
On the accuracy of gradient estimation in extremum-seeking control
using small perturbations ?

Mark Haring a, Tor Arne Johansen a

aCentre for Autonomous Marine Operations and Systems, Department of Engineering Cybernetics, NTNU, the Norwegian University of
Science and Technology, 7491 Trondheim, Norway

Abstract

In many extremum-seeking control methods, perturbations are added to the parameter signals to estimate derivatives of the objective
function (that is, the steady-state parameter-to-performance map) in order to optimize the steady-state performance of the plant using
derivative-based algorithms. However, large perturbations are often undesirable or inapplicable due to practical constraints and a high
cost of operation. Yet, many extremum-seeking control algorithms rely solely on perturbations to estimate all required derivatives. The
corresponding derivative estimates, especially the Hessian and higher-order derivatives, may be qualitatively poor if the perturbations are
small. In this work, we investigate the use of the nominal parameter signals in addition to the perturbations to improve the accuracy of the
gradient estimate. In turn, a more accurate gradient estimate may result in a faster convergence and may allow for a higher tuning-gain
selection. In addition, we show that, if accurate curvature information of the objective function is available via estimation or a priori
knowledge, it may be used to further enhance the accuracy of the gradient estimate.
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1 Introduction

Extremum-seeking control is a collection of adaptive-control
methods that optimize the steady-state performance of a
plant in real time [1, 13, 19, 26]. By defining performance
(or performance cost) as the output of a cost function of
tunable plant parameters and measurable performance in-
dicators, often no explicit knowledge of the plant dynam-
ics is required. The steady-state relation between the pa-
rameters and the performance is commonly assumed to be
given by a static input-to-output map [14, 27], where the ex-
tremum of the map corresponds to the optimal steady-state
performance. We refer to this map as the objective function.
Many extremum-seeking control methods rely on extracting
derivative information of the objective function from the pa-
rameters and performance signals of the plant [19, 20]. Sub-
sequently, these derivatives are utilized by gradient-based
[14, 19, 27] or Newton-based [7, 16, 19] algorithms to steer
the plant parameters towards the extremum of the objective
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function, thereby optimizing the steady-state plant perfor-
mance. The majority of extremum-seeking control methods
utilize perturbations to ensure that the parameter signals are
sufficiently rich to estimate the derivatives of the objective
function. The derivative estimates are obtained by correlat-
ing the perturbations and the time signal of the plant perfor-
mance [2, 5, 14, 21, 27]. The nominal part of the parameter
signals is often ignored. The true values of the derivatives
are commonly not obtained, because the performance of the
plant is unequal to the steady-state performance due to plant
dynamics and measurement noise.

To keep the dynamic transients of the performance signal
small, the controller is generally chosen to be slower than
the dynamics of the plant [14, 17]. For a limited class of
plants, high-amplitude high-frequency perturbations can be
used to overpower the original plant dynamics, enforcing an
arbitrarily fast convergence upon the plant [4, 15, 23, 29].
However, contrary to these highly invasive methods, in prac-
tice, one often wishes to keep the disruption of nominal op-
eration to a minimum to keep operational costs low, the re-
sponse of the plant predictable, and state and output values
within predefined limits. This can be achieved by using small
perturbations. The use of small perturbations results in rel-
atively little perturbation-related content in the time signal
of the plant performance, which may lead to poor estimates
of the derivatives of the objective function, especially in the
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presence of measurement noise. This is particularly true for
the estimate of the Hessian and higher-order derivatives of
the objective function. Therefore, gradient-based algorithms
may be preferred over Newton-based ones in this case. Ad-
ditionally, the contribution of the nominal part of the pa-
rameter signals to the performance signal of the plant is rel-
atively large if the perturbations are small. With the help
of an observer, the nominal part of the parameter signals
may be included in the estimation process to increase the
accuracy of the derivative estimates [3, 6, 9, 22]. Although
not specifically identified as such, the effect of the nomi-
nal part of the parameter signals on the produced deriva-
tive estimates is investigated in [6, 8] by a comparison of
various extremum-seeking control methods. However, due
to the significant differences between the used methods, it
is unclear if the observed results are due to the use of the
nominal part of the parameter signals or due to any other
structural difference. Moreover, because extremum-seeking
control is highly dependent on tuning, the obtained perfor-
mance of any extremum-seeking method is for a large extent
determined by the tuning capabilities of the user.

In this work, we introduce an extremum-seeking controller
for which the contribution of the nominal part of the param-
eter signals to the gradient estimate can be isolated. There-
fore, the effect of incorporating the nominal parameters in
the estimation process can be investigated using a single
controller, which largely eliminates the challenges that af-
fect the comparisons in [6, 8]. In addition, we show that
curvature information of the objective function, if available,
may further enhance the accuracy of the gradient estimate.
The results in this work may be regarded as an extension of
the results in [10] in which the nominal parameters and cur-
vature information are not utilized for gradient estimation.

This work is organized as follows. After introducing the
extremum-seeking problem in Section 2, our controller is
presented in Section 3. A stability analysis of the closed-
loop optimization scheme is provided in Section 4. In Sec-
tion 5, we study, with the help of simulation examples, the
effects of incorporating in the gradient estimate the nominal
parameter signals and curvature information of the objec-
tive function. The conclusion of this work is presented in
Section 6. The sets of real numbers, positive real numbers
and nonnegative real numbers are denoted by R, R>0 and
R≥0, respectively. The sets of natural numbers (nonnegative
integers) and positive integers are given by N and N>0. The
Euclidean norm is denoted by ‖ · ‖. We write the identity
matrix and zero matrix as I and 0, respectively.

