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Abstract

This paper addresses the formation control problem, where three agents are tasked with moving an object cooperatively
along a desired trajectory while also adjusting its posture to some desired attitudes, i.e. position and attitude tracking.
Two decentralized control laws based on locally available information are proposed. The first control law maintains constant
inter-agent distances over time, i.e. the formation of agents moves as a single rigid-body. The second control law relaxes this
constraint by only maintaining similarity of the agent formation as a polygon in Euclidean space.

Key words: Decentralized tracking; formation control; rigidity; motion constraints; attitude control.

1 Introduction

Formation control of systems with diverse dynamics and
various task requirements has been studied using a num-
ber of different approaches to control design. For exam-
ple, recently, some graphical conditions for distributed
formation control were given in [Lin et al., 2014]; For-
mation control with incomplete information [Jafarian &
Persis, 2015,Liu & Jiang, 2013], with uncertainty [Dong
& Farrell, 2009], with time-varying formation [Dong et
al., 2015,Moya et al., 2016,Turpin, Michael, & Kumar,
2012] were also investigated. Problems closely related
to formation control are consensus, swarm, cooperative
target tracking and path following. For an extensive lit-
erature review, see [Bai, Arcak, &Wen, 2011,Oha, Park,
& Ahnb, 2015,Ren & Beard, 2008,Ren & Cao, 2011].

Much of the existing research on formation control ad-
dress the design of decentralized control laws that steer
the considered systems to some stable formation. The
problem of how tomaintain and change the attitude of an
already established formation by means of decentralized
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control has generally been given less focus than forma-
tion stabilization. A possible application is having mul-
tiple robots carry one object in a decentralized fashion.
Cooperation in such tasks is both crucial and difficult
since any movement caused by one robot will affect the
others. If for example the object being carried is rigid,
the control should be designed to keep the relative dis-
tances between each robot or else they risk dropping or
deforming the object.

In this paper, we consider a decentralized control task
for three agents to carry an object collectively. The
agents are to move the object along a desired trajectory
while adjusting its posture to some desired attitude,
which should perform three tasks simultaneously: a)
The distance between the agents should satisfy some
constraints; b) The carried object should follow some
desired position path; c) The carried object should
follow some desired attitude path.

The motion constraint a) arises from the object being
carried by agents cooperatively. The scenario of fixed
contact points on the object indicates constant-distance
constraints between the agents. Furthermore, in order
to change the grasping points to avoid obstacle, we also
consider a constraint that allows the structures formed
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by the agents to maintain similarity throughout the evo-
lution. A systematic framework for studying formation
motion feasibility was developed in [Tabuada, Pappas,
& Lima, 2005]. Here, in addition to the feasibility anal-
ysis, we further investigate the following trajectory and
attitude tracking problems.

In order to fulfill the trajectory tracking task b), we
add a leader to guide the agents along the desired tra-
jectory. The leader-following approach has been used in
various scenarios in the past, where the leader’s velocity
or acceleration is usually assumed to be known by the
followers [Hong, Chen, & Bushnell, 2008, Liu & Jiang,
2013,Zhang, Liu, & Feng, 2015]. In this paper, we design
an observer based on measurements of relative positions
to calculate the velocity of the leader, and then embed it
in the translation input to follow the desired trajectory.

The attitude regulation c) is related to the attitude con-
trol problem for a rigid body which has long been a
benchmark problem in robotics and related areas, see
e.g. [Markley & Crassidis, 2014,Murray, Li, & Sastry,
1994,Siciliano & Khatib, 2008,Wen & Kreutz-Delgado,
1991]. Much of the early work on attitude control was
carried out usingminimal representations of orientations
such as Euler angles, or global many-to-one representa-
tions such as unit quaternions. In this paper, we consider
a global parametrization that is in a one-to-one corre-
spondence with the rotation matrix representation of an
orientation as in [Bayadi & Banavar, 2014,Chaturvedi,
Sanyal, & McClamroch, 2011, Markdahl et al., 2017].
Unlike existing work on attitude control where the rigid
body is actuated directly, here actuation on the body is
mediated through the agents. In comparison with the at-
titude coordination of multiple rigid bodies in [Bai, Ar-
cak, & Wen, 2008,Hatanaka et al., 2012, Igarashi et al.,
2009] among other works, we focus on the attitude track-
ing of the object carried by the three agents rather than
the attitudes of the agent themselves.Roughly speaking,
the formation shaped by the three agents is taken to rep-
resent the attitude of the carried object. It is soft rather
than hard rigidity.

