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Abstract

In this paper, we develop an upper bound for the SPARSEVA (SPARSe Estimation based on a VAlidation criterion) estimation error in
a general scheme, i.e., when the cost function is strongly convex and the regularized norm is decomposable for a pair of subspaces. We
show how this general bound can be applied to a sparse regression problem to obtain an upper bound for the traditional SPARSEVA
problem. Numerical results are used to illustrate the effectiveness of the suggested bound.
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1 Introduction

Regularization is a well known technique for estimating
model parameters from measured input-output data. Its ap-
plications are in any fields that are related to constructing
mathematical models from observed data, such as system
identification, machine learning and econometrics. The idea
of the regularization technique is to solve a convex opti-
mization problem constructed from a cost function and a
weighted regularizer (regularized M-estimators). There are
various types of regularizers that have been suggested so far,
such as the l1 [19], l2 [20] and nuclear norms [5] [6].

During the last few decades, in the system identification
community, regularization has been utilised extensively [15],
to impose properties of smoothness and sparsity in the es-
timated models (see, e.g., [13, 22]). Most of this work has
focused on analysing the asymptotic properties of an esti-
mator, i.e., when the length of the data goes to infinity. The
purpose of this type of analysis is to evaluate the perfor-
mance of the estimation method to determine if the estimate
is acceptable. However, in practice, the data sample size for
any estimation problem is always finite, hence, it is difficult
to judge the performance of the estimated parameters based
on asymptotic properties, especially when the data length is
short.
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Recently, a number of authors have published research ([1],
[4], [12]) aimed at analysing estimation error properties of
the regularized M-estimators when the sample size of the
data is finite. Specifically, they develop upper bounds on the
estimation error for high dimensional problems, i.e., when
the number of parameters is comparable to or larger than the
sample size of the data. Most of these activities are from the
statistics and machine learning communities. Among these
works, the paper [12] provides a very elegant and interest-
ing framework for establishing consistency and convergence
rates of estimates obtained from a regularized procedure un-
der high dimensional scaling. It determines a general upper
bound for regularized M-estimators and then shows how it
can be used to derive bounds for some specific scenarios.

Here in this paper we utilize the framework suggested in [12]
to develop an upper bound for the estimation error of the
M-estimators used in a system identification problem. Here,
the M-estimator problems are implemented using the SPAR-
SEVA (SPARSe Estimation based on a VAlidation criterion)
framework [16], [17]. The approach in [12] has been devel-
oped for penalized estimators, so it has to be suitably modi-
fied for SPARSEVA, which is not a penalized estimator, but
the solution of a constrained optimization problem. Our aim
is to derive an upper bound for the estimation error of the
general SPARSEVA estimate. We then apply this bound to
a sparse linear regression problem to obtain an upper bound
for the traditional SPARSEVA problem with some assump-
tions on the regression matrix. These assumptions can be
considered as the price in order to derive the upper bound.
In addition, we also provide numerical simulation results to
illustrate the suggested bound of the SPARSEVA estimation
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error.

The paper is organized as follows. Section 2 formulates
the problem. Section 3 provides definitions and properties
required for the later analysis. The general bound for the
SPARSEVA estimation error is then developed in Section 4.
In Section 5, we apply the general bound to the special case
when the model is cast in a linear regression framework.
Section 6 illustrates the developed bound by numerical sim-
ulation. Finally, Section 7 provides conclusions.

1.1 Notation

In this paper, we will use the following notation:

• f (x|0,σ2) = (2πσ2)−1/2 exp(−x2/2σ2) denotes the prob-
ability density function (pdf) of the Normal distribution
N (0,σ2).
• χ2

β
(N) denotes the value that P(X < χ2

β
(N)) = 1− β,

where X is Chi square distributed with N degrees of
freedom.

2 Problem Formulation

Let ZN
1 = {Z1, ...,ZN}∈ ZN denote N identically distributed

observations with marginal distribution P in Z ⊆ Rk. L :
Rn×ZN→R denotes a convex and differentiable cost func-
tion. Let θ∗ ∈ argminθ∈Rn L(θ) be a minimizer of the popu-
lation risk L(θ) = EZN

1
[L(θ;ZN

1 )].

The task here is to estimate the unknown parameter θ∗ from
the data ZN

1 . A well known approach to this problem is to
use a regularization technique, i.e., to solve the following
convex optimization problem,

θ̂λN ∈ arg min
θ∈Rn

{L(θ;ZN
1 )+λNR (θ)}, (1)

where λN > 0 is a user-defined regularization parameter and
R : Rn→ R+ is a norm.

A difficulty when estimating the parameter θ∗ using the
above regularization technique is that one needs to find
the regularization parameter λN . The traditional method to
choose λN is to use cross validation, i.e., to estimate the pa-
rameter θ∗ with different values of λN , then select the value
of λN that provides the best fit to the validation data. This
cross validation method is quite time consuming and very
dependent on the data. Here we are specifically interested
in the SPARSEVA (SPARSe Estimation based on a VAlida-
tion criterion) framework, suggested in [16] and [17], which
provides automatic tuning of the regularization parameters.
Utilizing the SPARSEVA framework, an estimate of θ∗ can

be computed using the following convex optimization prob-
lem:

θ̂εN ∈ arg min
θ∈Rn

R (θ)

s.t. L(θ;ZN
1 )≤ L(θ̂NR;ZN

1 )(1+ εN),
(2)

where εN > 0 is the regularization parameter and θ̂NR is the
“non-regularized” estimate obtained from minimizing the
cost function L(θ;ZN

1 ), i.e.

θ̂NR ∈ arg min
θ∈Rn

L(θ;ZN
1 ). (3)

It can be shown [17] that (1) and (2) are equivalent in the
sense that there exists a bijection between λN and εN such
that both estimators coincide. However, as discussed in [17,
Section V.D], that bijection is data-dependent and it does
not seem possible to derive an explicit expression for it.
The advantage of the SPARSEVA framework, with respect
to (1), is that there are some natural choices of the regular-
ization parameter εN based the chosen validation criterion.
For example, as suggested in [16] [17], εN can be chosen
as 2n/N (Akaike Information Criterion (AIC)), nlog(N)/N
(Bayesian Information Criterion (BIC)); or as suggested in
[8], n/N (Prediction Error Criterion).

For the traditional regularization method described in (1),
[12] recently developed an upper bound on the estimation
error between the estimate θ̂λN and the unknown parameter
vector θ∗. This bound is a function of some constants related
to the nature of the data, the regularization parameter λN ,
the cost function L and the data length N. The beauty of
this bound is that it quantifies the relationship between the
estimation error and the finite data length N. Through this
relationship, it is easy to confirm most of the properties of the
estimate θ̂λN in the asymptotic scenario, i.e. N→ ∞, which
were developed in the literature some time ago ([9], [11]).

