain the same. Case (d): Finally, when the first
undiscretized dimension K is split, we have τN−1 = τ−1,
τN = ∞, leading to N ′ = N , τ ′

N−1 = τ , τ ′
N = ∞,

with no change to the prior ranges. In all cases, the new
function satisfies (A.3), so the induction is complete.

The next step is to find, for fixed h, a lower bound on s(k)
under constraints (4), (A.3). If the length K of the box is
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Fig. A.1. An example of a split function is shown as a thick
black line. The first unsplit dimension is K, and a dimen-
sion k is highlighted with the constant-s ranges to its left
and right, τj−1 and τj . Each square at a certain value of k
indicates a split of dimension k, and the squares stack to-
gether to obtain s(k). The first 3τ + 2 splits, shown on the
bottom-left, always occur in the same order, indicated by
indices inside the squares. The dotted squares above s(k)
indicate possibilities for the next split of s(k).
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Fig. A.2. Various split function bounds used in the proof, see
there for their meaning. Dotted: sK for arbitrary K; gray: s̄
yielding K; dashed: sK′ where K′ ≤ K.

fixed and (4) is ignored (thereby relaxing the problem),
then a lower bound sK on any function for this K is
obtained by filling in s with ranges of τ ; see Fig. A.2.
Now sK(k) is decreasing with K for any k, so we must
find a lower bound on K, denoted K. To this end, we fill
in a function s̄ with all ranges of τ −1, except τ0 which is
equal to 1, see again Fig. A.2; while imposing a relaxed
version of (4), namely h ≤

∑∞
k=0 s̄(k).

Denote N the number of ranges in s̄, then by explicit
computation we get:

h ≤
∞
∑

k=0

s̄(k) =
(N − 1)N

2
(τ−1)+N ≤ (N + 1)2

2
(τ−1)

from which we get N ≥
√

2h
τ−1 − 1 =: N . Again by

computation and replacing N :

K = 2 + (N − 1)(τ − 1) ≥ 4 − 2τ +
√

2h(τ − 1) =: K ′

Since sK =
⌈

K−k
τ

⌉

≥ K−k
τ for k < K, we finally obtain

a lower-bound split function as sK′ , which at k < K ′ is
explicitly:

sK′ =

√

2h
τ − 1

τ2
− k

τ
+ (4/τ − 2)

and 0 for k ≥ K ′.

To complete the proof, we use this function in the diam-
eter formula:

δ(i) = L̄v

∞
∑

k=0

γkM−s(k)

≤ L̄v





K′−1
∑

k=0

γkM
−s

K′ +
γK′

1 − γ





≤ L̄v

[

c1

√

2h(τ − 1)M
−
√

2h τ−1

τ2 + c2γ
−
√

2hτ−1

]

≤ c
√

2h(τ − 1)γ

√

2h τ−1

τ2

where we have omitted some tedious derivations. An in-
termediate step was highlighted to show that some con-
servativeness is introduced in the tail term, notably by
decreasing its rate of convergence via the division by τ2.
Here, c1, c2, c denote positive constants whose value is
not important in the asymptotic analysis. �

Proof of Lemma 8: For the first part, consider any iter-
ation t, and denote by it the box expanded at this iter-
ation. Since the leaf boxes on the current tree T cover
the entire space, there exists a leaf box j containing an
optimal solution, for which b(j) ≥ v∗ by (6). As the
expanded box it is selected by maximizing the b-value,



b(it) ≥ b(j) ≥ v∗. Further, v(it) + δh ≥ b(it), where h is
the depth of it, and therefore finally it ∈ T ∗.

