
Matrix output extension of the tensor network Kalman filter with an
application in MIMO Volterra system identification

Kim Batselier a, Ngai Wong a,
aThe Department of Electrical and Electronic Engineering, The University of Hong Kong

Abstract

This article extends the tensor network Kalman filter to matrix outputs with an application in recursive identification of discrete-time
nonlinear multiple-input-multiple-output (MIMO) Volterra systems. This extension completely supersedes previous work, where only l
scalar outputs were considered. The Kalman tensor equations are modified to accommodate for matrix outputs and their implementation
using tensor networks is discussed. The MIMO Volterra system identification application requires the conversion of the output model
matrix with a row-wise Kronecker product structure into its corresponding tensor network, for which we propose an efficient algorithm.
Numerical experiments demonstrate both the efficacy of the proposed matrix conversion algorithm and the improved convergence of the
Volterra kernel estimates when using matrix outputs.

Key words: Volterra series; tensors; Kalman filters; identification methods; system identification; MIMO; time-varying systems

1 Introduction

In [2], a tensor network Kalman filter was developed to solve
the state estimation problem of the following linear discrete-
time state space model

X(t+ 1) = A(t)X(t) +W (t),

y(t) = c(t)X(t) + r(t), (1)

where X(t) ∈ Rnd×l is a matrix containing l exponentially
long state vectors, y(t) ∈ R1×l is a row vector of l scalar
measurements, A(t) ∈ Rnd×nd

is the state transition ma-
trix, the row vector c(t) ∈ R1×nd

converts the state vec-
tors into measurements and W (t) ∈ Rnd×l, r(t) ∈ R1×l

denote zero-mean independent Gaussian process and mea-
surement noise, respectively. Observe that unlike the con-
ventional Kalman filter with a single state vector, (1) repre-
sents a more general setting by concatenating l state vectors
into the matrix X(t) and l scalar outputs into the row vec-
tor y(t). These l state space models are then “coupled” by a
common state transition matrix A(t) and output model vec-
tor c(t). The simultaneous estimation of the l state vectors
is performed with one Kalman filter, whereby the standard
Kalman equations are rewritten as tensor equations and im-
plemented using tensor networks [6,7]. The tensor network

Email addresses: kim.batselier@eee.hku.hk (Kim
Batselier), nwong@eee.hku.hk (Ngai Wong).

Kalman filter has two main advantages. First, the exponen-
tially long mean vectors and covariance matrices never need
to be explicitly formed. The second advantage is that the
exponential storage and computational cost is transformed
into a linear one.

The l scalar output state space models (1) are motivated by
their application in recursive MIMO Volterra system identifi-
cation. Indeed, a discrete-time time-varying p-input l-output
Volterra system of degree d and memory M is described by
the state space model

X(t+ 1) = A(t) X(t) +W (t),

y(t) = ut
d© X(t) + r(t), (2)

where the row vector

ut :=
(
1 u1(t) u2(t) · · · up(t−M + 1)

)
∈ R1×(pM+1)

contains all p input values at times t down to t−M +1 and
ut

d© is defined as the d-times repeated Kronecker product

ut
d© :=

d︷ ︸︸ ︷
ut ⊗ ut ⊗ · · · ⊗ ut ∈ R1×(pM+1)d . (3)

Each column of the (pM + 1)d × l matrix X(t) contains
all coefficients from the Volterra kernels of degree 0 up to
degree d for each of the l corresponding outputs. A tensor
network Kalman filter is ideally suited for recursive MIMO

Preprint submitted to Automatica 10 October 2018

ar
X

iv
:1

70
8.

05
15

6v
1

 [
cs

.S
Y

]
 1

7
A

ug
 2

01
7

Volterra system identification, given the exponential size of
the Volterra coefficients in X(t). The repeated Kronecker
product form of equation (3) in particular lends itself well
to a tensor network implementation as ut

d© has a rank-1
tensor network representation [2, Lemma 4, p. 23], resulting
in a significant reduction of storage cost and computational
complexity.

