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Abstract

We consider networked control systems (NCSs) composed of a linear plant and a linear controller interconnected by packet-
based communication channels with communication constraints. We are interested in the setup where direct-feedthrough terms
are present in the plant and/or in the controller, a case that is largely ignored in the literature due to its inherent complexity
and counterintuitive results in the analysis despite its relevance for important classes of controllers including Proportional-
Integral (PI) regulators. This setup calls for a novel stability analysis, for which we take a renewed look at the concept of
uniformly globally exponentially stable (UGES) scheduling protocols that turned out to be instrumental in earlier approaches.
We provide a generalization of the UGES property, called (DP,DC)-UGES with DP/DC being the direct-feedthrough matrices
of the plant/controller, respectively, and we present generic conditions on these direct-feedthrough terms DP/DC such that
the classical UGES property of scheduling protocols implies (DP,DC)-UGES. This allows us to derive conditions leading to
a maximally allowable transmission interval (MATI) such that stability of the overall NCS is guaranteed. In addition, it is
shown that it is possible to get more tailored results for the well-known sampled-data (SD), round-robin (RR), and try-once-
discard (TOD) protocols leading to less conservative conditions on the direct-feedthrough terms than the generic ones. We
also introduce new (DP,DC)-UGES scheduling protocols, designed to handle the direct-feedthrough terms in a more effective
way than existing protocols. Our results are illustrated using the example of a batch reactor.

Key words: Networked control systems; Lyapunov methods; Scheduling protocols; Exponential stability.

1 Introduction

In many control applications, including manufacturing
plants, vehicles, and aircraft, communication is needed
for the exchange of information and control signals be-
tween spatially distributed system components, such as
supervisory computers, controllers, sensors, and actua-
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tors. When sensor and actuator data is communicated
over a shared (wired or wireless) packet-based communi-
cation network, the system is called a networked control
system (NCS). Such NCSs have received considerable at-
tention in recent years [9,18,32,34]. This interest is mo-
tivated by the many advantages their flexible architec-
tures offer, such as reduced weight, volume and installa-
tion costs, and better maintainability, when compared to
conventional control systems in which sensor and actu-
ation data is transmitted over dedicated point-to-point
(wired) links, see, e.g., [27]. Additionally, wireless com-
munication is able to overcome the physical limitations
of employing wired links, which is very appealing in, for
instance, intelligent transportation, see, e.g., [25], and
remote surgery, see, e.g., [22]. On the other hand, the
usage of packet-based networked communication comes
also with the inevitable network-induced imperfections,
such as varying delays, dropouts, varying transmission
intervals, and so on. Moreover, as the communication
network is often shared by multiple sensors and actua-
tors, there is a need for so-called scheduling protocols,
which govern the access of the nodes to the network.
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To deal with all these network-induced phenomena, no-
vel design and analysis approaches are required. A pop-
ular design approach for NCSs herein is the so-called
emulation method, see, e.g., [5, 14, 23, 26, 30]. The idea
is to first design a continuous-time controller for the
continuous-time plant while ignoring the communica-
tion constraints. Then, the controller is implemented
via the packet-based communication network with its
scheduling protocol and it is shown that stability prop-
erties are preserved when information is transmitted fre-
quently enough. By using the concept of uniformly glob-
ally exponentially stable (UGES) scheduling protocols
introduced in [23], conditions leading to the determina-
tion of so-called maximal allowable transmission inter-
vals (MATIs) guaranteeing overall stability or Lp-gain
performance of the NCS have been derived, see [5, 23].
In addition to this general setup, many extensions can
be found in [7, 12,14,15], and the references therein.

It is interesting to observe that none of the aforemen-
tioned results in [5,7,12,14,15,23,26,30] considered the
inclusion of so-called direct-feedthrough terms, i.e., terms
that allow a direct connection between the control input
and the plant output (and vice versa) and that are es-
sential to model classical controllers commonly used in
the industry such as Proportional-Integral(-Derivative)
(PI(D)) regulators and state feedback controllers, when
both actuator and sensor signals are transmitted over the
communication network. However, as we will show in this
paper, this is not surprising as these direct-feedthrough
terms lead to nontrivial difficulties in terms of modeling
and analysis. In particular, the presence of the direct-
feedthrough terms modifies the model of the network-
induced error at transmissions making it, in contrast
to [5,7,12,14,15,23,26,30], dependent on plant and con-
troller parameters. This complicates the analysis signif-
icantly and leads to various counterintuitive results, as
will be highlighted throughout the paper. As a result, a
novel (stability) analysis is needed to address standard
(UGES) scheduling protocols such as the sampled-data
(SD) (which updates all network nodes simultaneously),
round-robin (RR) (which assigns access to the network
in a cyclic manner), and try-once-discard (TOD) (which
gives access to the node with the largest error) protocols.

Given the importance of PI(D) control and other con-
trol/plant structures with direct-feedthrough terms, we
already addressed this so-called direct-feedthrough prob-
lem in our preliminary works [24] and [16]. In particular,
it was shown in [24] that, for the case where only the
controller contained direct-feedthrough terms, stability
of nonlinear NCSs could still be guaranteed when using
standard scheduling protocols such as the SD and RR
protocols. In [16], linear NCSs with direct-feedthrough
terms in both the plant and the controller were studied,
which introduces additional difficulties. It was shown
that for the standard SD, RR, and TOD protocols, under
certain conditions, the direct-feedthrough terms can be
incorporated in the NCS stability analysis of [5, 23,30].

In this paper, we build upon our preliminary work [16]
and again consider linear NCSs with direct-feedthrough
terms in both the plant and the controller. We provide
a generalization of the UGES property for scheduling
protocols, called (DP,DC)-UGES, where DP and DC

are the direct-feedthrough matrices of the plant and
controller, respectively, and we present generic condi-
tions on these direct-feedthrough termsDP andDC such
that any UGES protocol in the classical sense is also
(DP,DC)-UGES, which is important to apply the stabil-
ity analysis of [5,23,30] to guarantee stability of the NCS.
Moreover, it is shown that for the SD, RR, and TOD pro-
tocols these conditions can be made less conservative by
exploiting the knowledge we have about the structure of
the protocol. This will also lead to the counterintuitive
result of the “smarter” TOD protocol not always being
better than the RR protocol and that updating all the
nodes simultaneously (exploiting the SD protocol) can
be worse than updating the nodes one by one. Finally,
we introduce new (DP,DC)-UGES scheduling proto-
cols, designed to handle the direct-feedthrough terms
in a more effective way than the existing protocols in
the case we do not have so-called mixed nodes, i.e., in
the case that we only have nodes that are only related
to the actuators and/or nodes that are only related to
the sensors. These novel results significantly extend our
preliminary work [16] as, in this paper, we provide full
derivations and proofs, provide generic conditions for
any UGES protocol to be (DP,DC)-UGES and not only
for the SD, RR, and TOD protocols as in [16], introduce
new ((DP,DC)-UGES) scheduling protocols (called the
SD+, the periodic switching, and maximal error switch-
ing scheduling protocol), and present various counter-
intuitive results, which, for instance, show that being
“smarter” is not always the best solution. To illustrate
our results we apply them to the benchmark example of
a batch reactor.

The remainder of this paper is organized as follows. Af-
ter presenting the necessary notation, the class of sys-
tems considered in this paper is described in Section 2
including a suitable hybrid model for the NCS. In Sec-
tion 3, we briefly recapitulate the stability analysis of
NCSs of [5, 23], although slightly adapted to take into
account the presence of the direct-feedthrough terms.
In Section 4, we revise the concept of UGES scheduling
protocols and provide generic conditions on the direct-
feedthrough terms such that the stability analysis pre-
sented in Section 3 can be applied. These conditions are
then improved for the well-known protocols SD, RR, and
TOD in Section 5 and new scheduling protocols are in-
troduced in Section 6. Finally, in Section 7, the batch re-
actor example illustrating our results is provided, and in
Section 8 concluding remarks are given. All of the proofs
are provided in Appendix A.

Notation: The set of real numbers is denoted by
R ∶= (−∞,∞) and the sets of non-negative real numbers
and integers by R≥0 ∶= [0,∞) and N ∶= 0,1,2, . . ., re-
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spectively. For vectors v1, v2, . . . , vn ∈ Rn, we denote by

(v1, v2, . . . , vn) the vector [ v⊺1 v⊺2 . . . v⊺n ]⊺, and by ∣⋅∣ and

⟨⋅, ⋅⟩ the Euclidean norm and the usual inner product, re-
spectively. We use the notation r+ = r(t+) = limτ↓t r(τ)
where r is any left-continuous mapping from R to Rn.
The n by n identity and zero matrices are denoted by
In and 0n, respectively. When the dimensions are clear
from the context, these notations are simplified to I and
0. For a symmetric matrix A ∈ Rn×n, λmin(A)/λmax(A)
denote the smallest/largest eigenvalue of A. A func-
tion f ∶ Rm → Rn is said to be globally Lipschitz there
exists M > 0 such that for all x, y ∈ Rm it holds that
∣f(x) − f(y)∣ ≤M ∣x − y∣.

