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Abstract

This article introduces a tensor network subspace algorithm for the identification of specific polynomial state space models. The polynomial
nonlinearity in the state space model is completely written in terms of a tensor network, thus avoiding the curse of dimensionality.
We also prove how the block Hankel data matrices in the subspace method can be exactly represented by low rank tensor networks,
reducing the computational and storage complexity significantly. The performance and accuracy of our subspace identification algorithm
are illustrated by numerical experiments, showing that our tensor network implementation is around 20 times faster than the standard
matrix implementation before the latter fails due to insufficient memory, is robust with respect to noise and can model real-world systems.
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1 Introduction

Linear time-invariant (LTI) systems [4] are a very useful
framework for describing dynamical systems and have con-
sequently been applied in myriad domains. Parametric sys-
tem identification deals with the estimation of parameters
for a given model structure from a set of measured vector
input-output pairs (u0,y0), . . . , (uL−1,yL−1) and has been
thoroughly studied in the 1980’s and 1990’s. Two impor-
tant model structures for LTI systems are transfer function
models and state space models, which can be converted into
one another. The dominant framework for the estimation
of transfer function models are prediction error and instru-
mental variables methods [8, 19], while state space models
are typically estimated through subspace methods [5, 20].
Prediction error methods are iterative methods that estimate
the transfer function parameters such that the resulting pre-
diction errors are minimized. These iterative methods suf-
fer from some disadvantages such as no guaranteed conver-
gence, sensitivity of the result on initial estimates and getting
stuck in a local minimum of the objective function. Subspace
methods, on the other hand, are non-iterative methods that
rely on numerical linear algebra operations such as the sin-
gular value decomposition (SVD) or QR decomposition [3]
of particular block Hankel data matrices. Estimates found
through subspace methods are often good initial guesses for
the iterative prediction error methods.
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The most general nonlinear extension of the discrete-time
linear state space model is

xt+1 = f(xt,ut),

yt = g(xt,ut),

where xt,ut,yt are the state, input and output vectors at
time t, respectively and f(·), g(·) are nonlinear vector func-
tions. By choosing different nonlinear functions f(·), g(·)
one effectively ends up with very different nonlinear state
space models. A popular choice for the nonlinear functions
are multivariate polynomials. The most general polynomial
state space model, where f(·), g(·) are multivariate polyno-
mials in both the state and the input, is described in [17].
Being the most general form implies that it has a large ex-
pressive power, enabling the description of many different
kinds of dynamics. This, however, comes at the cost of hav-
ing to estimate an exponentially growing number of param-
eters as the degree of the polynomials increases. Further-
more, the identification method relies on solving a highly
nonlinear optimization problem using iterative methods.

In [7], multilinear time invariant (MTI) systems are pro-
posed. MTI systems are systems for which f(·), g(·) are
multivariate polynomial functions where each state or input
variable is limited to a maximal degree of one. The num-
ber of parameters of an m-input-p-output MTI system with
n states is then (n+ p)2(n+m), growing exponentially with
the number of state and input variables. This curse of di-
mensionality is then effectively lifted with tensor methods.
In this article, we propose the following polynomial state
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space model

xt+1 = Axt + f(ut),

yt = C xt + g(ut), (1)

where both f(·), g(·) are multivariate polynomials of total
degree d. We then show that it is possible to identify these
models using conventional subspace methods. The number
of parameters that need to be estimated, however, will also
grow exponentially with d. We then propose to use tensor
networks to represent the polynomials f(·), g(·) and mod-
ify the conventional MOESP subspace method to work for
tensor networks. The main contributions of this article are:

(1) We extend linear time-invariant state space models to a
specific class of polynomial state space models with a
linear state sequence and a polynomial input relation.

(2) We modify the MOESP method [10,11] to utilize tensor
networks for the identification of the proposed polyno-
mial state space model.

(3) We prove in Theorem 4.1 that the block Hankel data
matrices in subspace methods are exactly represented
by low-rank tensor networks, thereby reducing the
computational and storage complexity significantly.

The main outline of this article is as follows. First, we briefly
discuss some tensor network preliminaries in Section 2.
The proposed polynomial state space model is discussed
in detail in Section 3. The development and implementa-
tion of our proposed tensor network subspace identification
method is described in Section 4. The algorithm to simu-
late our proposed polynomial state space model in tensor
network form is given in Section 5. Numerical experi-
ments validate and demonstrate the efficacy of our tensor
network subspace identification method in Section 6. All
our algorithms were implemented in the MATLAB/Octave
TNMOESP package and can be freely downloaded from
https://github.com/kbatseli/TNMOESP. Fi-
nally, some conclusions and future work are formulated in
Section 7.

2 Preliminaries

Most of the notation on subspace methods is adopted
from [5] and the notation on tensors from [1, 2] is also
used. Tensors are multi-dimensional arrays that generalize
the notions of vectors and matrices to higher orders. A
d-way or dth-order tensor is denoted A ∈ Rn1×n2×···×nd

and hence each of its entries is determined by d indices
i1, . . . , id. We use the MATLAB convention that indices
start from 1, such that 1 ≤ ik ≤ nk (k = 1, . . . , d). The
numbers n1, n2, . . . , nd are called the dimensions of the
tensor. For practical purposes, only real tensors are consid-
ered. We use boldface capital calligraphic letters A,B, . . .
to denote tensors, boldface capital letters A,B, . . . to de-
note matrices, boldface letters a, b, . . . to denote vectors,
and Roman letters a, b, . . . to denote scalars. The elements
of a set of d tensors, in particular in the context of tensor

Aa a A

Fig. 1. Graphical depiction of a scalar a, vector a, matrix A and
3-way tensor A.

networks, are denoted A(1),A(2), . . . ,A(d). The transpose
of a matrix A or vector a are denoted AT and aT , respec-
tively. The unit matrix of order n is denoted In. A matrix
with all zero entries is denoted O.

