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Complexity of Deciding Detectability in Discrete Event Systems
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Abstract

Detectability of discrete event systems (DESs) is a question whether the current and subsequent states can be determined based on obser-
vations. Shu and Lin designed a polynomial-time algorithm to check strong (periodic) detectability and an exponential-time (polynomial-
space) algorithm to check weak (periodic) detectability. Zhang showed that checking weak (periodic) detectability is PSpace-complete.
This intractable complexity opens a question whether there are structurally simpler DESs for which the problem is tractable. In this pa-
per, we show that it is not the case by considering DESs represented as deterministic finite automata without non-trivial cycles, which
are structurally the simplest deadlock-free DESs. We show that even for such very simple DESs, checking weak (periodic) detectability
remains intractable. On the contrary, we show that strong (periodic) detectability of DESs can be efficiently verified on a parallel computer.
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1 Introduction

The detectability problem of discrete event systems (DESs)
is a question whether the current and subsequent states of a
DES can be determined based on observations. The problem
was introduced and studied by Shu et al. [11,13]. Detectabil-
ity generalizes other notions studied in the literature [3,10],
such as stability of Ozveren and Willsky [9]. Shu et al. fur-
ther argue that many practical problems can be formulated
as the detectability problem for DESs.

Four variants of detectability have been defined: strong and
weak detectability and strong and weak periodic detectabil-
ity [13]. Shu et al. [13] investigated detectability for deter-
ministic DESs. A deterministic DES is modeled as a deter-
ministic finite automaton with a set of initial states rather
than a single initial state. The motivation for more initial
states comes from the observation that it is often not known
which state the system is initially in. They designed expo-
nential algorithms to decide detectability of DESs based on
the computation of the observer. Later, to be able to han-
dle more problems, they extended their study to nondeter-
ministic DESs and improved the algorithms for strong (peri-
odic) detectability of nondeterministic DESs to polynomial
time [11]. Concerning the complexity of deciding weak de-
tectability, Zhang [16] showed that the problem is PSpace-
complete and that PSpace-hardness holds even for deter-
ministic DESs with all events observable. Shu and Lin [12]
further extended strong detectability to delayed DESs and
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developed a polynomial-time algorithm to check strong de-
tectability for delayed DESs. Yin and Lafortune [15] recently
extended weak and strong detectability to modular DESs and
showed that checking both strong modular detectability and
weak modular detectability is PSpace-hard.

Zhang’s intractable complexity of deciding weak (periodic)
detectability opens the question whether there are struc-
turally simpler DESs for which tractability can be achieved.
To tackle this question, we consider structurally the sim-
plest deadlock-free DESs modeled as deterministic finite au-
tomata without non-trivial cycles, that is, every cycle is in
the form of a self-loop in a state of the DES. We show that
even for these very simple DESs, checking weak (periodic)
detectability remains PSpace-complete, and hence the prob-
lem is intractable for all practical cases.

On the other hand, we show that deciding strong (periodic)
detectability of DESs is NL-complete. Since NL is the class
of problems that can be efficiently parallelized [1], we obtain
that strong (periodic) detectability can be efficiently verified
on a parallel computer.

2 Preliminaries and Definitions

For a set A, |A| denotes the cardinality of A and 2A its power
set. An alphabet Σ is a finite nonempty set with elements
called events. A word over Σ is a sequence of events of Σ.
Let Σ∗ denote the set of all finite words over Σ; the empty
word is denoted by ε. For a word u ∈ Σ∗, |u| denotes its
length. As usual, the notation Σ+ stands for Σ∗ \ {ε}.
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A nondeterministic finite automaton (NFA) over an alpha-
bet Σ is a structure A = (Q, Σ, δ, I, F), where Q is a finite
nonempty set of states, I ⊆ Q is a nonempty set of initial
states, F ⊆ Q is a set of marked states, and δ : Q × Σ→ 2Q

is a transition function that can be extended to the domain
2Q × Σ∗ by induction. The language recognized by A is
the set L(A) = {w ∈ Σ∗ | δ(I,w) ∩ F , ∅}. Equivalently,
the transition function is a relation δ ⊆ Q × Σ × Q, where
δ(q, a) = {s, t} denotes two transitions (q, a, s) and (q, a, t).