However, the limitation to a row vector output y(t) is quite
restrictive for the applicability of the tensor network Kalman
filter to more generic dynamical systems. This provides the
main motivation to extend the tensor network Kalman filter
framework to the following state space model

X(t+ 1) = A(t)X(t) +W (t),

Y (t) = C(t)X(t) +R(t), (4)

where nowY (t) ∈ Rm×l,C(t) ∈ Rm×nd

andR(t) ∈ Rm×l

are matrices. The main contribution of this brief paper is
twofold:

(1) A constructive algorithm is proposed to convert the
MIMO Volterra output model matrix C(t) into its cor-
responding tensor network. By exploiting the specific
structure of the output model matrix C(t), a much
more computationally efficient conversion is obtained,
which is a crucial component for real-time identifica-
tion of MIMO Volterra systems.

(2) The Kalman tensor equations that appear in [2, p. 20]
are rewritten to accommodate for matrix outputs. This
involves a nontrivial modification of the computations
involved and their implementation using tensor net-
works is discussed.

Numerical experiments in Section 6 demonstrate the effi-
cacy of our proposed conversion algorithm and compare the
performance of the tensor network Kalman filter described
in [2] with the newly proposed matrix output tensor network
Kalman filter. It will be shown that using a matrix output can
double the convergence speed of the estimated Volterra ker-
nel coefficients at practically no additional cost. The matrix
output Tensor Network Kalman filter proposed here there-
fore supersedes the work in [2].

2 Tensor notation

Tensors in this article are multi-dimensional arrays that gen-
eralize the notions of vectors and matrices to higher orders.
A d-way or dth-order tensor is denoted A ∈ Rn1×n2×···×nd

and hence each of its entries A(i1, i2, · · · , id) is determined
by d indices. The numbers n1, n2, . . . , nd are called the
dimensions of the tensor. For practical purposes, only real
tensors are considered. We use boldface capital calligraphic
letters A,B, . . . to denote tensors, boldface capital let-
ters A,B, . . . to denote matrices, boldface letters a, b, . . . to
denote vectors, and Roman letters a, b, . . . to denote scalars.
The transpose of a matrix A or vector a are denoted by

AT and aT , respectively. MATLAB colon notation is used
to specify “slices” of tensors. For example, A(:, i) denotes
the ith column of the matrix A, while A(:, :, i) denotes the
ith matrix slice of a third-order tensor A. A more detailed
description of the tensor concepts and operations used in
this article can be found in [1, 2].

3 Converting the output model matrix C(t) into a ten-
sor network

The extension of the tensor network Kalman filter to matrix
outputs requires the conversion of the output model matrix
C(t) into a tensor network. Two cases will be considered.
First, we briefly discuss the case where C(t) is a generic
matrix. The second case deals specifically with the identifi-
cation of MIMO Voltera systems, for which the C(t) matrix
turns out to be highly structured.

3.1 Generic matrix C(t)

The two most common algorithms for the conversion of
a matrix to its corresponding tensor network are the TT-
SVD [7, p. 2301] and the TT-cross approximation [8, p. 82]
algorithms. The first step of applying the TT-SVD algo-
rithm to the C(t) matrix consists of reshaping the matrix
into an mn×nd−1 matrix and computing its singular value
decomposition (SVD). This implies that the whole matrix
C(t) needs to be kept in memory, which quickly becomes
infeasible for increasing values of n and d. The remain-
ing steps of the TT-SVD algorithm are consecutive reshap-
ings and SVDs of the obtained right singular vectors. The
dominating computational step has a cost of approximately
O(14nd+1m2+8m3n3) flops [4, p. 254]. In addition to the
storage cost, the exponential term nd+1 in the computational
complexity limits the applicability of the TT-SVD algorithm
even further.

