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Abstract

This paper studies the problem of selecting a submatrix of a positive definite matrix in order to achieve a desired bound on the
smallest eigenvalue of the submatrix. Maximizing this smallest eigenvalue has applications to selecting input nodes in order
to guarantee consensus of networks with negative edges as well as maximizing the convergence rate of distributed systems.
We develop a submodular optimization approach to maximizing the smallest eigenvalue by first proving that positivity of
the eigenvalues of a submatrix can be characterized using the probability distribution of the quadratic form induced by the
submatrix. We then exploit that connection to prove that positive-definiteness of a submatrix can be expressed as a constraint
on a submodular function. We prove that our approach results in polynomial-time algorithms with provable bounds on the size
of the submatrix. We also present generalizations to non-symmetric matrices, alternative sufficient conditions for the smallest
eigenvalue to exceed a desired bound that are valid for Laplacian matrices, and a numerical evaluation.

1 Introduction

An increasingly widespread approach to controlling net-
worked systems is to select a set of nodes to perform ac-
tuation (e.g., selecting generators to participate in power
system control, or designating agents as leaders in multi-
agent systems), while relying on network effects to steer
the remaining nodes to a desired state [17,24]. Mathe-
matically, this approach is often modeled as creating an
induced submatrix, in which rows and columns corre-
sponding to the leaders are removed [2]. The dynamics
of the remaining network nodes are then specified by the
induced submatrix. A prominent example of this class of
systems is the grounded Laplacian matrix, which is cre-
ated in consensus networks when the states of a subset
of leader nodes are set identically to zero [19].

The performance of such systems is known to be heav-
ily influenced by the spectrum of the induced submatrix
[20]. Of particular importance is the smallest eigenvalue
of the induced sub-matrix. In [21], it was shown that
the rate of convergence of a consensus network is deter-
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mined by the magnitude of the smallest eigenvalue of
the grounded Laplacian matrix. The sign of the small-
est eigenvalue determines whether the system is stable.
Networks with antagonistic interactions, such as biolog-
ical regulatory networks with repressive connections or
social networks in which users disagree, may be unsta-
ble [3,26]. Ensuring consensus in such systems is equiv-
alent to selecting a submatrix in which all eigenvalues
are positive.

The role of the smallest eigenvalue of the grounded ma-
trix implies that an analytical approach to selecting sub-
matrices in which all eigenvalues are bounded below by a
desired value would lead to improved stability and faster
convergence of networked systems [20,21,26]. However,
so far to the best of our knowledge there are no compu-
tational techniques for maximizing the smallest eigen-
value. The main difficulty is that, unlike metrics such as
the inverse trace [5] and convergence error [4], the small-
est eigenvalue of the grounded Laplacian is not known
to possess any structure such as submodularity that en-
ables development of efficient optimization algorithms
with formal guarantees. Hence, while an efficient input
selection algorithm with provable guarantees would im-
prove the stability, robustness, and convergence rate of
networked systems, at present no such algorithms that
maximize the smallest eigenvalue are available.

In this paper, we present a submodular optimization
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approach to input selection in order to maximize the
smallest eigenvalue of an induced submatrix such as
the grounded Laplacian. Specifically, we investigate the
problem of selecting a minimum-size input set in or-
der to guarantee that the smallest eigenvalue is above a
desired threshold. Our approach is as follows. We first
prove that the eigenvalue condition holds if and only if
an induced quadratic form is positive with probability
one. Second, we show that this condition can be mapped
to a constraint on a submodular function, equal to the
probability that the quadratic form is zero when the in-
put is a Gaussian random vector. Finally, we prove that
this probability can be computed in polynomial time.

We analyze the optimality guarantees of our proposed
approach and prove that it the number of selected input
nodes is within a logarithmic bound of the minimum-
size input set. We show that the submodular optimiza-
tion approach is applicable to problems including ensur-
ing consensus of signed networks and maximizing con-
vergence rate, and also explore generalizations to non-
symmetric matrices (e.g., arising from directed graphs).
We propose alternative sufficient conditions that are ap-
plicable to Laplacian matrices. Our sufficient conditions
consist of bounds on the inverse trace and log determi-
nant of the submatrix, and are shown to be submodular
via spectral submodularity techniques. Our approach is
validated through numerical study.