2 Formulation of the extremum-seeking problem

Consider the following multi-input-single-output nonlinear
system:

ẋ(t) = f(x(t),u(t))
y(t) = h(x(t),u(t))+d(t),

(1)

where x ∈ Rnx is the state, u ∈ Rnu is the input, y ∈ R
is the output, d ∈ R is a disturbance and t ∈ R≥0 is the

time. The dimensions of the state and the input are given
by nx,nu,∈ N>0, respectively. In the context of extremum-
seeking control, the system can be regarded as a cascade
of the plant and the cost function that quantifies the perfor-
mance of the plant (see [11] for example), where the input
u is a vector of tunable plant parameters and the output y
is the output of the cost function, which we call the per-
formance measurement. The output of the function h is the
output of the cost function in the absence of measurement
noise. The disturbance d represents the contribution of mea-
surement noise to the output of the cost function. The state
x, the disturbance d and the functions f and h are unknown.
Therefore, the relation between the parameters and the per-
formance of the plant is unknown.

We make several assumptions with respect to the input-to-
output behavior of the system in order to optimize the steady-
state performance of the plant. First, we assume that, for each
constant vector of plant parameters u, there exists a constant
steady-state solution of the system denoted by x = X(u).

Assumption 1 There exists a twice continuously differen-
tiable map X : Rnu → Rnu and a constant LX ∈ R>0 such
that

0 = f(X(u),u),
∥∥∥∥

dX
du

(u)
∥∥∥∥≤ LX (2)

for all u ∈U .

In addition, we assume that the steady-state solution x =
X(u) is unique and exponentially stable for constant inputs.

Assumption 2 There exist constants µx,νx ∈R>0 such that,
for each constant u∈Rnu , the solutions of the system satisfy

‖x̃(t)‖ ≤ µx‖x̃(t0)‖e−νx(t−t0), (3)

with x̃(t) = x(t)−X(u), for all t ≥ t0≥ 0 and all x(t0)∈Rnx .

The disturbance-free steady-state relation between constant
plant parameters and the plant performance can now be ex-
pressed by the static input-to-output map

F(u) = h(X(u),u). (4)

We refer to the map F as the objective function. We assume
that the cost function is designed such that there exists a
unique minimum of the objective function that corresponds
to the optimal steady-state plant performance. This is for-
mulated as follows.

Assumption 3 The objective function F : Rnu →R is twice
continuously differentiable and contains a unique minimum.
Let u∗ denote the corresponding minimizer. There exist con-
stants LF1,LF2 ∈ R>0 such that

dF
du

(u)(u−u∗)≥ LF1‖u−u∗‖2,

∥∥∥∥
d2F

duduT (u)
∥∥∥∥≤ LF2

(5)
for all u ∈ Rnu .
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Although the exact formulation may vary, assumptions on
the existence and the attractiveness of the steady-state so-
lution of the system, and the existence of an extremum 1

of the objective function are common in extremum-seeking
control [9, 14, 26, 27]. To guarantee the soundness of the
stability analysis in Section 4, we assume in addition that
the following bounds on the derivatives of the functions f
and h hold.

Assumption 4 The function f : Rnx ×Rnu → Rnx and h :
Rnx×Rnu →R are twice continuously differentiable. More-
over, there exist constants Lfx,Lfu,Lhx,Lhu ∈ R>0 such that

∥∥∥∥
∂ f
∂x

(x,u)
∥∥∥∥≤ Lfx,

∥∥∥∥
∂ f
∂u

(x,u)
∥∥∥∥≤ Lfu,

∥∥∥∥
∂ 2h

∂x∂xT (x,u)
∥∥∥∥≤ Lhx,

∥∥∥∥
∂ 2h

∂x∂uT (x,u)
∥∥∥∥≤ Lhu

(6)

for all x ∈ Rnx and all u ∈ Rnu .

Remark 5 In practice, it is sufficient to assume that the
bounds in Assumptions 1-4 hold for all x and all u in the
operating region of the plant, which is generally bounded.
For a bounded operating region, the existence of the upper
bounds on the derivatives of the functions X, F, f and h
in Assumptions 1, 3 and 4 follows directly form the twice
continuous differentiability of the respective functions.

We note that X, F and u∗ are unknown because the functions
f and h are unknown. Nonetheless, we present an extremum-
seeking controller that optimizes the steady-state plant per-
formance by regulating u towards u∗.

3 Controller design

We start our controller design by introducing a perturbation
to the plant-parameter signals:

u(t) = û(t)+αω(t)ω(t), (7)

where û ∈Rnu is the nominal value of the plant parameters,
and where the vector of perturbations ω ∈ Rnu is given by

ω(t) = [ω1(t), ω2(t), . . . , ωnu(t)]
T , (8)

with

ωi(t) =





sin
(

i+1
2

∫ t

0
ηω(τ)dτ

)
, if i is odd,

cos
(

i
2

∫ t

0
ηω(τ)dτ

)
, if i is even

(9)

for i = 1,2, . . . ,nu. The tuning parameters αω ,ηω ∈ R>0
determine the amplitude and frequency of the perturbations

1 The extremum is a minimum in this case.

and satisfy the differential equations

α̇ω(t) =−gα(t)αω(t), η̇ω(t) =−gω(t)ηω(t), (10)

where gα ,gω ∈ R≥0 are time-varying gains. They are con-
stant if the gains gα and gω are zero. The use of constant
tuning parameters leads often to practical convergence with
respect to the optimal steady-state performance of the plant;
see [13, 14, 23, 27] for example. For strictly positive values
of gα and gω , αω and ηω decay to zero as time goes to in-
finity, which allows us to obtain asymptotic convergence to
the optimal steady-state performance as in [10, 18, 25, 28].
Because extremum-seeking control methods are almost en-
tirely based on measurements, asymptotic or practical con-
verge can only be guaranteed under certain noise conditions.
As pointed out in [10], a sufficient condition for asymptotic
and practical convergence is that the zero-mean component
of the disturbance d and the perturbations of the controller
are uncorrelated. We make the following assumption.