A closely related research area is the load transport by
multiple robots. Experimental results controlling a team
of mobile robots in 2-D space were presented in [An-
tonelli, Arrichiello, & Chiaverini, 2009], which were de-
signed and implemented in a centralized architecture.
Bilateral teleoperation between a single master and mul-
tiple cooperative slave robots was considered in [Lee
& Spong, 2005,Rodŕıguez-Seda et al., 2010], where the
slaves tracked their own reference points based on the
master robot to perform position tracking and forma-
tion control. Decentralizedmotion and force control were
designed for multiple robots to cooperatively transport
objects in [Sugar & Kumar, 2002, Sun & Mills, 2002,
Mellinger et al., 2013,Montemayor & Wen, 2005], where
desired trajectory was assigned to each robot in the mo-
tion control, and there was no exchange of information

between the robots.

In our approach, decentralized controllers are designed
for the agents to estimate the leader’s velocity, and there
is no pre-designed reference velocity or trajectory spec-
ified for each agent to track. Since under many circum-
stances, the motion control and the force control can
be designed separately, in this paper, we focus on the
motion control problem and simplify the agent to be
single-integrator as in [Cao et al., 2011, Mou, Cao, &
Morse, 2015,Marina, Cao, & Jayawardhana, 2015,Ma-
rina, Jayawardhana, & Cao, 2016]. Unlike the controllers
in the above mentioned references that stabilize a rigid
formation to a desired shape, we present a design that
keep the shape all the time, and further extend the
constant translation and rotation tracking in [Marina,
Jayawardhana, & Cao, 2016] to a time-varying tracking
scenario.

2 Problem Statement

Assume the rigid object has been carried by the three
agents initially, and there are no constraints on the mag-
nitude of the available controlling torques. This enables
us to focus on the cooperation issue of the three agents,
rather than the force distribution problem. Let xi ∈ R3

be the position of the i-th agent, the dynamic is modeled
by a single integrator

ẋi = ui, i = 1, 2, 3, (1)

where ui is the control input.

Let d(xi, xj) = ∥xi−xj∥2 denote the distances between
agent i and j. Two motion constrains are considered,
one is the rigid motion constraints that the distance be-
tween agents are fixed during the process; the other is
the similarity motion constraints that the structures for-
mulated by the three agents are flexible but keep sim-
ilarity. The similarity motion constraints provide capa-
bility for obstacle avoidance and navigation in clustered
environments.

Definition 2.1 Rigidmotion constraint can be writ-
ten as d(xi, xj) = ci,j for i, j = 1, 2, 3, where the con-
stants ci,j > 0 are given by the initial conditions.

Definition 2.2 Similarity motion constraint can
be written as d(x1, x2) = r1d(x2, x3) and d(x2, x3) =
r2d(x3, x1), where the constants r1, r2 > 0 are fixed and
determined by the initial conditions.

We assume that the three agents are non-collinear, that
is the three positions x1, x2 and x3 uniquely character-
ize a plane. Since the object should be carried by the
three agents all the time, the position and attitude of
the object can be completely determined by the states of
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the agents. Therefore, we define the center of the three
agents as

xc =
x1 + x2 + x3

3
, (2)

and define two unit vectors as

n =
(x1 − x2)× (x2 − x3)

∥(x1 − x2)× (x2 − x3)∥
, (3)

l =
(x1 − x2)− (x3 − x1)

∥(x1 − x2)− (x3 − x1)∥
, (4)

where × is the cross product. One can see that n is a
normal vector of the plane, and l = (x1 − xc)/∥x1 − xc∥
is a vector in the plane.

3 Motion Constraints

First, we introduce some notations. Let

ξ = x1 − x2, η = x2 − x3, ζ = x3 − x1. (5)

For a vector a = [a1, a2, a3]
T ∈ R3, S(a) ∈ R3×3 is

the skew-symmetric matrix generated by a vector a =
[a1, a2, a3]

T ∈ R3, i.e.