The TT-cross approximation algorithm circumvents these
limitations by replacing the expensive SVD computation
with another dyadic decomposition, the skeleton or pseudo-
skeleton decomposition [5]. The complexity of the TT-cross
approximation algorithm has a linear dependence on d and
also works when the tensor entries are described by a func-
tion, thus eliminating the need to store the whole matrix
in memory. While the TT-SVD algorithm is able to com-
pute a tensor network representation of a given matrix with
a machine precision accuracy, this is more difficult for the
TT-cross algorithm. In addition, the TT-cross algorithm is
usually slow as it is likely that it needs to be restarted when
the desired accuracy is not met. A recent alternative for the
conversion of a sparse matrix to a tensor network is de-
scribed in [3]. This newly-proposed algorithm converts a
given sparse matrix directly into a tensor network without
any dyadic decomposition. Instead, the sparse matrix is par-
titioned into block matrices, which can be explicitly written
in tensor network form. Machine precision accuracy is guar-
anteed and runtimes are reported to be 500 times faster than
the TT-SVD and TT-cross algorithms.

2

When C(t) is time-independent, the conversion of this ma-
trix to its tensor network only needs to be done once. The
storage and computational complexity of the conversion al-
gorithm is then not that critical as the computation can be
done prior to starting the Kalman filter. When C(t) is time-
varying, then the conversion to its tensor network is required
for each iteration of the Kalman filter. This imposes a se-
vere restriction on the applicability of the tensor network
Kalman filter for real-time filtering of generic time-varying
dynamical systems. Note that the same argument also ap-
plies to the A(t) matrix. As we will demonstrate in the next
subsection, the situation improves significantly when C(t)
is structured, whereby it is possible to exploit the structure
to efficiently obtain its tensor network representation.

3.2 MIMO Volterra output model matrix C(t)

Before discussing the conversion of the MIMO Volterra out-
put model matrix C(t) to a tensor network, we first need to
extend the linear state space model for discrete-time MIMO
Volterra systems (2) to the matrix output case. This exten-
sion is achieved by considering multiple output samples at
once. These output samples can come from different exper-
iments (e.g., with different applied inputs), or by grouping
consecutive output measurements together. Without loss of
generality, we consider the case where m consecutive out-
put measurements are concatenated to obtain the extended
state space model

X(t+ 1) = A(t) X(t) +W (t),
y(t)

y(t+ 1)
...

y(t+m− 1)

 =

ut

d©

ut+1
d©

...

ut+m−1
d©

 X(t) +R(t). (5)

Each row of the C(t) matrix consists of a d-times repeated
Kronecker product, resulting in a highly structured dense
matrix. Applying the TT-SVD to this matrix is not feasi-
ble for large values of pM + 1 and d, due to the exponen-
tial storage and computational complexity. The TT-cross ap-
proximation algorithm on the other hand is too slow in order
to deploy it for real-time applications. Finally, the alterna-
tive matrix to tensor network conversion algorithm reported
in [3] is best suited for sparse matrices, while C(t) will
contain many nonzero entries. Fortunately, it is possible to
derive an efficient algorithm that exploits the repeated Kro-
necker product structure to construct an exact tensor network
representation of C(t). Before providing the constructive
derivation of the main algorithm, we first revisit the result
for the row vector c(t) as described in [2] and explain why
it fails for the matrix output case.

3.3 Failure of row vector result to the matrix case

The repeated Kronecker product structure of c(t) = ut
d© in (2)

gives rise to the following tensor network.

Lemma 1 (Lemma 4 of [2, p. 23]) The unit-rank tensor
network of ut

d© consists of d tensors U (k) ∈ R1×(pM+1)×1

with k = 1, . . . , d and U (k)(1, :, 1) := ut.