Inspired by [12], our goal is to derive a similar bound for the
SPARSEVA estimate θ̂εN , i.e, we want to know how much
the SPARSEVA estimate θ̂εN differs from the true parameter
θ∗ when the data sample size N is finite. Note that the no-
tation and techniques used in this paper are similar to [12];
however, in [12], the convex optimization problem is posed
in the traditional regularization framework (1), while in this
paper, the optimization problem is based on the SPARSEVA
regularization (2).

3 Definitions and Properties of the Norm R (θ) and the
Cost Function L(θ)

In this section, we provide descriptions of some defini-
tions and properties of the norm R (θ) and the cost function
L(θ;ZN

1 ), needed to establish an upper bound on the estima-
tion error. Note that we only provide a brief summary such
that the research described in this paper can be understood.
Readers can find a more detailed discussion in [12].
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3.1 Decomposability of a Norm

Let us consider a pair of arbitrary linear subspaces of Rn,
(M ,M ), such that M ⊆M . The orthogonal complement
of the space M is then defined as,

M
⊥
= {v ∈ Rn|〈u,v〉= 0 for all u ∈M },

where 〈·, ·〉 is the inner product that maps Rn×Rn→ R.

The norm R is said to be decomposable with respect to

(M ,M
⊥
) if

R (θ+ γ) = R (θ)+R (γ) (4)

for all θ ∈M and γ ∈M
⊥

.

There are many combinations of norms and vector spaces
that satisfy this property (cf. [12]). An example is the l1 norm
and the sparse vector space defined (5). For any subset S⊆
{1,2, . . . ,n} with cardinality s, define the model subspace
M as,

M (S) = {θ ∈ Rn| θ j = 0 for all j 6∈ S}. (5)

Now if we define M (S) = M (S), then the orthogonal com-
plement M (S), with respect to the Euclidean inner product,
can be computed as follows,

M
⊥
(S) = {γ ∈ Rn|γ j = 0 for all j ∈ S}.

As shown in [12], the l1-norm is decomposable with respect
to the pair (M (S),M ⊥(S)).

3.2 Dual Norm

For a given inner product 〈·, ·〉, the dual of the norm R is
defined by,

R ∗(v) = sup
u∈Rn\{0}

〈u,v〉
R (u)

= sup
R (u)≤1

〈u,v〉, (6)

where sup is the supremum operator.
Based on the above definition, one can easily see that the
dual of the l1 norm, with respect to the Euclidean inner
product, is the l∞ norm [12].

3.3 Strong Convexity

A twice differentiable function L(θ) : Rn → R is strongly
convex onRn when there exists an m> 0 such that its Hessian
52L(θ) satisfies,

52 L(θ)� mI, (7)

for all θ ∈ Rn [3]. This is equivalent to the statement that
the minimum eigenvalue of 52L(θ) is not smaller than m
for all θ ∈ Rn.
An interesting consequence of the strong convexity property
in (7) is that for all θ,∆ ∈ Rn, we have,

L(θ+∆)≥ L(θ)+5L(θ)T
∆+

m
2
‖∆‖2

2. (8)

The inequality in (8) has a geometric interpretation in that
the graph of the function L(θ) has a positive curvature at
any θ ∈Rn. The term m/2 for the largest m satisfying (7) is
typically known as the curvature of L(θ).

3.4 Subspace Compatibility Constant

For a given norm R and an error norm ‖ · ‖, the subspace
compatibility constant of a subspace M ⊆ Rn with respect
to the pair (R ,‖ · ‖) is defined as,

Ψ(M ) = sup
u∈M \{0}

R (u)
‖u‖

. (9)

This quantity measures how well the norm R is compatible
with the error norm ‖.‖ over the subspace M . As shown in
[12], when M is Rs, the regularized norm R is the l1 norm,
and the error norm is the l2 norm, then the subspace com-
patibility constant is Ψ(M ) =

√
s. Notice also that Ψ(M )

is finite, due to the equivalence of finite dimensional norms.

3.5 Projection Operator

The projection of a vector u onto a space M , with respect
to the Euclidean norm, is defined by the following,

ΠM (u) = argmin
v∈M

‖u− v‖2. (10)

In the sequel, to simplify the notation, we will write uM to
denote ΠM (u).

4 Analysis of the Regularization Technique using the
SPARSEVA

In this section, we apply the properties described in Section
3 to derive an upper bound on the error between the SPAR-
SEVA estimate θ̂εN and the unknown parameter θ∗. This
upper bound is described in the following theorem.

Theorem 4.1 Assume R is a norm and is decomposable

with respect to the subspace pair (M ,M
⊥

) and the cost
function L(θ) is differentiable and strongly convex with cur-
vature κL . Consider the SPARSEVA problem in (2), then the
following properties hold:

i. When εN > 0, there exists a Lagrange multiplier, λN =
λεN , such that (1) and (2) have the same solution.
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ii. Any optimal solution θ̂εN 6= 0 of the SPARSEVA prob-
lem (2) satisfies the following inequalities:

• If εN is chosen such that

λεN ≤ 1/R ∗(∇L(θ∗)),

then

‖θ̂εN −θ
∗‖2

2 ≤
4

κ2
L λ2

εN

Ψ
2(M )+

4
κL λεN

R (θ∗M ⊥).

(11)
• If εN is chosen such that

λεN > 1/R ∗(∇L(θ∗)),

then

‖θ̂εN −θ
∗‖2

2 ≤
2

κ2
L
{R ∗(∇L(θ∗))}2

Ψ
2(M )

+
8

κ2
L
{R ∗(∇L(θ∗))}2

Ψ
2(M

⊥
)

+
4

κL λεN

R (θ∗M ⊥).

(12)

Proof. See the Appendix (Section A.2). �

Remark 4.1 Note that Theorem 4.1 is intended to provide
an upper bound on the estimation error for the general
SPARSEVA problem (2). At this stage, it is hard to evaluate,
or quantify, the value on the right hand side of the inequali-
ties (11) and (12) as they still contain the term λεN and other
abstract terms. However, in the later sections of this paper,
from this general upper bound, we will provide bounds on
the estimation errors for some specific scenarios.

Remark 4.2 The bound in Theorem 4.1 is actually a fam-
ily of bounds. For each choice of the pair of subspaces

(M ,M
⊥

), there is one bound for the estimation error.
Hence, in the usual sense, to apply Theorem 4.1 for any

specific scenario, the goal is to choose M and M
⊥

to
obtain an optimal rate of the bound.

