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Abstract

In this paper, we consider distributed optimization design for resource allocation problems over weight-balanced graphs. With
the help of singular perturbation analysis, we propose a simple sub-optimal continuous-time optimization algorithm. Moreover,
we prove the existence and uniqueness of the algorithm equilibrium, and then show the convergence with an exponential rate.
Finally, we verify the sub-optimality of the algorithm, which can approach the optimal solution as an adjustable parameter
tends to zero.
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1 Introduction

Distributed optimization has attracted intense research
attention in recent years, due to its theoretic signifi-
cance and broad applications in various research fields,
and many distributed algorithms have been developed
to optimize a global objective or cost function based on
agents’ local cost functions and information exchange
between neighbors in amulti-agent network (Yuan, Ho &
Xu 2016, Mokhtari, Ling & Ribeiro 2017). So far, much
effort has also been done for distributed continuous-
time algorithm design, referring to (Shi, Johansson &
Hong 2013, Gharesifard & Cortés 2014, Liu & Wang
2015, Lou, Hong &Wang 2016, Yang, Liu &Wang 2017)
and the references therein, partially because of its appli-
cations in physical plants or hybrid systems and avail-
able continuous-time control methods.

Resource allocation is one of the most important opti-
mization problems, which has been widely investigated
in various areas such as economic systems, communica-
tion networks, and power grids; and various algorithms,
centralized or decentralized have been constructed, for
example, in (Arrow, Hurwicz & Uzawa 1958, Heal 1969,
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Lakshmanan & De Farias 2008, Zappone, Sanguinetti,
Bacci, Jorswieck & Debbah 2016). Different from the
most existing results, (Cherukuri & Cortés 2016, Yi,
Hong & Liu 2016) considered distributed initialization-
free continuous-time algorithms to solve the optimal re-
source allocation problem with applications to economic
dispatch of power systems. The algorithms given in (Yi
et al. 2016, Gharesifard, Basar & Dominguez-Garcia
2016) dealt with undirected graph cases, based on the
symmetry of the Laplacians associated with the given
graphs. As pointed out in (Gharesifard & Cortés 2014,
Gharesifard et al. 2016), there were examples to make
a distributed algorithm for undirected graphs divergent
for some directed graphs. For practical applications, dis-
tributed optimization algorithms over balanced directed
graphs were developed with or without the resource allo-
cation constraint, for example, in (Gharesifard & Cortés
2014, Cherukuri & Cortés 2016). However, these algo-
rithms, involving the usage of the eigenvalues of the
Laplacians, might yield additional computation burden
in the distributed implementation, and make the con-
vergence quite sensitive to the network topology.

Partially because distributed optimization just became
a hot topic in this decade, there are quite few results
about its sub-optimal algorithms and related analysis.
For example, (Nedić & Ozdaglar 2009) proposed an al-
gorithmwithout exactly solving the considered problem,
but with fast convergence rate. In fact, sub-optimal de-
sign deserves investigation, though the exactness of op-
timal solutions may be sacrificed. As we know, the ex-

Preprint submitted to Automatica 7 February 2017

http://arxiv.org/abs/1702.01492v1


act optimization solution may be hard to obtain due to
technical difficulties, complexity, or computational cost;
on the contrary, sub-optimal algorithms may provide
considerable benefits with simple feasible designs and
even performance enhancement. In distributed design
for large-scale networks, we may particularly need sub-
optimal algorithms to reduce the computational com-
plexity or sensitivity to the network topology, rather
than to seek high-cost exact optimal solution (Bhatti,
Beck & Nedić 2016).

Based on the above observation, the motivation of this
paper is to study a distributed sub-optimal algorithm
design for the resource allocation optimization over
a balanced directed graph. Our algorithm is of lower
dimensions than existing ones, with the reduction of
computational burden and information exchanging.
Moreover, its convergence is kept over any strongly con-
nected and weight-balanced graph because its design
does not depend on any specific knowledge of the graph.
To achieve this, we adopt a singular perturbation idea
in the distributed sub-optimal design. Note that the
singular perturbation theory provides powerful tools for
(continuous-time) control design (Kokotovic, Khalil &
O’reilly 1999), and the well-known high-gain technique
and semi-global stabilization design are closely related
to singular perturbation (Khalil 2002).