The tensor network of c(t) therefore consists of the vector
ut repeated d times, with a total storage cost of O(pM +1)
since we only need to store the vector ut once. Now, defining
the m× (pM + 1) matrix Ut as

Ut :=

ut

ut+1

...

ut+m−1

 ,

we can rewrite the matrix C(t) in (5) as
ut

d©

ut+1
d©

...

ut+m−1
d©

 =

d︷ ︸︸ ︷
Ut �Ut � · · · �Ut, (6)

where � denotes the row-wise Kronecker product. Note
that in [2] the notation � is used to denote the column-
wise Kronecker product. If C(t) in (5) had been the d-
times repeated Kronecker product of Ut, then Lemma 1
would also apply, resulting in a simple rank-1 tensor network
where each of the d tensors is U (k) ∈ R1×m×(pM+1)×1 and
U (k)(1, :, :, 1) := Ut. Finding the tensor network represen-
tation U (1), . . . ,U (d) of a matrix with a row-wise Kronecker
product structure, however, is a nontrivial problem. A con-
structive algorithm that solves this problem is proposed in
the next section.

4 Constructive algorithm

The main idea of our proposed algorithm is to start with the
computation of the last tensor U (d) and build up the whole
network one tensor at a time. The first step is to compute
the row-wise Kroncker product Ut � Ut, which results in
an m× (pM +1)2 matrix. This matrix is then reshaped into
an m(pM + 1)× (pM + 1) matrix T and its SVD is

T = U S V T , (7)

where U ∈ Rm(pM+1)×rd−1 ,V ∈ R(pM+1)×rd−1 are or-
thogonal matrices, S ∈ Rrd−1×rd−1 is a diagonal matrix
with nonnegative entries and rd−1 is the numerical rank of
T . The tensor U (d) is completely determined by reshaping
the matrix product SV T into a rd−1× (pM +1)×1 tensor.
In order to compute U (d−1), one can repeat the same proce-
dure with the left singular vectors U of (7). The matrix U

3

is reshaped into an m× (pM + 1)rd−1 matrix and another
row-wise Kronecker product with Ut is computed. The re-
sulting matrix is also factored with an SVD and the tensor
U (d−1) is retrieved from the reshaped matrix product SV T .
The left singular vectors are then again reshaped and the
procedure repeats until the first tensor U (1) of the network
is found. The whole algorithm is presented in pseudo-code
as Algorithm 1.

The correctness of the algorithm is easily verified as it con-
sists of computing the desired row-wise Kronecker products
in (6) with intermediate SVD computations. The most com-
putationally expensive step in Algorithm 1 is the SVD of the
T matrix. Assuming for notational convenience that r1 =
r2 = · · · = rd−1 = r and defining n := pM + 1, then the
SVD of themn×nrmatrixT requiresO(14mn3r2+8r3n3)
flops and is computed d−1 times. Compared to the TT-SVD
algorithm, Algorithm 1 does not suffer from any exponential
computational complexity. In addition, the obtained tensor
network is guaranteed to be accurate up to machine preci-
sion when the SVD factorizations of T are not truncated.
Note that Algorithm 1 is easily generalized to the case where
each of the factors in the row-wise Kronecker product (6) is
a different matrix.

Algorithm 1 Row-wise Kronecker product matrix to tensor
network conversion
Input: matrix Ut, factor d

Output: tensor network U (1), . . . ,U (d) of (3)
U (d) ← reshape(Ut, [1,m, pM + 1])
for i = d, d− 1, . . . , 2 do

T ← reshape(U (i), [m, (pM + 1)ri]) % rd = 1
T ← Ut � T
T ← reshape(T , [m(pM + 1), (pM + 1)ri])
[U ,S,V]← SVD(T)
ri−1 ← numerical rank of T determined from SVD
U (i) ← reshape(SV T , [ri−1, 1, pM + 1, ri])

U (i−1) ← reshape(U , [1,m, pM + 1, ri−1])
end for

5 Modified Kalman tensor equations

The Kalman tensor equations described in [2, p. 20] are only
valid for l scalar output state space models and therefore
need to be modified in order to work for the matrix output
case. First, we briefly review and extend the assumptions
of the original tensor network Kalman filter, where we will
continue to use the shorthand notation n := pM + 1:

• Each column xk (k = 1, . . . , l) of the matrix X(t) fol-
lows a multivariate Gaussian distribution

1

Z
exp

(
−1

2
(xk −mk)

T Pk (xk −mk)

)
,

with normalization constant Z := ((2π)n
d/2 |Pk|1/2),

where |Pk| denotes the determinant of Pk. The vectors

mk are collected in the matrix M(t) ∈ Rnd×l and sim-
ilarly all covariance matrices are collected into a 3-way
tensor P(t) ∈ Rnd×nd×l,

• each column of the process noise matrix W (t) is a mul-
tivariate Gaussian white noise process. This implies zero
means and diagonal covariance matrices, which are col-
lected into a 3-way tensor W ∈ Rnd×nd×l,

• likewise, each column of the measurement noise matrix
R(t) is a multivariate Gaussian white noise process with
zero means and diagonal covariance matrices, which are
collected into a 3-way tensor R ∈ Rm×m×l,

• The process noise W (t) and measurement noise R(t) are
uncorrelated.

The additional assumption m, l � nd is made for practical
considerations. Just as in [2, p. 20], the initial matrixM(0) is
initialized to a rank-1 tensor network of all zeros. Each of the
l covariance matrices inside P(0) is a diagonal matrix with a
constant value on the diagonal. This assumption also reduces
the corresponding tensor network to be rank-1. We now go
over each of the Kalman tensor equations and discuss the
required modifications and tensor network implementations.

5.1 Prediction steps

Both prediction steps

M+ = M(t)×1 A(t),

P+ = P(t)×1 A(t)×2 A(t) +W ,

remain unchanged. Their implementation using tensor net-
works is therefore as in [2, p. 20-21].

5.2 v = y(t)−M+ ×1 c(t)

With the extension to matrix outputs, the first update step
needs to be modified into

V = Y (t)−M+ ×1 C(t),

with V ∈ Rm×l. The product M+×1C(t) is computed by
contracting their respective tensor networks with each other.
The tensor network for C(t) is obtained from Algorithm 1.
The assumption m, l� nd implies that the resulting matrix
V is small enough to be stored in memory.

5.3 s = P+ ×1 c(t)×2 c(t) + diag(R(t))

The second update step changes quite significantly. The l-
dimensional vector s is now replace by the m×m× l tensor
S, which is obtained from

S = P+ ×1 C(t)×2 C(t) +R.

The contraction P+×1 C(t)×2 C(t) with tensor networks
is performed in an identical way as the contraction P(t)×1

4

A(t)×2A(t) from the prediction step. The resulting tensor
network can then be contracted into an m ×m × l tensor
and added to R directly.

5.4 K = P+ ×2 c(t)×3 diag(s)−1

Computation of the Kalman gain also changes significantly.
Whereas in [2] the Kalman gain is an nd × l matrix, it now
becomes an nd×m×l tensor K and is also stored as a tensor
network. The contraction P+ ×2 C(t) is quite straightfor-
ward using tensor networks and results in an nd×m× l ten-
sor. In the output matrix case the vector s is replaced by a ten-
sor S, which means that the scaling operation ×3diag(s)−1

also needs to change. Each of the l matrix slices S(:, :, i) is
inverted and then contracted with each of the l tensor slices
of the first Kalman gain tensor network core

K(1)(i, :, :, :)×2 S(:, :, i)−1 for i = 1, . . . , l. (8)

Observe that by fixing the first index in K(1)(i, :, :, :) we
obtain an n × m × r1 tensor. Likewise, by fixing the last
index in S(:, :, i) we obtain an m×m matrix.

5.5 M(t+ 1) = M+ +K ×2 diag(v)

With the v vector replaced by them×lmatrix V , the scaling
operation K ×2 diag(v) is computed in a similar fashion as
in (8). Each of the l tensor slices K(1)(i, :, :, :) is contracted
with each column of V as K(1)(i, :, :, :) ×2 V (:, i)T for
i = 1, . . . , l. The resulting tensor network then corresponds
with an nd × l tensor, which is added to M+ in tensor
network form to obtain the new estimate of the vector means
M(t+ 1).