S(a) =


0 −a3 a2

a3 0 −a1
−a2 a1 0

 . (6)

Note that S(a)b, with b ∈ R3, is an alternative notation
for the cross product a × b. This implies, among other
things, that S(a) is linear and S(a)a = 0. Moreover, two
properties of cross products are aT (b × c) = cT (a × b)
and a× (b× c) = b(aT c)− c(aT b).

3.1 Rigid motion constraint

In order to maintain the relative distances d(xi, xj) at

constant values throughout the evolution, ḋ(xi, xj) = 0
implies that the control of system (1) should satisfy

ξτ (u1 − u2) = 0,

ητ (u2 − u3) = 0,

ζτ (u3 − u1) = 0,

i.e. the control law u = [uτ1 , u
τ
2 , u

τ
3 ]
T should then belong

to the null-space of the matrix M ∈ R3×9 defined by

M =


ξT −ξT 0

0 ηT −ηT

−ζT 0 ζT

 . (7)

Define

B(ξ, η, ζ) =


I S(ζ)− S(ξ)

I S(ξ)− S(η)

I S(η)− S(ζ)

 ,
where function S(·) is given by (6). We have B(ξ, η, ζ) ∈
R9×6, rank(B(ξ, η, ζ)) = 6, and MB(ξ, η, ζ) = 0, which
indicates that the columns of B(ξ, η, ζ) form a basis for
the kernel of M . Therefore, we design a rigid motion
controller as

ur = B(ξ, η, ζ)

[
v

w

]
=


v + w × (ξ − ζ)

v + w × (η − ξ)

v + w × (ζ − η)

 , (8)

where v, w ∈ R3 are new input signals representing the
translational and rotational velocities of the formation.
Note that the new inputs v and w can be designed ar-
bitrarily but should be the same for the three agents in
order to maintain the rigid motion constraints.

With the rigid motion controller (8), a straightforward
calculation yields

ξ̇ = ω × ξ, η̇ = ω × η, ζ̇ = ω × ζ, (9)

where ω ≜ 3w is introduced for notational convenience.
The dynamics (9) conserve the norms of ξ, η and ζ, as
indicated by the fact that xτ (ω × x) = 0 for all x ∈ R3.

3.2 Similarity motion constraint

Based on the rigid motion controller, we design a simi-
larity motion controller as

us =


v + w × (ξ − ζ) + r(ξ − ζ)

v + w × (η − ξ) + r(η − ξ)

v + w × (ζ − η) + r(ζ − η)

 , (10)

where v, w ∈ R3 are new input signals representing the
translational and rotational velocities of the formation,
and r ∈ R is a new adjustable variable represent the
scaling factor.

With the similarity motion controller (10), one has

ξ̇ = ω × ξ + rξ, η̇ = ω × η + rη, ζ̇ = ω × ζ + rζ, (11)

where ω ≜ 3w and r ≜ 3r for notational convenience.

Lemma 3.1 The similarity motion controller us de-
signed by (10) can guarantee the similarity motion
constraints.
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Proof: Denote y = ξτξ − r1η
τη and z = ητη − r2ζ

τζ,
where r1, r2 are given by Definition 2.2. Based on (11),
we obtain that ẏ = 2ry, ż = 2rz. Therefore, y(t) ≡ 0
and z(t) ≡ 0, in view of y(0) = 0, z(0) = 0 and the
uniqueness of the solutions. □

Remark 3.1 Each of the three agents is capable of im-
plementing its own control law based on local measure-
ments since uri = v + [(xj − xi) + (xk − xi)] × w and
usi = v+[(xj−xi)+(xk−xi)]×w+r[(xi−xj)+(xi−xk)]
are all symmetric with respect to xj and xk, i.e. the same
uri and u

s
i are obtained no matter how agent i chooses to

label itself or j and k.

Remark 3.2 The variables v, w and r in ur and us are
new input signals, which can be designed arbitrarily but
should be the same for the three agents in order to main-
tain the motion constraints.