A very useful graphical representation of scalars, vectors,
matrices and tensors is shown in Figure 1. The number of
unconnected edges of each node represents the order of the
corresponding tensor. Scalars therefore are represented by
nodes without any edges, while a matrix is represented by a
node that has two edges. This graphical representation allows
us to visualize the different tensor networks and operations in
this article in a very straightforward way. We also adopt the
MATLAB notation regarding entries of tensors, e.g. A(:, 1)
denotes the first column of the matrix A. We now give a
brief description of some required tensor operations. The
generalization of the matrix-matrix multiplication to tensors
involves a multiplication of a matrix with a d-way tensor
along one of its d possible modes.

Definition 2.1 ( [6, p. 460]) The k-mode product of a ten-
sor A ∈ Rn1×···×nk×···×nd with a matrix U ∈ Rpk×nk is
denoted B = A×k U and defined by

B(i1, · · · , ik−1, j, ik+1, · · · , id) =
nk∑

ik=1

U(j, ik)A(i1, · · · , ik−1, ik,ik+1, · · · , id), (2)

with B ∈ Rn1×···×nk−1×pk×nk+1×···×nd .

For a (d + 1)-way tensor A ∈ Rn×m×···×m and vector
x ∈ Rm, we define the short hand notation for the vector

Axd := A×2 x
T ×3 · · · ×d+1 x

T ∈ Rn.

The Kronecker product will be repeatedly used to describe
the polynomial nonlinearity.

Definition 2.2 (Kronecker product) If B ∈ Rm1×m2

and C ∈ Rn1×n2 , then their Kronecker product B ⊗C is
the m1n1 ×m2n2 matrix

b11 · · · b1m2

...
. . .

...

bm11 · · · bm1m2

⊗C =


b11C · · · b1m2

C
...

. . .
...

bm11C · · · bm1m2
C

 .

(3)

Definition 2.3 The Khatri-Rao productA�B betweenA ∈
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Rn1×p and B ∈ Rn2×p is the matrix C ∈ Rn1n2×p with

C(:, k) = A(:, k)⊗B(:, k), (k = 1, . . . , p).

Another common operation on tensors that we will use
throughout this article is reshaping.

Definition 2.4 We adopt the MATLAB/Octave reshape op-
erator “reshape(A, [n1, n2, n3 · · · ])”, which reshapes the
d-way tensor A into a tensor with dimensions n1 × n2 ×
· · · × nd. The total number of elements of A must be the
same as n1 × n2 × · · · × nd.

Storing all entries of a d-way tensor with dimension size n
requires nd storage units and quickly becomes prohibitively
large for increasing values of n and d. When the data in
the tensor have redundancies, then more economic ways of
storing the tensor exist in the form of tensor decomposi-
tions. The tensor decomposition used throughout this article
is a particular tensor network called matrix product oper-
ators, also called tensor train matrices in the applied math
community [12–14]. Suppose we have an n×m matrix A,
where the row index i can be written as a grouped index
[i1i2 · · · id] such that

i = i1 + (i2 − 1)n1 + · · ·+ (id − 1)

d−1∏
j=1

nj ,

and likewise for the column index j = [j1j2 · · · jd]. This
implies that

1 ≤ ik ≤ nk, 1 ≤ jk ≤ mk (k = 1, . . . , d),

and n = n1n2 · · ·nd, m = m1m2 · · ·md. A matrix product
operator is then a representation of the matrix A as a set
of 4-way tensors A(k) ∈ Rrk×ik×jk×rk+1(k = 1, . . . , d)
such that each matrix entry A([i1i2 · · · id], [j1j2 · · · jd]) is
per definition

∑
k2,...,kd

A(1)(1, i1, j2, k2)A(2)(k2, i2, j2, k3) · · ·A(d)(kd, id, jd, 1).

(4)

Note that r1 = rd+1 = 1 is required in order for the sum-
mation (4) to result in a scalar. A graphical representation of
the matrix product structure is shown in Figure 2 for d = 4.
The fully connected edges represent the auxiliary indices
k2, . . . , kd that are summed over. Figure 2 illustrates the
power of this particular visual representation by replacing
the complicated summation in (4) with a simple graph. The
canonical tensor network ranks r1, r2, . . . , rd+1 are defined
as the minimal values such that the summation in (4) is ex-
actly equal to A([i1i2 · · · id], [j1j2 · · · jd]). An upper bound
on the canonical rank rk for a matrix product operator of d
tensors for which r1 = rd+1 = 1 is given by the following
theorem.

i1 j1 i2 j2 i3 j3 i4 j4

A(1) A(2) A(3) A(4)r1 r2 r3 r4 r5

Fig. 2. Graphical depiction of a tensor network that consists of
four 4-way tensors A(1), . . . ,A(4).

Theorem 2.1 (Modified version of Theorem 2.1 in [15]) For
any matrix A ∈ Rn1n2···nd×m1m2···md there exists a matrix
product operator with ranks r1 = rd+1 = 1 such that the
canonical ranks rk satisfy

rk ≤ min

(
k−1∏
i=1

nimi,

d∏
i=k

nimi

)
for k = 2, . . . , d.

Note that using a matrix product operator structure can re-
duce the storage cost of a square nd × nd matrix from n2d

down to approximately dn2r2, where r is the maximal ten-
sor network rank.