The contributions of this paper can be summarized as
follows. (i) We first propose a distributed sub-optimal
algorithm to solve the continuous-time resource alloca-
tion problem for weight-balanced graphs, without us-
ing any information of the network topology. The sub-
optimal design is simpler than those optimization ones.
In light of the conventional fixed-point theory, we prove
the existence and uniqueness of the algorithm equilib-
rium. (ii) We adopt a singular perturbation idea in our
design, totally different from that given in (Gharesifard
& Cortés 2014, Cherukuri & Cortés 2016, Yi et al. 2016),
and then show that the quasi-steady-state model of our
algorithm is exactly the primal-dual optimization algo-
rithm. Note that the original primal-dual algorithmmay
not be directly implementable in a fully distributed man-
ner due to the coupled resource allocation constraint.
(iii) We prove the convergence of the proposed sub-
optimal algorithm with an exponential rate, and esti-
mate the difference of the sub-optimal solution from the
optimal one, which, in fact, is bounded linearly by an
adjustable parameter. Moreover, we verify that the sub-
optimal solution always satisfies the resource allocation
constraint and can be made arbitrarily close to the op-
timal point as the parameter tends to 0.

The paper organization is as follows: Section 2 provides
preliminaries and formulates the problem, while Section
3 proposes the distributed algorithms. Then Section 4
presents the algorithm analysis, and finally, Section 5
gives some concluding remarks.

Notations: Let R
n be the n-dimensional real vector

space and B be the unit ball. The Euclidean norm of

vectors in R
n and its induced consistent matrix norm

are denoted by ‖·‖. col(x1, ..., xN ) stands for the column
vector stacked with column vectors xi, (i = 1, ..., N),
i.e., col(x1, ..., xN ) = (xT

1 , x
T
2 , · · · , x

T
n )

T , and 1n =
col{1, ..., 1} ∈ R

n. In is the identity matrix in R
n×n. ⊗

denotes the Kronecker’s product for matrices and det(·)
denotes the determinant of a matrix. For a smooth func-
tion f : Rn → R, ∇f(x) and ∇2f(x) denote its gradient
vector and Hessian matrix at point x, respectively.

2 Preliminaries and Formulation

In this section, we introduce relevant preliminary knowl-
edge about convex analysis and graph theory and then
formulate our problem.

2.1 Preliminaries

A function f : Rn → R is said to be convex if f(λz1+(1−
λ)z2) ≤ λf(z1) + (1 − λ)f(z2) for any z1, z2 ∈ R

n and
λ ∈ (0, 1). Moreover, it is said to be c0-strongly convex
for a constant c0 > 0, if

f(λz1 + (1− λ)z2) ≤ λf(z1) + (1− λ)f(z2)

−
1

2
c0λ(1 − λ)‖z1 − z2‖

2. (1)

For a twice continuously differentiable function f , it is
c0-strongly convex if and only if ∇2f(x) ≥ c0In. In ad-
dition, for c0-strongly convex and differentiable function
f , there holds

f(y) ≥ f(x)+∇f(x)T (y−x)+
1

2
c0‖y−x‖2, ∀x, y ∈ R

n.

(2)

A function g : R
n → R is said to be level bounded

(Rockafellar & Wets 1998) if all sets of the form

{x ∈ R
n | g(x) ≤ α}, for α ∈ R

n (3)

are bounded. Obviously, the strong convexity and differ-
entiability imply the level boundedness by (2).

A map H : R
n → R

n is said to be locally Lipschitz
continuous at a point x if there are constants δ > 0 and
κ = κ(x, δ) such that

‖H(x1)−H(x2)‖ ≤ κ‖x1− x2‖, ∀x1, x2 ∈ x+ δB. (4)

Moreover, H is said to be κ-Lipshcitz continuous if (4)
holds irrespective of x and δ.