5.6 P(t+ 1) = P+ − (K �K)×3 diag(s)

In the matrix output case, the Kalman gain becomes an
nd×m× l tensor K for which the column-wise outer prod-
uct operation �, c.f. [2, p. 18], is not defined. Once again,
the outer product will be computed for each of the l slices
K(1)(i, :, :, :). We first define the r1n×m matrix Ki as the
matrix obtained from permuting and reshaping the n×m×r1
tensor K(1)(i, :, :, :). The matrix product

Ki S(:, :, i)KT
i

then results in an r1n × nr1 matrix, which is then per-
muted and reshaped into an n × n × r21 tensor Ki. This
tensor Ki is then the ith slice of the tensor network core of
(K �K)×3diag(s). Just as in Lemma 3 from [2, p. 22], the
remaining tensor network cores of (K �K)×3 diag(s) are
the tensor Kronecker products K(k) ⊗K(k) (k = 2, . . . , d).
The resulting tensor network is then subtracted from the ten-
sor network that represents P+ to obtain the updated co-
variance tensor P(t+ 1).

Table 1
Median runtime to convert C(t) into a tensor network with the
TT-SVD and Algorithm 1 for different values of d.

d TT-SVD[s] Algorithm 1[s]

2 0.0003 0.0005

3 0.0030 0.0029

4 0.1448 0.0533

5 1.2025 0.1720

6 15.1880 0.3135

7 157.676 0.4414

6 Experiments

In this section, we demonstrate the effectiveness of Al-
gorithm 1 and the modified matrix output tensor network
Kalman filter through numerical experiments. All compu-
tations were performed in MATLAB on an Intel i5 8-core
processor running at 3.4 GHz with 64 GB RAM 1 .

6.1 Converting C(t) into a tensor network

In order to demonstrate the efficacy of Algorithm 1, a matrix
Ut ∈ R100×10 was created with samples drawn from a stan-
dard normal distribution. A conversion of the C(t) matrix
with a repeated row-wise Kronecker product structure to its
corresponding tensor network was performed with both the
TT-SVD algorithm and Algorithm 1. The TT-SVD algorithm
was also implemented by ourselves in MATLAB. The con-
version was run for d = 2, . . . , 7 and 20 runs were performed
for each value of d. The median runtime for each value of
d for both algorithms is shown in Table 1. Note that for
d = 2, the TT-SVD algorithm and Algorithm 1 are identical,
as they both consist of computing the row-wise Kronecker
product and a singular value decomposition. This explains
the similar runtime for low values of d. The lower computa-
tional complexity of Algorithm 1 becomes more prominent
for increasing values of d. For d = 7, Algorithm 1 was able
to compute the desired result at machine precision accuracy
about 350 times faster than the TT-SVD algorithm.

6.2 Comparison of scalar with matrix output

In order to be able to compare the performance of the scalar
output Kalman filter with the matrix output Kalman filters
in about 100 iterations, we consider the following time-
invariant SISO Volterra system

x(t+ 1) = x(t),

y(t) = C(t)x+ r(t),

1 MATLAB implementations of both Algorithm 1 and the ma-
trix output tensor network Kalman filter are freely available from
https://github.com/kbatseli/TNKalman.