3 Polynomial state space model

3.1 The model

We rewrite our proposed polynomial state space model (1)
in terms of tensors as

xt+1 = Axt + Bud
t ,

yt = C xt + Dud
t , (5)

where xt ∈ Rn is the state vector and yt ∈ Rp,ut ∈ Rm

are the output and input vectors, respectively. The matrices
A ∈ Rn×n and C ∈ Rp×n are the regular state transition
and output model matrices from LTI systems. The main
difference between the model (5) and LTI systems are the
Bud

t and Dud
t terms, where B is a (d+1)- way tensor with

dimensions n×m×m× · · · ×m and D is a (d+ 1)-way
tensor with dimensions p × m × m × · · · × m. The input
vector ut is defined as

ut :=
(

1 u
(1)
t u

(2)
t · · · u(m−1)t

)T
,

which implies that there are m− 1 measured input signals.
An alternative way to write (5) is

xt+1 = Axt + But
d©,

yt = C xt + Dut
d©, (6)

where B,D are the tensors B,D reshaped into n×md and
p × md matrices, respectively, and ut

d© is defined as the

3



d-times repeated left Kronecker product

ut
d© :=

d︷ ︸︸ ︷
ut ⊗ ut ⊗ · · · ⊗ ut ∈ Rmd

. (7)

Each row of B,D can therefore be interpreted as containing
the coefficients of a multivariate polynomial of total degree
d in the m − 1 inputs u(1)t , u

(2)
t , . . . , u

(m−1)
t . Note that the

affine terms, also called the constant terms, of both Bui
d©

and Dui
d© are defined to be exactly zero.

3.2 Internal stability and persistence of excitation

Repeated application of (6) for t = 0, . . . , t − 1 allows us
to write

yt = CAt x0 +

t−1∑
i=0

CAt−1−iBui
d© + Dut

d©. (8)

The current output yt at time t is therefore completely deter-
mined by the initial state x0 and all input signals u0, . . . ,ut.
Since the state sequence is linear when a zero input is ap-
plied, the condition for internal stability of (5) is identical
to LTI systems.

Lemma 1 The polynomial state space model (5) is inter-
nally stable when all eigenvalues of A satisfy |λi| < 1,
i = 1, . . . , n.

A stable polynomial state space model then implies that
the transient part CAt x0 will have a progressively smaller
contribution to yt as t increases. Each term of the sum∑t−1

i=0 CAt−1−iBui
d© can be interpreted as an m-variate

polynomial of total degree d in ui. Writing out (8) for
t = 0, . . . , k − 1 we obtain

y0|k−1 = Ok x0 + Pk u0|k−1, (9)

where

y0|k−1 :=



y0

y1

y2

...

yk−1


∈ Rkp, u0|k−1 :=



u0
d©

u1
d©

u2
d©

...

uk−1
d©


∈ Rkmd

,

and

Ok :=



C

CA

CA2

...

CAk−1


∈ Rkp×n (10)

is the well-known extended observability matrix of linear
time-invariant systems and

Pk :=


D

CB D
...

. . . . . .

CAk−2B · · · CB D

 ∈ Rkp×kmd

(11)

is a block Toeplitz matrix with an exponential number of
columns. Following the idea described in [9], we write (9)
in terms of block Hankel data matrices

Y0|k−1 :=


y0 y1 · · · yN−1

y1 y2 · · · yN

...
...

...

yk−1 yk · · · yN+k−2

 ∈ Rkp×N ,

U0|k−1 :=


u0

d© u1
d© · · · uN−1

d©

u1
d© u2

d© · · · uN
d©

...
...

...

uk−1
d© uk

d© · · · uN+k−2
d©

 ∈ Rkmd×N

as

Y0|k−1 = Ok X + Pk U0|k−1, (12)

where X :=
(
x0 x1 · · · xN−1

)
∈ Rn×N is the state se-

quence matrix and N is sufficiently large. Equation (12) lies
at the heart of subspace identification methods. We now in-
troduce the notion of persistence of excitation for our poly-
nomial state space model.

Theorem 3.1 The rank of the block Hankel kmd×N matrix
U0|k−1 is upper bounded by r := k

(
d+m−1
m−1

)
− k + 1.

Proof 1 Consider the first block of md rows of U0|k−1. Due
to its repeated Kronecker product structure, this block has(
d+m−1
m−1

)
distinct rows, which serves as an upper bound for

its rank. There are k such row blocks in U0|k−1, implying
the upper bound for the rank is k

(
d+m−1
m−1

)
. Each of the k

blocks, however, has one row that consists entirely of 1s.
Only one such row contributes to the rank and the upper
bound for the rank of U0|k−1 is therefore k

(
d+m−1
m−1

)
−k+1.

Definition 3.1 The input of a polynomial state space sys-
tem (5) of total degree d is persistent exciting of order k if
and only if rank(U0|k) = k

(
d+m−1
m−1

)
− k + 1.
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4 Tensor network subspace identification

As the input-output relationship of our polynomial state
space model satisfies (12), any subspace method can be ap-
plied in principle for the identification of the A,B,C,D
matrices. Two candidates are the N4SID algorithm by Van
Overschee and De Moor [16,20] and the MOESP algorithm
by Verhaegen and Dewilde [10, 11].

Of particular concern are the B and D matrices, which have
an exponential number of coefficients that need to be esti-
mated. For moderate values of m and d one could still use
a conventional matrix based implementation. It is possible,
however, that it becomes impractical to store B,D in mem-
ory for large values of both m and d. Our solution to this
problem is to compute and store a tensor decomposition of
B,D instead. More specifically, all entries of B,D can be
computed from a tensor network. This implies that the sub-
space algorithm needs to be modified such that all compu-
tations can be performed on tensor networks. The MOESP
algorithm in particular lends itself very well to such a mod-
ification. The main problem with N4SID is that it first es-
timates a state sequence and then recovers the A,B,C,D
matrices in a single step by solving a linear system. This
last step becomes problematic when B and D are repre-
sented by a tensor decomposition. The MOESP method, on
the other hand, estimates both A,C and B,D in separate
steps. The conventional MOESP algorithm is fully described
in Algorithm 1. Before going into the required tensor net-
work modifications of Algorithm 1 in detail, we first discuss
a few assumptions.