5 An Upper Bound for Sparse Regression

In this section, we illustrate how to apply Theorem 4.1 to
derive an upper bound of the error between the SPARSEVA
estimate θ̂εN and the true parameter θ∗ for the following
linear regression model,

YN = Φ
T
Nθ
∗+ e, (13)

where θ∗ ∈Rn is the unknown parameter that is required to
be estimated; e∈RN is the disturbance noise; ΦN ∈Rn×N is

the regression matrix and YN ∈RN is the output vector. Here,
we make the following assumption on the true parameter θ∗,

Assumption 5.1 The true parameter θ∗ is “weakly” sparse,
i.e. θ∗ ∈ Bq(Rq), where,

Bq(Rq) :=

{
θ ∈ Rp

∣∣∣∣∣ p

∑
i=1
|θi|q ≤ Rq

}
, (14)

with q ∈ [0,1] being a constant.

Using the SPARSEVA framework in (2) with R chosen as
the l1 norm and the cost function L(θ) chosen as,

L(θ) =
1

2N
‖YN−Φ

T
Nθ‖2

2, (15)

then an estimate of θ∗ in (13) can be found by solving the
following problem,

θ̂εN ∈ arg min
θ∈Rn

‖θ‖1

s.t. L(θ) ≤ L(θ̂NR)(1+ εN),
(16)

with θ̂NR = (ΦNΦT
N)
−1ΦNYN and εN > 0 being the user-

defined regularization parameter. Now εN can be chosen as
either 2n/N or log(N)n/N as suggested in [16]; or n/N as
suggested in [8].

Remark 5.1 Note that the sparse regression problem is very
common in system identification and is often used to obtain
a low order linear model by regularization.

Remark 5.2 For Assumption 5.1, note that when q = 0, un-
der the convention that 00 = 0, the set in (14) corresponds
to an exact sparsity set, where all the elements belonging
to the set have at most R0 non-zero entries. Generally, for
q ∈ (0,1], the set Bq(Rq) forces the ordered absolute values
of θ∗ to decay with a certain rate.

5.1 An Analysis on the Strong Convexity Property and the
Curvature of the l2 norm Cost Function

Consider the convex optimization problem in (16), the Hes-
sian matrix of the cost function L(θ) is computed as,

52L(θ) =
1
N

ΦNΦ
T
N .

To prove that L(θ) is strongly convex, we need to prove,

∃κL > 0 s.t.
1
N

ΦNΦ
T
N � 2κL I. (17)

We see that the requirement in (17) coincides with the re-
quirement of persistent excitation of the input signal in a
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system identification problem. If an experiment is well-
designed, then the input signal u(t) needs to be persistently
exciting of order n, i.e., the matrix ΦNΦT

N is a positive defi-
nite matrix. This means that the condition in (17) is always
satisfied for any linear regression problem derived from a
well posed system identification problem. This means that
for any choice of the regression matrix ΦN that satisfies the
persistent excitation condition, there exists a positive curva-
ture κL of the cost function L(θ).

Consider ΦN ∈Rn×N to be a matrix where each row ΦN, j is
sampled from a Normal distribution of zero mean and covari-
ance matrix Σ ∈ RN×N , i.e., ΦN, j ∼N (0,Σ), ∀ j = 1, ..,n.
We then denote the distribution of the smallest eigenvalue
of N−1ΦNΦT

N to be P(x|Σ,N,n), means that given a proba-
bility 1−α , 0≤ α≤ 1, there exists a value wmin such that
N−1ΦNΦT

N � wminI, for any matrix ΦN constructed follow-
ing the above assumption. Then the global curvature κ, i.e.
the curvature that satisfies (17) for any regression matrix
ΦN , can be expressed as (1/2)wmin. For the rest of the paper,
we will denote by κα lower bound on the global curvature
κ with probability 1−α , 0≤ α≤ 1.

5.2 Assumptions

For the linear regression in (13), the following assumptions
are made:

Assumption 5.2 The rows ΦN, j, j = 1, ...n of the regressor
matrix ΦN are distributed as ΦN, j ∼ N (0,Σ), where Σ ∈
RN×N is a constant, symmetric, positive definite matrix.

Note that an obvious practical case where Assumption 5.2
is satisfied is when the model is FIR and the input signal
being white noise or coloured noise.

Assumption 5.3 The noise vector e ∈RN is Gaussian with
i.i.d. N (0,σ2

e) entries. 1

5.3 Developing the Upper Bound

The following theorem provides an upper bound on the es-
timation error ‖θ̂εN −θ∗‖2 for the optimization problem in
(16) in the case of weakly sparse estimates.

Theorem 5.1 Suppose Assumptions 5.2, 5.3 and 5.1 hold,
when N is large, then with probability (1− α)(1− 4nβ)

(0 ≤ α ≤ 1, 0 ≤ β ≤ 1), if θ̂εN 6= 0 we have the following
inequality

‖θ̂εN −θ
∗‖2

2 ≤max(a1,a2), (18)

1 The assumption of Gaussian noise is fairly standard in system
identification. However, this assumption can be relaxed to ‘sub-
Gaussian’ noise (i.e., when the tails of the noise distribution decay
like e−αx2

) at the expense of longer derivations.

where

a1 =
8nησ2

esmaxχ2
β
(N−n)(1+ εN) ln(2/β)

κ2
αN2

+

√
32σ2

esmaxχ2
β
(N−n)(1+ εN) ln(2/β)

καN
‖θ∗[nη+1:n]‖1,

a2 =
(16n−12nη)σ

2
eχ2

β
(Σ, I) ln(2/β)

κ2
αN2

+

√
32σ2

esmaxχ2
β
(N−n)(1+ εN) ln(2/β)

καN
‖θ∗[nη+1:n]‖1.

where κα is a lower bound on the curvature of the regression
matrix (i.e., half the smallest eigenvalue of N−1ΦT

NΦN) with
probability 1−α, nη is any integer between 1 and n, θ∗[nη+1:n]
is the vector formed from the n−nη smallest (in magnitude)
entries of θ∗, and smax is the maximum singular value of the
matrix Σ.

Proof. This proof relies on three preliminary results intro-
duced in Appendix A.3. For an integer nη ∈ {1, . . . ,n}, de-
fine Sη as the set of the indices of the nη largest (in magni-
tude) entries of θ∗, and its complementary set Sc

η as

Sc
η = {1,2, ...,n}\Sη; (19)

with the corresponding subspaces M (Sη) and M ⊥(Sη) as,

M (Sη) = {θ ∈ Rn | θ j = 0 ∀ j 6∈ Sη},
M ⊥(Sη) = {γ ∈ Rn | γ j = 0 ∀ j ∈ Sη}.

(20)

Using the definition of the subspace compatibility constant
described in Section 3, we have,

Ψ
2(M (Sη)) = |Sη|= nη,

Ψ
2(M ⊥(Sη)) = |Sc

η|= n−nη.
(21)

where |S| denotes the cardinality of S.