4 Trajectory Following

No matter if the rigid motion controller (8) or the simi-
larity motion controller (10) is used, the centroid of the
three agents given by (2) evolves according to

ẋc = v. (12)

Therefore, the translation input v can be designed to
fulfill the trajectory tracking task for both controllers
simultaneously.

A leader is added to guide the agents. The dynamics of
the leader is given by

ẋl = Axl + b, (13)

where xl, b ∈ R3, and A ∈ R3×3 can be any matrix. For
example, when A = −AT and b = −Ac with c ∈ R3,
the trajectory of xl is a circle centered at c, with radius
∥xl(0)− c∥.

In order to enable the carried object to track the de-
sired trajectory given by the leader, in view of the inter-
nal model principle, the three agents require some struc-
tural information concerning the dynamics of the leader.
Therefore, we assume that the three agents know A and
b. Still, the agents do not know the leader’s input, since
the initial value of the leader’s state cannot be measured.

Let x̂i denote the estimation of the leader’s state by
agent i, which is given by

˙̂xi = Ax̂i + P (xi − xl) + b, (14)

where P ∈ R3×3 is yet to be determined. Since the input

signal v should be the equal for all three agents, we design

v = A

3∑
j=1

x̂j
3

+Q

3∑
j=1

xj − xl
3

+ b, (15)

where Q ∈ R3×3 needs to be determined. Here, agent
i can calculate xj − xl in (15) from the relative infor-
mation xj − xi and xi − xl. Alternatively, each agent
only calculates its own estimate of the leaders state and
communicates it to the other two agents. From (14) and
(15), one sees that only relative information is used in
the input v.

Define

x̂ =

3∑
j=1

x̂j
3
, e = xc − xl, ê = x̂− xl.

Straightforward calculations show that

ė = Qe+Aê, ˙̂e = Pe+Aê. (16)

The tracking problem has thus been transformed to the
problem of finding suitable matrices P and Q such that
lim
t→∞

e = 0.

Theorem 4.1 Consider the dynamics (16). Design P =
−K − (A + AT ) and Q = −K − A, where K is any
symmetric, positive definite matrix. Then, e → 0 and
ê → N (A), where N (A) is the null space of A, as time
goes to infinity.

Proof: Introduce the candidate Lyapunov function V =
1
2∥e∥

2 + 1
2∥e− ê∥2, with time-derivative V̇ = eT ė+(e−

ê)T (ė− ˙̂e) = eTQe+eTAê+eT (Q−P )e− êT (Q−P )e =
eT (QT +Q− P )e− êT (Q− P −AT )e = −eTKe. Note

that V̇ ≤ 0, whereby e and ê converge to the largest
invariant set of points that satisfy V̇ = 0 by LaSalle’s
invariance principle [Slotine & Li, 1991]. From V̇ = 0 we
obtain e = 0 and the largest invariant subset of {e, ê ∈
R3 | e = 0} is {e, ê ∈ R3 | e = 0, ê ∈ N (A)}. □

System (16) is a simplified model for observer-based
tracking problem of leader-follower multi-agent systems.
Next, consider a more general tracking error dynamical
system

ė = sQe+Aê, ˙̂e = sPe+Aê, (17)

where e, ê ∈ Rn and s is an unknown parameter bounded
below by a known constant c > 0.

Theorem 4.2 Consider the dynamical system (17). De-
sign P = −c−1K−AT and Q = −c−1K, whereK is any
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symmetric, positive definite matrix whose smallest eigen-
value λ is greater than the spectral radius ρ(A). Then,
e→ 0 and ê→ N (A) as time goes to infinity.

Proof: Introduce the candidate Lyapunov function V =
1
2∥e∥

2 + 1
2s∥e− ê∥2, where s is an unknown parameter.

Then V̇ = eT ė+ s−1(e− ê)T (ė− ˙̂e) = seTQe+ eTAê+
eT (Q−P )e− êT (Q−P )e = eT ((1+s)Q−P )e− êT (Q−
P − AT )e = −eT (sc−1K − AT )e ≤ −eT (K − AT )e ≤
−(λ− ρ(A))∥e∥2. The rest of the proof proceeds as that
of Theorem 4.1. □

The spectral radius is bounded above by any opera-
tor norm. Certain operator norms have closed form ex-
pressions, e.g. ∥A∥1 and ∥A∥∞. This makes the pro-
posed control law numerically tractable, one may e.g.
set K = (ε+maxj

∑n
i=1 |aij |)I for any ε > 0.