Assumption 6 The disturbance d : R≥0→ R is integrable.
Define the mean

bd = lim
T→∞

1
T

∫ T

0
d(t)dt (11)

and the zero-mean component

d̃(t) = d(t)−bd . (12)

The perturbation vector and the zero-mean component of
the disturbance d are uncorrelated; that is,

lim
T→∞

1
T

∫ T

0
ω(t)d̃(t)dt = 0. (13)

Moreover, there exist constants qd ,qωd ∈ R≥0 such that

∣∣∣∣
∫ t

0
d̃(τ)dτ

∣∣∣∣≤ qd ,

∥∥∥∥
∫ t

0
ω(τ)d̃(τ)dτ

∥∥∥∥≤ qωd (14)

for all t ≥ 0.

Uncorrelation of the perturbation vector and the disturbance
is also assumed in [1, 26]. Alternatively, asymptotic and
practical convergence can be obtained if the disturbance sat-
isfies certain stochastic properties, as proved in [25].

Similar to [10], the following general model of the input-to-
output behavior of the plant is obtained from (1), (4), (7),
(10), (12) and Taylor’s theorem:

ṁ1(t) = ηm(t)QT
1 (t)m2(t)−α

2
ω(t)Q

T
1 (t)w(t)

ṁ2(t) =−gα(t)m2(t)+α
2
ω(t)w(t)

y(t) = m1(t)+(Q1(t)+ω(t))T m2(t)

+α
2
ω(t)v(t)+ z(t)+ d̃(t),

(15)
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with state

m1(t) = F(û(t))−αω(t)
dF
du

(û(t))Q1(t)+bd ,

m2(t) = αω(t)
dF
duT (û(t))

(16)

and disturbances

w(t) =
d2F

duduT (û(t))
˙̂u(t)

αω(t)
,

v(t) = ω
T (t)

∫ 1

0
(1− s)

d2F
duduT (û(t)+ sαω(t)ω(t))dsω(t),

z(t) = h(x(t),u(t))−h(X(u(t)),u(t)),
(17)

where Q1 ∈ Rnu is a known function of time. In particular,
Q1 is the solution of the differential equation

Q̇1(t) =−ηm(t)Q1(t)+gα(t)Q1(t)+
˙̂u(t)

αω(t)
, (18)

where ηm ∈ R>0 is a tuning parameter that satisfies

η̇m(t) =−gm(t)ηm(t), (19)

with time-varying gain gm ∈R≥0. Note that the state m2 in
(16) is equal to the gradient of the objective function scaled
by αω . Hence, an estimate of the gradient of the objective
function can be obtained from an estimate of the state of the
model (15). We introduce the following observer:

˙̂m1(t) =−α
2
ω(t)Q

T
1 (t)ŵ(t)

+ηm(t)
(
y(t)− m̂1(t)−α

2
ω(t)v̂(t)

)

˙̂m2(t) =−gα(t)m̂2(t)+α
2
ω(t)ŵ(t)

+ηm(t)Q2(t)(Q1(t)+ω(t))
(
y(t)− m̂1(t)

− (Q1(t)+ω(t))T m̂2(t)−α
2
ω(t)v̂(t)

)

Q̇2(t) = ηm(t)Q2(t)−2gα(t)Q2(t)

−ηm(t)Q2(t)
(

Q1(t)QT
1 (t)+

1
2

I
)

Q2(t)

(20)

where m̂1 and m̂2 are estimates of m1 and m2, respectively,
and where Q2 ∈Rnu×nu is a symmetric positive-definite ma-
trix. The signals ŵ and v̂ are estimates of the disturbances
w and v in (17), respectively. The disturbances w and v de-
pend on the Hessian of the objective function. It is possible
to estimate the Hessian with the approaches in [7, 16, 20].
However, the accuracy of the resulting estimate may be rel-
atively poor if the perturbation amplitude is small. Nonethe-
less, if a reasonably accurate estimate H : Rnu → Rnu×nu of
the Hessian of the objective function is available due to es-
timation or a priori knowledge, we may choose

ŵ(t) = H(û(t))
˙̂u(t)

αω(t)
, v̂(t) =

1
2

ω
T (t)H(û(t))ω(t) (21)

˙̂u = −λu
ηum̂2

ηu + λu ‖m̂2‖

System

Observer

Optimizer

u

y m̂2

αωω

Extremum-seeking controller

ẋ = f(x,u)

y = h(x,u) + d

d

û
+ +

ω

˙̂m1 = −α2
ωQ

T
1 ŵ + ηm

(
y − m̂1 − α2

ωv̂
)

˙̂m2 = −gαm̂2 + α2
ωŵ + ηmQ2(Q1 + ω)

×
(
y − m̂1 − (Q1 + ω)Tm̂2 − α2

ωv̂
)

Q̇1 = −ηmQ1 + gαQ1 +
˙̂u

αω

Q̇2 = ηmQ2 − 2gαQ2 − ηmQ2

(
Q1Q

T
1 +

1

2
I

)
Q2

˙̂u

Fig. 1. Closed-loop system of plant and extremum-seeking con-
troller.

to enhance the accuracy of the state estimate. In line with the
boundedness of the Hessian of the objective function (see
Assumption 3), we assume that H is bounded; there exists
a constant LH ∈ R>0 such that

‖H(û)‖ ≤ LH (22)

for all û ∈ Rnu . Without any knowledge of the Hessian, we
may choose ŵ(t) = 0 and v̂(t) = 0 instead.

We define the following optimizer to steer the nominal part
of the plant parameters in the gradient-descent direction to-
wards the minimum of the objective function:

˙̂u(t) =−λu(t)
ηu(t)m̂2(t)

ηu(t)+λu(t)‖m̂2(t)‖
, (23)

where the tuning parameters ηu,λu ∈ R>0 are defined by
the differential equations

η̇u(t) =−gu(t)ηu(t), λ̇u(t) =−gλ (t)λu(t), (24)

with time-varying gains gu,gλ ∈ R≥0. By normalizing the
adaptation gain in (23), we prevent the solutions of the
closed-loop system of plant and controller from having a fi-
nite escape time. The interconnection of the plant in (1) and
the controller in (7), (18), (20), (23) is depicted in Figure 1.
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4 Stability analysis

We briefly study the stability of the closed-loop system in
(1), (7), (18), (20) and (23) to identify suitable operating
conditions.