The paper is organized as follows. Section 2 reviews the
related work. Section 3 gives relevant background. Sec-
tion 4 presents the problem formulation and two moti-
vating applications. Section 5 presents our proposed sub-
modular framework. Section 6 discusses extensions to
non-symmetric matrices and alternative sufficient con-
ditions. Section 7 contains numerical results. Section 8
concludes the paper.

2 Related Work

The importance of the smallest eigenvalue of grounded
Laplacian graphs was identified in [21], where it was
shown that the magnitude of the smallest eigenvalue de-
termines the rate of convergence to consensus. The eigen-
values of the grounded Laplacian were further studied
in [19,20]. While these works analyzed the impact of the
smallest eigenvalue and developed bounds on the small-
est eigenvalue for different classes of graph, the problem
of selecting nodes based on this criterion remains open.

Consensus in networks with both positive and negative
edge weights, in which the negative weights represent an-
tagonistic interactions between nodes, has been studied
in [1,27]. Necessary and sufficient conditions for consen-
sus in such networks without inputs based on effective
resistance were proposed in [3,27]. To the best of our
knowledge, the only work that considers input selection
in order to ensure consensus in networks with negative

edges is the preliminary conference version of this paper
[6]. Compared to [6], this paper presents tighter neces-
sary and sufficient conditions for consensus. The related
problem of controllability of signed networks was pro-
posed in [1], but makes fundamentally different assump-
tions, namely that the input nodes can follow any arbi-
trary state trajectory.

The performance of networked systems with input
nodes, often denoted as leaders, has been studied ex-
tensively [15,17,24]. In particular, prior works have pro-
posed techniques for selecting input nodes to optimize
metrics including robustness to noise [5], convergence
rate [4], and controllability [23], with submodular op-
timization as one approach. At present, however, there
are no polynomial-time algorithms with provable guar-
antees for selecting input nodes in order to optimize the
minimum eigenvalue of networked systems.

3 Notation and Preliminaries

In what follows, we give needed background on symmet-
ric matrices, probability, and submodularity, and define
notations that will be used throughout the paper.

Let In denote the n×n identity matrix.We omit the sub-
script n when the dimensionality of the matrix is clear
for compactness of notation. A matrix A is symmetric if
A = AT , whereAT denotes the transpose ofA. Any sym-
metric matrix can be written in the form A = UΛUT ,
where U is a unitary matrix (i.e., UUT = I) and Λ is a
real diagonal matrix. A symmetric matrix A is positive
definite if all eigenvalues are positive, or equivalently, if
vTAv > 0 for all vectors v. The notation A ≻ 0 denotes
positive definiteness of A, while A ≻ B if (A−B) is pos-
itive definite. For any matrix A, the set of eigenvalues of
A is denoted as λ1(A), . . . , λn(A), where it is assumed
that λ1(A) ≥ λ2(A) ≥ · · · ≥ λn(A). We also use the
notation λmin(A) to denote the minimum eigenvalue of
A. Finally, we let D(S) denote a diagonal matrix with
(D(S))ii = 1 if i ∈ S and all other entries 0.

For an n×nmatrix A, let S ⊆ {1, . . . , n} denote a set of
indices.We letA(S) denote the submatrix formed by the
rows and columns indexed in S. Some interpretations of
S andA(S) are discussed in Section 4. The following the-
orem describes the relationship between the eigenvalues
of a matrix A and the eigenvalues of a submatrix.

Theorem 1 (Cauchy Interlacing Theorem [12])
Let A be an n × n symmetric matrix and let A′ =
A({1, . . . , n} \ {i}) for some i ∈ {1, . . . , n}. Then

λ1(A) ≥ λ1(A
′) ≥ λ2(A) ≥ · · · ≥ λn−1(A)

≥ λn−1(A
′) ≥ λn(A).
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As a corollary to Theorem 1, we have that if S ⊆ T ⊆
{1, . . . , n}, then λmin(A(S)) ≤ λmin(A(T )), or in other
words, the minimum eigenvalue λmin(S) is monotone
increasing in the set S.

We now define notations and basic properties for cer-
tain random variables. Throughout the paper, we let
fZ(z) and FZ(z) denote the probability density and dis-
tribution functions of random variable Z evaluated at
z ∈ R, respectively. We let E(·) denote expectation, and
let Pr(·) denote the probability of an event occurring.