Algorithm 1 Conventional MOESP algorithm [5, p. 159]
Input: L samples (u0,y0), . . . , (uL−1,yL−1), k

Output: Matrices A,B,C,D

1:

(
U0|k−1

Y0|k−1

)
=

(
L11 0

L21 L22

) (
QT

1

QT
2

)

2: SVD of L22 =
(
U1 U2

)(S1 0

0 0

)(
V T
1

V T
2

)
3: Define system order as n := rank(L22)

4: Ok = U1 S
1/2
1 and C = Ok(1 : p, :)

5: Compute A from Ok(1 : kp−p, :)A = O(p+1 : kp, :)

6: Partition UT
2 :=

(
L1 · · · Lk

)
into k blocks of size

(kp− n)× p.

7: Partition UT
2 L21L

−1
11 :=

(
M1 · · · Mk

)
into k blocks

of size (kp− n)×md

8: Define L̄i :=
(
Li · · · Lk

)
, i = 2, . . . k

9: Compute B,D from

L1 L̄2Ok−1

L2 L̄3Ok−2
...

...

Lk−1 L̄kO1

Lk 0


(
D

B

)
=



M1

M2

...

Mk−1

Mk


(13)

4.1 Assumptions

The classical assumptions for the applicability of subspace
methods [5, p. 151] are repeated here with a small modifica-
tion related to the persistence of excitation of the inputs. We
also need two additional assumptions specifically related to
tensor networks.

• Assumption 1: rank(X) = n.
• Assumption 2: rank(U0|k−1) = r = k

(
d+m−1
m−1

)
− k + 1.

• Assumption 3: row(X) ∩ row(U0|k−1) = {0}, where
row(·) denotes the row space of a matrix.

• Assumption 4: N,n, p� md.
• Assumption 5: N = r + kp, L = N + k − 1.

Assumption 1 implies that the polynomial state space system
is reachable 1 , which means that an initial zero state vector
x0 = 0 can be transferred to any state in Rn by means of
a sequence of control vectors u0

d©, . . . ,un−1
d©. Assump-

tion 2 is the modified persistence of excitation condition of
the input. Assumption 3 implies that the input-output data
are obtained from an open-loop experiment, which implies
without having any feedback system. Assumptions 4 and 5
imply that the block Hankel matrix Y0|k−1 can be explic-
itly constructed and does not require to be stored as a ten-
sor network. Note that r is the rank of U0|k−1 as given by
Theorem 3.1. Assumption 5 also ensures that the L11 factor
that we will compute is of full rank and also allows us to
compute k for a given set of L measurements. Indeed, since
L = N + k − 1, this implies that k = L/(p+

(
d+m−1
m−1

)
).

4.2 Construction of U0|k−1 tensor network

The matrix U0|k−1 has dimensions kmd × N and there-
fore needs to be stored as a tensor network. Fortunately, its
block Hankel structure will result in very small tensor net-
work ranks. The most common methods to construct a tensor
network are either the TT-SVD algorithm [14, p. 2301] or
TT-cross algorithm [15, p. 82]. These algorithms are how-
ever computationally too expensive as they neither take the
block Hankel nor the repeated Khatri-Rao product structure

1 The reachability problem of our polynomial state space model
can also be solved using methods based on Algorithm 3.

5



m

U (1) U (2)

kN

m m

1 1

U (d)1 1r2 r3 rd

Fig. 3. The tensor network of U as obtained from Algorithm 2.
Note that r1 = rd+1 = 1.

of U0|k−1 into account. The main idea to convert U0|k−1
into its tensor network is to realize that the matrix

U := reshape(U0|k−1, [m
d, kN ]),

consists of kN columns, each of which is a repeated left
Kronecker product. In other words, if we define the matrix

Ũ :=
(
u0 u1 · · · uk−1 u1 u2 · · ·uN+k−2

)
∈ Rm×kN ,

then

U =

d︷ ︸︸ ︷
Ũ � Ũ � · · · � Ũ . (14)

It is possible to construct the tensor network for U quite
efficiently using (d − 1) SVDs and Khatri-Rao products,
described in pseudocode as Algorithm 2. The desired tensor
network is constructed starting with the first tensor U (1)

and proceeds up to U (d). The correctness of Algorithm 2 is
confirmed as the algorithm consists of computing a Khatri-
Rao product followed by an SVD to determine the tensor
network rank. The most expensive computational step in
Algorithm 2 is the SVD with a computational complexity of
approximately O(rjm

3k2N2) flops [3, p. 254]. A graphical
representation of the obtained tensor network for U with
all dimensions labeled is shown in Figure 3. Algorithm 2
is implemented in the TNMOESP MATLAB package as
rkh2tn.m.

Algorithm 2 Convert repeated Khatri-Rao product matrix
into tensor network.
Input: m× kN matrix Ũ , factor d

Output: tensor network U (1), . . . ,U (d) of (14)
1: U (1) ← reshape(Ũ , [1,m, kN, 1])
2: for j = 1, . . . , d− 1 do
3: T ← reshape(U (j), [rjm, kN ]) % r1 = 1

4: T ← T � Ũ
5: T ← reshape(T , [rjm,mkN ])
6: [U ,S,V ]← SVD(T )
7: rj+1 ← numerical rank of T determined from SVD
8: U (j) ← reshape(U , [rj ,m, 1, rj+1])

9: U (j+1) ← reshape(SV T , [rj+1,m, kN, 1])
10: end for

Converting the result of Algorithm 2 into the tensor network
of the kmd×N matrix U0|k−1 is very straightforward. This

is achieved through the following reshaping

reshape(U (d), [rd,mk,N, 1]). (15)

Another interesting feature is that it is possible to derive
explicit upper bounds for the tensor network ranks of the
U0|k−1 matrix.