Theorem 7 Let the gains gα , gω , gm, gu and gλ in (10),
(19) and (24) be given by

gα(t) =
rα

r0 + t
, gω(t) =

rω

r0 + t
, gm(t) =

rm

r0 + t
,

gu(t) =
ru

r0 + t
, gλ (t) =

rλ

r0 + t
,

(25)

where r0 ∈ R>0 and rα ,rω ,rm,rλ ,ru ∈ R≥0 are constants
that are chosen such that

rα ≤ rm, rω ≤ rm,

rα + rm ≤ ru ≤ 1, rm ≤ rα + rλ ≤ 1.
(26)

Moreover, let αω(0),ηω(0),ηm(0),ηu(0),λu(0)∈R>0. Un-
der Assumptions 1-4 and 6, there exist sufficiently small
constants ε1,ε2,ε3,ε4 ∈R>0 and sufficiently large constants
c1,c2,c3 ∈ R>0 such that, if there exists a time t1 ≥ 0 such
that

ηω(t)≤ ε1, ηm(t)≤ ηω(t)ε2,

ηu(t)≤ αω(t)ηm(t)ε3, αω(t)λu(t)≤ ηm(t)ε4
(27)

for all t ≥ t1, then the solutions of the closed-loop system in
(1), (7), (18), (20) and (23) are bounded for all t ≥ 0, all
x(0) ∈Rnx , all Q1(0) ∈Rnu , all symmetric positive-definite
Q2(0) ∈ Rnu×nu , all m̂1(0) ∈ R, all m̂2(0) ∈ Rnu and all
û(0) ∈ Rnu . In addition,

limsup
t→∞

‖û(t)−u∗‖

≤ limsup
t→∞

max
{

αω(t)c1,ηω(t)c2,
ηm(t)
αω(t)

c3(qd +qωd)

}
.

(28)

Proof. See Section 4.1. 2

By choosing the gains gα , gω , gm, gu and gλ as in (25), the
tuning parameters αω , ηω , ηm, ηu and λu can be written as

αω(t) =
rrα

0 αω(0)
(r0 + t)rα

, ηω(t) =
rrω

0 ηω(0)
(r0 + t)rω

,

ηm(t) =
rrm

0 ηm(0)
(r0 + t)rm

, ηu(t) =
rru

0 ηu(0)
(r0 + t)ru

,

λu(t) =
rrλ

0 λu(0)
(r0 + t)rλ

(29)

for all t ≥ 0. The tuning parameters are constant if rα , rω ,
rm, rλ and ru are zero. For constant tuning parameters, con-
vergence to an arbitrarily small region can be guaranteed un-
der suitable tuning (see (28)), which implies practical con-
vergence. Alternatively, if we choose rα , rω , rm, rλ and ru

such that 0 < rα < rm, 0 < rω < rm, rα + rm < ru ≤ 1 and
rm < rα + rλ ≤ 1 as in [10, Corollary 14], then the tuning
parameters αω , ηω , ηm, ηu and λu decay to zero as time
elapses. Moreover, there always exists a time t1 ≥ 0 such
that the inequalities in (27) are satisfied for all t ≥ t1. Hence,
tuning of the initial parameter values is not necessary. In ad-
dition, asymptotic convergence to the optimal steady-state
performance is obtained as the right-hand side of (28) re-
duces to zero.

The rapidness of the perturbations, the observer and the op-
timizer depends on the tuning parameters αω , ηω , ηm, ηu
and λu. Similar to [10, 14, 17], we obtain from (27) that
different time scales can be assigned to components of the
extremum-seeking scheme for t ≥ t1 if the constants ε1, ε2,
ε3 and ε4 are sufficiently small:

• fast – the plant;
• medium fast – the perturbations of the controller;
• medium slow – the observer of the controller;
• slow – the optimizer of the controller.

To avoid unwanted drift of the state variables x, Q1, Q2, m̂1,
m̂2 and û, the tuning parameters of the controller should
preferably be selected such that the inequalities in (27) hold
for t1 = 0.

4.1 Proof of Theorem 7

The proof of Theorem 7 largely follows the same lines as
the proof of [10, Theorem 7]. For notational convenience,
we introduce the following coordinate transformation:

x̃(t) = x(t)−X(u(t)),

m̃1(t) = m̂1(t)−m1(t)−ηm(t)k1(t)−
ηm(t)
ηω(t)

lT1 (t)m2(t),

m̃2(t) =
ηm(t)
ηω(t)

Q2(t)l1(t)(m̂1(t)−m1(t)−ηm(t)k1(t))

+

(
I+

ηm(t)
ηω(t)

Q2(t)
(
Q1(t)lT1 (t)+ l1(t)QT

1 (t)+ l2(t)
))

× (m̂2(t)−m2(t)−ηm(t)Q2(t)(Q1(t)k1(t)+k2(t))) ,

Q̃2(t) = Q−1
2 (t)− 1

2
I,

ũ(t) = û(t)−u∗,
(30)

with

k1(t) =
∫ t

0
d̃(τ)dτ,

k2(t) =
∫ t

0
ω(τ)d̃(τ)dτ

(31)

and

l1(t) =
∫ t

0
ηω(τ)ω(τ)dτ,

l2(t) =
∫ t

0
ηω(τ)

(
ω(τ)ωT (τ)− 1

2
I
)

dτ.
(32)
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Using this transformation, the convergence of the solutions
of the closed-loop scheme in (1), (7), (18), (20) and (23)
may be divided into four stages:

• 0≤ t < t1: the tuning parameters converge to the bounds
in (27) (the state variables of the closed-loop system may
drift);
• t1 ≤ t < t2: the variable Q1 converges to a region of the

origin and remains there (the variable Q̃2 may drift);
• t2 ≤ t < t3: the variable Q̃2 converges to a region of the

origin and remains there;
• t1 ≤ t < t3: the variable x̃ converges to a region of the

origin and remains there (the variables ũ, m̃1 and m̃2 may
drift);
• t ≥ t3: the variables ũ, m̃1 and m̃2 converge to a region of

the origin and remain there.