5

Table 2
Median runtime per iteration and total runtime to reach an accuracy
of 10−4 for different values of m.
m 1 2 3 4 5

tmedian per iteration [s] 0.44 0.58 1.95 3.15 4.71

ttotal,1e−4 [s] NA 32.82 41.87 51.89 63.21

with d = 4,M = 5. The state vector x(t) ∈ R1296 contain-
ing the Volterra kernel coefficients was constructed as h d©,
where h ∈ R6 is a random vector, sampled from a standard
normal distribution. The measurement noise r(t) was sam-
pled from a zero-mean Gaussian distribution with a variance
of 10−8. All input samples were drawn from a standard nor-
mal distribution. A 100 iterations of tensor network Kalman
filters were run for incremental values of m, starting from
m = 1 (the scalar output case) up to m = 5. The covariance
matrix was initialized to the identity matrix and a tolerance
of 10−10 was set for the TN-rounding procedure. The rela-
tive error

||h d© −m(t)||2
||h d©||2

was computed at each iteration of the different tensor net-
work Kalman filters and is shown in Figure 1. Note that
curve A in Figure 1 corresponds with the result of the tensor
network Kalman filter described in [2]. We can deduce from
Figure 1 that a tensor network Kalman filter that processes
m output values per iteration converges approximately m
times faster. For example, the estimated state vector of the
tensor network Kalman filter with m = 2 reaches an accu-
racy of approximately 4 correct digits after about 65 itera-
tions. The estimate of the tensor network Kalman filter with
m = 4 reaches the same accuracy after about 32 iterations.
This comes as no surprise, as the amount of “information”
that is used to update the mean vector and covariance matrix
increases proportional with the output size m. The median
runtime per iteration and the total runtime for the different
tensor network Kalman filters to obtain estimates with an
accuracy of 10−4 are shown in Table 2. Remarkably, set-
ting m = 2 effectively doubles the convergence rate of the
estimated Volterra coefficients at practically zero additional
cost. Higher values of m result in longer runtimes per iter-
ation and longer total runtimes to reach a certain accuracy.
This is entirely due to the tensor network rounding proce-
dure, which is required to keep the network ranks small.
In fact, 90% of the runtime per iteration is spent in round-
ing, while the remaining 10% are the actual Kalman tensor
computations described in Section 5. Future improvements
in the computational complexity of the rounding procedure
will therefore have an immediate benefit on the proposed
tensor network Kalman filter.

7 Conclusions

This article presented an extension of the tensor network
Kalman filter to matrix outputs with an application in the

Fig. 1. Relative error of estimated Volterra coefficients for increas-
ing number of output samples m.

recursive identification of discrete-time nonlinear MIMO
Volterra systems. The extension to matrix outputs com-
pletely supersedes the work reported in [2]. A constructive
algorithm was proposed that is able to efficiently convert
the output model matrix C(t) with a row-wise Kronecker
product structure into its corresponding tensor network. In
addition, the Kalman tensor equations were modified to the
matrix output case and their implementation using tensor
networks were discussed. A possible future improvement is
to enhance numerical stability of the computations through
the implementation of a square-root tensor network Kalman
filter.

References

[1] K. Batselier, Z. M. Chen, and N. Wong. Tensor Network alternating
linear scheme for MIMO Volterra system identification. Automatica,
84:26–35, 2017.

[2] K. Batselier, Z. M. Chen, and N. Wong. A Tensor Network
Kalman filter with an application in recursive MIMO Volterra system
identification. Automatica, 84:17–25, 2017.

[3] K. Batselier and N. Wong. Computing low-rank approximations of
large-scale matrices with the Tensor Network randomized SVD. ArXiv
e-prints, 2017.

[4] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, 3rd edition, October 1996.

[5] S.A. Goreinov, E.E. Tyrtyshnikov, and N.L. Zamarashkin. A theory of
pseudoskeleton approximations. Linear Algebra and its Applications,
261(1):1 – 21, 1997.

[6] R. Orús. A practical introduction to tensor networks: Matrix product
states and projected entangled pair states. Annals of Physics, 349:117
– 158, 2014.

[7] I. V. Oseledets. Tensor-train decomposition. SIAM J. Sci. Comput.,
33(5):2295–2317, 2011.

[8] I. V. Oseledets and E. Tyrtyshnikov. TT-cross approximation for
multidimensional arrays. Linear Algebra and its Applications,
432(1):70–88, 2010.

6