Consider a multi-agent network with its interaction
topology described by a weighted graph G = {V , E ,A},
where V = {1, 2, . . .N} is the node set, E ⊆ V × V is
the edge set, and A = [aij ]N×N is an adjacency ma-
trix with aij > 0 if (j, i) ∈ E (meaning that agent j
can send its information to agent i), and aij = 0, oth-
erwise. If aij = aji, ∀ i, j ∈ V , then G is undirected.
A path is a sequence of vertices connected by edges.
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A graph is said to be strongly connected if there is
a path between any pair of vertices. For node i ∈ V ,
the weighted in-degree and weighted out-degree are

diin =
∑N

j=1 aij and diout =
∑N

j=1 aji, respectively. A

graph is weight-balanced if ∀ i ∈ V , diin = diout. The fol-
lowing lemma characterizes graph G by its (in-degree)
Laplacian matrix, defined as L = Din − A, where
Din = diag{d1in, . . . , d

N
in} ∈ R

N×N .

Lemma 1 (Bullo, Cortés & Mart́ınez 2009) The follow-
ing statements hold.

1) Graph G is undirected if and only if L = LT .
2) Graph G is strongly connected if and only if zero is a

simple eigenvalue of L.
3) Graph G is weight-balanced if and only if L + LT is

positive semidefinite.

2.2 Problem formulation

Distributed resource allocation optimization problem is
usually formulated as follows. For each agent i ∈ V , there
are a local decision variable xi ∈ R

n and a local cost
function fi(xi) : Rn → R. The agents cooperate each
other in order to minimize the total cost function of the
network, defined as f(x) ,

∑N
i=1 fi(xi), subject to the

resource allocation constraint
∑N

i=1 xi =
∑N

i=1 bi = d.
In other words,

min
x∈RnN

f(x), s.t. (1TN ⊗ In)x = d, (5)

where x , col{x1, ..., xN} and d ∈ R
n.

The following assumption is adopted to ensure the well-
posedness of (5), which is widely used.

Assumption 1

1) f(x) is c0-strongly convex and twice continuously dif-
ferentiable.

2) The interaction graph G is strongly connected and
weight-balanced.

The following lemma is quite fundamental for problem
(5). We present it with its proof here for completeness.

Lemma 2 Under Assumption 1, there exists a unique
optimal solution x

∗ = col{x∗
1, ..., x

∗
N} of problem (5). In

addition, there exists a unique λ
∗ = col{µ∗, ..., µ∗} such

that the following condition holds.

{

0 = ∇f(x∗) + λ
∗

0 = (1TN ⊗ In)x
∗ − d

(6)

Proof. Since f is strongly convex and differentiable, it is
level bounded, which implies the existence of an optimal
point over the set Ω = {x ∈ R

nN | (1TN ⊗ In)x− d = 0}.
Also, the strong convexity of f implies the uniqueness
of the optimal point x

∗. Since the normal cone of Ω
at point x

∗ is NΩ(x
∗) = {1N ⊗ µ |µ ∈ R

n}, the con-
clusion follows from the necessary optimality condition

−∇f(x∗) ∈ NΩ(x
∗) (Rockafellar & Wets 1998, Theo-

rem 6.12, page 207). �

The goal of this paper is to design a distributed sub-
optimal algorithm with a positive adjustable parameter
ε for problem (5), such that

1) the equilibrium point of the proposed algorithm is
exponentially stable with the resource allocation con-
straint held;

2) it approaches the optimal solution of problem (5) as
ε → 0, and the difference between it and the optimal
solution is bounded linearly by ε.

Of course, the design of sub-optimal algorithm should
be simpler than that for optimization algorithms.

3 Distributed algorithm design

In this section, we propose a distributed sub-optimal
algorithm, and also show the relationship between its
design and singular perturbation analysis.

To make a comparison, we first introduce a distributed
algorithm over undirected graphs for problem (5), ob-
tained in the literature, such as (Yi et al. 2016):

∀ i ∈ V ,



























































ẋi = −∇fi(xi)− λi

λ̇i = −kP

N
∑

j=1

aij(λi − λj)

− kI

N
∑

j=1

aij(zi − zj) + xi − bi

żi =

N
∑

j=1

aij(λi − λj)

(7)

where
∑N

i=1 bi = d and kP = kI = 1 in (Yi et al. 2016).
The continuous-time algorithm (7) is constructed by
combining the Lagrangian duality and the consensus dy-
namics. Roughly speaking, the dynamics of xi’s corre-
spond to the gradient decent and the dynamics of λi’s
and zi’s render the local Lagrangian multipliers λi to
reach a consensus at the optimal point of the dual prob-
lem.