Theorem 4.1 The tensor network ranks of the U0|k−1 ma-
trix have upper bounds

ri ≤
(
i− 1 +m− 1

m− 1

)
for i = 1, . . . , d. (16)

Proof 2 For i = 1 we have that r1 = 1, which is trivially
true. Consider j = 1 and line 3 in Algorithm 2. For this
case Ũ has

(
1+m−1
m−1

)
= m distinct columns, which sets

the upper bound for r2 as derived by the SVD in line 7
to m. For j = 2, Ũ � Ũ has

(
2+m−1
m−1

)
distinct columns,

which similarly acts as an upper bound for r3. Note that
the previous ranks r1, r2 remain unchanged in any further
iterations. Using this argument up to j = d− 1 then results
in the rank upper bounds (16).

In practice, when the inputs are persistent exciting, these
upper bounds are always attained. Observe that the tensor
network ranks only depend on the number of inputs m− 1
and the total degree d. Neither the number of outputs p, nor
the number of columns N of U0|k−1 affect the ranks. This
is completely due to the block Hankel and repeated Khatri-
Rao product structures. The following example compares
the tensor network ranks of U0|k−1 with the conventional
upper bounds of Theorem 2.1.

Example 1 Consider a single-input system (m = 2) with
d = 10, the tensor network ranks of U0|k−1 are then sim-
ply r2 = 2, r3 = 3, . . . , r10 = 10. The conventional upper
bounds are r2 = 2, r3 = 4, . . . , r10 = 512. Note the differ-
ence of one order of magnitude for r10. For a system with
four inputs (m = 5) and d = 10, this difference becomes
even larger as we have that r10 = 715, compared to the
conventional upper bound of 1953125.

4.3 Computation of L11,L21,L22

A major advantage of both the conventional N4SID and
MOESP methods is that the orthogonal factors in the LQ de-
composition never need to be computed. The tensor network
modification of Algorithm 1, however, requires the explicit
computation of the orthogonal factors Q1,Q2. In fact, the
LQ decomposition in line 1 of Algorithm 1 cannot be com-
puted in tensor network form. Instead, an economical SVD
of U0|k−1

U0|k−1 = WTQT =
(
W1 W2

)(T1 0

0 0

)(
QT

1

QT
2

)
(17)
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is computed with W ∈ Rkmd×N an orthogonal matrix,
T ∈ RN×N a diagonal matrix and Q ∈ RN×N an orthog-
onal matrix. From assumption 2 it follows that T1 ∈ Rr×r.
Let U (1), . . . ,U (d) denote the tensor network of U0|k−1 and
W(1), . . . ,W(d) denote the tensor network of the orthog-
onal W factor in (17). The orthogonal W factor is then
computed in tensor network form using Algorithm 3.

The main idea of Algorithm 3 is the orthogonalization of
each of the tensors U (1), . . . ,U (d−1) through a thin QR de-
composition at line 3. This orthogonalization ensures that the
obtained tensor network for W has the property W TW =
IN . The thin QR decomposition implies that the orthogonal
matrix W has size rim × ri+1 and Ri ∈ Rri+1×ri+1 . The
Ri factor is always absorbed by the next tensor in the net-
work at line 5. Finally, the last tensor U (d) is reshaped into
an rdkm ×N matrix Ud and an economical SVD is com-
puted at lines 7 and 8, respectively. The computed T and Q
matrices are the desired factors. The computationally dom-
inating step is the SVD of Ud, which needs approximately
O(rdmkN

2) flops. In order for the matrices T ,Q to have
the correct dimensions, it is required that rdkm ≥ N . Us-
ing Theorem 4.1 it can be shown that when L ≈ L+ 1 and
p − 1 ≤ (d − 1)

(
d+m−2
m−2

)
, this condition is always satis-

fied. The implementation of Algorithm 3 is quite straightfor-
ward. Note that due to line 8 of Algorithm 2 the first d− 1
tensors of U0|k−1 are already orthogonal. This implies that
the orthogonalization through the QR decompositions can
be skipped and only lines 7 to 9 of Algorithm 3 need to be
executed on the result of Algorithm 2.

Algorithm 3 Economical SVD of U0|k−1 in tensor network
form.
Input: tensor network U (1), . . . ,U (d) of U0|k−1.
Output: tensor network W(1), . . . ,W(d) of orthogonal W ,

diagonal matrix T and orthogonal matrix Q.
1: for i=1,. . . ,d-1 do
2: Ui ← reshape(U (i), [rim, ri+1]).
3: [Wi, Ri]← QR(Ui).
4: W(i) ← reshape(Wi, [ri,m, 1, ri+1]).
5: U (i+1) ← U (i+1) ×1 Ri.
6: end for
7: Ud ← reshape(U (d), [rdmk,N ]).
8: [W , T , Q]← SVD(Ud).
9: W(d) ← reshape(W , [rd,mk,N, 1]).

A graphical representation of the tensor network for W
and matrices T ,Q with all dimensions labeled as obtained
through Algorithm 3 is shown in Figure 4. Also note that
the persistence of excitation of the input can be numeri-
cally verified by inspecting the singular values on the diag-
onal of T . Indeed, if Assumption 2 is valid, then the nu-
merical rank of U0|k−1 is well-defined and the rank-gap
T (r, r)/T (r + 1, r + 1) should be several orders of magni-
tude large.

m

W(1) W(2) W(d)

N

N

T

Q

m mk

N

1 1

1 r2 r3 rd 1

Fig. 4. The tensor network of W and matrices T ,Q as obtained
from Algorithm 3 .