2 System description: The NCS model

In this section, the considered class of systems is intro-
duced, where we in particular focus on the influence and
impact of the direct-feedthrough terms on the NCS con-
figuration as introduced in the literature, see also [16].

2.1 Networked control configuration

In this work, we consider the NCS as shown in Fig. 1,
where the continuous-time plant P is given by

P ∶
⎡⎢⎢⎢⎢⎣

ẋp

y

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

AP BP

CP DP

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

xp

û

⎤⎥⎥⎥⎥⎦
, (1)

where xp ∈ Rmxp denotes the state, û ∈ Rmu the most re-
cently received control input, and y ∈ Rmy the measured
output to the controller.

C N P

u

ŷ

û

y

Controller Plant

Fig. 1. The NCS setup.

As shown in Fig. 1, the plant P is controlled by the
controller C, and they communicate with each other via
the network N . The controller C itself is described by

C ∶
⎡⎢⎢⎢⎢⎣

ẋc

u

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

AC BC

CC DC

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

xc

ŷ

⎤⎥⎥⎥⎥⎦
, (2)

where xc ∈ Rmc denotes the controller state, ŷ ∈ Rmy
the most recently received output measurement of the
plant, and u ∈ Rmu the control input. Note now that the
difference between the setups in [5, 7, 12, 14, 15, 23, 30]
and (1)-(2) is given by the direct-feedthrough matrices
DP and DC from which at least one of them is nonzero.

To complete the description of the NCS setup, we first
explain how the communication network N operates.
This network N has a collection of sampling/ transmis-
sion times tj , j ∈ N, which satisfy 0 ≤ t1 < t2 < ⋯. At such

a transmission time tj , (parts of) the output y and the
input u are sampled and transmitted over the network
N to the controller C and the plant P, respectively.

In the considered setup, similar to [5, 12, 14, 15, 23, 30],
it is assumed that the transmission times satisfy

δ ≤ tj+1 − tj ≤ τmati (3)

for all j ∈ N, where τmati denotes the maximally allowable
transmission interval (MATI) and where 0 < δ ≤ τmati
is a positive time between two consecutive transmission
times. It should be noted that, theoretically, δ can be
taken arbitrarily small since it is only imposed to prevent
Zeno behavior [20], but in each example it will be strictly
positive and determined by hardware limitations.

In addition to this sequence of transmission times, the
network N might also be subdivided in several (sensor
and/or actuator) nodes, where each node corresponds
to a subset of the entries y/ŷ and/or u/û. As such, there
is the need for a scheduling protocol that determines
which of the nodes in the network is granted access to
the network at a transmission time, see also [5, 14, 23].
After a node is granted access to the network, it collects
and transmits the values of the corresponding entries in
y (tj) and u (tj), which results in an update according to

ŷ (t+j ) = y (tj) + hy (j, e (tj))
û (t+j ) = u (tj) + hu (j, e (tj)) ,

(4)

where the function h ∶= (hy, hu) (with slight abuse of
notation) models the scheduling protocol and where e
denotes the network-induced error defined by

e ∶=
⎡⎢⎢⎢⎣
ey
eu

⎤⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
ŷ − y
û − u

⎤⎥⎥⎥⎦
. (5)

Note that we follow here the same method for modeling
the scheduling protocols as described in [5,14,23] based
on the protocol function h ∶ N ×Rme → Rme , which can
be used to describe, e.g., the SD, RR, and TOD pro-
tocols, see also Section 5 below. Indeed, in (4) it is de-
termined on the basis of the transmission counter j and
the network-induced error e(tj) which node is allowed
to communicate and typically the corresponding entries
in h are zero, see [5,14,23] for a detailed description. Fi-
nally, it is assumed that ŷ and û are constant in between
two successive transmissions (zero-order-hold (ZOH)).
However, this can easily be modified if desired, see [23].

From this point forward, we will also use the shorthand
notations ŷ+ = ŷ (t+j ), û+ = û (t+j ), y = y(tj), ŷ = ŷ(tj),
u = u(tj), û = û(tj), xp = xp(tj), xc = xc(tj), e+ = e (t+j ),

and e = e(tj).

2.2 Updating the network-induced error e

Because of the presence of the direct-feedthrough ma-
trices DP and DC in the networked interconnection, we
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have that u and y depend on the networked values ŷ and
û, respectively. As a result, an update of ŷ and û also
results in a change of the values of y and u, i.e., we have
that, in view of (1)-(2),

y+ = CPxp +DPû
+ and u+ = CCxc +DCŷ

+. (6)

As a consequence, we encounter difficulties regarding
the modeling of the update equation for the network-
induced error e. To put this into more context, consider
the following analysis. Using the expressions of (1)-(2)
and (5) it can be obtained that the errors ey and eu
themselves are given by

ey = ŷ − y = ŷ −CPxp −DPû

eu = û − u = û −CCxc −DCŷ.
(7)

Consider now the situation that we have an update of
our networked values at transmission time tj , j ∈ N,
according to (4), i.e.,

ŷ+ = y + hy (j, e) = CPxp +DPû + hy (j, e)
û+ = u + hu (j, e) = CCxc +DCŷ + hu (j, e) .

(8)

By using (6)-(8), we derive that this update of the net-
worked values leads to the network-induced error being
updated according to

e+y = ŷ+ −CPxp −DPû
+

=DPû + hy(j, e) −DPCCxc −DPDCŷ −DPhu(j, e)
= hy(j, e) −DPhu(j, e) +DPeu

e+u = û+ −CCxc −DCŷ
+

=DCŷ + hu(j, e) −DCCPxp −DCDPû +DChy(j, e)
= hu(j, e) −DChy(j, e) +DCey.

Hence, we have that, in general, the update equation of
the error e can be described by using an update function
hdf ∶ Rme → Rme , i.e.,

e+ = h (j, e) +
⎡⎢⎢⎢⎢⎣

0my DP

DC 0mu

⎤⎥⎥⎥⎥⎦
(e − h (j, e))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ hdf (j, e)

. (9)

This shows that the update of the error e essentially dif-
fers from the situation without direct-feedthrough terms
(i.e., DP = 0 and DC = 0), as in [5, 7, 12, 14, 15, 23, 30],
which resulted in

e+ = h (j, e) .
As such, a careful reconsideration is needed regarding
the analysis of the NCSs described by (1)-(4). To this
end, we start by modeling the NCS in the form of a
hybrid system [11].

2.3 A hybrid modeling framework

Based on the above setup, the triple (P,C,N ) can be re-
written into the format of a hybrid system H, as descri-
bed in [5, 23,30], where each jump of the hybrid system

corresponds to an update of the networked values accor-
ding to (4). To do so, based on (1), (2), and (5), we write

û = u + eu = CCxc +DCŷ + eu
= CCxc +DC (y + ey) + eu
= CCxc +DC (CPxp +DPû + ey) + eu

from which it follows that (I −DCDP) û = CCxc +
DCCPxp +DCey + eu. As such, we have that

û = (I −DCDP)−1

⋅ (CCxc +DCCPxp +DCey + eu) .
(10a)

and similarly it can be obtained that

ŷ = (I −DPDC)−1

⋅ (Cpxp +DPCCxc +DPeu + ey)
(10b)

provided that the inverses in (10) exist. It is easy to

see that (I −DCDP)−1
as in (10a) exists if and only if

(I −DPDC)−1
as in (10b) does [28]. Hence, similar to

the case in which no communication network is present,
see, e.g., [31,35], to construct our hybrid model we need
the following well-posedness assumption.

Standing Assumption 1 For the NCS described by
(1)-(4) the interconnection is well-posed in the sense that

(I −DCDP)−1
(or, equivalently, (I −DPDC)−1

) exists.

Note that this well-posedness assumption is always
satisfied when only the plant or the controller has
feedthrough terms (in which case either DP = 0 or
DC = 0), see also Remark 9 in Section 5. Moreover,
based on Neumann series, see, e.g., [29], a sufficient
condition for guaranteeing well-posedness of the inter-
connection is to require that

lim
n→∞ (DCDP)n = 0,

which is the case when the matrix DCDP is Schur, i.e.,

max
k

∣λk (DCDP)∣ < 1, (11)

where λk denotes the k-th eigenvalue. Observe that the
condition (11) can be related to a small-gain type of con-
dition for feedback systems between the û- and ŷ-systems
in (10). Indeed, since the interconnection between the
û- and ŷ-systems in (10) is directly related to the sys-
tem matrices DP and DC, condition (11) imposes some
sort of bound on the product of these matrices, just like
small-gain theorems require that the product of given
interconnection gains have to be strictly less than one.