Now, for Theorem 4.1 to generate an upper bound for
the problem (16), we need to establish an upper bound
on ‖θ∗M ⊥(Sη)

‖1. Based on the definition of the subspace

M ⊥(Sη), we have,

‖θ∗M ⊥(Sη)
‖1 = ‖θ∗[nη+1:n]‖1, (22)

where θ∗[nη+1:n] denotes the vector formed from the n− nη

smallest (in magnitude) entries of θ∗. Define κα as a lower
bound on the global curvature of the regression matrix, i.e.
half the smallest eigenvalue of ΦT

NΦN , with probability 1−
α, 0 ≤ α ≤ 1. Substituting the results of Propositions A.1-
A.3 from Appendix A.3, (21) and (22) into the bound in

5



Theorem 4.1, then with nη being any integer between 1 and
n, we have the following bounds:

• If εN is chosen such that

λεN ≤ 1/R ∗(∇L(θ∗)) = 1/‖∇L(θ∗)‖∞,

then, with probability at least (1−α)(1−2nβ),

‖θ̂εN −θ
∗‖2

2

≤
8nησ2

esmaxχ2
β
(N−n)(1+ εN) ln(2/β)

κ2
αN2

+

√
32σ2

esmaxχ2
β
(N−n)(1+ εN) ln(2/β)

καN
‖θ∗[nη+1:n]‖1.

• If εN is chosen such that

λεN > 1/R ∗(∇L(θ∗)) = 1/‖∇L(θ∗)‖∞,

then, with probability at least (1−α)(1−4nβ),

‖θ̂εN −θ
∗‖2

2

≤
(16n−12nη)σ

2
eχ2

β
(Σ, I) ln(2/β)

κ2
αN2

+

√
32σ2

esmaxχ2
β
(N−n)(1+ εN) ln(2/β)

καN
‖θ∗[nη+1:n]‖1.

Therefore, for nη being any integer between 1 and n, with
probability at least (1−α)(1−4nβ), we have

‖θ̂εN −θ
∗‖2

2 ≤max(a1,a2), (23)

where

a1 =
8nησ2

esmaxχ2
β
(N−n)(1+ εN) ln(2/β)

κ2
αN2

+

√
32σ2

esmaxχ2
β
(N−n)(1+ εN) ln(2/β)

καN
‖θ∗[nη+1:n]‖1,

a2 =
(16n−12nη)σ

2
eχ2

β
(Σ, I) ln(2/β)

κ2
αN2

+

√
32σ2

esmaxχ2
β
(N−n)(1+ εN) ln(2/β)

καN
‖θ∗[nη+1:n]‖1.

�

Remark 5.3 The bound in Theorem 5.1 is also a family of
bounds, one for each value of nη.

Remark 5.4 When Σ = σuI, i.e. the model is FIR and the
input u(t) is white noise, then smax = σu and the general-
ized Chi square distribution χ2(Σ, I) becomes the Chi square
distribution σuχ2(N).

Remark 5.5 Note that the developed bound in Theorem 5.1
depends on the true parameter θ∗, which is unknown but
constant. Using a similar proof as in Proposition 2.3 of [7],
we can derive under Assumption 5.1 an upper bound for the
term ‖θ∗[nη+1:n]‖1. Specifically, we have,

‖θ∗[nη+1:n]‖1 =
n

∑
i=nη+1

|θ∗[i]|=
n

∑
i=nη+1

|θ∗[i]|
1−q|θ∗[i]|

q

Since Sη is the set of the indices of the nη largest (in magni-
tude) entries of θ∗, i.e. |θ∗[i]| ≤ |θ

∗
nη
|, ∀i= nη+1, ...,n, hence,

‖θ∗[nη+1:n]‖1 ≤ |θ∗nη
|1−q

n

∑
i=nη+1

|θ∗[i]|
q

Using the same argument, we have,

|θ∗nη
|1−q =

( 1
nη

nη

∑
i=1
|θ∗[nη]

|q
)(1−q)/q

≤
( 1

nη

nη

∑
i=1
|θ∗[i]|

q
)(1−q)/q

.

Therefore,

‖θ∗[nη+1:n]‖1 ≤
( 1

nη

nη

∑
i=1
|θ∗[i]|

q
)(1−q)/q n

∑
i=nη+1

|θ∗[i]|
q

≤
( 1

nη

n

∑
i=1
|θ∗[i]|

q
)(1−q)/q n

∑
i=1
|θ∗[i]|

q

≤
( 1

nη

)1/q−1
‖θ∗‖1−q

q ‖θ∗‖q
q

≤ (nη)
1−1/q‖θ∗‖q

≤ (nη)
1−1/q(Rq)

1/q.

This means we can always place an upper bound on the
term ‖θ∗[nη+1:n]‖1 by a known constant which depends on the
nature of the true parameter θ∗. Therefore, from Theorem
5.1, we can see that the estimation error ‖θ̂εN − θ∗‖2

2 =

Op(N−1/2) [17]. This confirms the result in [17], that in the
asymptotic case, when εN > 0, the SPARSEVA estimate θ̂εN
converges to the true parameter θ∗.

6 Numerical Evaluation

In this section, numerical examples are presented to illustrate
the bound ‖θ̂εN −θ∗‖2

2 as stated in Theorem 5.1. In Section
6.1, we consider the case when the input is Gaussian white
noise whilst in Section 6.2, the input is a correlated signal
with zero mean.
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6.1 Gaussian White Noise Input

In this section, a random discrete time system with a ran-
dom model order between 1 and 10 is generated using the
command drss from Matlab. The system has poles with
magnitude less than 0.9. Gaussian white noise is added
to the system output to give different levels of SNR, e.g.
30dB, 20dB and 10dB. For each noise level, 50 differ-
ent input excitation signals (Gaussian white noise with
variance 1) and output noise realizations are generated.
For each set of input and output data, the system pa-
rameters are estimated using a different sample size, i.e.,
N = [450,1000,5000,10000,50000,100000].

The FIR model structure is used here in order to construct the
SPARSEVA problem (16). The number of parameters n of
the FIR model is set to be 35. The regularization parameter
εN is chosen as n/N [8].

We then compute the upper bound of ‖θ̂εN −θ∗‖2 using (18)
with different values of nη, i.e. nη = [10,15,25]. The prob-
ability parameters α and β are chosen to be 0.02 and 0.001
respectively. Related to the computation of the universal con-
stant κ corresponding to the distribution N (0,Σ), note that,
in reality, it is very difficult to compute its exact distribu-
tion P(x|Σ,N,n), hence, here we use an empirical method to
compute the distribution P(x|Σ,N,n). The idea is to generate
a large number of random matrices ΦN , compute the small-
est eigenvalue of N−1ΦNΦT

N , and then build a histogram
of these values, which is an approximation of P(x|Σ,N,n).
Then we compute the value of wmin to ensure the inequality
N−1ΦNΦT

N � wminI occurs with probability 1−α. Finally,
κα is computed using the formula κα = (1/2)wmin.