The NFA A is deterministic (DFA) if it has a unique initial
state, i.e., |I | = 1, and no nondeterministic transitions, i.e.,
|δ(q, a)| ≤ 1 for every q ∈ Q and a ∈ Σ. We say that a
DFA A over Σ is total if its transition function is total, that
is, |δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ. For DFAs, we
identify singletons with their elements and simply write p
instead of {p}. Specifically, we write δ(q, a) = p instead of
δ(q, a) = {p}.

A discrete event system (DES) is modeled as an NFA G with
all states marked. Hence we simply write G = (Q, Σ, δ, I)
without specifying the set of marked states. The alphabet Σ
is partitioned into two disjoint subsets Σo and Σuo = Σ \Σo,
where Σo is the set of observable events and Σuo the set of
unobservable events.

The detectability problems are based on the observation of
events, described by the projection P : Σ∗ → Σ

∗
o. The pro-

jection P : Σ∗ → Σ∗o is a morphism defined by P(a) = ε for
a ∈ Σ \ Σo, and P(a) = a for a ∈ Σo. The action of P on
a word w = σ1σ2 · · ·σn with σi ∈ Σ for 1 ≤ i ≤ n is to
erase all events from w that do not belong to Σo; namely,
P(σ1σ2 · · ·σn) = P(σ1)P(σ2) · · · P(σn). The definition can
readily be extended to infinite words and languages.

As usual when detectability is studied [11], we make the
following two assumptions on the DES G = (Q, Σ, δ, I):

(1) G is deadlock free, that is, for every state of the system,
at least one event can occur. Formally, for every q ∈ Q,
there is σ ∈ Σ such that δ(q, σ) , ∅.

(2) No loop in G consists solely of unobservable events:
for every q ∈ Q and every w ∈ Σ+uo, q < δ(q,w).

The set of infinite sequences of events generated by the DES
G is denoted by Lω(G). Given Q′ ⊆ Q, the set of all possible
states after observing a word t ∈ Σ∗o is denoted by R(Q′, t) =
∪w∈Σ∗,P(w)=tδ(Q

′,w). For w ∈ Lω(G), we denote the set of
its prefixes by Pr(w).

A decision problem is a yes-no question, such as “Is an NFA
A deterministic?” A decision problem is decidable if there
exists an algorithm solving the problem. Complexity theory
classifies decidable problems to classes based on the time
or space an algorithm needs to solve the problem. The com-
plexity classes we consider in this paper are NL, P, NP, and
PSpace denoting the classes of problems solvable by a non-
deterministic logarithmic-space, deterministic polynomial-
time, nondeterministic polynomial-time, and deterministic

polynomial-space algorithm, respectively. The hierarchy of
classes is NL ⊆ P ⊆ NP ⊆ PSpace. Which of the inclusions
are strict is an open problem. The widely accepted conjec-
ture is that all are strict. A decision problem is NL-complete
(resp. NP-complete, PSpace-complete) if it belongs to NL
(resp. NP, PSpace) and every problem from NL (resp. NP,
PSpace) can be reduced to it by a deterministic logarithmic-
space (resp. polynomial-time) algorithm.

3 The Detectability Problems

In this section, we recall the definitions of the detectability
problems [11]. Let Σ be an alphabet, Σo ⊆ Σ the set of
observable events, and P the projection from Σ to Σo.

Definition 1 (Strong detectability). A DES G = (Q, Σ, δ, I)
is strongly detectable with respect to Σuo if we can deter-
mine, after a finite number of observations, the current and
subsequent states of the system for all trajectories of the sys-
tem, i.e., (∃n ∈ N)(∀s ∈ Lω(G))(∀t ∈ Pr(s))|P(t)| > n ⇒
|R(I, P(t))| = 1.

Definition 2 (Strong periodic detectability). A DES G =
(Q, Σ, δ, I) is strongly periodically detectable with respect to
Σuo if we can periodically determine the current state of the
system for all trajectories of the system, i.e., (∃n ∈ N)(∀s ∈
Lω(G))(∀t ∈ Pr(s))(∃t ′ ∈ Σ∗)tt ′ ∈ Pr(s) ∧ |P(t ′)| < n ∧
|R(I, P(tt ′))| = 1.

Definition 3 (Weak detectability). A DES G = (Q, Σ, δ, I) is
weakly detectable with respect to Σuo if we can determine,
after a finite number of observations, the current and subse-
quent states of the system for some trajectories of the sys-
tem, i.e., (∃n ∈ N)(∃s ∈ Lω(G))(∀t ∈ Pr(s))|P(t)| > n ⇒
|R(I, P(t))| = 1.