Recall that for a Gaussian random vector z, with mean
vector µ and covariance matrix Σ, the random variable
Mz for anymatrixM is Gaussianwith meanMµ and co-
variance MΣMT . If X1, . . . , Xr are independent Gaus-
sian random variables with zero mean and unit variance,
then the random variable Z = X2

1 + · · · + X2
r is a chi-

squared random variable with r degrees of freedom, with
probability density function

fZ(z) =
z

r

2
−1e−

z

2

2
r

2Γ
(

r
2

)

for z > 0 and 0 otherwise, where Γ denotes the gamma
function. The mean of Z is r, while the variance of Z is
2r.

Finally, we give brief background on submodular func-
tions. Let V denote a finite set. A function f : 2V → R

that takes as input a subset of V and gives as output a
real number is submodular if, for any sets S, T ⊆ V ,

f(S) + f(T ) ≥ f(S ∩ T ) + f(S ∪ T ).

Equivalently, f is submodular if and only if, for any S ⊆
T ⊆ V and any v /∈ T ,

f(S ∪ {v})− f(S) ≥ f(T ∪ {v})− f(T ).

A function f is supermodular if−f is submodular, while
a function is modular if it is both submodular and su-
permodular. Any positive weighted linear combination
of submodular functions is submodular. Finally, the fol-
lowing lemma gives a further construction of submodu-
lar functions.

Lemma 1 ([10]) Suppose that g(S) is nondecreasing
and submodular as a function of S. Then for any real
number ζ, the function

g(S) = min {f(S), α}

is nondecreasing and submodular as a function of S.

4 Problem Formulation and Motivation

This section presents the problem formulation, as well as
motivating applications to maximizing the convergence
rate of a leader-follower network and ensuring consensus
in a network with negative edge weights.

Let A denote a symmetric n × n matrix, and let V =
{1, . . . , n}. The problem studied in this paper is formu-
lated as

minimize |S|

s.t. λmin(A(V \ S)) ≥ β
(1)

where β ∈ R. In words, Eq. (1) seeks to remove the
minimum-size set S of rows and columns of a matrix
A in order to ensure that the eigenvalues of the sub-
matrixA(V \S) are above a bound β. We will prove that
(1) is equivalent to a submodular optimization problem.
First, however, we will motivate (1) by discussing its
connection to consensus problems.

Consider a network of n nodes, indexed in the set V =
{1, . . . , n}. An edge (i, j) between nodes i and j exists if
node i influences the dynamics of node j and vice versa.
Edges are assumed to be undirected, and the set of edges
is denoted E. The neighbor set of node i is defined as
Ni = {j : (i, j) ∈ E}, and consists of the set of nodes
that influence the dynamics of i. There is a nonnegative
weight Wij for each edge (i, j) ∈ E, with Wij = Wji.

For such a network, we define the Laplacian matrix L as
the n× n symmetric matrix with entries

Lij =















−Wij , (i, j) ∈ E
∑

j∈N(i) Wij , i = j

0, else

Each node i has a time-varying real-valued state xi(t).
The input nodes maintain constant state values, which
are assumed to be zero without loss of generality. The
non-input nodes have state dynamics

ẋi(t) = −
∑

j∈Ni

Wij(xi(t)− xj(t)). (2)

In this application, the set S is equivalent to the set of
input nodes. To see this, let xS(t) denote the state vector
of the non-input nodes. The dynamics of the non-input
nodes can then be written as

ẋS(t) = −L(V \ S)xS(t).

It was shown in [15] that xS(t) will converge to zero,
provided that each non-input node is path-connected
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to at least one input node. The following proposition,
which is analogous to a result first demonstrated in [21],
describes the convergence rate of the dynamics (2).

Proposition 1 The state vector xS(t) satisfies

||xS(t)||2 ≤ e−λmin(L(V \S))t||xS(0)||2.

The proof follows from straightforward Lyapunov anal-
ysis using the function V (xS) = 1

2x
T
SxS . Hence, maxi-

mizing the minimum eigenvalue will minimize the con-
vergence rate to consensus, and choosing the set S in Eq.
(1) is equivalent to selecting a set of input nodes that
satisfy a given bound on the convergence rate. Practical
applications include maximizing the speed of influence
propagation in a social network [11], as well as improving
the performance of formation control algorithms, which
often use consensus as an inner loop [22].

The consensus dynamics (2) can also be considered in
networks whereWij < 0 for some edges (i, j). Such nega-
tive weights represent antagonistic interactions between
nodes, for example, negative social interactions [16] or
repressive regulation in biological networks. In such net-
works, convergence to consensus is not guaranteed be-
cause the Laplacian matrix may not be positive definite,
and the problem of selecting a subset of input nodes in
order to ensure consensus in a signed network is equiv-
alent to problem (1) with β = 0.