To prove Theorem 7, we first derive bounds on the variables
Q1, Q̃2 and x̃ in coherence with the first three stages.

Lemma 8 Under the conditions of Theorem 7, the solutions
of Q1 are bounded for all t ≥ 0 and all Q1(0) ∈Rnu . More-
over, there exists a time t2 ≥ t1 such that

‖Q1(t)‖ ≤
1
4

(33)

for all t ≥ t2.

Proof. See Appendix A. 2

We use the bound on the solutions of Q1 in Lemma 8 to
derive a bound on the solutions of Q̃2.

Lemma 9 Under the conditions of Theorem 7, the solutions
of Q̃2 are bounded for all t ≥ 0 and all Q̃2(0) ∈Rnu×nu for
which Q2(0) is symmetric and positive definite. Moreover,
there exists a time t3 ≥ t2 such that

‖Q̃2(t)‖ ≤
1
4

(34)

for all t ≥ t3.

Proof. See Appendix B. 2

The bound on the solutions of x̃ is given next.

Lemma 10 Under the conditions of Theorem 7, the solu-
tions of x̃ are bounded for all t ≥ 0 and all x̃(0) ∈ Rnx .
Moreover, there exists a constant cx ∈R>0 and a time t3 ≥ t1
such that

‖x̃(t)‖ ≤ αω(t)ηω(t)cx (35)

for all t ≥ t3.

Proof. The proof is analogous to that of [10, Lemma 8]. 2

The bounds in Lemmas 8-10 are subsequently used to prove
the existence of ISS-Lyapunov functions (see [24], for ex-
ample) for the variables m̃1, m̃2 and ũ for t ≥ t3.

Lemma 11 Under the conditions of Theorem 7, there ex-
ists a time t3 ≥ t2 such that the solutions of m̃1 and m̃2
are bounded for all 0 ≤ t ≤ t3, all m̃1(0) ∈ R and all
m̃2(0)∈Rnu . Moreover, there exist a function Vm :R×Rnu×
Rnu×nu→R≥0 and constants γm1,γm2, . . . ,γm5,cm1,cm2, . . . ,
cm6 ∈ R>0 such that

max
{

γm1|m̃1(t)|2,γm2‖m̃2(t)‖2}≤Wm(t)

≤max{γm3|m̃1(t)|2,γm4‖m̃2(t)‖2}
(36)

for all t ≥ t3, where we applied the shorthand notation
Wm(t) =Vm(m̃1(t),m̃2(t),Q2(t)). In addition, we have that

Ẇm(t)≤−ηm(t)γm5Wm(t) (37)

whenever

Wm(t)≥max
{

α
4
ω(t)cm1,α

2
ω(t)η

2
ω(t)cm2,

α
2
ω(t)η

2
ω(t)cm3‖ũ(t)‖2,

α2
ω(t)η

2
m(t)

η2
ω(t)

cm4‖ũ(t)‖2,

α4
ω(t)λ

2
u (t)

η2
m(t)

cm5‖ũ(t)‖2,η2
m(t)cm6(qd +qω)

2
}

(38)
for all t ≥ t3.

Proof. See Appendix C. 2

Lemma 12 Under the conditions of Theorem 7, there exists
a time t3 ≥ t2 such that the solutions of ũ are bounded for all
0≤ t ≤ t3 and all ũ(0)∈Rnu . Moreover, there exist a function
Vu : Rnu → R≥0 and constants γu1,γu2,γu3,γu4,cu1,cu2 ∈
R>0 such that

γu1‖ũ(t)‖2 ≤Vu(ũ(t))≤ γu2‖ũ(t)‖2 (39)

for any t ≥ t3. In addition, we have that

V̇u(ũ(t))≤−min
{

αω(t)λu(t)γu3Vu(ũ(t)),

ηu(t)γu4
√

Vu(ũ(t))
} (40)

whenever

Vu(ũ(t))≥max
{

cu1

α2
ω(t)
‖m̃2(t)‖2,

η2
m(t)

α2
ω(t)

cu2(qd +qωd)
2
}

(41)
for any t ≥ t3.

Proof. The proof follows the same lines as the proof of [10,
Lemma 11]. 2
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Similar to [10], we introduce the Lyapunov-function candi-
date

V (m̃1,m̃2, ũ,Q2,αω)

= max
{

Vu(ũ),
1

α2
ω

cu1

γm2
Vm(m̃1,m̃2,Q2)

}
(42)

to prove that the solutions of m̃1, m̃2 and ũ remain bounded
for all t ≥ t3; see Lemma 13.

Lemma 13 Under the conditions of Theorem 7, there ex-
ist constants γV 1,γV 2,γV 3,cV 1,cV 2,cV 3 ∈ R>0 such that the
solutions of m̃1, m̃2 and ũ are bounded for all t ≥ t3, all
m̃1(t3)∈R, m̃2(t3)∈Rnu and all ũ(t3)∈Rnu . Moreover, the
solutions of m̃1, m̃2 and ũ satisfy

limsup
t→∞

max
{

γV 1

αω(t)
|m̃1(t)|,

γV 2

αω(t)
‖m̃2(t)‖,γV 3‖ũ(t)‖

}

≤ limsup
t→∞

max
{

αω(t)cV 1,

ηω(t)cV 2,
ηm(t)
αω(t)

cV 3(qd +qωd)

}
. (43)

Proof. The proof follows the same steps as the proof of [10,
Lemma 12] 2

Combining Lemmas 8-13 and the coordinate transformation
in (30) completes the proof of Theorem 7 2 .