With the setting described above, the probability of the upper
bound being correct is (1−α)(1−4nβ) = 0.84. This upper
bound will be compared with ‖θ̂εN −θ∗‖2. Note that we plot
both the upper bound and the true estimation errors on a
logarithmic scale.

Plots of the estimation error versus the data length N with
different noise levels are displayed in Figures 1 to 3. In Fig-
ures 1 to 3, the red lines are the true estimation errors from 50
estimates using the SPARSEVA framework. The magenta,
blue and cyan lines are the upper bounds developed in Theo-
rem 5.1, which correspond to nη = [10,15,25], respectively.
We can see that the plots confirm the bound developed in
Theorem 5.1 for all noise levels. When N becomes large,
the estimation error and the corresponding upper bound be-
come smaller. When N goes to infinity, the estimation error
will tend to 0. Note that the bounds are slightly different for
the chosen values of nη, however, not significantly. As can
be seen, the bounds are relatively insensitive to the choice
of nη.

In addition, we plot another graph, shown in Fig. 4, to com-
pare the proposed upper bound and the true estimation er-
rors corresponding to different value of εN , i.e.

n
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Fig. 1. Plot of the estimation error for a SNR=30dB and a Gaussian
white input signal.
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Fig. 2. Plot of the estimation error for a SNR=20dB and a Gaussian
white input signal.
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Fig. 3. Plot of the estimation error for a SNR=10dB and a Gaussian
white input signal.

2n
N

(AIC) and
log(N)n

N
(BIC). The blue lines are the up-

per bounds developed in Theorem 5.1, which correspond to
nη = 25, with the three different values of εN . The magenta
(BIC), green (AIC) and red (PEC) lines are the true estima-
tion errors from 50 estimates (for each value of εN) using

7



N #104
0 1 2 3 4 5 6 7 8 9 10

lo
g(

k
"̂
0 N

k 2
)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5
Developed bounds, n

2
=25

True estimation errors (BIC)
True estimation errors (AIC)
True estimation errors (PEC)

Fig. 4. Plot of the proposed bound and the true estimation errors
corresponding to different choices of εN , for a SNR=30dB and a
white Gaussian input signal (magenta BIC, green AIC and red
PEC).

the SPARSEVA framework. We can see that the plot again
confirms the validity of the proposed upper bound for all
choices of εN . Note that the upper bound is not extremely
tight, it is quite conservative, however, it is the price to usu-
ally pay for finite sample bounds with a general SPARSEVA
setting, i.e. the regularized parameter εN can be any positive
value. When εN is larger, the upper bound will be closer to
the true estimate error.

6.2 Coloured Noise Input

In this section, a random discrete time system with a random
model order between 1 and 10 is generated using the com-
mand drss from Matlab. The system has poles with magni-
tude less than 0.9. White noise is added to the system output
with different levels of SNR, e.g. 30dB, 20dB and 10dB. For
each noise level, 50 different input excitation signals and out-
put noise realizations are generated. For each set of input and
output data, the system parameters are estimated using dif-
ferent sample sizes, i.e. N = [450,1000,5000,10000,50000].

Here, the input signal is generated by filtering a zero mean
Gaussian white noise with unit variance through the filter,

Fu(q) =
0.9798

1−0.2q−1 .

Due to this filtering, the covariance matrix of the regression
matrix distribution will not be of a diagonal form. Note that
this is a completely different scenario to that in Section 6.1.

The FIR model structure is used here in order to construct
the linear regression for the SPARSEVA problem (16). The
number of parameters n of the FIR model is set to be 35.
The regularization parameter, εN , is chosen as n/N [8].

We then compute the upper bound of ‖θ̂εN − θ∗‖2 using
(18) with different values of nη, i.e. nη = [10,15,25]. The

probability parameters α and β are chosen to be 0.02 and
0.001 respectively. With this setting, the probability of the
upper bound being correct is (1−α)(1−4nβ) = 0.84. This
upper bound will be compared with ‖θ̂εN −θ∗‖2.

Plots of the upper bound as stated in Theorem 5.1 and the
true estimation error ‖θ̂εN −θ∗‖2 are displayed in Figures 5
to 7. In Figures 5 to 7, the red lines are the true estimation
errors from 50 estimates using the SPARSEVA framework.
The magenta, blue and cyan lines are the upper bounds devel-
oped in Theorem 5.1, which correspond to nη = [10,15,25]
respectively. We can see that the plots confirmed the bound
developed in Theorem 5.1 for all noise levels. When N be-
comes large, the estimation error and the corresponding up-
per bound become smaller. When N goes to infinity, the esti-
mation error will tend to 0. Note that the bounds are slightly
different for the chosen values of nη, however, not signifi-
cantly. As can be seen, the bounds are relatively insensitive
to the choice of nη.

N #104
0 1 2 3 4 5

lo
g(

k
"̂
0 N

k 2
)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
n
2
=10

n
2
=15

n
2
=25

True estimation errors

Fig. 5. Plot of the estimation error for SNR=30dB for a coloured
input signal.
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Fig. 6. Plot of the estimation error for SNR=20dB for a coloured
input signal.

7 Conclusion

The paper provides an upper bound on the SPARSEVA esti-
mation error in the general case, for any choice of strongly
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Fig. 7. Plot of the estimation error for SNR=10dB for a coloured
input signal.

convex cost function and decomposable norm. We also eval-
uate the bound for a specific scenario, i.e., a sparse regres-
sion estimate problem. Numerical results confirm the valid-
ity of the developed bound for different input signals with
different output noise levels for different choices of the reg-
ularization parameters.
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A Appendix

A.1 Background knowledge

First, we cite a lemma directly from [12], to enable the proof
of Theorem 4.1 to be constructed.

Lemma A.1 For any norm R that is decomposable with

respect to (M ,M
⊥
); and any vectors θ, ∆, we have

R (θ+∆)−R (θ)≥ R (∆
M
⊥)−R (∆M )−2R (θM ⊥),

(A.1)

Recall that ∆
M
⊥ is the Euclidean projection of ∆ onto
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M
⊥

(see Section 3.5), and similarly for the other terms in
(A.1).

Proof. See the supplementary material of [12]. �

We now quote the following lemma from [2] with modifi-
cation to fit with the notation used in the SPARSEVA prob-
lem (2). This lemma helps us to find some important proper-
ties related to the SPARSEVA estimate θ̂λN . Based on these
properties, in the next section we can derive the upper bound
on the estimation error. Note that for notational simplicity,
we will denote L(θ;ZN

1 ) as L(θ).