On the other hand, as pointed out in (Gharesifard &
Cortés 2014, Gharesifard et al. 2016), the continuous-
time algorithms like (7) may become divergent over some
directed graphs. One remedy is to tune the parameters
kP and kI to stabilize the algorithm dynamics over a
balanced graph, which was indeed used in (Gharesifard
& Cortés 2014, Cherukuri & Cortés 2016). However,
since that stabilization is based on the eigenvalues of the
Laplacian of the balanced graph, whose information is
not local, the algorithm is not fully distributed or its de-
sign increases the computational cost.

In this paper, we propose a simple distributed algorithm
for problem (5) without the knowledge of the eigenvalues
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associated with the considered balanced graph:

∀ i ∈ V ,











ẋi = −∇fi(xi)− λi

ελ̇i = −
N
∑

j=1

aij(λi − λj) + ε(xi − bi)
(8)

where ε > 0 is a small adjustable parameter. For sim-
plicity, we rewrite algorithm (8) in a compact form as

{

ẋ = −∇f(x)− λ

ελ̇ = −Lλ+ ε(x− b)
(9)

where λ = col{λ1, ..., λN}, b = col{b1, ..., bN} and L =
L ⊗ In, L is the Laplacian matrix of the strongly con-
nected and weight-balanced graph.

Remark 1 Algorithm (8) has lower dimensions and less
(communication) complexity than (7), because it does not
involve the dynamics of zi’s and related information ex-
changing.

SinceL is generally asymmetric, (9) loses any interpreta-
tion from gradient-decent-gradient-ascent dynamics for
the saddle-point computation, which is widely used for
constrained convex optimization. In fact, our design is
based on singular perturbation ideas as follows. Clearly,
we can choose a matrix T ∈ R

N×N satisfying

T = [1N ,M1]
T , T−1 = [1N ,M2]. (10)

Let [ µ
θ
] , (T ⊗ In)λ, where µ ∈ R

n, θ ∈ R
n(N−1). Then

(9) can be written as a standard singular perturbation
model as follows:











ẋ = −∇f(x)− (1N ⊗ In)µ− (M2 ⊗ In)θ

µ̇ = (1TN ⊗ In)x− d

εθ̇ = −(MT
1 LM2 ⊗ In)θ + ε(MT

1 ⊗ In)(x− b)
(11)

It can be observed from (11) that, for a sufficiently small
ε > 0, θ corresponds to the fast transient part and (x, µ)
corresponds to the slow part. Because all the eigenvalues
of matrix −(MT

1 LM2 ⊗ In) are negative, the fast man-
ifold is simply θ = 0, and then the quasi-steady-state
model (or reduced model) of (11) is

{

ẋ = −∇f(x)− (1N ⊗ In)µ

µ̇ = (1TN ⊗ In)x− d
(12)

Let us denote the solution of (12) by (x̃(t), µ̃(t)) and the
solution of (11) by (x(t, ε), µ(t, ε), θ(t, ε)). With the ex-
isting singular perturbation results (Khalil 2002, Theo-
rems 11.2 and 11.3, pages 439 and 452), (11) is asymp-
totically stable and, for any ε ∈ (0, ε∗) with some ε∗ > 0,
an initial moment t0 and some time tb > t0, we have

(x(t, ε), µ(t, ε))− (x̃(t), µ̃(t)) = O(ε), t ∈ [t0,∞)

θ(t, ε)− 0 = O(ε), t ∈ [tb,∞)
(13)

To sum up, we have the following statements from sin-
gular perturbation analysis.