5 Proposed Submodular Optimization Ap-
proach

This section presents our submodular optimization ap-
proach to maximize the smallest eigenvalue of a sub-
matrix (Eq. (1)). The proposed approach is valid for
any symmetric matrix A, including matrices represent-
ing networks with negative edges. We first present an
equivalent problem formulation to (1) and prove that it
is submodular. We then propose algorithms that exploit
the submodular structure and analyze their complexity
and optimality bounds.

5.1 Equivalent Formulation and Proof of Submodular-
ity

We first observe that we can assume that β = 0 in
(1) without loss of generality, since we can construct

a new matrix Â = A − βI if needed and ensure that
λmin(Â(S)) > 0. Our equivalent formulation arises from
the following preliminary lemma.

Lemma 2 For any n×n symmetric matrixA and subset
S ⊆ {1, . . . , n}, the following are equivalent:

(i) A(S) is positive definite.

(ii) There exists α > 0 such that A + αD(V \ S) is
positive definite.

(iii) If w is an n-dimensional Gaussian random vector
with mean 0 and covariance matrix I, then

E

(

min

{

α
∑

i/∈S

w2
i + wTAw, 0

})

= 0.

Proof: We first show that (i) and (ii) are equivalent.
Since A(S) is a submatrix of A + αD(S), we have that
A + αD(S) ≻ 0 implies that A(S) ≻ 0. Now, suppose
that A(S) ≻ 0, and suppose without loss of generality
that S = {1, . . . , k} for some k. Then A+αD(V \S) ≻ 0
is equivalent to

(

A(S) A(S, V \ S)

A(S, V \ S) A(V \ S, V \ S) + αI

)

≻ 0.

By the Schur complement theorem,A+αD(V \S) ≻ 0 if
and only if A(S) ≻ 0, which is true by assumption, and

A(V \ S, V \ S) + αI ≻ A(S, V \ S)A(S)−1A(V \ S, S),

which can be satisfied by choosing α sufficiently large.

We now show that (ii) and (iii) are equivalent. First, if
(ii) holds, then

min

{

α
∑

i/∈S

w2
i + wTAw, 0

}

= 0

for all w, and hence the expectation is zero. Conversely,
suppose that (iii) holds, and yet A + αD(V \ S) is not
positive definite. Let x ∈ R

n satisfy xT (A + αD(V \
S))x = −δ for some δ > 0. Since xT (A+αD(V \S))x is a
continuous function of x, there is a ball B(x, ǫ) centered
on x with radius ǫ such that yT (A+αD(V \S))y < − δ

2
for all y ∈ B(x, ǫ). Hence

E

(

min

{

α
∑

i/∈S

w2
i + wTAw, 0

})

≤

∫

B(x,ǫ)

min

{

α
∑

i/∈S

y2i + yTAy, 0

}

fw(y) dy

< 0,

a contradiction. ✷

We define the function Q(S) as

Q(S) , E
(

min
{

wT (A+ αD(S))w, 0
})

,

4



where w is an N(0, I) random vector of dimension n.
By Lemma 2, Eq. (1) is equivalent to

minimize |S|

s.t. Q(S) = 0
(3)

The following theorem establishes that (3) is a submod-
ular optimization problem.

Theorem 2 The function Q(S) is increasing and sub-
modular as a function of S.

Proof: The function Q(S) is an integral that can be ap-
proximated as a limit of Riemann sums. Define Qm(S)
as

Qm(S)

=

m
∑

i=1

min
{

(xmi)T (A+ αD(S))xmi, 0
}

fw(x
mi)δm,

where the {xmi : i = 1, . . . ,m, m = 1, 2, . . .} and {δm :
m = 1, 2, . . .} are chosen so that Qm(S) converges to
Q(S) as m→∞.

For each m and i, we have that

(xmi)T (A+ αD(S))xmi = (xmi)TAxmi + α
∑

j∈S

(xmi
j )2,

which is increasing andmodular as a function ofS. Hence
by Lemma 1,

min
{

(xmi)T (A+ αD(S))xmi, 0
}

is an increasing submodular function of S. Qm(S) is
therefore a nonnegative weighted sum of increasing sub-
modular functions, and hence is increasing and submod-
ular.