5 Simulation comparisons

The contribution of the nominal part of the parameter sig-
nals to the estimate of the gradient of the objective function
can be attributed to the vector Q1; see (18). This contribu-
tion may be removed by setting Q1 to zero. Similarly, the
use of curvature information of the objective function in the
gradient estimation process is solely linked to the distur-
bance estimates ŵ and v̂ in (21). Setting ŵ and v̂ to zero (that
is, setting H(û) = 0) eliminates the use of curvature infor-
mation. We present the following two examples to illustrate
the effects of the nominal part of the parameter signals and
the use of curvature information on the performance of the
extremum-seeking controller in Section 3.

5.1 Example 1: nominal part of the parameter signals

Let us consider the system:

ẋ1(t) =−x1(t)x2
2(t)+(1+u(t))2

ẋ2(t) =−x2(t)+
1

1+u2(t)
y(t) = x1(t)+1,

(44)

2 The boundedness of p̃1 and p̃2 in (C.1) is used to prove the
boundedness of m̂1 and m̂2 for 0≤ t ≤ t3; see Appendix C.
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Fig. 2. Plant parameter u, performance measurement y and gradient
estimation error m̂2

αω
− dF

du (û) as a function of time for Q1 in (18)
(black) and Q1 = 0 (gray), and αω = 0.5.
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Fig. 3. Plant parameter u, performance measurement y and gradient
estimation error m̂2

αω
− dF

du (û) as a function of time for Q1 in (18)
(black) and Q1 = 0 (gray), and αω = 0.05.

with state x = [x1,x2]
T and objective function F(u) = (1+

u)2(1+u2)2+1. To investigate the effect of the nominal part
of the parameter signal on the performance of the controller,
consider the constant tuning parameters αω = 0.5, ηω = 0.5,
ηm = 0.3, ηu = 0.01 and λu = 0.03 (rα = rω = rm = ru =
rλ = 0). Moreover, let ŵ= 0 and v̂= 0. The parameter signal,
the performance measurement and the gradient-estimation
error with and without the use of the nominal part of the pa-
rameter signal (that is, Q1 in (18) and Q1 = 0, respectively)
are depicted in Fig. 2. The parameter u converges towards its
performance-optimizing value u∗ = −1 for both cases. Re-
sultantly, the performance measurements converge towards
the minimum F(u∗) = 1. For this relatively large perturba-
tion amplitude αω = 0.5, the contribution of the nominal part
of the parameter signal is minor. Because the differences be-
tween the gradient estimates are small, we observe in Fig. 2
that the results for both controllers are comparable. Now,
if we decrease the perturbation amplitude to αω = 0.05, the
parameter signal is no longer dominated by the perturba-
tions. Fig. 3 displays that the obtained gradient estimate is

7



more accurate if the nominal part of the parameter signal is
used by the gradient estimator in addition to the perturba-
tions. As a result, a much faster convergence to the steady-
state optimum is obtained, which matches the observations
in [6, 8]. If the plant remains close to steady state, adding
the nominal part of the parameter to the estimation process
generally has a positive effect on the gradient estimate and
allows for a higher gain selection. However, additional sim-
ulations (not presented here) indicate that incorporating the
nominal part of the parameter signals may result in a worse
performance if the plant is not close to steady state, which is
commonly the case for the high-amplitude high-frequency
methods in [4, 15, 23, 29], for example.

5.2 Example 2: curvature information of the objective
function

Curvature information of the objective function acts as feed-
forward for the estimation of the gradient of the objective
function. It may especially improve the gradient estimate if
the time scales of the observer and the optimizer of the con-
troller are close (see Section 4), in which case the observer
has relatively little time to correct its estimate based on the
feedback provided by the performance measurement. To il-
lustrate this, consider the system:

ẋ1(t) =−x1(t)+u1(t)−u2(t)
ẋ2(t) =−2x2(t)+4x1(t)u1(t)
ẋ3(t) =−x3(t)+u2(t)−3
y(t) = x2(t)+2x3(t)u2(t),

(45)

with state x = [x1,x2,x3]
T , input u = [u1,u2]

T and objective
function F(u) = 2u2

1+2u2
2−2u1u2−6u2. We select r0 = 50,

rα = rω = 0.45, rm = 0.5, ru = 1, rλ = 0.1, αω(0) = 0.2,
ηω(0) = 0.5, ηm(0) = 0.04, ηu(0) = 0.03 and λu(0) = 10.
We consider the cases H(û) = d2F

duduT (û) and H(û) = 0. The
trajectories of the plant parameters are illustrated in Fig. 4.
Fig. 5 displays the corresponding distance to the optimal val-
ues u∗ = [1,2]T , the performance measurement and the Eu-
clidean norm of the gradient estimation error. With curvature
information (that is, H(û) = d2F

duduT (û)), the plant parameters
converge to the performance-optimizing values u∗ as time
goes to infinity, while the gradient estimation error remains
relatively small throughout the optimization process. With-
out curvature information (that is, H(û) = 0), the response to
changes in the direction of the gradient is slow and the plant
parameters overshoot the performance-optimal values sev-
eral times before settling, leading to a slower convergence.
The overshoot may be prevented by decreasing the initial
optimizer gains (that is, the values of ηu(0) and λu(0)).
However, lowering the optimizer gains hampers the overall
convergence speed of extremum-seeking scheme. Although
curvature information may be used to enhance the estimate
of the gradient of the objective function, doing so requires
that the estimate of the Hessian of the objective function is
reasonably accurate. Additional simulations show that a bad

u1

-4 -3 -2 -1 0 1

u
2

1

2

3

Fig. 4. Trajectories of the plant parameters u = [u1,u2]
T for

H(û) = d2F
duduT (û) (black) and H(û) = 0 (gray).
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Fig. 5. Euclidean norm of parameter error ‖u−u∗‖, performance
measurement y and Euclidean norm of gradient-estimation error
‖ m̂2

αω
− dF

duT (û)‖ as a function of time for H(û) = d2F
duduT (û) (black)

and H(û) = 0 (gray).

estimate of the Hessian may impair the gradient estimate
instead.