1) The algorithm (9) has its quasi-steady-statemodel as
(12), and (12) is exactly the primal-dual optimization
algorithm for problem (5). However, in contrast to
(9), the algorithm (12) is not directly implementable
in a fully distributed manner because the dynamics
of µ needs to collect all the information of x1, ..., xN

due to the coupled resource allocation constraint.
2) The trajectory of algorithm (9) is near the (central-

ized) primal-dual one within an error bound estima-
tion O(ε). Moreover, since (x̃(t), µ̃(t)) converges to
the optimal primal-dual solution (x∗, µ∗) in Lemma
2, (9) approaches a ball centered at the optimal point
as t → ∞, yielding some sub-optimal solution.

Note that for our algorithm, we have to verify the ex-
istence of its equilibrium, which is not straightforward.
Moreover, the estimation O(ε) in the singular pertur-
bation theory may be too rough since it holds for all
t ∈ [t0,∞). In order to clarify the effectiveness of our
method, we have to find a new way for the algorithm
analysis. To be specific, we will first study the existence
of the equilibrium of the algorithm (9), and then study
its convergence and sub-optimality, in the sequel.

4 Main Results

In this section, we analyze the equilibrium, convergence
and sub-optimality for the algorithm (9).

4.1 Equilibrium analysis

Here let us show the existence and uniqueness of the
equilibrium of algorithm (9).

Theorem 1 Under Assumption 1, there exists ε0 > 0
such that for any fixed ε ∈ (0, ε0), algorithm (9) has a
unique equilibrium, i.e., a unique pair (x̄(ε), λ̄(ε)) satis-
fying the following equation

{

0 = ∇f(x) + λ

0 = −ε(x− b) +Lλ
(14)

Proof. We first show the existence and then the unique-
ness in the proof.

(i) Existence: Let (x∗,λ∗) be the optimal solution pair
in (6). Since f(x) is twice continuously differentiable,

∇f(x) = ∇f(x∗) +Hz − r(z), (15)

where
H , ∇2f(x∗), z , x− x

∗, (16)

and r(z) is an infinitesimal term with respect to z.

Clearly, it follows from (6) that Lλ
∗ = 0 and

L∇f(x∗) = −Lλ
∗ = 0. Moreover, since (1TN ⊗ In)(b −

x
∗) = 0, there exists λ0 such that Lλ0 = b− x

∗. Thus,
by eliminating λ in (14), we obtain an equation with
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respect to variable z as

z = Φ(z, ε) , (εInN +LH)−1(ε(b− x
∗) +Lr(z))

= (εInN +LH)−1
L(ελ0 + r(z))

(17)
We claim that matrix εInN + LH is nonsingular (and
then the map Φ(z, ε) in (17) is well-defined). In fact,
H ≥ c0InN and L+L

T is positive semidefinite accord-

ing to Assumption 1. Then vTH
1

2LH
1

2 v = vTH
1

2 (L +

L
T )H

1

2 v ≥ 0, ∀ v ∈ R
nN . Due to det(sInN − LH) =

det(sInN −H
1

2LH
1

2 ), all the eigenvalues of matrix LH
are nonnegative. Consequently, matrix εInN + LH is
nonsingular.

Moreover, since (εInN +LH)−1(εInN +LH) = InN ,

(εInN +LH)−1
L = H−1 − (H + ε−1HLH)−1.

(18)
Note that ‖ν‖2 = ηνT (H + ε−1HLH)ν ≥ ηc0‖ν‖2 for
any eigenvalue η of matrix (H + ε−1HLH)−1 with cor-
responding eigenvector ν 6= 0. Hence, the spectral radius
ρ of matrix (H + ε−1HLH)−1 satisfies

ρ((H + ε−1HLH)−1) ≤ c−1
0 , ∀ ε > 0. (19)

Then, recalling (Horn & Johnson 2013, Lemma 5.6.10,
page 347), there exists a matrix norm ‖ · ‖♯ such that

‖(H + ε−1HLH)−1‖♯ ≤ c−1
0 + 1, ∀ ε > 0. (20)

It follows from the equivalence of matrix norms that
there exists a constant k0 > 0 such that

‖(H + ε−1HLH)−1‖ ≤ k0(c
−1
0 + 1), ∀ ε > 0. (21)

Therefore, for any ε > 0,

‖(εInN +LH)−1
L‖ ≤ ‖H−1‖+ ‖(H + ε−1HLH)−1‖

≤ (k0 + 1)c−1
0 + k0 , k1.