Definition 4 (Weak periodic detectability). A DES
G = (Q, Σ, δ, I) is weakly periodically detectable with re-
spect to Σuo if we can periodically determine the current
state of the system for some trajectories of the system,
i.e., (∃n ∈ N)(∃s ∈ Lω(G))(∀t ∈ Pr(s))(∃t ′ ∈ Σ∗)tt ′ ∈
Pr(s) ∧ |P(t ′)| < n ∧ |R(I, P(tt ′))| = 1.

In what follows, we make often implicit use of the following
lemma whose proof is obvious by definition.

Lemma 5. Let G = (Q, Σ, δ, I) be a DES and P be the pro-
jection from Σ to Σo. Let P(G) = (Q, Σo, δ

′, I) denote the
DES obtained from G by replacing every transition (p, a, q)
by (p, P(a), q). Then G is weak/strong (periodic) detectable
with respect to Σuo if and only if P(G) is weak/strong (pe-
riodic) detectable with respect to ∅. �

4 Complexity of Deciding Weak Detectability

To decide weak (periodic) detectability of a DES, Shu and
Lin [11] construct the observer and prove that the DES is
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weakly detectable if and only if there is a reachable cycle in
the observer consisting of singleton DES state sets, and that
the DES is weakly periodically detectable if and only if there
is a reachable cycle in the observer containing a singleton
DES state set. Because of the construction of the observer,
the algorithms are exponential. However, as pointed out by
Zhang [16], the algorithms require only polynomial space.

Zhang [16] further shows that deciding weak (periodic) de-
tectability is PSpace-hard. His construction results in a deter-
ministic DES with several initial states. Although the transi-
tions are deterministic, the DES is not a DFA because of the
non-unique initial state. We slightly improve Zhang’s result.

Theorem 6. Deciding whether a deterministic DES over
a binary alphabet is weakly (periodically) detectable is
PSpace-complete.

Proof. Membership in PSpace is known [16]. To show hard-
ness, we modify Zhang’s construction reducing the finite
automata intersection problem: given a sequence of total1
DFAs A1, . . . , An over a common alphabet Σ, the problem
asks whether ∩n

i=1
L(Ai) , ∅. Without loss of generality, we

may assume that Σ = {0, 1} [6].

In every Ai = (Qi, {0, 1}, δi, q
i
0
, Fi), we replace every tran-

sition (p, x, q) by two transitions (p, 0, p′) and (p′, x, q). In-
tuitively, we encode 0 as 00 and 1 as 01. Let A′

i
= (Qi ∪

Q′
i
, {0, 1}, δ′

i
, qi

0
, Fi) denote the resulting DFA, where Q′

i
=

{p′ | p ∈ Qi}. Notice that no transition under event 1 is
defined in states of Qi of A′

i
.

Let G = (∪n
i=1

(Qi ∪ Q′
i
) ∪ {s1, s2}, {0, 1}, δ, I) be a DES,

where s1 and s2 are new states, I = {q1
0
, . . . , qn

0
, s2}, and δ

is defined as follows. If (p, x, q) ∈ δi , for an i ∈ {1, . . . , n},
we add (p, x, q) to δ. For every p ∈ ∪n

i=1
Fi , we add the

transition (p, 1, s2) to δ, and for every p ∈ ∪n
i=1

(Qi \ Fi), the
transition (p, 1, s1). We add transitions (si, z, si) for i ∈ {1, 2}
and z ∈ {0, 1}; cf. Fig. 1 for an illustration. Then G is
deterministic and total.

We show that ∩n
i=1

L(Ai) , ∅ if and only if G is weakly
(periodically) detectable. If w = a1a2 . . . am ∈ ∩n

i=1
L(Ai),

then δ(I, 0a10a2 . . . 0an1u) = {s2} for every u ∈ {0, 1}∗,
and hence G is weakly (periodically) detectable. On the
other hand, if ∩n

i=1
L(Ai) = ∅, let u ∈ {0, 1}∗. Let u′ be

the longest prefix of u of the form (0(0 + 1))∗, that is,
u′
= 0a10a2 · · · 0am, for some m ≥ 0. Then δ(I, u′) =