Lemma A.2 Consider the convex optimization problem in
(2). Then the pair (θ̂εN ,λεN ), with θ̂εN 6= 0, has the property
that θ̂εN is the solution of the problem (2) and λεN is the
Lagrange multiplier if and only if all of the following hold:

(1) λεN ∈ R+;
(2) the function R (θ)+λ{L(θ)−L(θ̂NR)(1+εN)} attains

its minimum over Rn at θ̂εN ; and
(3) L(θ̂εN )−L(θ̂NR)(1+ εN) = 0.

Proof. See the proof of Theorem 2.2 in [2]. The third condi-
tion in the cited theorem is a complementary slackness con-
dition, which reduces to condition (3) here if θ̂εN 6= 0 (cf.
[17, Lemma II.2]). �

A.2 Proof of Theorem 4.1

First we need to prove that there exists a Lagrange multi-
plier for the SPARSEVA problem (2). We can assume with-
out loss of generality that L(θ̂NR) 6= 0, since otherwise we
can take λεN = 0. According to [2], the Lagrange multiplier
for a convex optimization problem with constraint exists
when the Slater condition is satisfied. Specifically, for the
SPARSEVA problem (2), the Lagrange multiplier λεN exists
when there exists a θ1 such that L(θ1) < L(θ̂NR)(1+ εN).
If εN > 0, and L(θ̂NR) 6= 0, there always exists a parame-
ter vector θ1 such that L(θ1) < L(θ̂NR)(1+ εN) (just take
θ1 = θ̂NR). Therefore, there exists a Lagrange multiplier λεN
for the SPARSEVA problem.

Now that we have confirmed the existence of the Lagrange
multiplier λεN , consider the function F (∆) defined as fol-
lows,

F (∆) = R (θ∗+∆)−R (θ∗)+λεN{L(θ∗+∆)−L(θ∗)}.
(A.2)

Using the strong convexity condition of L(θ),

L(θ∗+∆)−L(θ∗)≥ 〈∇L(θ∗),∆〉+κL‖∆‖2
2. (A.3)

From (6), we have that

|〈∇L(θ∗),∆〉| ≤ R ∗(∇L(θ∗))R (∆). (A.4)

Next, combining the inequality (A.4) and the triangle in-
equality, i.e., R (∆)≤ R (∆M )+R (∆

M
⊥), we have,

|〈∇L(θ∗),∆〉| ≤ R ∗(∇L(θ∗))R (∆)

≤ R ∗(∇L(θ∗))(R (∆M )+R (∆
M
⊥)),

therefore,

〈∇L(θ∗),∆〉 ≥ −R ∗(∇L(θ∗))(R (∆M )+R (∆
M
⊥)).

(A.5)
Now, combining (A.2), (A.3), (A.5), and Lemma A.1,

F (∆) = R (θ∗+∆)−R (θ∗)+λεN{L(θ∗+∆)−L(θ∗)}
≥ R (∆

M
⊥)−R (∆M )−2R (θ∗M ⊥)

+λεN

{
−R ∗(∇L(θ∗))(R (∆M )+R (∆

M
⊥))+κL‖∆‖2

2

}
≥ {1−λεN R ∗(∇L(θ∗))}R (∆

M
⊥)

−{1+λεN R ∗(∇L(θ∗))}R (∆M )+κL λεN‖∆‖
2
2

−2R (θ∗M ⊥). (A.6)

Notice that, when θ̂εN is the estimate of the SPARSEVA
problem, then property 2 in Lemma A.2 states that the func-
tion R (θ)+λ{L(θ)−L(θ̂NR)(1+εN)} attains its minimum
over Rn at θ̂εN , which means,

∀θ ∈ R n, R (θ̂εN )+λεN (L(θ̂εN )−L(θ̂NR)(1+ εN))

≤ R (θ)+λεN (L(θ)−L(θ̂NR)(1+ εN)).

Hence,

∀θ ∈ R n, R (θ̂εN )−R (θ)+λεN{L(θ̂εN )−L(θ)} ≤ 0,

or, taking θ = θ∗ and defining ∆̂εN := θ̂εN −θ∗,

F (∆̂εN )≤ 0. (A.7)

Combining (A.6) with (A.7), we then have,

0≥ κL λεN‖∆̂εN‖
2
2 +{1−λεN R ∗(∇L(θ∗))}R (∆̂

εN ,M
⊥)

−{1+λεN R ∗(∇L(θ∗))}R (∆̂
εN ,M

)−2R (θ∗M ⊥).

(A.8)

Now we consider two cases.

Case 1: λεN ≤ 1/R ∗(∇L(θ∗))

From (A.8), we have,

0≥ κL λεN‖∆̂εN‖
2
2−{1+λεN R ∗(∇L(θ∗))}R (∆̂

εN ,M
)

−2R (θ∗M ⊥).
(A.9)
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By the definition of subspace compatibility,

R (∆̂
εN ,M

)≤Ψ(M )‖∆̂
εN ,M
‖2.

Now we also have that

‖∆̂
εN ,M
‖2 = ‖ΠM (∆̂εN )‖2 ≤ ‖∆̂εN‖2.

Therefore,

R (∆̂
εN ,M

)≤Ψ(M )‖∆̂εN‖2. (A.10)

Substituting this into (A.9) gives,

0≥ κL λεN‖∆̂εN‖
2
2−{1+λεN R ∗(∇L(θ∗))}Ψ(M )‖∆̂εN‖2

−2R (θ∗M ⊥). (A.11)

Note that for a quadratic polynomial f (x) = ax2 + bx+ c,
with a > 0, if there exists x ∈R+ that makes f (x)≤ 0, then
such x must satisfy

x≤ −b+
√

b2−4ac
2a

.

Since (A+B)2 ≤ 2A2 +2B2 for all A,B ∈ R,

x2 ≤ 2
[

b2

4a2 +
b2−4ac

4a2

]
=

b2−2ac
a2 . (A.12)

Applying this inequality to (A.11), we have,

‖∆̂εN‖
2
2 ≤

1
κ2

L λ2
εN

{1+λεN R ∗(∇L(θ∗))}2
Ψ

2(M )

+
4

κL λεN

R (θ∗M ⊥)

≤ 4
κ2

L λ2
εN

Ψ
2(M )+

4
κL λεN

R (θ∗M ⊥). (A.13)

Case 2: λεN > 1/R ∗(∇L(θ∗))

Using a similar analysis as in Case 1,

R (∆̂
εN ,M

⊥)≤Ψ(M
⊥
)‖∆̂εN‖2. (A.14)

Substituting (A.14) and (A.10) into (A.8), we obtain,

0≥ κL λεN‖∆̂εN‖
2
2 +{1−λεN R ∗(∇L(θ∗))}Ψ(M

⊥
)‖∆̂εN‖2

−{1+λεN R ∗(∇L(θ∗))}Ψ(M )‖∆̂εN‖2−2R (θ∗M ⊥).
(A.15)

Now using the inequality (A.12), yields,

‖∆̂εN‖
2
2 ≤

1
κ2

L

({ 1
λεN

−R ∗(∇L(θ∗))

}
Ψ(M

⊥
)

−
{

1
λεN

+R ∗(∇L(θ∗))

}
Ψ(M )

)2

+
4

κL λεN

R (θ∗M ⊥).