By using (10) we can eliminate the control variables in
the state dynamics. Moreover, by using the ZOH as-
sumption in combination with (1), (2), and (7), the same
can be done for the error dynamics, i.e., we have that

(ėy, ėu) = (−CPẋp,−CCẋc) .
Combining the above and taking (3) into consideration,
the triple (P,C,N ) can be rewritten into the hybrid
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A =
⎡⎢⎢⎢⎢⎣

AP +BP (Imu −DCDP)−1
DCCP BP (Imu −DCDP)−1

CC

BC (Imy −DPDC)−1
CP AC +BC (Imy −DPDC)−1

DPCC

⎤⎥⎥⎥⎥⎦
, C =

⎡⎢⎢⎢⎢⎣

−CP 0

0 −CC

⎤⎥⎥⎥⎥⎦
A,

E =
⎡⎢⎢⎢⎢⎣

BP (Imu −DCDP)−1
DC BP (Imu −DCDP)−1

BC (Imy −DPDC)−1
BC (Imy −DPDC)−1

DP

⎤⎥⎥⎥⎥⎦
, F =

⎡⎢⎢⎢⎢⎣

−CP 0

0 −CC

⎤⎥⎥⎥⎥⎦
E.

(13)

system formalism advocated in [23]. To do so, similar
to [5, 7, 12, 14, 15, 23, 30], we introduce the timer τ ∈
R≥0, which keeps track of the time elapsed since the last
transmission and resets to zero after a transmission has
occurred, and the counter κ ∈ N, which keeps track of the
number of transmissions. Using these auxiliary variables,
the NCS can be expressed as the hybrid model 1

H ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = Ax +Ee

ė = Cx +Fe

τ̇ = 1

κ̇ = 0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

when

τ ∈ [0, τmati]

x+ = x
e+ = h (κ, e) + hdf (h (κ, e) , e)
τ+ = 0

κ+ = κ + 1

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

when

τ ∈ [δ,∞)

(12)

where x ∶= (xp, xc) ∈ Rmx , the matrices A,C,E,F are
given by (13), and with the full state of the hybrid system

ξ ∶= (x, e, τ, κ) ∈ X ∶= Rmx ×Rme ×R≥0 ×N. (14)

Using this hybrid modeling framework, stability in the
sense of UGES for the NCS will be analyzed.

Remark 2 It is also possible to perform an L2-induced
gain analysis for the NCS if the plant P is also modeled
with an external (disturbance) input and (performance)
output. However, for the sake of readability and brevity,
in this paper we limit ourselves to the analysis of UGES.

3 Stability analysis

In this section, we analyze the stability of the hybrid
model (12) for the NCS. Hereto, consider the following.

Definition 3 For the overall (hybrid) system H given
by (12) with (14), the set

E = {ξ ∈ X ∣ x = 0 ∧ e = 0} (15)

is said to be uniformly globally exponentially stable
(UGES) if there exists a function β ∶ R≥0×R≥0×N→ R≥0

of the form β(r, t, j) = Mr exp (−ρ(t + j)) for some
M > 0 and ρ > 0, such that for any initial condition
ξ(0,0) ∈ X, all corresponding maximal solutions ξ are
complete and satisfy for all (t, j) ∈ dom ξ

∣(x(t, j), e(t, j))∣ ≤ β (∣(x(0,0), e(0,0))∣ , t, j) .
1 For more details on hybrid systems of the form of (12) the
interested reader is referred to [11].

Remark 4 In Definition 3 we used the solution concept
and terminology for hybrid systems as introduced in [11]
for describing the NCS in terms of the hybrid system (12).
For more details on solutions, completeness, and maxi-
mality the interested reader is referred to [5, 11, 14, 23].

Based now on the results in [5, 23], we provide LMI-
based conditions that guarantee UGES of the set (15).
However, to do so, the way of viewing the scheduling
protocol first needs to be re-examined.

3.1 UGES scheduling protocols

One of the most important aspects in the analysis ap-
proach of [23] is the notion of UGES scheduling proto-
cols, which we need to modify to include the presence
of direct-feedthrough terms. In particular, we need to
take into account that in this paper, as a result of the
presence of the update function hdf in (9), the update of
the error e depends on the system matrices DP and DC,
while in [23] (9) solely depends on the scheduling law
and not on the controller/plant parameters (i.e., hdf = 0
in [23]). To this end, the update equation of the error is
modeled as a discrete-time system

e(i + 1) = pf (i, e(i)) (16)

induced by a certain function pf ∶ N×Rme → Rme , which,
according to (9), is given for all i ∈ N and e ∈ Rme by

pf (i, e) = h (i, e) + hdf(i, e). (17)

Consider now the following definition.

Definition 5 Let DP ∈ Rmy×mu and DC ∈ Rmu×my be
given. The scheduling protocol (function) h ∶ N ×Rme →
Rme is said to be (DP,DC)-UGES if the discrete-time
system (16) with (17) is UGES, or, in other words, admits
a (Lyapunov) functionW ∶ N×Rme → R≥0, and constants
λ ∈ [0,1) and αcW , α

c
W > 0 such that for all i ∈ N and all

e ∈ Rme it holds that

αcW ∣e∣ ≤W (i, e) ≤ αcW ∣e∣ (18a)

W (i + 1, pf (i, e)) ≤ λW (i, e). (18b)

Sometimes we also say in this case that the scheduling
protocol is (DP,DC)-UGES with Lyapunov functionW .

Definition 5 describes a generalization of the concept
of UGES scheduling protocols as introduced in [23]. In
particular, when Definition 5 is satisfied by the discrete-
time system (16) with (17) where DP = 0 and DC = 0
(and thus hdf = 0), as was the case in [23], we recover
the definition of UGES scheduling protocols (i.e., the
protocol function h is UGES with Lyapunov function
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W ). Hence, the notion of UGES scheduling protocols
from [23] is equal to (0,0)-UGES scheduling protocols.
As shown in [23], various scheduling protocols exist that
satisfy this definition of (0,0)-UGES scheduling proto-
cols, including the SD, RR, and TOD protocols.

In Section 4, we analyze the concept of (DP,DC)-UGES
scheduling protocols in more detail. Moreover, in Sec-
tion 5, we will show that various well-known scheduling
protocols from [23,30] are also (DP,DC)-UGES accord-
ing to Definition 5 under appropriate conditions on the
direct-feedthrough matrices DP and DC.

3.2 LMI-based condition for UGES

We now recapitulate the main results of [5,23] concern-
ing UGES for the NCS given by (1)-(4) and modeled
by (12), while also taking Definition 5 into account. In
particular, we formulate LMI-based conditions guaran-
teeing the set E in (15) to be UGES for the NCS with
direct-feedthrough terms modeled by (12).

Theorem 6 Consider the systemH of (12) that satisfies
Assumption 1. Assume there exist a function W ∶ N ×
Rme → R≥0, a symmetric positive definite matrix XT,
and strictly positive real numbersM , αcW , αcW , λ ∈ (0,1),
and 0 < ε < γ, and suppose that the following holds:
(1) The scheduling protocol (function) h ∶ N × Rme →

Rme is (DP,DC)-UGES with Lyapunov functionW
and the constants αcW , α

c
W , and λ.

(2) For all κ ∈ N, and for almost all e ∈ Rme it holds that

∣∂W (κ, e)
∂e

∣ ≤M. (19)

(3)

⎡⎢⎢⎢⎢⎣

A⊺XT+XTA+ε2Imx+M2C⊺C XTE

E⊺XT −αcW 2[γ2−ε2]Ime

⎤⎥⎥⎥⎥⎦
⪯0. (20)

(4) τmati satisfies the bound

τmati ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
Lr

arctan( r(1−λ)
2 λ

1+λ
( γ
L−1)+1+λ) γ > L

1
L

1−λ
1+λ γ = L

1
Lr

arctanh( r(1−λ)
2 λ

1+λ
( γ
L−1)+1+λ) γ < L

1
γ

arctan ( (1+λ)(1−λ)
2λ

) L = 0

(21)

with r =
√

∣( γ
L
)2 − 1∣ and L =M (αcW )−1 ∣F∣.

Then, the set E in (15) is UGES.

Note that Theorem 6 is merely an application of [5, The-
orem 1]; its proof is therefore omitted, however, for more
details see, e.g., [15] or [17]. Since γ is the only free vari-
able for the computation of the bound for τmati as λ
follows from the scheduling protocol, τmati can be max-
imized by means of minimizing γ subject to 0 < ε < γ
and the LMI (20).

In order to use Theorem 6, and, in particular, the LMI
(20), to verify stability of the hybrid system (12), it is
necessary to have a scheduling protocol function h that
is (DP,DC)-UGES such that (18) and (19) are satisfied.

4 (DP,DC)-UGES scheduling protocols

To study if a scheduling protocol is (DP,DC)-UGES, we
consider the update equation of the error to be modeled
as the discrete-time system given by

e(i + 1) = h (i, e(i))

+
⎡⎢⎢⎢⎢⎣

0my DP

DC 0mu

⎤⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶ D

(e(i) − h (i, e(i)) ), (22)

see (9), (16), and (17). In this section, we will provide
conditions on the direct-feedthrough matrices DP and
DC such that ((0,0)-)UGES scheduling protocols are
also (DP,DC)-UGES scheduling protocols.