(22)
Additionally, for r(z) in (15) and k1 in (22), there exists
δ = δ(k1) > 0 such that

‖r(z)− r(z′)‖ ≤
1

k1 + 1
‖z − z

′‖, ∀ z, z′ ∈ δB. (23)

Furthermore, for the constants k1 > 0, δ > 0 and λ0 in
(17), there exists ε0 = ε0(k1, δ,λ0) > 0 such that

ε‖λ0‖ ≤
δ

k1(k1 + 1)
, ∀ ε ∈ (0, ε0). (24)

Consider the map Φ(z, ε) in (17). On the one hand, it
follows from (22) and (23) that

‖Φ(z, ε)−Φ(z′, ε)‖ ≤
k1

k1 + 1
‖z−z

′‖, ∀ z, z′ ∈ δB (25)

for any fixed ε > 0, that is, Φ(·, ε) is a contraction map
in δB. On the other hand, it follows from (23) and (24)
that

‖Φ(z, ε)‖ ≤ k1ε‖λ0‖+ k1‖r(z)‖ ≤ δ, ∀ z ∈ δB (26)

for any ε ∈ (0, ε0), that is, Φ(·, ε) maps the compact
set δB into itself. According to the Contraction Mapping
Theorem (Bertsekas 2015, page 458), Φ(·, ε) has a fixed
point z̄(ε), which is the solution of equation (17). Let

x̄(ε) , z̄(ε) + x
∗, λ̄(ε) , −∇f(x̄(ε)). (27)

Thus, we obtain that (x̄(ε), λ̄(ε)) is a solution of equa-
tion (14).

(ii) Uniqueness: Suppose there are two solution pairs
(x,λ) and (x′,λ′) for equation (14). By some calcula-
tions, we have

0 = (x− x
′)T (∇f(x)−∇f(x′) + λ− λ

′)

+ (λ − λ
′)T (−(x− x

′) + ε−1
L(λ− λ

′))

= (x− x
′)T (∇f(x)−∇f(x′))

+ ε−1(λ− λ
′)TL(λ− λ

′) ≥ 0

(28)

Then (x − x
′)T (∇f(x) − ∇f(x′)) = 0. Since f(x) is

strongly convex, there must hold x
′ = x and λ

′ = λ =
−∇f(x), which completes the proof. �

Note that the equilibrium is not known beforehand
and the existing singular perturbation techniques do
not cover this problem. Instead, we use a fixed-point
theorem to prove the existence and then the uniqueness.

4.2 Convergence and sub-optimality

Based on the existence of the equilibrium, it is time to
study the convergence of the proposed algorithm.

Theorem 2 Under Assumption 1, the algorithm (9)
with ε ∈ (0, ε0) converges to its equilibrium point
(x̄(ε), λ̄(ε)). Furthermore, if the gradient map ∇f(x) is
κ-Lipshcitz continuous for some constant κ > 0, then
(9) exponentially converges to its equilibrium point.

Proof. Since the righthand side of (9) is locally Lip-
schitz continuous, there exists a unique trajectory
(x(t, ε),λ(t, ε)) satisfying (9). Take the following Lya-
punov function

V (x,λ) , ‖x− x̄(ε)‖2 + ‖λ− λ̄(ε)‖2. (29)
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Then V is positive definite and its first order derivative
with respect to time t is

V̇ (x,λ) = −(x− x̄(ε))T (∇f(x) + λ)

− (λ− λ̄(ε))T (b− x+ ε−1
Lλ)

= −(x− x̄(ε))T (∇f(x)−∇f(x̄(ε)))

− ε−1(λ− λ̄(ε))TL(λ− λ̄(ε))

≤ −c0‖x− x̄(ε)‖2

− ε−1(λ− λ̄(ε))T (L+L
T )(λ − λ̄(ε))

≤ 0.
(30)

Also, we have that V̇ (x,λ) = 0 if and only if x = x̄(ε)
and λ = λ̄(ε). By the Invariance Principle (Khalil 2002,
page 126), algorithm (9) converges to (x̄(ε), λ̄(ε)).