6 Conclusion

We have presented an extremum-seeking controller for
which the contribution of the nominal part of the parameter
signals to the gradient estimate of the objective function
can be isolated to study its influence. Simulations display
that including the nominal part of the parameter signals in
the estimation process helps to improve the accuracy of
the gradient estimate if the perturbation-related content of
the plant-parameter signals is low, and if the state of the
plant remains close to steady state. In turn, a more accurate
estimate may enhance the convergence speed and may al-
low for a higher gain selection. In addition, we have shown
that incorporating curvature information of the objective
function may further improve the accuracy of the gradient
estimate, especially if the time scales of the observer and
optimizer of the controller are close.
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Appendices

A Proof of Lemma 8

Consider the Lyapunov-function candidate

VQ1(Q1) = ‖Q1‖2. (A.1)

From (18) and (A.1), it follows that

V̇Q1(Q1) =−2ηm‖Q1‖2 +2gα‖Q1‖2 +2QT
1

˙̂u
αω

. (A.2)

It follows from (23) that ‖ ˙̂u‖ ≤ ηu. Also, from (10), (24)
and (25)-(27), we have that there exists a constant Lg ∈R>0
such that gα(t)≤ αω(t)λu(t)Lg for all t ≥ 0. From Young’s
inequality, (A.1), (A.2), ‖ ˙̂u‖ ≤ ηu and gα ≤ αω λuLg, we
obtain

V̇Q1(Q1)≤−ηm

(
1− 2αω λu

ηm
Lg

)
VQ1(Q1)+

η2
u

α2
ω ηm

.

(A.3)
Using the comparison lemma [12, Lemma 3.4], (A.1) and
(A.3), it is not difficult to show that, for any initial condition
Q1(0) ∈ Rnu , Q1(t) remains bounded for all 0≤ t ≤ t1. We
get from (A.3) that

V̇Q1(Q1)≤−ηm(1−2Lgε4)VQ1(Q1)+ηmε
2
3 (A.4)

for all t ≥ t1, all ηu ≤ αω ηmε3 and all αω λu ≤ ηmε4. Ap-
plying the comparison lemma [12, Lemma 3.4] yields

VQ1(Q1(t))≤max
{

2VQ1(Q1(t1))e
−∫ t

t1
1
2 ηm(τ)dτ

,
1

16

}

(A.5)
for all t ≥ t1 and sufficiently small values of ε3 and ε4.
Because Q1(t1) is bounded, we obtain from (A.1) and (A.5)
that Q1(t) is bounded for all t ≥ t1. Moreover, it follows
from (A.1) and (A.5) that the inequality in (33) holds for all
t ≥ t2, where t2 ≥ t1 is sufficiently large.

B Proof of Lemma 9

We define the Lyapunov-function candidate

VQ2(Q̃2) = tr
(
Q̃2

2
)
, (B.1)

which can be bounded by

‖Q̃2‖2 ≤VQ2(Q̃2)≤ nu‖Q̃2‖2. (B.2)

From (20) and (30), it follows that its time derivative is given
by

V̇Q2(Q̃2) =−2ηm tr
(
Q̃2

2
)
+4gα tr

(
Q̃2

2
)

+2gα tr
(
Q̃2
)
+2ηm tr

(
Q̃2Q1QT

1
)
.

(B.3)

As in the proof of Lemma 8, we note that there exists a
constant Lg ∈ R>0 such that gα(t) ≤ αω(t)λu(t)Lg for all
t ≥ 0. Using Young’s inequality, (B.1) and (B.3), we get

V̇Q2(Q̃2)≤−ηm

(
1− 5αω λu

ηm
Lg

)
VQ2(Q̃2)

+αω λuLgnu +ηm‖Q1‖4.

(B.4)

Because Q1 is bounded for all t ≥ 0 (see Lemma 8), from
the comparison lemma [12, Lemma 3.4], (B.2) and (B.4),
it follows that, for any initial condition Q̃2(0) ∈ Rnu×nu ,
Q̃2(t) remains bounded for all 0 ≤ t ≤ t2. Similarly, from
the comparison lemma [12, Lemma 3.4], (B.2), (B.4) and
the bound on Q1 for t ≥ t2 in Lemma 8, we obtain

VQ2(Q̃2(t))≤max
{

2VQ2(Q̃2(t2))e
−∫ t

t2
1
2 ηm(τ)dτ

,
1

16

}

(B.5)
for all for t ≥ t2 and all αω λu≤ηmε4, where ε4 is sufficiently
small. Because Q̃2(t2) is bounded, it follows from (B.2) and
(B.5) that Q̃2(t) is bounded for all t ≥ t2. Moreover, we
obtain from (B.2) and (B.5) that the inequality in (34) holds
for all t ≥ t3, where t3 ≥ t2 is a sufficiently large constant.

C Proof of Lemma 11

To show that the solutions of m̃1(t) and m̃2(t) are bounded
for all 0≤ t ≤ t3, consider the variables

p̃1 = m̂1−m1−ηmk1,

p̃2 = m̂2−m2−ηmQ2(Q1k1 +k2).
(C.1)

The time derivatives of p̃1 and p̃2 are given by

˙̃p1 =−ηm p̃1−α
2
ω QT

1 w̃−α
2
ω ηmṽ+ηmω

T m2

+ηmz+(gα −ηm)ηmk1,

˙̃p2 =−gα p̃2 +α
2
ω w̃−ηmQ2Q̇1−ηmQ2 (Q1 +ω)

(
p1 + k1

+(Q1 +ω)T (p2 +ηmQ2 (Q1k1 +k2))+α
2
ω ṽ− z

)