Finally, Q(S) is the pointwise limit of a sequence of sub-
modular functionsQm(S), and hence is submodular. ✷

Intuitively, formulation (3) can be interpreted as a cov-
ering constraint, namely, for every vector x satisfying
xTAx < 0, there must exist an i ∈ S such that xi 6= 0.
Such covering problems are typically submodular. Since
in this case the number of such vectors x is uncountably
infinite, we instead require that a Gaussian random vec-
tor w satisfies wTAw > 0 with probability 1, which is
equivalent by Lemma 2.

Theorem 2 implies that a submodular optimization ap-
proach can be used to approximate (3) with provable
optimality guarantees. These techniques are described
in detail in the following section.

5.2 Algorithms and Analysis

This section presents algorithms that exploit the sub-
modular structure identified in Theorem 2 to approx-
imate the solution to (3) with provable optimality
bounds. We first discuss computation of Q(S), and then
present an algorithm for approximating (3).

The computation of Q(S) is as follows. First, we write
A+ αD(S) = UΛUT , where U is a unitary matrix and
Λ is diagonal. Hence ifw is anN(0, I) Gaussian random
variable, then

wT (A+ αD(S))w = zTΛz,

where z is a Gaussian random variable with zero mean
and covariance matrix UUT = I, i.e., a vector of in-
dependent standard normal random variables. The ran-
dom variable zTΛz is a linear combination of χ2 random
variables. Letting Z = zTΛz, Q(S) can be expressed as

Q(S) =

∫ 0

−∞

zfZ(z) dz.

Equivalently, if we define Ẑ = −Z, then

Q(S) = −

∫ ∞

0

ẑfẐ(ẑ) dẑ = −

∫ ∞

0

Pr(Ẑ > ẑ) dẑ.

Q(S) can be computed via numerical integration of

Pr(Ẑ > ẑ). The following result gives an approach for
computing the integrand.

Proposition 2 ([13]) Let W = a1Y1 + · · · + amYm,
where a1, . . . , am are scalars and Y1, . . . , Ym are χ2

1-
random variables with mean 1. Then

Pr(W > w) =
1

2
+

1

π

∫ ∞

0

sin θ(u)

uρ(u)
du, (4)

where

θ(u) =
1

2

m
∑

r=1

(tan−1 (aru))−
1

2
xu, ρ(u) =

m
∏

r=1

(1 + a2ru
2)

1

4

We define the following approximations for computing
Q(S). We let g(z;S) = Pr(Ẑ > z) and g(z;S,K) to be
the truncation of (4) at K > 0, defined as

g(z;S,K) =
1

2
+

1

π

∫ K

0

sin θ(u)

uρ(u)
du.
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Proposition 3 For any ǫ > 0, there exist parameters
R, K, and N satisfying R = O((− log ǫ + n)λmax(A)),
K = O( 1

λmin(A) ), and N = O(R/ǫ), such that |Q(S) −

Q(S)| < ǫ.

Proof: The expression |Q(S)−Q(S) can be bounded by

|Q(S)−Q(S)|

=

∣

∣

∣

∣

∣

∫ ∞

0

g(z;S) dz −

∫ R

0

g(z;S) dz +

∫ R

0

g(z;S) dz

−
N
∑

i=1

g(zi, S)δ +

N
∑

i=1

g(zi;S)δ −
N
∑

i=1

g(zi;S)δ

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ ∞

R

g(z;S) dz

∣

∣

∣

∣

(5)

+

∣

∣

∣

∣

∣

∫ R

0

g(z;S) dz −
N
∑

i=1

g(zi;S)δ

∣

∣

∣

∣

∣

(6)

+

∣

∣

∣

∣

∣

N
∑

i=1

δ(g(zi;S)− g(zi;S))

∣

∣

∣

∣

∣

(7)

We consider each term (5)–(7) separately and show that
the chosen parameters lead to an O(ǫ) error bound.
For the first term, define Z2 = |λm+1|wm+1 + · · · +
|λn−|S||wn−|S|, where λm+1, . . . , λn−|S| are the negative
eigenvalues of A(V \ S). We use a Chernoff bound to
estimate g(z;S) as

Pr(Ẑ > z) ≤ Pr(Z2 > z) ≤ min
t≥0

e−tz

n−|S|
∏

i=m+1

exp (twi).

Themoment generating function of aχ2
1 randomvariable

is equal to

Φχ2

1

(t) = (1 − 2t)−1/2, t ∈ [0, 1/2].