∪n
i=1
δi(q

i
0
, a1a2 · · · am) ∪ {s2} = {p1, p2, . . . , pn, s2}, where

pi ∈ Qi , and there is i such that pi < Fi . We now have three
possibilities: (i) if u = u′, then the cardinality of δ(I, u) is
n+1; (ii) if u = u′0, then δ(I, u) = {p′

1
, p′

2
, · · · , p′

n, s2}, where
p′
i
∈ Q′

i
. Again, the cardinality of δ(I, u) is n + 1. Finally,

1 In his construction, Zhang does not assume that Ai are total,
which makes his construction incorrect. The assumption that Ai

are total fixes this minor mistake.

pp′

Ai

qq′

s1

s2

Aj

1 0, 1

1

0

0

0, 1

1

1

0

0

Fig. 1. The illustration of the proof of Theorem 6

(iii) if u = u′1u′′, for some u′′ ∈ {0, 1}∗, then δ(I, u′1u′′) =
δ({p1, · · · , pn, s2}, 1u′′) = {s1, s2}. In all cases, the cardi-
nality of δ(I, u) is at least two, and hence G is not weakly
(periodically) detectable. �

Corollary 7. Deciding whether a DES modeled as a DFA is
weakly (periodically) detectable is PSpace-complete even if
the DES has only three events, one of which is unobservable.

Proof. Consider the deterministic DES G constructed in the
proof of Theorem 6 with n + 1 initial states denoted by
q1, . . . , qn+1. We construct G′ from G by adding a new unob-
servable event a, the transitions (qi, a, qi+1), for i = 1, . . . , n,
and by setting q1 to be the sole initial state of G′. All other
transitions of G′ coincide with those of G. Then G′ is a DFA
and it is easy to see that the observers of G with respect to
∅ and of G′ with respect to {a} are identical, and hence G
is weakly (periodically) detectable if and only if G′ is. �

The unobservable event in the corollary is unavoidable be-
cause any DES modeled as a DFA with all events observable
is always in a unique state, and hence trivially detectable.
We now show that two observable events are also necessary
for PSpace-hardness.

Theorem 8. Deciding whether a DES over a unary alpha-
bet is weakly detectable is in P, and whether it is weakly
periodically detectable is in NP.

Proof. Let G = (Q, {a}, δ, I) be a DES with n states. Then
the observer of G consists of a sequence of k states followed
by a cycle consisting of ℓ states, that is, the language of G
is ak(aℓ)∗. Since the number of states of the observer of G
is at most 2n, k + ℓ ≤ 2n.

Now, G is weakly detectable if and only if the states of the
cycle of the observer of G consist only of singleton states of
G, that is, |δ(I, ak+i)| = 1 for i = 0, . . . , ℓ and ℓ ≤ n, since the
observer of G has at most n singleton sets. Since δ(I, ak+i),
for i = 1, . . . , n, can be computed in polynomial time using
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a

a

Fig. 2. The forbidden pattern of rpoNFAs

the fast matrix multiplication, cf. Masopust [8] for more
details and an example, we can decide weak detectability
in polynomial time. Namely, we compute δ(I, a2n+i), for
i = 1, . . . , n, check that |δ(I, a2n+i)| = 1 and that there are
i < j such that δ(I, a2n+i) = δ(I, a2n+j ).

Similarly, G is weakly periodically detectable if and only if
there is m ≤ 2n such that |δ(I, a2n+m)| = 1. An NP algo-
rithm can guess m in binary and verify the guess in poly-
nomial time by computing δ(I, a2n+m) using the fast matrix
multiplication. �

4.1 Simplest DESs

Zhang’s result gives rise to a question whether there are
structurally simpler DESs with a tractable complexity of
weak (periodic) detectability. The simplest DESs are acyclic
DFAs, recognizing finite languages. Acyclic DESs are not
deadlock-free. To fulfill deadlock-freeness, we consider
DESs modeled as DFAs with cycles only in the form of
self-loops. Such DFAs recognize a strict subclass of regular
languages strictly included in star-free languages [2]. Star-
free languages are languages definable by linear temporal
logic widely used as a specification language in automated
verification.

Let A = (Q, Σ, δ, I, F) be an NFA. The reachability relation ≤
on the state set Q is defined by p ≤ q if there is w ∈ Σ∗ such
that q ∈ δ(p,w). The NFA A is partially ordered (poNFA) if
the reachability relation ≤ is a partial order. If A is a DFA,
we use the notation poDFA.