+(gm−gα)ηmQ2(Q1k1 +k2)−ηmQ̇2(Q1k1 +k2),
(C.2)

with w̃ = ŵ−w and ṽ = v̂− v. Similar to the proof of [10,
Lemma 10], from Lemmas 8-10, the conditions in Theo-
rem 7, and the definitions and assumptions in this work,
we obtain that all signals in the right-hand sides of (C.2),
except p̃1 and p̃2, are bounded on the compact time inter-
val [0, t3]. Moreover, because p̃1 and p̃2 appear linearly in
the right-hand sides of (C.2), we conclude from (C.2) that
p̃1(t) and p̃2(t) are bounded for all 0≤ t ≤ t3. This can be
formally proved using a Lyapunov approach with candidate
function p̃2

1 + p̃T
2 Q−1

2 p̃2. The proof is omitted for brevity.
Subsequently, it follows from (30) and the boundedness of
p̃1, p̃2, ηm, ηm

ηω
, l1, l2, m2 and Q2 that m̃1(t) and m̃2(t) are

also bounded for all 0≤ t ≤ t3.
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The prove the remaining part of the lemma, we introduce
the Lyapunov-function candidate

Vm(m̃1,m̃2,Q2) = m̃2
1 + m̃T

2 Q−1
2 m̃2. (C.3)

Following similar steps as in the proof of [10, Lemma 9],
it is not difficult to show that, for any symmetric positive-
definite Q2(0) ∈ Rnu×nu , Q−1

2 (t) remains positive definite
and bounded for all t ≥ 0. In addition, it follows from (30)
and Lemma 9 that

1
4

I�Q−1
2 (t)� 3

4
I (C.4)

for all t ≥ t3. Therefore, the function Vm can be bounded by

max
{
|m̃1|2,

1
4
‖m̃2‖2

}
≤Vm(m̃1,m̃2,Q2)

≤max
{

2|m̃1|2,
3
2
‖m̃2‖2

}
,

(C.5)

for all t ≥ t3. The time derivative of the function Vm is given
by

V̇m(m̃1,m̃2,Q2) =−ηmm̃2
1−ηmm̃T

2 Q−1
2 m̃2−

ηm

2
‖m̃2‖2

−ηm
(
m̃1 +QT

1 m̃2
)2

+2ηmm̃1e1 +2ηmm̃T
2 Q−1

2 e2,
(C.6)

where e1 and e2 are defined in (C.5), with J1 = Q1lT1 +

l1QT
1 + l2, J2 = I+ ηm

ηω
Q2J1, J3 =

1
ηm

(
Q̇2− (gm−gω)Q2

)
,

J4 = Q2

(
J1m̃2 + l1

(
m̃1 +

ηm
ηω

lT1 m2

))
and J5 = Q1k1 +k2.

From Young’s inequality, (C.3) and (C.6), we get

V̇m(m̃1,m̃2,Q2)≤−
ηm

2
Vm(m̃1,m̃2,Q2)

+4ηme2
1 +4ηm‖Q−1

2 ‖‖e2‖2.
(C.8)

Similar to the proof of Lemma 8, we note that there exists a
constant Lg ∈R>0 such that gα(t)≤ αω(t)λu(t)Lg, gω(t)≤
αω(t)λu(t)Lg, gm(t)≤αω(t)λu(t)Lg for all t ≥ 0. By apply-
ing these bounds and similar bounds to those in the proof of
[10, Lemma 10], we obtain from Lemmas 8-10, the condi-
tions in Theorem 7, and the definitions and assumptions in
this work that there exist constants Lei1,Lei2, . . . ,Lei7 ∈ R>0
such that

‖ei‖ ≤
αω λu

ηm
Lei1V

1
2

m (m̃1,m̃2,Q2)+α
2
ω Lei2 +αω ηω Lei3

+αω ηω Lei4‖ũ‖+
αω ηm

ηω

Lei5‖ũ‖+
α2

ω λu

ηm
Lei6‖ũ‖

+ηmLei7(qd +qωd)
(C.9)

for i∈ {1,2}, all t ≥ t3, all ηω ≤ ε1, all ηm ≤ ηω ε2, all ηu ≤
αω ηmε3 and all αω λu ≤ ηmε4. where we assume without
loss of generality that ε2 is sufficiently small such that J−1

2 is

well-defined and bounded for all t ≥ t3 and all ηm ≤ ηω ε2.
Now, assuming that ε4 is sufficiently small, we obtain from
(C.4), (C.8) and (C.9) that there exist constants cm1,cm2, . . . ,
cm6 ∈ R>0 such that

V̇m(m̃1,m̃2,Q2)≤−
ηm

4
Vm(m̃1,m̃2,Q2)

+
ηm

8
max

{
α

4
ω cm1,α

2
ω η

2
ω cm2,α

2
ω η

2
ω cm3‖ũ‖2,

α2
ω η2

m
η2

ω

cm4‖ũ‖2,
α4

ω λ 2
u

η2
m

cm5‖ũ‖2,η2
mcm6(qd +qω)

2
}

(C.10)
for all t ≥ t3, all ηω ≤ ε1, all ηm ≤ ηω ε2, all ηu ≤ αω ηmε3
and all αω λu ≤ ηmε4. The bounds in (36)-(38) follow from
(C.5) and (C.10) (with γm5 =

ηm
8 ).
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e1 =−
α2

ω

ηm
QT

1 w̃−α
2
ω ṽ+ z+(gm−ηm)k1 +(gm−gω −ηm)

1
ηω

lT1 m2−
1

ηω

lT1 ṁ2,

e2 =
ηm

ηω

(
J3J1 +

1
ηm

Q2
(
Q̇1lT1 + l1Q̇T

1
))(

m̃2−
ηm

ηω

J−1
2 J4

)
− η2

m
η2

ω

Q2

(
Q1ω

T +ωQT
1 +ωω

T − 1
2

I
)

J−1
2 J4

+
ηm

ηω

J3l1
(

m̃1 +
ηm

ηω
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