To this end, consider the situation in which ` ∈ N>0 nodes
are competing for access to the communication network,
and, hence, the error vector can now be partitioned as
e(i) = (e1(i), e2(i), . . . , e`(i)), after reordering if neces-
sary. As such, we can in general model the considered
scheduling protocol functions as

h (i, e) = (Ime −Ψ(i, e))e (23)

for all i ∈ N and e ∈ Rme with Ψ(i,e)= diag{ψ1 (i,e) Im1 ,
ψ2 (i,e) Im2 , . . . , ψ` (i,e) Im`}, where Imk are identity
matrices with mk the dimension of the k-th node in the
network such that ∑`k=1mk = me and where ψk (i, e)
equals one when the k-th node is updated and is zero
when it is not. Many well-known scheduling protocols,
such as the SD, RR, and TOD protocols can be modeled
according to (23), see Section 5 or [23].

Based on (23), we can decompose the system (22) as

e(i + 1) = h (i, e(i)) +Dw(i)
w(i) = Ψ (i, e (i)) e(i),

from which we can state the following theorem regarding
UGES of the scheduling protocols modeled by (23).

Theorem 7 Let DP ∈ Rmy×mu and DC ∈ Rmu×my be
given. Assume there exists a function W ∶ N×Rme → R≥0

that is globally Lipschitz in its second argument with Lip-
schitz constant M > 0, i.e., satisfying (19), and suppose
that the following holds:

(1) The scheduling protocol (function) h ∶ N × Rme →
Rme modeled by (23) is (0,0)-UGES with Lyapunov
function W , i.e., there exist constants λ ∈ [0,1) and
αcW , α

c
W > 0 such that for all i ∈ N and e ∈ Rme (18)

holds with (17) and hdf = 0.
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(2) For the matrix D defined in (22), it holds that

∣D∣ < α
c
W

M
(1 − λ). (24)

Then, the scheduling protocol (function) h is (DP,DC)-
UGES with Lyapunov function W , where (18a) is satis-
fied with αcW and αcW and (18b) with the decreasing rate

ρ ∶= λ + (αcW )−1
M ∣D∣ ∈ [0,1).

The proof is given in Appendix A. Observe now that the
first item in Theorem 7 covers the class of UGES schedul-
ing protocols as introduced in [23]. As such, Theorem 7
states that any scheduling protocol that is UGES in the
classical sense of [23, Definition 7] is also a (DP,DC)-
UGES scheduling protocol when (24) is satisfied, pro-
vided it admits a globally Lipschitz Lyapunov function,
which is often the case, see Section V in [23]. Theorem
7 also confirms what one would intuitively expect, i.e.,
that when h is a UGES scheduling protocol as intro-
duced in [23] and the direct-feedthrough terms are “small
enough”, the discrete-time system given by (22) is also
UGES. For the well-known SD, RR, and TOD protocols,
see [5, 23, 30], the required bounds on the norm of the
matrix D are summarized in Table 1, where we recall
that the number of nodes is denoted by ` ∈ N>0.

Table 1
UGES scheduling protocol condition for the SD, RR, and
TOD protocol, where ` is the number of nodes.

Protocol αc
W M λ ∣D∣ < c, where

SD 1 1 0 c = 1

RR 1
√

`
√

`−1
`

c =
√

`−√`−1
`

TOD 1 1
√

`−1
`

c = 1 −
√

`−1
`

From these results one can directly see that there exists
a relation between the number of nodes ` and the “size”
of the direct-feedthrough terms, i.e., when the number
of nodes ` increases, the stricter the condition on the
matrix D becomes (to apply Theorems 6 and 7 to ob-
tain UGES of the NCS). One can also observe that, in
general, the TOD protocol requires a less strict condi-
tion than the RR protocol. This is already a first in-
dication that for certain NCSs with direct-feedthrough
terms the corresponding discrete-time system (16) with
(17) might be stable with one UGES protocol, but not
with another, which is a large difference with the results
obtained in [23]. In fact, this observation will be justified
in the following sections.

While Theorem 7 in general can be applied to any NCS
with direct-feedthrough terms for any UGES scheduling
protocol function h that admits a globally Lipschitz Lya-
punov function, the obtained condition on the matrix
D is subject to some conservatism. Fortunately, it can be
shown that for some protocols we can obtain less conser-
vative results by exploiting the specific structure of these
protocol functions. This is the topic of the next section.

5 (DP,DC)-UGES of specific protocols

In this section, we focus on some of the most well-
known scheduling protocols, i.e., the SD, RR, and TOD
protocols, and show that the conditions on the direct-
feedthrough terms under which those protocols are
(DP,DC)-UGES, see Table 1, can be relaxed.

5.1 Sampled-data protocol

First we consider the sampled-data (SD) protocol, see,
e.g., [23, 30], that is modeled for i ∈ N and e ∈ Rme by

h (i, e) = 0, (25)

which is indeed of the form (23), implying that an update
of the error according to (22) is now given by

e(i + 1) = De(i).
Hence, the SD protocol is (DP,DC)-UGES if and only
if the matrix D is Schur, i.e., for all eigenvalues λk of D
it holds that

∣λk(D)∣ < 1, (26)

see, e.g., [19]. Note now that condition (26) is equiva-
lent to the sufficient well-posedness condition of (11). As
such, we have the following result for the SD protocol.

Proposition 8 Let DP ∈ Rmy×mu and DC ∈ Rmu×my be
given. The SD protocol, modeled by the scheduling proto-
col function (25), is (DP,DC)-UGES if and only if (11)
(cf. (26)) holds. Moreover, when this is the case, a Lya-

punov function can be obtained as W (e) =
√
e⊺Pe, where

the real symmetric matrix P ≻ 0 is computed by solving

D⊺PD − ρP ⪯ 0 (27)

for a certain constant ρ ∈ [0,1), implying that (18a) is

satisfied with αcW =
√
λmin(P ) and αcW =

√
λmax(P ),

(18b) with λ = √
ρ, and (19) with M =

√
λmax(P ).

Proposition 8 implies that, for any NCS given by (1)-(4)
satisfying the sufficient well-posedness condition of (11),
a solution to the LMI (27) exists, and, hence, Theorem
6 can always be used to obtain a bound on the MATI
and thus guarantee UGES of the set E in (15) for the
linear NCS given by (1)-(4) with the SD protocol as the
scheduling protocol. Observe also that, based on (21),
the “freedom” in (27) can be used for the optimization
of the MATI.

Remark 9 The condition (26) (cf. (11)) implies that,
when either DP = 0 or DC = 0 and, hence, DCDP = 0,
the other-ones matrix norm (DP ≠ 0 or DC ≠ 0) can
grow arbitrarily large. As a result, the SD protocol is
(DP,0)- and (0,DC)-UGES for any DP ∈ Rmy×mu and
DC ∈ Rmu×my .

Remark 10 When we have that ∣D∣ < 1, the matrix P
in (27) can be taken as the identity matrix. As such,
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we have that W (e) = ∣e∣ as proposed in [23] for the SD
protocol, and, hence, we recover the condition (24) for the
SD protocol as stated in Theorem 7 (see Table 1). In this
case, (18) and (19) are satisfied for αcW = αcW = M = 1,
and λ = ∣D∣ < 1.

5.2 Round-robin protocol

Secondly, we consider the round-robin (RR) protocol,
which is also of the form (23), where in addition the
value of the matrix Ψ(i, e), which we write ∆(i) in this
section, is only determined by the discrete-time i. More
precisely, the RR protocol can be modeled according to

h(i, e) = (Ime −∆(i))e, (28)

for i ∈ N and e ∈ Rme where ∆(i) = diag{∆1(i),∆2(i), ...,
∆`(i)} with the square matrices ∆k(i) = δk(i)Imk of
dimension mk, where

δk(i) = {1, if i = k + j`, for some j ∈ N
0, otherwise.

(29)

Let now `y ∈ N>0 denote the number of nodes which are
not associated to any actuator and, similarly, let `u ∈ N>0

denote the number of nodes which are not associated to
any sensor (note that `y + `u ≤ `). As the scheduling rule
of the RR protocol is a priori known, we can compute
the trajectory for the discrete-time system given by (22)
with (28). As such, in the case that there are no mixed
communication nodes present in the NCS, i.e., ` = `y +
`u and e(i) = (e1(i), . . . , e`y(i), e`y+1(i), . . . , e`y+`u(i)) =
(ey(i), eu(i)) (after reordering the error, if needed), it
can be shown that the evolution of the discrete-time
system given by (22) after j` steps, j ∈ N, is given by
(see also Appendix B)

e(j`) =
⎡⎢⎢⎢⎢⎣

ey(j`)
eu(j`)

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

(DPDC)j−1
DPeu(0) + (DPDC)j ey(0)

0mu

⎤⎥⎥⎥⎥⎦
.

(30)
This implies that, when j →∞, we have an infinite rep-
etition of either the terms DPDC or DCDP in the error
ey, while eu is always zero after j` time steps. Hence,
when (11) holds, i.e., when the matrix D is Schur, we
have convergence of the error to zero, i.e.,

lim
i→∞

e(i)→ 0.