A restricted partially ordered NFA (rpoNFA) is a poNFA
that is self-loop deterministic in the sense that the pattern of
Fig. 2 does not appear. Formally, for every state q and every
event a, if q ∈ δ(q, a) then δ(q, a) = {q}. This condition is
trivially satisfied by poDFAs and it is known that poDFAs
and rpoNFAs recognize the same class of languages [7].

We show that deciding weak (periodic) detectability remains
PSpace-complete even if the DES is modeled as a poDFA,
or as an rpoNFA with all events observable. Consequently,
the problem is intractable for all practical cases.

Recall that Zhang [16] obtained his result by reducing the
finite automata intersection problem. Since his construction
does not introduce any non-trivial cycles, it could seem that
it also shows the result for poDFAs. This is, however, not
the case because the complexity of the intersection problem
for poDFAs is not known. Therefore, to prove our results,
we need to use a different technique, namely the universality
problem for rpoNFAs. The problem asks, given an rpoNFA A

Marked

A over Σ

Non-marked ♣⋆
⋄

Σ ∪ {⋄}

⋄

Σ ∪ {⋄}

Fig. 3. The illustration of the proof of Theorem 9

over Σ, whether L(A) = Σ∗. It is PSpace-complete in general
and coNP-complete if the alphabet is fixed a priori [7].

Theorem 9. Deciding weak (periodic) detectability of DESs
modeled as rpoNFAs is PSpace-complete even if all events
are observable.

Proof. Membership in PSpace holds for general NFAs [16].
To show hardness, we reduce the non-universality problem
for rpoNFAs. Let A = (Q, Σ, δ, I, F) be an rpoNFA. We con-
struct an rpoNFA A′

= (Q ∪ {♣, ⋆}, Σ ∪ {⋄}, δ′, I ∪ {♣}, F),
where ♣ and ⋆ are new states and ⋄ is a new event. Let
δ′ = δ. We extended δ′ as follows. For every non-marked
state p of A, we add the transition (p,⋄,♣) to δ′, and for ev-
ery marked state p of A, we add the transition (p,⋄,⋆) to δ′.
We add transitions (♣, a, ♣) and (⋆, a,⋆) to δ′ for every event
a of A′. The construction is illustrated in Fig. 3. All events
are observable. We show that A is non-universal if and only
if A′ is weakly (periodically) detectable.

If A is not universal, there is a word w ∈ Σ∗\L(A) and δ(I,w)
consists of non-marked states of A, i.e., δ(I,w) ∩ F = ∅.
Then δ′(I ∪ {♣},w⋄) = δ′(δ(I,w) ∪ {♣}, ⋄) = {♣}. Since
δ(♣, u) = ♣ for every word u, we have that A′ is weakly
(periodically) detectable.

If A is universal, we show that for every w ∈ (Σ ∪ {⋄})∗ the
set δ′(I ∪ {♣},w) has at least two elements, and therefore A′

is not weakly (periodically) detectable. If w does not contain
⋄, then δ(I,w) ∩ F , ∅. Then δ′(I ∪ {♣},w) = δ(I,w) ∪ {♣}
and since ♣ < δ(I,w), |δ(I,w)∪{♣}| ≥ 2. If w = w1⋄w2 with
w1 ∈ Σ∗, then δ′(I∪{♣},w1⋄) = δ

′(δ(I,w1)∪{♣}, ⋄) = {♣, ⋆}
because δ(I,w1) ∩ F , ∅ by the universality of A. �

We now show that intractability holds even if the DESs are
modeled as poDFAs over a very small alphabet.

Theorem 10. Deciding weak (periodic) detectability of
DESs modeled as poDFAs over the alphabet {0, 1,⋄, a, b}
with a and b unobservable is PSpace-complete.

Proof. Membership in PSpace holds for general NFAs. We
show hardness by reducing the non-universality problem for
poNFAs, which is PSpace-complete even if the alphabet is
binary [7]. Let A = (Q, {0, 1}, δ, I, F) be a poNFA. We con-
struct poDFA D = (Q ∪ {♣,⋆} ∪ Q′, {0, 1,⋄, a, b}, δ′, s, F),
where ♣ and ⋆ are new states, in the following steps. Ini-
tially, we define δ′ = δ and extend it as follows.
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p q

x

x
=⇒ p p′ q

x

x′ x

Fig. 4. Conversion of poNFA to rpoNFA in Theorem 10

p

q

r

x

x =⇒ p

p′ q

r

x
′ x

x

Fig. 5. The ’determinization’ of A′; x′ and p′ are a new event and
a new state, and hence different from those in Fig. 4

First, for every non-marked state p of A, we add the transition
(p,⋄,♣) to δ′, and for every marked state p of A, we add the
transition (p,⋄,⋆). For every event c ∈ {0, 1,⋄, a, b}, we add
the transitions (♣, c,♣) and (⋆, c,⋆); the result is similar to
that illustrated in Fig. 3. The result is a poNFA.