The required matrix factors L11,L21,L22 can now be com-
puted as

L11 = W1T1 ∈ Rkmd×r,

L21 = Y0|k−1Q1 ∈ Rkp×r,

L22 = Y0|k−1Q2 ∈ Rkp×kp. (18)

The tensor network of L11 is easily found as the first d− 1
tensors are identical to the tensors of W , while the dth tensor

of L11 is W(d) ×3

(
T1 O

)T
.

4.4 Computation of the matrices A and C

Once the matrix factors L11,L21,L22 are computed, then
the conventional MOESP algorithm can be used to find A
and C. The SVD of the kp × kp matrix L22 requires ap-
proximately O(k3p3) flops and reveals the system order n.
The extended observability matrix Ok is then computed as
U1S

1/2
1 , from which the first p rows are taken to be the

C matrix. The A matrix is found from exploiting the shift
property of the extended observability matrix. In order for
the pseudoinverse of the matrix O(1 : kp − p, :) in line 6
of Algorithm 1 to be unique it is required that kp− p ≥ n,
which implies that k ≥ n + 1 for the minimal case p = 1.
This means that k determines the maximal system order
n that can be found. Computing the psuedoinverse of the
(kp−p)×n matrix O(1 : kp−p, :) requires approximately
O((kp− p)n2) flops.

4.5 Computation of the UT
2 L21L

−1
11 tensor network

Line 8 of Algorithm 1 requires the computation and parti-
tioning of the (kp − n) × kmd matrix UT

2 L21L
−1
11 . This

requires the computation of the left inverse of L11 in ten-
sor network form. Fortunately, from (18) it follows that
L−111 = T−11 W T

1 , as W T
1 W1 = Ir. The transpose of

W1 as a tensor network is done by permuting the second
with the third dimension of each tensor in the network.
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The tensor network of L−111 is therefore obtained by per-

muting each of the tensors W(i) into W̃(i)
and computing

W̃(d) ×2

(
T−11 0

)
, where the inverse of T1 is obtained by

inverting its diagonal. Once the tensor network of L−111 is
obtained, multiplication with UT

2 L21 is also performed on
the dth tensor. In fact, the previous multiplication with T−11

can be combined with UT
2 L21. This leads to the following

theorem.

Theorem 4.2 Let W̃(i)
(i = 1, . . . , d) be the tensors

W(i) (i = 1, . . . , d) obtained from Algorithm 3 with their
second and third dimensions permuted. Then the tensor
network M(1), . . . ,M(d) corresponding with the matrix
UT

2 L21L
−1
11 is

M(i) := W̃(i) ∈ Rri×1×m×ri+1 (i = 1, . . . , d− 1),

M(d) := W̃(d) ×2 U
T
2 L21

(
T−11 0

)
∈ Rrd×(kp−n)×km×1.

The final partitioning of UT
2 L21L

−1
11 into k blocks of size

(kp− n)×md is then obtained from

reshape(M(d), [rd, (kp− n),m, k, 1]),

permute(M(d), [1, 2, 4, 3, 5]),

reshape(M(d), [rd, (kp− n)k,m, 1]).

The final three steps to obtain the desired partitioning is
due to the index of the third dimension of M(d) being a
grouped index [ij] with 1 ≤ i ≤ m and 1 ≤ j ≤ k. The first
reshape operation separates this grouped index into its two
components i and j, after which they are permuted and the
j index is finally “absorbed” into the index of the second
dimension.

4.6 Computation of the B,D tensor network

In order to estimate the matrices B,D the linear system (13)
needs to be solved. Computing the pseudoinverse of the
k(kp − n) × (p + n) matrix on the left hand side of (13)
requires approximately O(k(kp − n)(p + n)2) flops. If we
denote this pseudoinverse by L−1, then the concatenation
of D with B is found as

(
D

B

)
= L−1



M1

M2

...

Mk−1

Mk


. (19)

The partitioned UT
2 L21L

−1
11 matrix is already available to us

as a tensor network from the previous section. Therefore, the

contraction M(d)×2L
−1 results in the tensor network that

represents the concatenation of D with B. As mentioned
in Section 3, the affine terms of both B and D are defined
to be zero and hence need to be set explicitly to zero in the
estimation. This can be achieved by multiplying (19) to the
right with the md ×md matrix

P =

(
0 0

0 I

)
,

which is essentially the unit matrix with entry (1, 1) set to
zero. The matrix P has the following exact uniform rank-2
tensor network representation

P = Im ⊗ Im ⊗ · · · ⊗ Im ⊗ Im+(
e1 0

)
⊗
(
e1 0

)
⊗ · · · ⊗

(
e1 0

)
⊗
(
−e1 0

)
,

where all Kronecker factors are m ×m matrices and e1 is
the first canonical basis vector in Rm. The multiplication of(
DT BT

)T
P in tensor network form is then achieved by

contracting all d corresponding tensors with a total computa-
tional complexity of approximately O(dr2m2) flops, where
r denotes the maximal tensor network rank.

4.7 Tensor network MOESP

Algorithm 4 describes our tensor network MOESP (TN-
MOESP) method for the identification of polynomial state
space systems (5). Again, the fact that both A,C and B,D
are estimated separately in MOESP is an advantage for the
required modifications to construct a tensor network version
of this algorithm. Algorithm 4 is implemented in the TN-
MOESP MATLAB package as TNmoesp.m.

Algorithm 4 Tensor network MOESP algorithm
Input: L samples (u0,y0), . . . , (uL−1,yL−1), k

Output: Matrices A,C, tensor network T (1), . . . ,T (d).
1: U (1), . . . ,U (d) ← Algorithm 2
2: reshape(U (d), [rd,mk,N, 1])

3: W(1), . . . ,W(d),T ,Q← Algorithm 3
4:
(
L21 L22

)
= Y0|k−1 Q

5: SVD of L22 =
(
U1 U2

)(S1 0

0 0

)(
V T
1

V T
2

)
6: Define system order as n := rank(L22)

7: Ok = U1 S
1/2
1 and C = Ok(1 : p, :)

8: Compute A from Ok(1 : kp−p, :)A = O(p+1 : kp, :)

9: Partition UT
2 :=

(
L1 · · · Lk

)
into k blocks of size

(kp− n)× p.