Since each Wi is equal to λiYi where Yi is a χ2
1 random

variable, the Chernoff bound can be simplified to

Pr(Ẑ > z) = min
t∈[0, 1

2λmax
]
e−tz

n
∏

i=1

(1− 2tλi)
−1/2

≤ e−
z

4λmax

∏

i

(

1−
λi

2λmax

)−1/2

, (8)

where (8) arises by setting t = 1
4λmax

. We then have the
bound

∫ ∞

R

g(z;S) dz

≤

(

n
∏

i=1

(

1−
λi

2λmax

)−1/2
)

(4λmaxe
− R

4λmax ).

Hence the choice of R gives the desired bound on (5).

For (6), we have by [8, Ch. 2.1] that N = O(Rǫ ) =

O(n+log ǫ
ǫ2 ) gives an O(ǫ) bound for the rectangular ap-

proximation to an integral over a closed interval.

The error |g(z;S)−g(z;S)| is determined by the error in
computing the integral (4). From [13], the approximation
g(z;S) has truncation error TK with

T−1
K ≥

πm

2
Km/2

n
∏

r=1

|λr |
1/2,

and hence choosingK = O( 1
λmin

) gives the desired error
bound. ✷

Proposition 3 implies that Q(S) can be approximated
up to a bound ǫ through O((− log ǫ+n)λmax(A)) evalu-

ations of g(z;S), each of which requires O
(

R
ǫλmin

)

com-

putations. The greedy algorithm requires O(n2) evalua-
tions of Q(S).

We next describe the algorithm for approximately solv-
ing (1), which uses the above described procedure for
computingQ(S) as a subroutine. The approximation al-
gorithm is greedy, and is shown in pseudocode as Al-
gorithm 1. At each iteration, the algorithm selects the
node v that maximizes Q(S ∪ {v}), terminating when
Q(S) = 0.

Algorithm 1. Algorithm for selecting a set of input nodes
to ensure that Q(S) = 0.
1: procedure Max Eigenvalue(A)
2: Input: Symmetric matrix A
3: Output: Set of indices S
4: Compute α as in Lemma 2
5: S ← ∅
6: while Q(S) < 0 do
7: v∗ ← argmin {Q(S ∪ {v}) : v /∈ S}
8: S ← S ∪ {v∗}
9: end while

10: return S
11: end procedure

The optimality bound provided by Algorithm 1, and the
overall complexity, are described by the following propo-
sition.

Proposition 4 Let Ŝ be the solution returned by Algo-
rithm 1, and let S∗ be the optimal solution to (1). Then

|Ŝ|

|S∗|
≤ 1 + log

Q(∅)

Q(ST−1)
. (9)

Proof: In [25], it was shown that the greedy algorithm
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returns a set S satisfying

|S|

|S∗|
≤ 1 + log

{

f(V )− f(∅)

f(V )− f(ST−1)

}

,

when f(S) is submodular and ST−1 is the set at the
second-to-last iteration of the algorithm. The proof then
follows from submodularity of Q(S) and the fact that

Q(Ŝ) = 0. ✷

We observe that the bound in (9) depends on the matrix
A. Developing parameter-dependent bounds is a direc-
tion for future work.

6 Extensions and Other Conditions

This section describes extensions of our approach to non-
symmetric matrices, and also gives two other sufficient
conditions for bounding the eigenvalues. The first con-
dition is valid for Laplacian matrices and is based on the
trace of the inverse spectrum. The second condition is
valid for any symmetric condition and is based on the
log of the determinant. We show that both conditions
are equivalent to submodular constraints.

6.1 Extension to Non-Symmetric Matrices

We first explore a generalized problem in which the goal
is to remove a subset of rows and columns of an arbi-
trary (not necessarily symmetric) matrix A in order to
ensure that A(S) has only positive eigenvalues. By Lya-
punov’s Theorem, a matrix has eigenvalues with posi-
tive real parts if and only if there exists a positive def-
inite matrix P such that ATP + PA > 0. A sufficient
condition is that, for a diagonal matrix D with positive
entries, ATD +DA > 0. The following lemma leads to
our approach.

Lemma 3 Let D be a diagonal matrix, and let B =
ATD +DA. Then B(S) = (A(S))TD(S) +D(S)A(S).

Proof: We have that

Bij =

n
∑

l=1

(AT )ilDlj +

n
∑

l=1

DilAlj = AjiDjj +DiiAij .