For the second part, among the descendants of it there
exists a leaf j on the final tree so that v(j) ≥ v(it),
due to Assumption 5(i). Since û maximizes the value
among the leaves, v(û) ≥ v(j) ≥ v(it). Combining this
with b(it) ≥ v∗ from the first part, we get v∗ − v(û)) ≤
b(it) − v(it) = δ(it). Since this holds at any iteration,
the bound δmin = mint δ(it) follows. �

Proof of Theorem 9: For a given budget n the branch-
ing factor is used to infer a lower bound on the depth
reached by OPC. For m > 1, take the smallest depth h so
that Cmh+1Mh ≥ n. The left-hand side is chosen since
there are less than Cmh+1 nodes in the explored tree up
to depth h, and each of them takes at most Mh com-
putation to expand, see Fig. A.3. Therefore, we are sure
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Fig. A.3. To reach depth h, at most Cmh′

nodes must be
expanded on T ∗

h′ at depths h′ ≤ h, for a total of Cmh+1.
Each of these expansions requires, at worst, simulating M
trajectories with h′ steps.

that at least a node at depth hmin = h − 1 has been ex-
panded, and by solving the inequality we get after some
computation:

hmin ≥ log n

log m
− log log(nα)β

log m

for α, β > 0 and sufficiently large n. Replacing this in
the formula for δhmin

, we obtain:

δmin ≤ δhmin
= Õ

(

γˆ

√

2
τ − 1

τ2

[

log n

log m
− log log(nα)β

log m

]

)

= Õ



γ

√

2(τ−1) log n

τ2 log m · ( 1

γ
)̂

√

2
τ − 1

τ2

log log(nα)β

log m





= Õ



γ

√

2(τ−1) log n

τ2 log m · ( 1

γ
)̂ (2

τ − 1

τ2

log log(nα)β

log m
)





= Õ



γ

√

2(τ−1) log n

τ2 log m · [log(nα)]β
′





= Õ



γ

√

2(τ−1) log n

τ2 log m





where β′ > 0 is a constant and we temporarily use no-
tation z ŷ = zy for readability. In the second step, the
square root can be split in this way for sufficiently large
n; then we show that the second term enters in fact the
logarithmic, negligible part of the expression.

When m = 1, take the smallest h so that Ch2M ≥ n.
Since at most C nodes must be expanded at each depth,
this guarantees that some node was expanded at depth
hmin ≥

√

n/MC − 1. Replacing this in the diameter
formula leads to the desired result.

Note that we did not make explicit the term
√

2hmin(τ − 1)
in the diameter bounds. However, trivial upper bounds
for hmin are on the order of log n in the first case (since a
tree with branching factor greater than 1 must asymp-
totically be explored, larger depths than this cannot be
reached), and n in the second case. Both of these remain
in the logarithmic part of the bound. �

Proof of Lemma 10: Consider one top-level loop of SOPC
in Alg. 2, and denote the number of elapsed such loops
by ℓ. The major part of the proof will be to show by

induction that, for any h ≤ hmax(n), if ℓ ≥ C
∑h

h′=0 mh′

,
then at least a box (tree node) containing an optimal
sequence at h has been expanded.

For the base case, if ℓ ≥ Cm0 ≥ 1, then the root has been
expanded, and it contains the optimal solution by defi-
nition. Take now an arbitrary h < hmax(n), and define
ℓh to be the loop where the first node i∗h at h that con-
tains an optimal solution was expanded. By the induc-

tion hypothesis, ℓh ≤ C
∑h

h′=0 mh′

. Node i∗h has itself
some child ih+1 that contains an optimal solution. (Note
that another optimal node i∗h+1 may be expanded before
this particular child; we will be interested in i∗h+1 below.)
Consider now any iteration ℓh+ℓ′ where some other node
i′h+1, different from ih+1, is expanded at depth h + 1.
Then it must be that:

v(i′h+1) ≥ v(ih+1) ≥ v∗ − δ(ih+1) ≥ v∗ − δh+1

where the middle inequality holds because ih+1 contains
an optimal solution. But then i′h+1 ∈ T ∗

h+1, and since

there are at most Cmh+1 nodes in this set, including ih+1

which was not yet expanded, it means at most Cmh+1−
1 loops can pass before ih+1 must be expanded. Thus
the loop ℓh+1 where i∗h+1 is expanded is, at worst, ℓh +

Cmh+1 ≤ C
∑h+1

h′=0 mh′

, and the induction is proven.

Observe next that each loop ℓ expands at most hmax(n)
nodes, where each node expansion takes at most



Mhmax(n) model calls. Then, by combining this with
the bound on ℓ obtained above, the algorithm is sure
to expand an optimal node at h(n) when this is smaller
than hmax(n) – or, when h(n) > hmax(n), it expands
an optimal node at hmax(n). Thus finally it expands
some optimal node i∗h at h, and therefore the solution

returned by SOPC satisfies:

v(i∗) ≥ v(i∗h) ≥ v∗ − δh

i.e. it is δh-optimal.