Remark 4.1 Based on the above analysis, we know that
the tracking error will tend to zero, while the estimation
error will tends to the null space of the system matrix A.
Therefore, if A has full rank, then at end the agents can
estimate the leader’s state precisely.

5 Attitude Control

The attitude of any rigid body as expressed in an iner-
tial frame of reference can be described using a rotation
axis and a rotation angle by Euler’s theorem [Markley
& Crassidis, 2014]. In our case, the vector n that given
by the normal of the plane formed by the three agents
spans the rotation axis, and the angle of rotation about
that axis can be determined by the vector l in (4).

With the notations ξ, η and ζ defined in (5), the vectors
n and l can be rewritten as

n =
ξ × η

∥ξ × η∥
, l =

ξ − ζ

∥ξ − ζ∥
. (18)

Theorem 5.1 No matter with the rigid motion con-
troller (8) or with the similarity motion controller (10),
n and l have the same kinetics{
ṅ = ω × n,

l̇ = ω × l,
(19)

where ω = 3w.

Proof: The cooperative control protocol (8) enable the
three agents to move uniformly as if they formed a sin-
gle rigid body. Next, consider the similarity motion con-
troller (10).

Define ϕ ≜ ξ × η. Based on (11), one has ϕ̇ = ξ̇ ×
η + ξ × η̇ = (ω × ξ + rξ) × η + ξ × (ω × η + rη) =

(ω × ξ) × η + ξ × (ω × η) + 2r(ξ × η) = ω × ϕ + 2rϕ.
Therefore, with the controller (10), ∥ϕ∥′ = 2r∥ϕ∥, and
correspondingly ṅ = ϕ̇

∥ϕ∥ − 2rϕ
∥ϕ∥ = ω×ϕ

∥ϕ∥ = ω × n.

Denote ψ ≜ ξ − ζ. One can obtain ψ̇ = ω × ψ + rψ,
which indicates ∥ψ∥′ = r∥ψ∥ and furthermore l̇ =
(ω×ψ+rψ)∥ψ∥−r∥ψ∥ψ

∥ψ∥2 = ω×ψ
∥ψ∥ = ω × l. □

By Theorem 5.1, no matter which of the controller (8) or
(10) the agents apply, the attitude of their cooperatively
carried object is solely driven by the input signal ω.

Let nd, ld ∈ R3 be two orthogonal united vectors, which
represent the desired attitude. First, in Subsection 5.1,
we consider the situation when nd and ld are constant
vectors, and design input signal to stabilize the forma-
tion of agents to the reference attitude. Then, we con-
sider the situation when nd and ld are time-varying at-
titude trajectory, and design input signal to fulfill the
attitude tracking in Subsection 5.2.

5.1 Attitude Stabilization

Assume nd and ld with ∥nd∥ = ∥ld∥ = 1 are two orthog-
onal constant vectors. We first focus on the rotation axis
n, and present a control law ω based on relative infor-
mation that asymptotically drive the three agents to a
plane with the desired normal vector nd.

Let Pa ⊂ R3 denote a plane with normal a ∈ R3. In-
tuitively, the state ξ and η dominating the attitude of
the three agents can be driven to the reference plane by
rotating them about the line of intersection between Pn
and Pnd

. Therefore, a preliminary input signal ω is de-
signed as

ω = α (n× nd), (20)

where α ∈ R+ is a scale factor. Extend it as follows

ω = α (n× nd) + g n, (21)

where α ∈ R+ is a constant and g ∈ R is an arbitrary
time- or state-dependent function. Intuitively, the term
α (n×nd) generates a rotation towards the desired plane
Pnd

, and the term g n generates a rotation around the
axis spanned by n.

Theorem 5.2 With the input signal ω defined by (21),
n will converge to nd from any initial point except n(0) =
−nd. Furthermore, the rate of convergence is locally ex-
ponential.