Second, we convert the poNFA to an rpoNFA so that, for
every state p with two transitions (p, x, p) and (p, x, q), p ,
q, we replace the transition (p, x, q) with two transitions
(p, x′, p′) and (p′, x, q), where x′ is a new event and p′ a
new state; cf. Fig. 4 for an illustration. State p′ is added to
Q′. We repeat this procedure until all such nondeterministic
transitions are eliminated. The result is an rpoNFA.

Third, we convert the rpoNFA to a poDFA as follows. For ev-
ery state p with two different transitions (p, x, q) and (p, x, r),
we replace the transition (p, x, q) by two transitions (p, x′, p′)
and (p′, x, q), where x′ is a new event and p′ a new state not
in D; cf. Fig. 5 for an illustration. State p′ is added to Q′. We
repeat this procedure until there is no state with two nonde-
terministic transitions. Because we started from an rpoNFA,
q , p , r, and hence the newly added events do not occur in
a self-loop. The initial states of this automaton are I ∪ {♣}.
The automaton is a deterministic DES.

Let Γ denote the set of all newly introduced events. We en-
code every event of Γ as a binary word over {a, b}. To encode
|Γ| different events as binary words, it is sufficient to con-
sider words of length m = ⌈log(|Γ|)⌉. Let enc: Γ→ {a, b}m

be an arbitrary encoding (injective function). We replace ev-
ery transition (p, x′, p′) with x′ ∈ Γ by the sequence of tran-
sitions (p, enc(x′), p′) added to δ′, which requires to add at
most m − 2 new states to Q′. For instance, if (p, x, p′) and
(p, y, p′′) are two transitions with x, y ∈ Γ, and enc(x) = aab
and enc(y) = aba, then the transition (p, x, p′) is replaced
by the sequence of transitions (p, a, p1), (p1, a, p2), (p2, b, p

′)
added to δ′, where p1, p2 are new states added to Q′, and
the transition (p, y, p′′) is replaced by the sequence of tran-
sitions (p, a, p1), (p1, b, p3), (p3, a, p

′′) added to δ′ where p3

is a new state added to Q′; cf. Fig. 6.

To obtain a single initial state, we proceed as follows. Let
q1, . . . , qn denote the states of I ∪ {♣}. Let m = ⌈log(n)⌉.
We construct a binary tree of depth m over {a, b} and add it
as depicted in Fig. 7. The number of leaves of the tree is 2m

p

p′

p′′

x
y =⇒ p p1

p2

p3

p′

p′′

a
a

b

b

a

Fig. 6. The encoding enc(x) = aab and enc(y) = aba

q1

q2

q3

q4

1

2

3

4

s

Z
a

b

a

b

a

b

a

a

a

a

Fig. 7. Construction of a single initial state illustrated for 4 initial
states

and the number of nodes of the tree is 2m+1 − 1 = O(n). Let
the leaves be denoted by 1, 2, . . . , 2m. We add the transitions
(i, a, qi) for 1 ≤ i ≤ n. The states of the tree are denoted by
Z . The resulting automaton is a poDFA with polynomially
many new events and states, and a single initial state s.

Let D be the resulting automaton. Then D is a poDFA over
the alphabet {0, 1,⋄, a, b} of polynomial size with respect to
the size of A (i.e., the number of states, events, and transitions
of A). Let P be the projection from {0, 1,⋄, a, b} to {0, 1,⋄}.
Let P(D) denote the poNFA obtained from D by replacing
every transition (p, a, q) by (p, P(a), q), and let δ′′ denote its
transition relation. By Lemma 5, D is weakly (periodically)
detectable with respect to {a, b} if and only if P(D) is weakly
(periodically) detectable with respect to ∅. We show that
P(D) is weakly (periodically) detectable if and only if A is
not universal.