Moreover, a linearized system of algorithm (9) at its
equilibrium can be obtained via replacing the term
∇f(x) by an affine map F (x) defined as

F (x) , ∇f(x̄(ε)) +∇2f(x̄(ε))(x− x̄(ε)). (31)

Following the same proof as above, this linear system
is asymptotically stable. Then there exist two positive
definite matrices P,Q ∈ R

2nN×2nN such that

V1(x,λ) ,

[

x− x̄(ε)

λ − λ̄(ε)

]T

P

[

x− x̄(ε)

λ− λ̄(ε)

]

≥ ζ1(‖x− x̄(ε)‖2 + ‖λ− λ̄(ε)‖2)

(32)

for some ζ1 > 0 and

V̇1(x,λ) = −

[

x− x̄(ε)

λ− λ̄(ε)

]T

Q

[

x− x̄(ε)

λ− λ̄(ε)

]

− 2

[

x− x̄(ε)

λ− λ̄(ε)

]T

P

[

∇f(x)− F (x)

0

]

(33)

where F (x) is in (31).

If ∇f(x) is κ-Lipschitz continuous, then there are posi-
tive constants ζ2 and ζ3 > 0 such that

V̇1(x,λ) ≤ ζ2‖x− x̄(ε)‖2 − ζ3‖λ− λ̄(ε)‖2. (34)

Define a new Lyapunov function as

V2(x,λ) , c−1
0 (ζ2 + ζ3)V (x,λ) + V1(x,λ) (35)

Then

V2(x,λ) ≥ (c−1
0 (ζ2+ζ3)+ζ1)(‖x−x̄(ε)‖2+‖λ−λ̄(ε)‖2),

(36)

and

V̇2(x,λ) ≤ −ζ3(‖x− x̄(ε)‖2 + ‖λ− λ̄(ε)‖2) (37)

Thus, the algorithm is globally exponentially convergent
with the exponential rate no more than − ζ3c0

ζ1c0+ζ2+ζ3
,

which implies the conclusion. �

Remark 2 The obtained result about the exponential
rate is consistent with some existing ones for undirected
graphs such as (Yi et al. 2016, Theorem 4.3), but our
algorithm is of lower dimensional dynamics and also ap-
plicable to balanced directed graphs.

Next, we need to verify the sub-optimality of the al-
gorithm (9) and check the difference between the sub-
optimal solution and the optimal one.

Theorem 3 The equilibrium (x̄(ε), λ̄(ε)) of algorithm
(9) is a sub-optimal solution of problem (5) in the sense
that

(1TN ⊗ In)x̄(ε) = d, (38)

and
lim
ε→0

(x̄(ε), λ̄(ε)) = (x∗,λ∗). (39)

Moreover, for any ε ∈ (0, ε0), there hold

‖x̄(ε)− x
∗‖ ≤ γ1ε, ‖λ̄(ε)− λ

∗‖ ≤ γ2ε, (40)

where γ1 , k1(k1+1)‖λ0‖, γ2 , γ1 sup‖z‖≤δ{‖∇
2f(z)‖},

and ε0, k1,λ0, δ are in the proof of Theorem 1.

Proof. Since (z̄(ε), λ̄(ε)) satisfies (14) and (1TN ⊗In)L =
0, (1TN ⊗ In)b = d, equality (38) holds.

Next, from the proof of Theorem 1, z̄(ε) = x̄(ε)− x
∗ is

a fixed point of map Φ(r(z), ε). It follows from (23) and
(26) that

‖x̄(ε)− x
∗‖ = ‖Φ(r(x̄(ε)− x

∗), ε)‖

≤ k1‖λ0‖ε+ k1‖r(x̄(ε)− x
∗)‖

≤ k1‖λ0‖ε+
k1

k1 + 1
‖x̄(ε)− x

∗‖

(41)

Thus there holds

‖x̄(ε)− x
∗‖ ≤ k1(k1 + 1)‖λ0‖ε. (42)

On the other hand, it follows from (26) that

‖x̄(ε)− x
∗‖ ≤ δ. (43)

Thus

‖λ̄(ε)− λ
∗‖ = ‖∇f(x̄(ε))−∇f(x∗)‖

≤ sup
‖z‖≤δ

{‖∇2f(z)‖} · ‖x̄(ε)− x
∗‖ (44)

Therefore, (40) holds, which also implies (39). �
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Note that the sub-optimal solution depends closely on
not only the parameter ε, but also the parameter b. The
following result shows a special case when b happens to
equal the x∗.