Proof: Define a Lyapunov function candidate by V =
1
2∥n − nd∥2 = 1 − nTd n. Denote γ ≜ nTd n. Note that

|γ| ≤ 1 and γ̇ = nTd ṅ = nTd (ω×n) = αnTd ((n×nd)×n) =
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α∥n × nd∥2 ≥ 0. Then, we have V̇ = −γ̇ = −α(n ×
nd)

T (n× nd) = αnTd (n× (n× nd)) = α [(nTd n)
2 − 1] =

−α (nTd n+ 1)V = −α (γ + 1)V ≤ 0. By using LaSalle’s
invariant principle [Slotine & Li, 1991], one obtains that
the normal vector n will converge to the invariant set
{nd,−nd}. Furthermore, by noting that γ is increasing,
one has n converges to nd exponentially for all initial
states except n(0) = −nd. □

Based on the above analysis, we know that (i) the term
α(n× nd) contributes to the convergence to the desired
plane Pnd

; (ii) the term g n does not contribute nor in-
terfere with said convergence but can be used to regulate
the rotation of the configuration about n. Next, we will
further make use of the second term by designing g such
that the configuration formed by all agents can reach a
desired attitude characterized by nd and ld. To achieve
this goal we choose

g = β nT (l × ld), (22)

where β ∈ R+ and ld is a reference value for l defined in
(4). The input signal ω becomes

ω = α (n× nd) + β (nT (l × ld))n. (23)

Theorem 5.3 Assume the input signal ω is given by
(23) and n(0) ̸= −nd. Then there are two equilibria l =
±ld on the invariant set Pnd

, where l = −ld is unstable
while l = ld is locally exponentially stable.

Proof: Theorem 5.2 has presented that n will exponen-
tially converge to nd from any initial point except n(0) =
−nd, no matter which kind of function g is chosen. More-
over, for Lyapunov function V = 1

2∥n−nd∥
2 = 1−nTd n,

we have V̇ = −α (n× nd)
T (n× nd).

Introduce a new Lyapunov candidate functionU = 1
2∥l−

ld∥2 = 1− lTd l. The time derivative of U is U̇ = −lTd l̇ =
−lTd (ω × l) = ωT (ld × l) = (α(n × nd) + β(nT (l ×
ld))n)

T (ld × l) = α(n × nd)
T (ld × l) − β(nT (l × ld))

2,
which is sign indefinite.

Form a composite Lyapunov-candidate-functionW of V
and U byW = κV +U , κ ∈ R+. One has Ẇ = κV̇ +U̇ =
−κα∥n× nd∥2 + α(n× nd)

T (ld × l)− β(nT (l × ld))
2 ≤

−κα∥n×nd∥2 +α∥n×nd∥∥l× ld∥−β∥l× ld∥2 cos2 θ ≜
−zTMz, where θ is the angle between n and l× ld, z ≜
[∥n× nd∥, ∥l × ld∥]T , and

M ≜
[
κα −α

2

−α
2 β cos2 θ

]
. (24)

From Theorem 5.2, we know that n→ nd exponentially.
Therefore, there exist a finite time T after which cos2 θ ≥

1
2 , where we assume θ = 0 in the case of l = ld. Choose

parameter κ for example κ = 2α
β , such that the matrix

M is positive definite. Then, we obtain that Ẇ ≤ 0 for
t > T .

For t > T , W is monotonic and bounded from below by
0. Therefore, W has a finite limit as t → ∞. Since the
function Ẇ is uniformly continuous, we have lim

t→∞
Ẇ = 0

by Barbalat’s lemma [Slotine & Li, 1991]. Since lim
t→∞

n =

nd from Theorem 5.2, we have lim
t→∞

nTd l = 0 in view of

nT l = 0, and lim
t→∞

Ẇ = − lim
t→∞

β(nTd (l×ld))2. Therefore,
lim
t→∞

l = ±ld.

The instability of (n, l) = (nd,−ld) follows from letting

n(0) = nd. Then n = nd for all the time, and U̇ =
−β(nT (l × ld))

2 = −β∥l × ld∥2, which is negative for
all l ̸= ±ld. The point l = −ld is a maximizer of U and
no function can converge to its maximum value with a
strictly negative derivative. Hence l = −ld is unstable.