10: W̃(i)
:= permute(W(i),[1,3,2,4]), i = 1, . . . , d

11: M(1), . . . ,M(d) ← Theorem 4.2
12: T (i) := M(i), i = 1, . . . , d− 1

8



m

T (1) T (2)

m m

1 1

T (d)1 1r2 r3 rd

ut ut ut

p+ n

Fig. 5. Contraction of the T (1), . . . ,T (d) tensor network with a
vector ut to obtain the concatenation of Dut

d© with But
d©.

13: T (d) := M(d) ×2 L
−1

14: Contract T (1), . . . ,T (d) with tensor network of matrix
P

5 Simulation of the polynomial state space model

Algorithm 4 does not return separate tensor networks for B
and D. This is also not strictly required when simulating the
model. In fact, having the concatenation of B and D avail-
able in one tensor network simplifies the simulation. Instead
of forming the repeated Kronecker product ut

d©, one sim-
ply needs to contract ut with each tensor in the network as
indicated in Figure 5. These contractions are lines 4 and 7 in
Algorithm 5. The computational complexity of Algorithm 5
is approximately O(dmr2 +n2) flops, where r is the maxi-
mal tensor network rank. After the final contraction with ut

on line 7, we obtain the (p+n)×1 vector that is the concate-
nation of Dut

d© with But
d©. Algorithm 5 is implemented

in the TNMOESP MATLAB package as simTNss.m.

Algorithm 5 Simulation of (5) in tensor network form
Input: Initial state vector x0, inputs u0, . . . ,uL−1,

matrices A,C and tensor network T (1), . . . ,T (d) of(
DT BT

)T
Output: outputs y0, . . . ,yL−1.

1: for i=0,. . . ,L-1 do
2: z = T (1)

3: for j=1,. . . ,d-1 do
4: z = uT

i reshape(z, [m, rj+1])

5: z = z reshape(T (j+1), [rj+1,mrj+2])
6: end for
7: z = reshape(z, [p+ n,m])uT

i
8: yi = Cx0 + z(1 : p)
9: x0 = Ax0 + z(p+ 1 : p+ n)

10: end for

6 Numerical Experiments

In this section we demonstrate the efficacy of TNMOESP
and compare its performance with other state-of-the-art non-
linear system identification methods. All algorithms were
implemented in MATLAB and run on a desktop computer

with 8 cores running at 3.4 GHz and 64 GB RAM. The TN-
MOESP package can be freely downloaded from https:
//github.com/kbatseli/TNMOESP.

6.1 Verifying correctness of TNMOESP

First, we verify whether TNMOESP is able to correctly re-
cover the polynomial state space model and compare its
performance with the matrix-based implementation Algo-
rithm 1. We fix the values n = 5, m = 5, p = 3 and
L = 2048 and construct polynomial state space models (5)
for degrees d = 2 up to d = 8. All 5 × 5 A matrices are
constructed such that all eigenvalues have absolute values
strictly smaller than 1, thus ensuring stability of the model.
All other coefficients of B,C,D and the input signals were
chosen from a standard normal distribution. The simulated
outputs for the constructed models were then used to iden-
tify the models with both TNMOESP and a matrix based
implementation of Algorithm 1 2 .

The identified models were then validated by applying 1024
samples of different standard normal distributed inputs and
comparing the simulated outputs of the “real” system with
the outputs of the identified system. Table 1 lists the run
times in seconds for the system identification algorithms to
finish and relative errors ||y − ŷ||F /||y||F , where y is the
real output and ŷ is the output computed from the estimated
models. The matrix based implementation was not able to
estimate the d = 8 model due to insufficient memory. TN-
MOESP consistently outperforms the matrix based method
and for d = 7 is about 20 times faster than the matrix based
method. The relative validation errors indicate that the mod-
els were estimated accurately up to machine precision, thus
validating the correctness of TNMOESP.
Table 1
Total run times for identification and relative validation errors for
increasing d.
d Total Run time [s] Rel. Val. error

Algorithm 1 TNMOESP Algorithm 1 TNMOESP

2 5.2 3.8 1.1e−15 1.2e−14

3 7.1 4.4 9.2e−16 4.7e−14

4 14.0 7.2 2.2e−15 3.1e−14

5 27.4 7.7 8.3e−15 2.9e−14

6 76.3 9.8 1.2e−14 1.4e−14

7 258 13.2 8.0e−14 1.3e−13

8 NA 15.1 NA 4.4e−13

For each of the constructed models with n = 5, m = 5,
p = 3, 5000 output samples were computed using a stan-
dard Kronecker product implementation of (6) and with Al-
gorithm 5. The total simulation times for both methods are

2 This matrix based implementation is available in the TNMOESP
package as moespd.m.
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Table 2
Total run times for computation of 5000 output samples with
Kronecker products and with Algorithm 5 for increasing d.
d 2 3 4 5 6 7 8

Kron. [s] 0.07 0.13 0.19 0.35 1.44 5.53 28.3

Alg. 5 [s] 0.07 0.09 0.12 0.16 0.23 0.31 0.40

listed in Table 2. The benefit of doing the simulation of
the model with tensor networks becomes more pronounced
as the degree d increases with Algorithm 5 being 70 times
faster than the standard implementation.