In fact, from (30) if follows that

∣e(M)∣ ≤
RRRRRRRRRRRR

⎡⎢⎢⎢⎢⎣

DP DPDC

0 0

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRR
∣DPDC∣

M
∣e(0)∣

for sufficiently large M ∈ N, implying that there exists
a finite-step Lyapunov function, see, e.g., [10], showing
UGES of the discrete-time system (22) modeled with
the RR protocol given by (28). Hence, (DP,DC)-UGES
of the RR protocol is clearly guaranteed for the case of

no mixed nodes when the sufficient condition of (11) for
well-posedness is satisfied. As such, we can compose the
following result for the RR protocol (the proof is given
in Appendix A).

Proposition 11 Let DP ∈ Rmy×mu and DC ∈ Rmu×my
be given. The RR protocol, modeled by the scheduling pro-
tocol function of (28) with (29) and where l = lu + ly,
is (DP,DC)-UGES if and only if (11) holds. Moreover,
when this is the case, a Lyapunov function can be obtained

as W (e(i)) =
√
e⊺(i)P (i)e(i), where the `-periodic ma-

trices P (k) = P (k + `) with P (k) ≻ 0 are computed by
solving

A⊺
kP (k + 1)Ak − ρ(k)P (k) ⪯ 0 (31)

for certain `-periodic scalars ρ(k) = ρ(k+`) ∈ [0,1) for all
k ∈ ¯̀ ∶= {1,2, ..., `} and where the matricesAk are given by

Ak ∶= diag {Im1 , . . . , Imk−1 ,0mk , Imk+1 , . . . , Im`}
+Ddiag {0m1 , . . . ,0mk−1 , Imk ,0mk+1 , . . . ,0m`} ,

(32)

implying that (18a) is satisfied with

αcW = min
k

√
λmin(P (k)) and αcW = max

k

√
λmax(P (k)),

(18b) is satisfied with λ = maxk
√
ρ(k), and (19) with

M = maxk
√
λmax(P (k)).

Remark 12 Proposition 11 is based on the situation in
which all the sensor nodes are visited before the actuator
nodes. The proposition also holds in the case in which
all actuator nodes are first visited. However, a priori, we
could also alternate between sensor and actuator nodes
or do have mixed nodes in the network (i.e., communica-
tion nodes that contain both actuator(s) and sensor(s)),
resulting (in some cases) in the loss of the property of the
repetition of the terms DPDC or DCDP. Fortunately in
these situations, (31) (which is a set of LMIs and there-
fore amenable for computational verification [4]) can be
used as necessary and sufficient conditions for verifying
(DP,DC)-UGES of the RR protocol.

Remark 13 The SD protocol is a special case of the RR
protocol. Indeed, for ` = 1 we have that in (32) Ak = D
for k = 1, implying that for this special case (31) indeed
simplifies to (27).

5.3 Try-once-discard protocol

Finally, we consider the try-once-discard (TOD) proto-
col as introduced in [30], which, in contrast to the SD
and RR protocols, employs dynamic scheduling. In par-
ticular, the TOD protocol allocates network resources
to the node with the greatest (weighted) error norm at
a transmission time. As such, the TOD protocol is often
considered to be a “smarter” scheduling protocol than,
for instance, the RR protocol. This verbal description for
the TOD protocol can also be converted into the model
description of the form (23), where the rationale of the
TOD protocol itself (as explained above) is modeled by
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Fig. 2. The error evolution of the discrete-time system given
by (22) satisfying (11) for the TOD, RR, and SD scheduling
protocols and the indication for the TOD and RR protocols
which node is updated at each time instant i.

ψk(i, e) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if k = min(arg max
j

∣ej ∣)

0, otherwise.
(33)

Based upon the sufficient conditions as presented in Ta-
ble 1, one might expect, similar to the SD and RR pro-
tocols, that system (22) with the TOD protocol is also
(DP,DC)-UGES when (11) is satisfied. This is because
the TOD protocol has a less conservative bound in Ta-
ble 1 compared to the RR protocol. However, a simple
example shows that this is in general not true. Consider
for instance system (22) with the number of nodes ` = 3,
`y = 2 and `u = 1 (hence, we thus have two sensor nodes,
one actuator node, and no mixed nodes), and with the
direct-feedthrough matrices given by

DP =
⎡⎢⎢⎢⎢⎣

−3.5

1.0

⎤⎥⎥⎥⎥⎦
and DC = [0.5 0.85] . (34)

As such, we can partition the error vector as e =
(ey, eu) = (e1

y, e
2
y, eu). It is obvious that condition (11)

is satisfied for the considered system as

max
k

∣λk (DCDP)∣ = 0.9,

however, when we simulate the discrete-time system
of (22) with (34) for the various protocols, we can see
that exploiting the TOD protocol results in an unstable
discrete-time system, see Fig. 2.

This example shows that, although the SD and RR pro-
tocols are (DP,DC)-UGES, the TOD protocol is not
a (DP,DC)-UGES scheduling protocol even though
(11) is satisfied. As such, the rationale of the TOD
protocol is in general no longer appropriate when direct-
feedthrough terms are present in the system. In fact, as
seen in the example, we can even have that exploiting
the “smarter” TOD protocol is not always better than
exploiting the RR protocol in the presence of direct-
feedthrough terms.
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RR

Fig. 3. The error evolution of the discrete-time system given
by (22) not satisfying (11) for the TOD, RR, and SD schedul-
ing protocols and the indication for the TOD and RR proto-
cols which node is updated at each time instant i.

On the other hand, it can also be shown that the TOD
protocol may outperform both the RR and SD protocols.
Consider hereto the same example, however now with

DP =
⎡⎢⎢⎢⎢⎣

−0.4

−0.8

⎤⎥⎥⎥⎥⎦
and DC = [0.8 1.1] .

For these direct-feedthrough matrices Assumption 1 is
still satisfied, however (11) is not as

max
k

∣λk (DCDP)∣ = 1.2.

As a result, based on Propositions 8 and 11, the SD and
RR protocols will not be (DP,DC)-UGES, however, as
can be seen from Fig. 3, the TOD protocol is (DP,DC)-
UGES in this case. This example shows that communi-
cating more data (e.g., using the SD protocol instead of
the TOD protocol) also is not always better.

These counterintuitive results show that obtaining nec-
essary and sufficient conditions, as we have for the SD
and RR protocols, is not an easy task for the TOD pro-
tocol. However, we can again exploit the structure of the
TOD protocol to obtain sufficient conditions that are
in general less strict than the condition as presented in
Table 1. In particular, consider the following. Suppose
that, without loss of generality,

∣ek∣ = max
j∈¯̀

∣ej ∣

for some k ∈ ¯̀with ¯̀ ∶= {1,2, . . . , `}, or, stated differently,

∣ek ∣2 − ∣ej ∣2 ≥ 0, for all j ≠ k. (35)

Hence, according to (23) with (33) we have that

h (i, e) = diag{Im1 , . . . , Imk−1 ,0mk , Imk+1 , . . . , Im`}e.
Based on (35), we also introduce for each k ∈ ¯̀ the sets

Ck ∶= {e ∈ Rme ∣ e⊺Qkje ≥ 0, j ∈ ¯̀/{k}}
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with the matrices

Qkj ∶= diag{0m1 , . . . ,0mk−1 , Imk ,0mk+1 ,

. . . ,0mj−1 ,−Imj ,0mj+1 , . . . ,0m`}.
(36)

By combining the above, the discrete-time system of (22)
with (23) and (33) can be described as

e(i + 1) = (Ime −Ψ (i, e(i))) e(i) +DΨ (i, e(i)) e(i)
= Ake(i)

(37)

when e(i) ∈ Ck for some k ∈ ¯̀, with the matrixAk defined
by (32) and where the matrix D is as in (22). Note now
that (37) describes a piecewise linear (PWL) discrete-
time system, implying that its stability (and, therefore,
(DP,DC)-UGES of the TOD protocol) can be deter-
mined by solving a set of LMIs, see, e.g., [4]. In fact,
we have the following result for the TOD protocol (the
proof is given in Appendix A).

Proposition 14 Let DP ∈ Rmy×mu and DC ∈ Rmu×my
be given. The TOD protocol, modeled by the scheduling
protocol function of (23) with (33), is (DP,DC)-UGES

with Lyapunov function W (e) =
√
e⊺Pe if there exist a

real symmetric matrix P ≻ 0, a constant ρ ∈ (0,1), and
nonnegative constants βkj , k ∈ ¯̀and j ∈ ¯̀/{k}, such that

A⊺
kPAk − ρP +

`

∑
j=1,j≠k

βkjQkj ⪯ 0 (38)

holds for all k ∈ ¯̀with the matrices Qkj given by (36) and
where the matrix Ak is given by (32). Moreover, (18a) is

then satisfied for αcW =
√
λmin(P ) and αcW =

√
λmax(P ),

(18b) for λ = √
ρ, and (19) for M =

√
λmax(P ).

Remark 15 For the obtained class of PWL systems
there is not one undisputed way of obtaining sufficient
conditions such that UGES of the system given by (37) is
guaranteed. As such, the sufficient conditions as proposed
in Proposition 14, based on S-procedure relaxations as
mentioned in the proof of Proposition 14 (see Appendix
A), are not the only way to go. For instance, an effective
approach could also be to use versatile piecewise quadratic
(PWQ) Lyapunov functions to obtain sufficient LMI
conditions, see, e.g., [8,13]. However, due to space limi-
tations, we restrict ourselves to the result of Proposition
14. For more information about stability of PWL sys-
tems we refer to [8, 13, 21] and the references therein.