(A.16)
Applying the inequality (A+B)2 ≤ 2A2 + 2B2 to the first
term in (A.16) gives,

‖∆̂εN‖
2
2 ≤

2
κ2

L

{
1

λεN

−R ∗(∇L(θ∗))

}2

Ψ
2(M

⊥
)

+
2

κ2
L

{
1

λεN

+R ∗(∇L(θ∗))

}2

Ψ
2(M )

+
4

κL λεN

R (θ∗M ⊥).

Note that 0 < 1/λεN < R ∗(∇L(θ∗)), therefore,

{
1

λεN

−R ∗(∇L(θ∗))

}2

≤ {R ∗(∇L(θ∗))}2. (A.17)

We also have,{
1

λεN

+R ∗(∇L(θ∗))

}2

≤ 4{R ∗(∇L(θ∗))}2. (A.18)

Therefore, combining (A.17) and (A.18),

‖∆̂εN‖
2
2 ≤

2
κ2

L
{R ∗(∇L(θ∗))}2

Ψ
2(M )

+
8

κ2
L
{R ∗(∇L(θ∗))}2

Ψ
2(M

⊥
)

+
4

κL λεN

R (θ∗M ⊥).

�

A.3 Preliminary propositions for Theorem 5.1

In this Appendix we present three propositions that assist in
the development of the proof of Theorem 5.1:

Proposition A.1 Consider the optimization problem in (16),
and denote by λεN the corresponding Lagrange multiplier
of its constraint. Then, if θ̂εN 6= 0, λεN can be computed as

λεN =
1

‖∇L(θ̂εN )‖∞

. (A.19)
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Proof. See Appendix A.4. �

Proposition A.2 Suppose Assumptions 5.2 and 5.3 hold.
Then, with probability 1−nβ (0≤ β≤ 1/n), we have

P(‖∇L(θ∗)‖∞ ≤ t|ΦN)≥

(
1−2exp

[
− N2t2

2σ2
eχ2

β
(Σ, I)

])n

,

where smax is the maximum element on the diagonal of the
matrix Σ. In particular, choosing a specific value for t,

‖∇L(θ∗)‖∞ ≤

√
2σ2

eχ2
β
(Σ, I) ln(2/β)

N
, (A.20)

with probability at least 1−2nβ (0≤ β≤ 1/2n).

Proof. See Appendix A.5. �

Proposition A.3 Suppose Assumptions 5.2 and 5.3 hold,
then with probability at least 1−nβ (0≤ β≤ 1/n), we have

P
(∥∥∥∇L(θ̂εN )

∥∥∥
∞

≤ t
∣∣∣e)

≥

{
1−2exp

(
− N2t2

2σ2
esmaxχ2

β
(N−n)(1+ εN)

)}n

where smax is the maximum element on the diagonal of the
matrix Σ. In particular, choosing a specific value for t,

∥∥∥∇L(θ̂εN )
∥∥∥

∞

≤

√
2σ2

esmaxχ2
β
(N−n)(1+ εN) ln(2/β)

N
,

(A.21)

with probability at least 1−2nβ (0≤ β≤ 1/2n).

Proof. See Appendix A.6. �

A.4 Proof of Proposition A.1

Let us rewrite the SPARSEVA problem (16),

θ̂εN ∈ arg min
θ∈Rn

‖θ‖1

s.t. L(θ)−L(θ̂NR)(1+ εN) ≤ 0,
(A.22)

in the Lagrangian form (1) using Lemma A.2. The La-
grangian of the optimization problem (A.22) is,

g(θ,λ) = ‖θ‖1 +λ(L(θ)−L(θ̂NR)(1+ εN))

= ‖θ‖1 +
λ

2N
(‖YN−Φ

T
Nθ‖2

2−‖YN−Φ
T
N θ̂NR‖2

2(1+ εN)).

(A.23)

The subdifferential of g(θ,λ) can be computed as

∂g(θ,λ)
∂θ

= v− λ

N
ΦN(YN−Φ

T
Nθ), (A.24)

where v = (v1, . . . ,vm)
T is of the form

vi = 1 if θi > 0
vi =−1 if θi < 0
vi ∈ [−1,1] if θi = 0.

(A.25)

Using property 2 of Lemma A.2, when θ̂εN is a solution of the
SPARSEVA problem (16) and λεN is a Lagrange multiplier,
we have,

0 =
∂g(θ,λ)

∂θ

∣∣∣
θ=θ̂εN ,λ=λεN

=−λεN

N
ΦN(YN−Φ

T
N θ̂εN )+v

θ̂εN
,

(A.26)

for some v of the form in (A.25). Note that when θ̂εN 6= 0,
‖v‖∞ = 1, which means that

λεN =
N

‖ΦN(YN−ΦT
N θ̂εN )‖∞

.

Since ∇L(θ̂εN ) =
1
N

ΦN(YN−ΦT
N θ̂εN ), we can also write λεN

as
λεN =

1
‖∇L(θ̂εN )‖∞

.

�

Note that this proof is similar to the one in [14], where an ex-
pression was derived for the Lagrange multiplier in the tra-
ditional l1 norm regularization problem (the LASSO). Here
we have derived the Lagrange multiplier for the SPARSEVA
problem as given in (16).

A.5 Proof of Proposition A.2

For the linear regression (13) and the choice of L(θ) in (15),

∇L(θ∗) =
1
N

ΦN(YN−Φ
T
Nθ
∗) =

1
N

ΦNe.

Denote R j as the jth row of the matrix ΦN , then ∇L(θ∗) can
be computed as,

∇L(θ∗) =
1
N

ΦNe =
1
N


R1

R2
...

Rn

e =
1
N


R1e

R2e
...