Hence the (i, j) entry of B(S) is determined entirely
by A(S) and D(S), and so B(S) = (A(S))TD(S) +
D(S)A(S) as desired. ✷

Our approach can therefore be extended to non-
symmetric matrices by choosing a diagonal matrix D,
constructing the matrix B = ATD + DA, and then
following Algorithm 1 to select a subset of rows and
columns of S that guarantee positive-definiteness. This
corresponds to a submatrix of A that has eigenvalues

with positive real parts. We observe that while this con-
dition is sufficient, it is not necessary since it is based
on a specific choice of D, and the matrix D is restricted
to be diagonal instead of positive definite.

6.2 Inverse Trace Conditions

This section derives an alternative, spectral approach to
selecting input nodes for the specific problem of ensuring
consensus in a network with negative edges. For a Lapla-
cian matrix L, we define L = L+−L−, where L+ is the
Laplacian induced by positive edges andL− is the Lapla-
cian induced by negative edges. Letting ζ = |λmin(L−)|,
we have the following initial result.

Proposition 5 If trace(L+(S)
−1) ≤ 1

ζ , then the ma-

trix L(S) is positive definite.

Proof: The condition L(S) ≺ 0 is equivalent to L+(S) ≺
L−(S). Since λmin(L−) ≤ λmin(L−(S)), a sufficient
condition is λmin(L(S)) > ζ, or equivalently,

1

λmin(L(S))
<

1

ζ
.

Now, since L+(S) is symmetric and positive definite,

1

λmin(L+(S))
= λmax((L+(S))

−1).

Since L+(S) is positive definite, L+(S)
−1 is positive def-

inite, and hence

λmax((L+(S))
−1)≤

n
∑

i=1

λi((L+(S))
−1)

= trace((L+(S))
−1),

establishing the sufficient condition. ✷

A submodular approach to ensuring convergence based
on the inverse trace is established by the following the-
orem.

Theorem 3 ([9]) Suppose that A is a symmetric posi-
tive definiteM -matrix, i.e., a symmetric positive definite
matrix whose off-diagonal entries are negative. For any
sets S and T ,

trace(A(S)−1) + trace(A(T )−1)

≤ trace(A(S ∪ T )−1) + trace(A(S ∩ T )−1).

Define F (S) = trace((L+(S))
−1).
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Corollary 1 The function F (S) is supermodular as a
function of S.

Proof: By construction, L+ is a symmetric, positive defi-
nite matrix with negative off-diagonal entries, and hence
is an M-matrix. Supermodularity then follows from The-
orem 3. ✷

Proposition 5 and Corollary 1 imply that selecting a set
of rows and columns S according to

min {|S| : F (S) ≤ 1/|λmin(L−)|}

is sufficient to ensure positive-definiteness of L+, and
hence convergence to consensus with negative edges.
This problem can be solved approximately via an ap-
proach analogous to Algorithm 1. Furthermore, this ap-
proach can be generalized to ensure convergence as a de-
sired rate α, as discussed in Section 4, by considering the
matrix L̃ = L−αI. Finally, the inverse trace can also be
interpreted as the effective resistance with the grounded
Laplacian [5], thus establishing a connection between the
submodular approach and the effective resistance-based
characterizations of signed consensus found in [3,27].

6.3 Determinant Conditions

An additional sufficient condition can be established by
using the following lemma, which relates the eigenvalues
of a matrix to its determinant.

Lemma 4 ([18]) Let A be a symmetric positive definite
matrix. Then the minimum eigenvalue of A satisfies

λmin(A) ≥

(

n− 1

trace(A)

)n−1

det (A).

Hence, a sufficient condition for positive definiteness is

(

n− 1

trace(L+ αD(S) + ζI)

)n−1

det (L+ αD(S) + ζI)

≥ ζ,

which is equivalent to

log det (L+ αD(S) + ζI)

− (n− 1) log (trace(L) + α|S|+ ζn)

> log ζ − (n− 1) log (n− 1). (10)

The following lemma explores the submodularity of this
sufficient condition.

Lemma 5 The functions

f1(S) = log (trace(L) + α|S|+ ζn)

f2(S) = log det (L+ αD(S) + ζI)

are submodular.

Proof: The function trace(L)+α|S|+ ζn is modular as
a function of S. The function f1(S) is a composition of
a concave and modular function, and is therefore sub-
modular. Submodular of f2(S) follows from [7]. ✷

Eq. (10) is therefore equivalent to establishing a con-
straint on a difference of submodular functions. Efficient
algorithms for approximating such problems have been
studied in [14]. Moreover, the function f1(S) has addi-
tional structure, namely, it depends only on the cardi-
nality of S. Based on this structure, one approach is to
find the smallest value of k such that

log det (L+ αD(S) + ζI)

> (n− 1) log (trace(L) + αk + ζn

+ log ζ − (n− 1) log (n− 1)

holds for some set S with |S| ≤ k. Such a set S can be
approximately obtained using a greedy algorithm anal-
ogous to Algorithm 1.