The stability of (n, l) = (nd, ld) follows from Ẇ < 0
for a hollow neighborhood of (nd, ld). Next, we show the
locally exponential rate of convergence of W . Based on
the previous analysis, we know that there exist a finite
time T after which Ẇ ≤ −κα∥n×nd∥2+α∥n×nd∥∥l×
ld∥− β

2 ∥l×ld∥
2 = −κα∥n×nd∥2+α

√
2
β ∥n×nd∥

√
β
2 ∥l×

ld∥− β
2 ∥l× ld∥2 ≤ (−κα+ α2

β )∥n×nd∥2 − β
4 ∥l× ld∥2 =

−(κα− α2

β )(1+nTd n)V − β
4 (1+ l

T
d l)U. Choose parameter

κ such that κα− α2

β > 0 (for example κ = 2α
β ). In view

of |nTd n| ≤ 1 and |lTd l| ≤ 1, we have

Ẇ ≤ −min

{
(α− α2

κβ
)(1 + nTd n),

β

4
(1 + lTd l)

}
W,

with a negative right hand side for a neighborhood of
(nd, ld), establishes the locally exponential convergence
rate of W . □

5.2 Attitude tracking

In this subsection, we assume the desired orientation is a
time-varying trajectory, i.e. nd and ld are time varying.
The control objective is to enable the carried object track
the desired attitude path by having n track nd, and l
track ld.

Introduce

m =
n× l

∥n× l∥
, md =

nd × ld
∥nd × ld∥

, (25)
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and define a body frame and a desired body frame for
the formation of agents as

R = [l,m, n], Rd = [ld,md, nd]. (26)

Note that R evolves with the state of the three agents,
and R,Rd ∈ SO(3) with SO(3) = {R ∈ R3×3|RRT =
RTR = I, detR = 1}.

Based on Theorem 5.1, we known that the rigid motion
controller (8) and the similarity motion controller (10)
enable the same kinetics for n and l, that ṅ = ω × n,
l̇ = ω × l, which further enables ṁ = ω ×m. Therefore,
we obtain that

Ṙ = S(ω)R. (27)

If we can design rotational signalω such thatR−Rd → 0,
then the attitude tracking problem will be solved.

Note that RdR
T
d = I. Therefore, we have ṘdR

T
d +

RdṘ
T
d = 0, or ṘdR

T
d = −(ṘdR

T
d )
T . That is ṘdR

T
d

is a skew-symmetric matrix, and moreover Ṙd =
−(ṘdR

T
d )
TRd. Let ωd be the unique vector such that

S(ωd) = ṘdR
T
d . Then, we have Ṙd = −S(ωd)Rd.

Define the error E = RTdR, then, the attitude
tracking R − Rd → 0 is equivalent to the atti-
tude stabilization E → I. The derivative of E is
Ė = ṘTdR + RTd Ṙ = −RTd S(ωd)R + RTd S(ω)R =
RTd (S(ω − ωd))RdE = S(RTd (ω − ωd))E, where we use
the property MS(y)MT = S(My) for any M ∈ SO(3).

Define I1 = [1, 0, 0]T , I3 = [0, 0, 1]T , and ωI = α (n ×
I3) + β (nT (l× I1))n. From Theorem 5.3, we know that

ωI can drive the system Q̇ = S(ωI)Q to I almost globally
for all Q ∈ SO(3). Therefore, we can use

ωt = ωd +RdωI (28)

to fulfill the attitude tracking task.

6 Conclusions

We have proposed two decentralized control laws for
three individual agents to cooperatively translate and
rotate a carried object with rigid and similarity motion
constraints. A leader is introduced to guide the agents’
translation. The trajectory tracking part of the pro-
posed control signal includes a distributed observer of
the leader’s position, which has been shown to guaran-
tee asymptotical stability of the tracking error and sta-
bility of the observer error. The attitude stabilization is
solved by design rotational axes which consist of the nor-
mal vector of the agents’ plane and the intersection line

of the agents’ plane with the desired plane. By treating
the attitude of the formation shaped by the three agents
as a rigid body, the attitude tracking is solved based on
the attitude stabilization. Future work will focus on ex-
tension to the case of distributed tracking for n agents
subject to motion constraints; and consideration of load
transport in a more realistic manner.
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