Remark 16 The SD protocol is also a special case of
the TOD protocol. Indeed, similar to Remark 13, we have
that, for ` = 1, (38) indeed simplifies to (27).

6 New scheduling protocols

In the previous section we have seen that the rationale
behind some (well-known) scheduling protocols can be
a priori lost when direct-feedthrough terms are present
in the NCS. Therefore, in this section, we propose some
new (DP,DC)-UGES scheduling protocols, designed to

work for “larger” values of (DP,DC) and/or improve
the convergence rate (i.e., smaller λ) of (22) and, hence,
lead to larger values of the MATI via Theorem 6.

6.1 SD+ protocol

The rationale behind the SD protocol is to update, at a
given transmission time tj , all networked values (of both
the input u as well as the output y) to their “true” val-
ues, see, e.g., [23, 30], leading to the networked-induced
error e being completely reset to zero at tj (in absence
of DP and DC). However, from the SD protocol func-
tion given by (25), it can directly be observed that the
overall networked-induced error e is not completely re-
set to zero when either one of the matrices DP or DC is
nonzero in (22). As such, we have that the rationale of
the SD protocol is a priori lost when direct-feedthrough
terms are present in the NCS.

Therefore, we introduce in this subsection an extended
version of the SD protocol, for which we coin the term
SD+ protocol, modeled by

h (i, e) = (D − Imy+mu)
−1

De. (39)

Hence, provided that the inverse in (39) exists, which is
the case in view of Standing Assumption 1, we now have
that at a transmission time the error e is always reset to
zero, i.e., e+ (tj) = 0. As such, we can directly compose
the following result for the SD+ protocol.

Proposition 17 Let DP ∈ Rmy×mu and DC ∈ Rmu×my
be given. The SD+ protocol, modeled by the scheduling
protocol function of (39), is (DP,DC)-UGES if and only
if Assumption 1 is satisfied. Moreover, when this is the
case, a Lyapunov function is given by W (e) = ∣e∣, imply-
ing that (18a) is satisfied for αcW = αcW = 1, (18b) for
arbitrary small λ ∈ [0,1), and (19) for M = 1.

Observe that, as λ can be taken arbitrarily small, the
SD+ protocol will always result in a higher value for the
MATI than the SD protocol. In addition, where the SD
protocol is limited to NCSs satisfying (11), the SD+ pro-
tocol guarantees stability for all NCSs satisfying Stand-
ing Assumption 1. As such, the SD+ protocol is a clear
improvement upon the SD protocol.

Remark 18 When there are no direct feedthrough terms
present in the overall system (i.e., DP and DC are zero),
we recover (25) again, making the SD+ protocol indeed
an extension of the SD protocol.

Remark 19 Based on the Schur complement and the
Woodbury matrix identity to invert a matrix blockwise,
see, e.g., [1, 33], the scheduling protocol function of (39)
can be rewritten as

h(i, e)=
⎡⎢⎢⎢⎢⎣

(DPDC − I)−1
DPDC (DPDC − I)−1

DP

(DCDP − I)−1
DC (DCDP − I)−1

DCDP

⎤⎥⎥⎥⎥⎦
e,

10



from which it follows that (39) corresponds to an update
of the networked values according to

ŷ+ = y + (DPDC − Imy)
−1
DP (DCey + eu)

û+ = u + (DCDP − Imu)
−1
DC (DPeu + ey) .

This implies that for the implementation of the SD+ pro-
tocol the sensor/actuator data needs to be available in a
centralized manner, i.e., all nodes need to know about the
values of all the other nodes or there is a need for a central
coordinator. Fortunately, since the SD+ protocol updates
all nodes at the same time, this is often not a problem.

6.2 Switching scheduling protocol

In many NCSs we have that the sensor and actuator
nodes are separated, i.e., we have no mixed nodes in the
NCS and thus `y + `u = `. As a result, from the structure
of the discrete-time system (22), it is also possible to
assume a separation of the errors ey and eu for these
NCSs. That is, the update of the nodes corresponding
to ey ∈ Rmy are now governed by

hy(iy, ey) = (Imy −Ψy(iy, ey))ey, (40)

while we have that for the nodes corresponding to eu ∈
Rmu their update is modeled through

hu(iu, eu) = (Imu −Ψu(iu, eu))eu, (41)

for all iy, iu ∈ N and where Ψy and Ψu are similar matri-
ces as Ψ in (23). Observe now that we also consider here
a separation of the discrete-time i in (22) by means of
the introduction of the (discrete-)times iy and iu, which
act as “counters” that keep track of the number of sensor
and actuator updates that have occurred, respectively,
i.e., we have that i = iy + iu. Moreover, in the case that
a sensor node is updated at time i, we have that the
“counter” iy is incremented by one (and thus i too). As
such, in this case, we denote the next discrete time-step
by i + 1 = (iy + 1) + iu. Similarly, in the case that an ac-
tuator node is updated, we have that iu is incremented
by one (and thus i too), for which we denote the next
discrete time-step by i + 1 = iy + (iu + 1).

Now, based on the separation of the errors, we propose
to introduce the new switching scheduling protocol that
uses a switching law q ∶ N × N × Rme → {1,2} that de-
termines if either (one of) the sensor nodes are allowed
to update according to (40) (when q(iy, iu, e) = 1) or
(one of) the actuator nodes according to (41) (when
q(iy, iu, e) = 2). To be more precise, we have the follow-
ing two situations:
● All the sensors nodes corresponding to the output y

can compete to access the channel to update. This
corresponds to the error update according to

ey(i + 1) = (Imy −Ψy(iy, ey(i)))ey(i)

eu(i + 1) = eu(i) +DCΨy(iy, ey(i))ey(i)
(42)

when q(iy, iu, e) = 1 and where i+1 = (iy +1)+ iu (i.e.,
the counter iy is incremented by one and thus i too).

● All the actuator nodes corresponding to the input u
can compete to access the channel to update. This
corresponds to the error update according to

ey(i + 1) = ey(i) +DPΨu(iu, eu(i))eu(i)

eu(i + 1) = (Imu −Ψu(iu, eu(i)))eu(i)
(43)

when q(iy, iu, e) = 2 and where i+1 = iy +(iu+1) (i.e.,
the counter iu is incremented by one and thus i too).

Based on (40)-(43), we thus have that the switching
scheduling protocol is modeled by the protocol function
hsp ∶ N ×N ×Rme → Rme that is given by

hsp(iy, iu, e) =
⎧⎪⎪⎨⎪⎪⎩

(hy(iy, ey), eu +DCwy) when q(iy, iu, e) = 1

(ey +DPwu, hu(iu, eu)) when q(iy, iu, e) = 2,

(44)

for all iy, iu ∈ N and e = (ey, eu) ∈ Rme with wy ∶=
ey − hy(iy, ey) and wu ∶= eu − hu(iu, eu). Hence, such a
switching protocol takes to some level the influence of the
direct-feedthrough termsDP/DC into account when de-
ciding which node to update, leading to possible higher
values of the MATI.

We will now analyze the stability properties of this novel
protocol function for the system of (22) (which thus can
be reformulated as (42)-(43)) for two specific switching
laws q that are based on the ideas of the RR and TOD
protocols.

6.2.1 Periodic switching scheduling protocol

In this section, we introduce a switching law inspired by
the idea of the RR protocol, i.e., we consider the case
of periodically switching between updating the sensors
and the actuators at each transmission instant. As such,
we have that the switching law q in this case is given by

q(iy, iu, e) = qPS(iy, iu) ∶= {1, if i = 1 + 2j, j ∈ N
2, otherwise,

(45)

with i = iy + iu. For such a switching law, for which
we coin the term periodic switching (PS) protocol, we
formulate the following theorem.

Theorem 20 Let DP ∈ Rmy×mu and DC ∈ Rmu×my be
given. Assume there exist functions W y ∶ N×Rmy → R≥0

and Wu ∶ N × Rmu → R≥0 that are globally Lipschitz in
their second argument with Lipschitz constants My and
Mu, respectively, and suppose that the following holds:

(1) The scheduling protocol (function) hy ∶ N × Rmy →
Rmy is (0,0)-UGES with Lyapunov function W y,
i.e., the (nominal) discrete-time system

ey(iy + 1) = hy(iy, ey(iy)) (46)

is UGES with Lyapunov function W y in the sense
that there exist positive lower and upper bounds
αcWy and αcWy , respectively, and a decreasing rate
λy ∈ [0,1) such that (18) holds for (46) with, hence,
pf(iy, ey) = hy(iy, ey).
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(2) The scheduling protocol (function) hu ∶ N ×Rmu →
Rmu is (0,0)-UGES with Lyapunov function Wu,
i.e., the (nominal) discrete-time system

eu(iu + 1) = hu(iu, eu(iu)) (47)

is UGES with Lyapunov function Wu in the sense
that there exist positive lower and upper bounds
αcWu and αcWu , respectively, and a decreasing rate
λu ∈ [0,1) such that (18) holds for (47) with, hence,
pf(iu, eu) = hu(iu, eu).