7 Numerical Study

Our proposed submodular approach to eigenvalue max-
imization was evaluated numerically using Matlab. The
simulation study considered the problem of ensuring
consensus in a network with negative edges, introduced
in Section 4. The Laplacian matrices were generated as
follows.

We simulated a geometric random network in which an
edge exists between two nodes if they are within a given
distance of each other. The number of nodes varied from
20 to 40, with node positions set uniformly at random
over an area with width chosen to ensure an average
node degree of 4. The range of each node was set to 300.
Each edge was chosen to have weight 1 with probability
0.8 and weight −1 with probability 0.2. We investigated
the effect of the number of nodes and the fraction of
negative edges on the number of input nodes required
for consensus, which is equivalent to the number of rows
and columns that must be removed to ensure positive-
definiteness.

The submodular approach was compared with two
heuristics. In the first heuristic, the rows and columns
with the largest diagonal entries (corresponding to net-
work nodes with maximum degree) were removed until
positive-definiteness was achieved. In the second heuris-
tic, rows and columns were removed randomly until
positive-definiteness was achieved, or until no rows and
columns remained.

The effect of the network size is shown in Figure 1(a).
As the number of network nodes increases, the number
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Fig. 1. Numerical evaluation of Algorithm 1. (a) Number of rows that must be removed as the network size increases in
a geometric random graph with negative edges. The number of rows removed increases linearly for all methods, but the
submodular optimization approach requires fewer rows to be removed. (b) Increasing the probability of a negative weight
causes an increase in the number of rows to be removed for all methods, with the submodular approach consistently requiring
fewer rows to be removed. (c) Number of rows that must be removed to achieve convergence rate bounds, as quantified by the
smallest eigenvalue. Achieving faster convergence requires additional rows and columns to be removed.

of rows that must be removed from the matrix to ensure
consensus based on the submodular approach increases
from 6 to roughly 25. This is significantly fewer than the
number of rows that must be removed based on both the
random and degree-based methods.

The effect of increasing the probability that an edge is
negative is shown in Figure 1(b) for a network of 20
nodes. Adding negative edges reduces the eigenvalues of
the Laplacian, and hence requires additional rows to be
removed in order to provide stability. The submodular
approach consistently requires fewer rows to be removed
to compared to the other heuristic. We also observed
that fewer random rows needed to be removed compared
to removing rows with large degree.

Figure 1(c) shows the number of rows that must be re-
moved in order to achieve given bounds on the minimum
eigenvalue for networks that do not have negative edges
in a network of 20 nodes. More rows must be removed in
order to provide a higher convergence rate. As in Figures
1(a) and 1(b), the submodular approach required fewer
inputs than the random and degree-based methods.

8 Conclusions and Future Work

This paper considered the problem of selecting a pos-
itive definite submatrix of a symmetric matrix. This
problem arises naturally in contexts including maximiz-
ing convergence of distributed control algorithms and
ensuring consensus in the presence of negative edges.
We developed a submodular optimization approach to
selecting a maximum-size submatrix. Our approach was
based on proving that positive definiteness can be char-
acterized through the probability distribution of the
quadratic form induced by the matrix. We then proved
that the derived condition is equivalent to a constraint
on a submodular function, implying that satisfying a

given bound on the eigenvalues is inherently a submodu-
lar optimization problem. We presented efficient greedy
algorithms and analyzed the computational complex-
ity. Extensions to non-symmetric matrices were dis-
cussed. We provided alternative sufficient conditions for
Laplacian matrices based on the inverse trace and log
determinant, and proved that these conditions can be
expressed as submodular optimization problems by ex-
ploiting spectral submodular properties. Our approach
was verified through numerical study.

The optimality bounds that we derived are parameter
dependent, and are influenced by the matrix spectrum.
Future work will attempt to characterize and eventually
remove these dependencies. We also plan to investigate
the problem of selecting a fixed-size submatrix in or-
der to maximize the minimum eigenvalues. Finally, we
will study generalizations to other application domains
where the convergence rate of distributed algorithms,
such as distributed convex optimization, is determined
by graph eigenvalues.
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