Note that here we streamlined the proof of the SOO
depth bound from [18] so as to take advantage of the
fact that, unlike SOO, SOPC always expands a full path
down to hmax(n). �

Proof of Theorem 11: Consider first m > 1. Since h(n)
is the smallest for which (8) holds, we have:

n > CMh2
max(n)

h(n)−1
∑

h′=0

mh′

= CMh2
max(n)

mh(n) − 1

m − 1

Therefore:

h(n) <
1

log m
log
[ n(m − 1)

CMh2
max(n)

+ 1
]

< c3 log n1−2ε

for some constant c3 > 0, where hmax(n) = nε was used.
Thus h(n) is logarithmic in n and, for large n, smaller
than hmax(n) since the latter is a power of n. Thus, for
large n, h = h(n) in Lemma 10.

Similarly solving (8) for a lower bound on h(n), we get:

h(n) ≥ 1

log m
log
[ n(m − 1)

CMh2
max(n)

]

− 1

=
1

log m

[

log n1−2ε − log
eCM

m − 1

]

and plugging this into δh(n):

δh(n) = Õ

(

γˆ

√

2
τ − 1

τ2 log m

[

log n1−2ε − log
eCM

m − 1

]

)

= Õ

(

γˆ

√

2(τ − 1)(1 − 2ε) log n

τ2 log m

)

where the elimination of the subtracted term holds due
to n being large. By Lemma 10 this is also the near-
optimality of the algorithm.

When m = 1, (8) becomes simply CMhmax(n)(h(n) +

1) ≥ n, leading via hmax(n) = n1/3 to h(n) ≥ 3
√

n
CM − 1.

Therefore

h = min

{

3
√

n

CM
− 1, 3

√
n

}

≥ 3
√

n min

{

1

CM
, 1

}

− 1

and finally:

δh = Õ

(

γˆ

√

2
τ − 1

τ2

[

3
√

n min

{

1

CM
, 1

}

− 1

]

)

= Õ
(

γˆ
(

n1/6
√

2 τ−1
τ2 min

{

1
CM , 1

})

)

which is the desired result. �

B Execution time of planning algorithms

Fig. B.1 shows the execution time of the planning al-
gorithms evaluated in Sec. 5 of the main paper. These
results confirm the expectation that the budget n is the
most important factor: the execution time is very close
to linear in n, with minor differences between the algo-
rithms due to their varying overhead of e.g. searching
the tree in different ways. SOPC is the fastest.
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Fig. B.1. Runtime of one call to the planner, averaged over
the 50 steps in the trajectory.

C Extension of SOPC to multiple actions

Although our analysis does not cover it, we briefly illus-
trate an extension of SOPC to 2 control actions. Here,
each time step k is associated with 2 intervals rather
than just 1. The idea is simple: boxes and steps k are
selected for expansion using the same rules as in SOPC,
but when a box must be expanded along step k, we split
both intervals into M pieces, leading to M2 = 9 child
boxes. More refined rules could be given that avoid this
direct exponential growth with the number of inputs.

To evaluate this extension, we use the rotational pen-
dulum system from Sec. 5 of the main paper, but
a second motor is added to the vertical joint of the
pendulum. This motor has the same viscous damping
and torque constant as the first one, but its model is
simplified in that the torque is linearly related to the
voltage u2 ∈ [−9, 9] V, rather than dynamically like
for the first motor. The unnormalized reward function
is −x⊤diag[0.5, 0.05, 1, 0.05]x − u⊤diag[0.2, 0.2]u. The
C++ implementation of SOPC is used with a budget
n = 5 · 105 and ε = 0.33 in hmax. The resulting trajec-
tory from the pointing-down state is shown in Fig. C.1.
The angles are approximately stabilized, although with
worse performance and larger input adjustments than
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Fig. C.1. Two-input trajectory.

in the single-input case, since this simple extension has
exponential complexity in the number of actions (and
we increased the budget less than quadratically).