Rne
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consider the variable Z = N−1R je, using Assumption 5.3 on
the disturbance noise e, e∼N (0,σ2

e), we have,

Z|e∼N
(

0,
σ2

e

N2 R jRT
j

)
. (A.27)

Now in order to derive a bound for ∇L(θ∗), we first derive an
upper bound for the variance N−2σ2

eR jRT
j of the distribution

in (A.27). Since R j ∼N (0,Σ), we have,

R jRT
j ∼ χ

2(Σ, I),

where χ2(Σ, I) is the generalized Chi squared with parame-
ters Σ and I. Hence, with probability 1−β, 0 ≤ β ≤ 1, we
have,

R jRT
j ≤ χ

2
β
(Σ, I). (A.28)

Hence, the variance of the distribution of the variable
N−1R je, is,

σ2
e

N2 R jRT
j ≤

σ2
e

N2 χ
2
β
(Σ, I), (A.29)

with probability 1−β.

Note that from (A.27), for any t > 0, we have,

P
(∣∣∣ 1

N
R je
∣∣∣≤ t

∣∣∣∣ΦN

)
=

∫ t

−t
f
(

x
∣∣∣∣0, σ2

e

N2 R jRT
j

)
dx,

(A.30)
where f (x|0,N−2σ2

eR jRT
j ) denotes the pdf of the Normal

distribution N (0,N−2σ2
eR jRT

j ). This gives,

P
(∥∥∥ΦNe

N

∥∥∥
∞

≤ t
∣∣∣∣ΦN

)
=

n

∏
j=1

{∫ t

−t
f
(

x
∣∣∣∣0, σ2

e

N2 R jRT
j

)
dx
}
.

(A.31)
This expression can be bounded from below using the stan-
dard result that P(|N (0,σ2)| > t) ≤ 2exp(−t2/2σ2) [21,
Eq. (5.5)], to obtain

P
(∥∥∥ΦNe

N

∥∥∥
∞

≤ t
∣∣∣∣ΦN

)
≥

n

∏
j=1

(
1−2exp

[
− N2t2

2σ2
eR jRT

j

])
.

The expression in parentheses on the right hand side is
monotonically decreasing in R jRT

j , so using (A.29) gives

P
(∥∥∥ΦNe

N

∥∥∥
∞

≤ t
∣∣∣∣ΦN

)
≥

(
1−2exp

[
− N2t2

2σ2
eχ2

β
(Σ, I)

])n

,

which holds with probability 2 at least 1−nβ.

2 This bound follows because the events A j that (A.29) holds
are not necessarily independent, but their joint probability can be
bounded like P(A1∩·· ·∩An)= 1−P(AC

1 ∪·· ·∪AC
n )≥ 1−P(AC

1 )−
·· ·−P(AC

n ) = 1−nβ.

In particular, taking t =
√

2σ2
eχ2

β
(Σ, I) ln(2/β)/N gives

P

∥∥∥ΦNe
N

∥∥∥
∞

≤

√
2σ2

eχ2
β
(Σ, I) ln(2/β)

N

∣∣∣∣∣∣ΦN

≥ (1−β)n

≥ 1−nβ

with probability at least 1−nβ, or equivalently,

∥∥∥∇L(θ∗)
∥∥∥

∞

≤

√
2σ2

eχ2
β
(Σ, I) ln(2/β)

N

with probability at least 1−2nβ. �

A.6 Proof of Proposition A.3

When θ̂εN is the solution of the problem in (16), we have,

∇L(θ̂εN ) =
1
N

ΦN(YN−Φ
T
N θ̂εN ). (A.32)

Denote eεN = YN −ΦT
N θ̂εN , and R j as the jth row of the

matrix ΦN , then (A.32) becomes,

∇L(θ̂εN ) =
1
N

ΦNeεN =
1
N


R1

R2
...

Rn

eεN =
1
N


R1eεN

R2eεN

...

RneεN

 .

From Assumption 5.2, and using the same argument as in
Proposition A.2, we have that each element of R j is dis-
tributed as N (0,Σ( j, j)).

Consider the variable Z = N−1eT
εN

RT
j , Since R j ∼N (0, Σ),

Z ∼N
(

0,
1

N2 eT
εN

ΣeεN

)
.

Since Σ is symmetric and positive definite matrix, hence
using singular value decomposition, we can find a diagonal
matrix D that satisfies,

Σ = QT DQ, (A.33)

where Q is the unitary matrix, i.e. QQT = I. Therefore, we
have,

1
N2 eT

εN
ΣeεN ≤

smax

N2 eT
εN

eεN , (A.34)

where smax is the maximum element on the diagonal of
matrix D, i.e. maximum singular value of matrix Σ. Note
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that,

eT
εN

eεN = (YN−Φ
T
N θ̂εN )

T (YN−Φ
T
N θ̂εN ) = 2NL(θ̂εN )

= 2NL(θ̂NR)(1+ εN).
(A.35)

From Section 4.4 in [18], we have,

L(θ̂NR)|ΦN ∼
σ2

e

2N
χ

2(N−n),

which gives,

L(θ̂NR)≤
σ2

e

2N
χ

2
β
(N−n),

with probability 1−β, 0≤ β≤ 1. Combining this inequality
with (A.34) and (A.35) gives, with probability 1−β,

1
N2 eT

εN
ΣeεN ≤

σ2
e

N2 smaxχ
2
β
(N−n)(1+ εN).

Hence,

P
(∣∣∣∣R jeεN

N

∣∣∣∣≤ t
∣∣∣∣e)

≥
∫ t

−t
f
(

x
∣∣∣∣0,smax

σ2
e

N2 χ
2
β
(N−n)(1+ εN)

)
dx, (A.36)

with probability 1−β. This means,

P
(∥∥∥ΦNeεN

N

∥∥∥
∞

≤ t
∣∣∣∣e) (A.37)

=
n

∏
j=1

{∫ t

−t
f
(

x
∣∣∣∣0, σ2

e

N2 smaxχ
2
β
(N−n)(1+ εN)

)
dx
}

≥

{
1−2exp

(
− N2t2

2σ2
esmaxχ2

β
(N−n)(1+ εN)

)}n

with probability at least 1−nβ, following the same reasoning
as in the proof of Proposition A.2. Therefore,

P
(∥∥∥∇L(θ̂εN )

∥∥∥
∞

≤ t
∣∣∣e)

≥

{
1−2exp

(
− N2t2

2σ2
esmaxχ2

β
(N−n)(1+ εN)

)}n

with probability at least 1−nβ.

Taking t =
√

2σ2
esmaxχ2

β
(N−n)(1+ εN) ln(2/β)/N gives

P

∥∥∥∇L(θ̂εN )
∥∥∥

∞

≤

√
2σ2

esmaxχ2
β
(N−n)(1+ εN) ln(2/β)

N

∣∣∣∣∣∣e


≥ (1−β)n ≥ 1−nβ,

with probability at least 1−nβ, or, equivalently,

∥∥∥∇L(θ̂εN )
∥∥∥

∞

≤

√
2σ2

esmaxχ2
β
(N−n)(1+ εN) ln(2/β)

N
,

with probability at least 1−2nβ. �
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