6.2 Influence of noise - output error model

In this experiment the effect of noise on the measured output
on the identification with TNMOESP is investigated. Noise
on the output implies that the block Hankel matrix Y will be
perturbed by a block Hankel noise matrix E, and therefore
all singular values of L22 will be in the worst case perturbed
by ||E||2. This needs to be taken into account when estimat-
ing the system order n. Luckily, we are only interested in the
left singular vectors of L22, which are not very sensitive to
perturbations when kp < N [5, p. 166]. A polynomial state
space system (5) was constructed as in Experiment 6.1 with
m = 5, p = 3, n = 5 and d = 5. The outputs were simu-
lated by exciting the system with 4096 normal distributed
input samples. Six separate data sets with signal-to-noise
ratios (SNRs) of 5dB, 10dB, 15dB, 20dB, 25dB and 30dB,
respectively, were then created by adding zero-mean Gaus-
sian noise to the simulated outputs. These six data sets were
then used with TNMOESP to estimate a polynomial state
space model. A different set of 4096 input samples was then
used to generate validation data on the “real” and estimated
models. We define the simulation SNR (sim SNR) as

10 log10

( ∑
i y

2
i∑

i(yi − ŷi)2

)

where yi is the output validation signal uncorrupted by noise
and ŷi is the simulated output from the estimated model.
Table 3 compares the SNR of the signals used in the iden-
tification (ID SNR) with the SNR of the simulated signal
(SIM SNR). The relative validation errors ||y− ŷ||F /||y||F
are also indicated. As expected, the identification results im-
prove when data of increasing SNR is used, which is in-
dicated by the monotonically decreasing relative validation
error. The simulated output of the estimated model has a
consistent SNR improvement compared to the output used
for the identification. The better the quality of the signals
used for identification, the smaller the improvement. Even
for the 5dB case, TNMOESP is able to correctly identify
the underlying model, which indicates the robustness of the
algorithm with respect to noise.

Table 3
Identification under 6 different SNR levels.

ID SNR 5dB 10dB 15dB 20dB 25dB 30dB

SIM SNR 9dB 13dB 17dB 21dB 26dB 31dB

Rel. Val. error 0.35 0.21 0.14 0.09 0.05 0.02

6.3 High-end valve control amplifier

In this experiment we compare the performance of TN-
MOESP with other models and methods on real-world data.
The data set is from the same experiment as described in [18,
p. 3936] and the system under consideration is a high-end
valve control amplifier, which is normally used as a pream-
plifier for audio signals. The amplifier is a single-input-
single-output system and was fed a flat spectrum random
phase multisine with a period of 4096 samples, sampled at
1.25 MHz.

We compare four different models and methods. For each
of these models/methods, only the one with the best relative
validation error is reported. First, a linear state space system
was identified by Algorithm 1 with system order n = 3 using
the first 1000 samples. Then, a polynomial state space model
was identified using TNMOESP with d = 6 and n = 30, also
using the first 1000 samples. In addition, we also identified
a Volterra model of degree d = 2 and memory M = 30
using the MALS tensor method described in [1], also using
the first 1000 samples. Finally, a general polynomial state
space as described in [17] was identified using the iterative
methods of the PNLSS MATLAB toolbox 3 with n = 15
and where both polynomials of state and output equations
are of degree 4. In order to obtain good validation errors, the
general polynomial state space model needed to be estimated
on 2 periods of the input signal. Each of the models were
then used to simulate the output from the input that was not
used for identification. The run times and relative validation
errors ||y− ŷ||/||y||, where y denotes the measured output
and ŷ denotes the simulated output, for each of the methods
and models are listed in Table 4.
Table 4
Run times and relative validation errors for four different models
and methods.

Method Run time [s] Rel. Val. error

Linear 0.26 0.418

TNMOESP 0.69 0.148

PNLSS 14264 0.087

Volterra 1.61 0.004

The linear state space model can be identified very quickly
but performs the worst, while TNMOESP improves the val-

3 The PNLSS MATLAB toolbox can be freely downloaded from
homepages.vub.ac.be/˜ktiels/pnlss.html
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Fig. 6. Detail of reference and simulated amplifier output from
different models.

idation at the cost of a slightly longer run time. The gen-
eral polynomial state space system is capable of improving
the validation error by one order of magnitude at the cost
of a very significant run time. Convergence of the iterative
method in the PNLSS toolbox was rather slow as it took
12317 seconds for the relative validation error to drop to
0.29. An interesting avenue of future research is to inves-
tigate whether it is possible to further refine the model ob-
tained through TNMOESP by using it as an initial guess for
the iterative routines in the PNLSS toolbox. This might al-
leviate the long run time due to slow convergence. Surpris-
ingly, the Volterra model is able to achieve a relative valida-
tion error that is another order of magnitude smaller than the
general polynomial state space system, which might suggest
that the real-world system is better described by a Volterra
model rather than a polynomial state space model. Figure 6
shows a few samples of the reference output and simulated
outputs for the four different models. Due to the scale of
the figure, it is not possible to distinguish the output from
the Volterra model from the reference. As evident from the
figure, all nonlinear models produce outputs that are closer
to the real output compared to the linear model.

7 Conclusions

This article introduces a particular polynomial extension of
the linear state space model and develops an efficient ten-
sor network subspace identification method. The polynomial
nonlinearity is described by tensor networks, which solves
the need to store an exponentially large number of parame-
ters. It was shown how the block Hankel input matrix that
lies at the heart of subspace identification is exactly repre-
sented by a low rank tensor network, significantly reducing
the computational and storage complexity during identifica-
tion and simulation. The correctness of our tensor network
subspace algorithm was demonstrated through numerical ex-
periments, together with its robustness in the presence of
noise on the measured output. Finally, the accuracy and to-
tal run time of our method were compared with three other
models and methods. Future work includes the investiga-
tion whether models obtained through TNMOESP are good
candidates as initial guesses for the iterative methods in the
PNLSS toolbox.
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