(3) It holds for some constants σ > 0 and µy, µu > 1 that

∣DC∣< α
c
Wy

σMu
(1−µyλy)and ∣DP∣< σα

c
Wu

My
(1−µuλu). (48)

Then, the PS protocol, modeled by hsp of (44) with
the switching law (45), is (DP,DC)-UGES with Lya-
punov function W ∶ N × N × Rme → Rme , given by

W (iy, iu, e) =
⎧⎪⎪⎨⎪⎪⎩

W y(iy, ey) + µuσWu(iu, eu), q(iy, iu, e) = 1

µyW y(iy, ey) + σWu(iu, eu), q(iy, iu, e) = 2,

(49)

where (18a) is satisfied for αcW ≤ min{αcWy , σαcWu} and
αcW ≥ max(αcWy + µuσαcWu , µyαcWy + σαcWu), (18b) for
λ = max{ 1

µy
, 1
µu
, µyλy + αy, µuλu + αu} where

αy ∶= σM
u

αcWy

∣DC∣ and αu ∶= My

σαcWu

∣DP∣, (50)

and (19) for M = max{My + µuσMu, µyMy + σMu}.

The proof is given in Appendix A. Observe now again,
similar to Theorem 7, that the first two items in Theo-
rem 20 merely require that the scheduling protocols for
the sensors and actuators, respectively, are UGES in the
classical sense of [23, Definition 7]. As such, we can thus
implement different scheduling protocols for the sensors
and actuators, respectively. Moreover, note that (48) is
equivalent to the “small gain” type of condition

∣DC∣ ∣DP∣ < α
c
WyαcWu

MuMy
(1 − λy)(1 − λu) (51)

since we can choose µy and µu arbitrarily close to one.
Hence, for given matrices DP and DC satisfying (51) for
chosen (0,0)-UGES protocol functions hy and hu, there
always exist σ > 0 and µy, µu > 1 such that the PS proto-
col is (DP,DC)-UGES. Moreover, when either one of the
matrices DP or DC is absent (equal to the zero matrix),
(51) is always satisfied and, hence, the other one’s norm
can grow arbitrarily large and still satisfy (48) (when the
values of σ and µy, µu are chosen appropriately). As a
consequence, when there is only one direct-feedthrough
term present in the NCS, the PS protocol with (45) as
the switching law always guarantees UGES of the error
discrete-time system (and, hence, the NCS itself, under
appropriate bounds on the MATI).

6.2.2 Maximal error switching scheduling protocol

Inspired by the idea behind the TOD protocol, we can
also consider the scenario in which the switching law q

is determined by the values of the errors ey and eu. In
particular, we introduce a switching law, for which we
coin the term maximal error switching (MES) protocol,
where its value is determined by the Lyapunov functions
W y and Wu corresponding to the nominal systems (46)
and (47), respectively, see items (1)-(2) of Theorem 20.
That is, for some µ > 0, we introduce the switching law
q ∶ N ×N ×Rme → {1,2} given by

q(iy, iu, e) = qMES(iy, iu, e) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

{1}, when W y(iy, ey) > µWu(iu, eu)
{2}, when W y(iy, ey) < µWu(iu, eu)

{1,2}, when W y(iy, ey) = µWu(iu, eu).

(52)

Now, similar to the PS protocol, we formulate the fol-
lowing theorem for the MES protocol.

Theorem 21 Let DP ∈ Rmy×mu and DC ∈ Rmu×my be
given. Assume there exist functions W y ∶ N×Rmy → R≥0

and Wu ∶ N × Rmu → R≥0 that are globally Lipschitz in
their second argument with Lipschitz constants My and
Mu, respectively, and suppose that the following hold:

(1) Items (1)-(2) of Theorem 20 are satisfied for con-
stants αcWy , αcWy , αcWu , αcWu > 0 and λy, λu ∈ [0,1).

(2) It holds for some constant σ > 0 that

∣DC∣ < αcWy

σMu
(1−λy) and ∣DP∣ < σα

c
Wu

My
(1−λu). (53)

Then, the MES protocol, modeled by hsp of (44) with the
switching law (52) for some µ > 0, is (DP,DC)-UGES
with Lyapunov functionW ∶ N×N×Rme → Rme , given by

W (iy, iu, e) =W y(iy, ey) + σWu(iu, eu), (54)

where (18a) is satisfied for αcW ≤ min{αcWy , σαcWu} and

αcW ≥αcWy+σαcWu , (18b) for λ=max{λyMES , λ
u
MES} with

λyMES ∶=
λy + αy + σµ−1

1 + σµ−1
and λuMES ∶=

λu + αu + σ−1µ

1 + σ−1µ

and where αy and αu are given by (50), and (19) for
M =My + σMu.

The proof is given in Appendix A. Observe that µ > 0 is a
design parameter of the MES protocol, i.e., its value can
be chosen in such a way to either give more priority to
updating the sensors (small µ) or the actuators (large µ),
which can be useful if the influence of either DP or DC

on the error e is much larger than that of the other one.
Moreover, for a chosen value of µ > 0, one can maximize
τmati over σ > 0 subject to (53) and (20).

In addition, note that (53) is also equivalent to the small
gain condition of (51), i.e., if (51) is satisfied, there al-
ways exists a σ > 0 such that (53) is satisfied. This im-
plies that the PS and MES protocols have the same con-
dition under which they are guaranteed to be (DP,DC)-
UGES. However, the computed values for αcW , α

c
W , and

λ (and, hence, the value for τmati) differ.
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7 Numerical example

To illustrate the application of our results, we consider
the benchmark example of the unstable batch reactor
that can be captured by the model of (1)-(2) with

AP =
⎛
⎜⎜⎜
⎝

1.38 −0.208 6.715 −5.676

−0.5814 −4.29 0 0.675

1.067 4.273 −6.654 5.893

0.048 4.273 1.343 −2.104

⎞
⎟⎟⎟
⎠
BP =

⎛
⎜⎜⎜
⎝

0 0

5.679 0

1.136 −3.146

1.136 0

⎞
⎟⎟⎟
⎠

CP = (1 0 1 −1

0 1 0 0
) BC = (0 1

1 0
) CC = (−2 0

0 8
) DC = (0 −2

5 0
)

AC = 0, and DP = 0, see, e.g., [5, 14, 16, 23, 30]. Note
that, since the matrix DC ≠ 0, we indeed have direct-
feedthrough terms in the NCS. Here we assume, in con-
trast with [5, 14, 23, 30], that both the output y to the
controller as well as the controller output u itself are
transmitted over a communication network. As a result,
the network-induced error is now updated according to
(9), implying that the stability analysis of [5,23] can no
longer be applied. Fortunately, since DP = 0, Assump-
tion 1 is satisfied and, hence, we can apply Theorem 6
with any (0,DC)-UGES scheduling protocol to obtain a
bound on the MATI and guarantee UGES for the NCS.

In [16], it has already been shown that exploiting the
SD protocol guarantees (exponential) stability for the
overall system, even with the error increasing at some
transmission/inter-event times, see Fig. 4. To this end,
Proposition 8 was used to compute the needed values for
αcW , αcW , M , and λ, see Table 2.

0 0.05 0.1 0.15 0.2
Time t [s]

0

0.1

0.2

0.3

0.4

|e
(t
)|

Fig. 4. Simulation results for the numerical example of the
batch reactor with the SD protocol and τmati = 1.840 ⋅ 10−3.

In this paper, we compute also the bounds on the MATI
using Theorem 6 for the RR protocol with ` = 4 (using
Proposition 11), the SD+ protocol (using Proposition
17), and the MES protocol with `y = `u = 2, µ = 0.2,
and σ = 3.4315 ⋅ 10−2 (using Theorem 21), where we
implement the TOD protocol for the sensors y and the
RR protocol for the actuators u. Moreover, by simulating
the NCS, we obtain numerical estimates of the actual
bound τsimmati on the MATI for which the NCS is still
UGES. All the results are given in Table 2, from which
we can draw various conclusions.

First, we can conclude that the SD+ protocol perfor-
mance, as expected, significantly better than the stan-
dard SD protocol, proving that it indeed is useful to

introduce this novel scheduling protocol function. Sec-
ondly however, we have that the computed τmati for the
MES protocol is significantly lower than all the other
computed bounds for the MATI, implying that its per-
formance is worse than, for instance, that of the RR
protocol, something that one would not expect. Indeed,
when we simulate the NCS system for the various proto-
cols, we obtain that the actual bound on the MATI τsimmati
for the MES protocol is larger than for the RR protocol,
see Table 2. This difference in results can be explained
by the fact that the conditions presented in Theorem
21 are only sufficient, whereas we have that Proposition
11 provides sufficient and necessary conditions. As such,
similar to Theorem 7, we can conclude that, while the
conditions presented in Theorem 21 hold in general, they
are also conservative. Improving upon these conditions is
therefore a topic of future research. In particular, based
on the observation that the error can increase when up-
dating the networked values, exploiting, for instance,
finite-step Lyapunov functions, see, e.g., [10], might re-
sult in less conservative results for all of the protocols.