Corollary 1 With Lλ0 = b− x
∗, we can chose λ0 = 0

provided b = x
∗. Then algorithm (9) with any ε > 0

has its equilibrium as (x∗,λ∗), i.e., it gives exactly the
optimal solution to problem (5).

Remark 3 Theorems 2 and 3 showed that, different
from some algorithms like (7), the algorithm (8) is of
simple dynamics, and convergent over weight-balanced
graphs, without depending on the network topology; also,
it can be adjusted easily to reduce the optimization error
by tuning the parameter ε.

4.3 Numerical example

Here we give an illustrative example for our algorithm.
Consider the following problem

min f(x) =
1

2
(x2

1 +
1

4
x2
2 + x2

3)

s.t. x1 + x2 + x3 = 1

with a multi-agent system consisting of three agents,
where agent imanipulates variable xi for i = 1, 2, 3, and
their interaction graph is shown in Fig. 1.

Our distributed algorithm can be given as follows:



























































ẋ1 = −x1 − λ1

ẋ2 = −
1

4
x2 − λ2

ẋ3 = −x3 − λ3

ελ̇1 = −(λ1 − λ3) + ε(x1 −
1

3
)

ελ̇2 = −(λ2 − λ1) + ε(x2 −
1

3
)

ελ̇3 = −(λ3 − λ2) + ε(x3 −
1

3
)

By some calculations, the equilibrium point (x̄(ε), λ̄(ε))
is









x̄1(ε)

x̄2(ε)

x̄3(ε)
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6
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1
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ε

6(4ε2 + 9ε+ 6)









4ε+ 9
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4ε+ 3

















λ̄1(ε)

λ̄2(ε)

λ̄3(ε)









=









− 1
6

− 1
6

− 1
6









+
ε

6(4ε2 + 9ε+ 6)









−(4ε+ 9)

2ε+ 3

−(4ε+ 3)









Indeed, the optimal solution of the problem is x
∗ =

(16 ,
2
3 ,

1
6 )

T because, with the Cauchy inequality, (x2
1 +

1
4x

2
2+x2

3)(1
2+22+12) ≥ (x1+x2+x3)

2 = 1 and equality

holds if and only if x = k(1, 2, 1)T for some k ∈ R. Due

1 2 3

Fig. 1. The communication graph of the three agents.
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Fig. 2. The trajectories of allocation of agent 1
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Fig. 3. The trajectories of allocation of agent 2

to the equality constraint, k must be 1
6 . Moreover, we

observe that x̄(ε) satisfies the constraint, i.e., x̄1(ε) +
x̄2(ε) + x̄3(ε) = 1. Furthermore, the distance between
the algorithm equilibrium and the optimal solution is
dominated by a term proportional to ε.

Simulations are taken with ε = 1, ε = 0.1, and ε =
0.01. The trajectories and the Lyapunov function are
shown in Fig. 2 - Fig. 5. It is indicated that our simple
algorithmconverges to its equilibrium, which approaches
the optimal point as ε tends to zero.

5 Conclusions

In this paper, a distributed sub-optimal continuous-time
algorithm has been proposed for resource allocation op-
timization problem. The convergence has been proved
over any strongly connected and weight-balanced graph
and the sub-optimality have been analyzed with numer-
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Fig. 4. The trajectories of allocation of agent 3
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Fig. 5. The trajectories of Lyapunov function

ical simulation. At the same time, the singular perturba-
tion ideas have been shown to be useful in the distributed
sub-optimal design, though the problems occurred are
not completely covered by the existing singular pertur-
bation theory. In fact, based on the proposed approach,
we are considering some systematical ways to further
make the singular perturbation techniques serve the dis-
tributed algorithm design with various constraints.
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