If A is not universal, there is w ∈ {0, 1}∗ \ L(A) and δ(I,w)
contains no marked state of A. Then δ′′(I ∪ {♣},w) =
δ(I,w) ∪ Y ∪ {♣} where Y ⊆ Q′ since every unobservable
transition reachable from I ends in a state from Q′. Then
δ′′(s,w⋄) = δ′′(I∪{♣}, w⋄) = δ′′(δ(I,w)∪Y ∪{♣}, ⋄) = {♣}
because δ′′(Y, ⋄) = ∅. Since δ(♣, u) = ♣ for every word u,
P(D) is weakly (periodically) detectable.

If A is universal, we show that for every w ∈ {0, 1,⋄}∗ the set
δ′′(s,w) has at least two elements, which shows that P(D)
is not weakly (periodically) detectable. Thus, if ⋄ does not
occur in w, then δ(I,w) ∩ F , ∅. Since δ(I,w) ∪ {♣} ⊆
δ′′(I∪{♣},w) ⊆ δ′′(s,w) and ♣ < δ(I,w), |δ(I,w)∪{♣}| ≥ 2.
If w = w1 ⋄ w2 with w1 ∈ {0, 1}∗, then δ(I,w1) ∩ F , ∅ by
the universality of A. Therefore, {♣, ⋆} = δ′′(I∪{♣},w1⋄) ⊆
δ′′(s,w). �

5 Complexity of Deciding Strong Detectability

Shu and Lin [11] designed a polynomial-time algorithm to
decide strong (periodic) detectability, and hence the problem
is in P. Is the problem P-complete or does it belong to NL?
This question asks whether the problem can be efficiently
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Fig. 8. The DES A from the NL-hardness proof of Theorem 11

parallelized (is in NL) or not (is P-complete) [1]. We show
that the problem is NL-complete and can thus be efficiently
solved on a parallel computer.

Theorem 11. Deciding whether a DES is strongly (period-
ically) detectable is NL-complete.

Proof. For a DES G, Shu and Lin [11] construct an NFA
Gdet of polynomial size whose states are subsets of states
of G of cardinality one or two (except for the initial state),
such that G is strongly detectable if and only if (a) any state
reachable from any loop in Gdet is of cardinality one; and
strongly periodically detectable if and only if (b) all loops
in Gdet include at least one state of cardinality one.

We prove the membership in NL by showing that checking
that the conditions do not hold is in NL. Since NL is closed
under complement [5,14], checking that the conditions are
satisfied is also in NL.

To check that (a) is not satisfied, the NL algorithm guesses
two states of Gdet , x and y, where y is of cardinality two,
and verifies that y is reachable from x, x is reachable from
the initial state of Gdet , and x is in a cycle, i.e., x is reachable
from x by a path having at least one transition.

To check that (b) is not satisfied, the NL algorithm guesses
a state x of Gdet of cardinality two and verifies that x is
reachable from the initial state of Gdet and that x is in a
cycle consisting only of states of cardinality two.

For more details how to check reachability in NL, the reader
is referred to the literature [8].

To show NL-hardness, we reduce the DAG non-reachability
problem [4]. Given a directed acyclic graph G = (V, E) and
nodes s, t ∈ V , it asks whether t is not reachable from s.

From G, we construct a DES A = (V ∪ {♣}, {a}, δ, s), where
♣ < V is a new state and a is an observable event. For every
(p, r) ∈ E , we add the transition (p, a, r) to δ, and for every
p ∈ V \ {t}, we add the transition (p, a, ♣) to δ. Moreover,
we add the self-loop transitions (♣, a, ♣) and (t, a, t) to δ. The
construction is depicted in Fig. 8. Notice that A is deadlock-
free and has no unobservable events. We now show that t is
not reachable from s in the graph G if and only if the DES
A is strongly (periodically) detectable.

If node t is not reachable from s in G, then, for every k ≥ |V |,
δ(s, ak) = {♣}. Hence A is strongly (periodically) detectable.

If t is reachable from s, then, for every k ≥ |V |, δ(s, ak) =
{t,♣}. Hence A is not strongly (periodically) detectable. �

We point out that using a unique event for every transition
can show NL-hardness for DESs modeled as DFAs.

6 Conclusions

We studied the complexity of deciding detectability of dis-
crete event systems modeled as finite automata and showed
that deciding weak (periodic) detectability is intractable for
all deadlock-free DESs. On the other hand, we showed that
strong (periodic) detectability can be decided efficiently on
a parallel computer.
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