Table 2
UGES scheduling protocols where τmati is computed using
Theorem 6 and τsimmati obtained through simulation.

Prot. αc
W αc

W /M λ τmati τsimmati

SD 0.120 1.409 0.424 1.840 ⋅ 10−3 0.0626

RR 0.100 1.407 0.843 3.252 ⋅ 10−4 0.0218

SD+ 1 1 0 5.307 ⋅ 10−2 0.1511

MES 0.034 1.049 0.957 3.856 ⋅ 10−5 0.0455

8 Concluding remarks

In this paper, we considered NCSs composed of a lin-
ear plant and linear controller with direct-feedthrough
terms. Such terms are essential in the modeling of cer-
tain important classes of controllers commonly used in
industry such as PI(D) regulators. To analyze stability
of these “linear” NCSs, the concept of UGES scheduling
protocols as introduced in [23] was extended to take into
account the influence of the direct-feedthrough terms
on the networked-induced error, resulting in the notion
of (DP,DC)-UGES scheduling protocols with DP and
DC being the direct-feedthrough terms in the plant and
controller, respectively. We have shown that, under a
well-posedness assumption, the stability analysis of [23]
and [5], which resulted in conditions on the MATI for
the NCS, can still be used as long as the protocols satisfy
the (DP,DC)-UGES property. Therefore, we provided
generic conditions on the direct-feedthrough terms DP

and DC under which any UGES scheduling protocol in
the classical sense is also (DP,DC)-UGES. Moreover, it
has been shown that, for the well-known SD, RR, and
TOD protocols, these conditions can be relaxed by ex-
ploiting the knowledge we have about the structure of
the protocol. This analysis also revealed that using the
“smarter” TOD protocol is not always better than the
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RR protocol and that updating all the nodes simulta-
neously (exploiting the SD protocol) can be worse than
updating the nodes one by one. Furthermore, we also
introduced new (DP,DC)-UGES scheduling protocols
(i.e., the SD+, PS, and MES protocols) to handle the
direct-feedthrough terms in a more effective way. Finally,
we have illustrated the application of our new results by
means of the benchmark example of the batch reactor
and we compared various scheduling protocols.

The results presented in this paper for “linear” NCSs
gave insights in the (counterintuitive) difficulties one en-
counters by including direct-feedthrough terms in the
NCS setup. As such, the obtained results also have many
natural extensions. Particularly, they are insightful for
the nonlinear case, as, for instance, it should be possible
to extend the general conditions as obtained in Theorem
7 to the nonlinear case by using Lipschitz properties.
Moreover, the results in this paper could incite one to
think of other new scheduling protocols, which exploit
the available information about the direct-feedthrough
terms better. In addition, the increase of the error norm
after some time steps could encourage to investigate the
use of finite-step Lyapunov functions in the context of
NCSs with direct-feedthrough terms to obtain less con-
servative results.

Appendices
A Proofs
Proof of Theorem 7. Let i ∈ N, e ∈ Rme , and w =
Ψ(i, e)e. Addition to and subtraction from (18b) with
pf(i, e) = h(i, e) of the term W (i + 1, h(i, e) +Dw), we
obtain

W (i + 1, h(i, e) +Dw)
≤ λW (i, e)+W (i +1, h(i, e)+Dw)−W (i +1, h(i, e))
≤ λW (i, e) +M ∣Dw∣ ≤ λW (i, e) +M ∣D∣∣w∣,

where we used the Lipschitz property ofW in the second
inequality. Since for the considered protocols it holds
that ∣w∣ = ∣Ψ(i, e)e∣ ≤ ∣e∣ for all e ∈ Rme and by using
(18a), we obtain that

W (i + 1, h(i, e) +Dw) ≤ λW (i, e) +M ∣D∣∣e∣
≤ (λ + (αcW )−1M ∣D∣)W (i, e) ,

which is equivalent to

W (i + 1, h(i, e) +Dw) ≤ ρW (i, e)
for ρ ∶= λ+αcW

−1M ∣D∣. Since (24) holds, we obtain that
ρ ∈ [0,1). This completes the proof. ∎

Proof of Proposition 11. As a result of (29), it follows
that the discrete-time system of (16) becomes a periodic
linear discrete-time system of the form e(i+ 1) = Ake(i)
with the matrix Ak of (32) and where k = i mod `.
Hence, stability of the RR protocol can be analyzed by
using the periodic Lyapunov Lemma, see, e.g., [2, 3],
which directly results in the LMI-based necessary and
sufficient conditions of (31). This completes the proof. ∎

Proof of Proposition 14. As mentioned above Propo-
sition 14, since the resulting discrete-time system of (37)
is a PWL system, (DP,DC)-UGES of the TOD proto-
col can be determined by solving a set of LMI’s. In par-
ticular, to this end, we propose to use the S-procedure
[4, 8, 13]. Consider hereto again the Lyapunov function

W (i, e) =
√
e⊺Pe with P being a symmetric positive

definite matrix, and define for each k ∈ ¯̀ the function

Sk(e) ∶=
`

∑
j=1,j≠k

βkj e
⊺Qkje

for the constants βkj ≥ 0, j ≠ k, such that Sk(e) ≥ 0
when e ∈ Ck. It follows that, in order for the discrete-
time system of (37) to be UGES, the following condition
should be satisfied for all i ∈ N, e ∈ Rme , and k ∈ ¯̀

W 2 (i + 1,Ake) − ρW 2 (i, e) + Sk(e) ≤ 0

⇒ e⊺A⊺
kPAke − ρ (e⊺Pe) +∑

j≠k
βkj e

⊺Qkje ≤ 0

when e ∈ Ck with 0 < ρ < 1. This leads directly to (38)
and therefore completes the proof. ∎

Proof of Theorem 20. Let iy, iu ∈ N, e = (ey, eu) ∈
Rme , i = iu + iy, wy = ey − hy(iy, ey), and wy =
eu − hu(iu, eu). Consider the Lyapunov function for
the overall system (42)-(43) with (45) given by (49)
that clearly satisfies (18a) and (19) for any σ > 0 and
µy, µu > 1, where αcW , αcW , and M are given in the
formulation of Theorem 20. Let now q(iy, iu, e) = 1. In
this case we have that the error dynamics are given by
(42) and that q(iy + 1, iu, hsp(iy, iu, e)) = 2. As such, it
follows that

W (iy + 1, iu, (hy(iy, ey), eu +DCwy))
= µyW y(iy + 1, hy(iy, ey)) + σWu(iu, eu +DCwy)
= µyW y(iy + 1, hy(iy, ey)) + σWu(iu, eu +DCwy)
+ σ(Wu(iu, eu) −Wu(iu, eu))

≤ µyλyW y(iy, ey) + σWu(iu, eu) + σMu ∣DCwy∣

≤ (µyλy + σM
u

αcWy

∣DC∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ λ̃yPS

W y(iy, ey) + σWu(iu, eu),

(A.1)

where we used Lebourg’s Lipschitz mean-value theorem
[6, Theorem 2.3.7] and the property

∣wy∣ ≤ ∣ey∣ ≤ (αcWy)−1W y(iy, ey).

Hence, when (48) holds, i.e., λ̃yPS < 1, we have that

W (iy + 1, iu, (hy(iy, ey), eu +DCwy)) ≤ λ̄yPSW (iy, iu, e)
for λ̄yPS = max{ 1

µu
, λ̃yPS} ∈ (0,1). Similarly, for the case

that q(iy, iu, e) = 2 (and, hence, q(iy, iu + 1, hsp(iy, iu,
e)) = 1), we obtain that
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W (iy, iu + 1, (ey +DPwu, hu(iu, eu)))
=W y(iy, ey +DPwu)) + µuσWu(iu + 1, hu(iu, eu))

≤W y(iy, ey) + (µuλu + My

σαcWu

∣DP∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ λ̃uPS

σWu(iu, eu),

implying that, when (48) holds, i.e., λ̃uPS < 1, also

W (iy, iu + 1, (ey +DPwu, hu(iu, eu))) ≤ λ̄uPSW (iy, iu, e)
for λ̄uPS = max{ 1

µy
, λ̃uPS} ∈ (0,1). Based on the above

results, it can thus be concluded that (with some abuse
of notation) also (18b) is satisfied for the Lyapunov

function (49) with λ = max{ 1
µy
, 1
µu
, λ̃yPS , λ̃

u
PS}. This

completes the proof. ∎

Proof of Theorem 21. Similarly to the proof of The-
orem 20, let iy, iu ∈ N, e = (ey, eu) ∈ Rme , i = iu + iy,
wy = ey − hy(iy, ey), and wu = eu − hu(iu, eu) and
consider the Lyapunov function for the overall system
(42)-(43) with (52) given by (54), which clearly satisfies
(18a) and (19) for any constant σ > 0, where αcW , αcW ,
and M are given in the formulation of Theorem 21. Let
now q(iy, iu, e) = 1. In this case, the error dynamics are
given by (42). As such, based on (A.1) it follows that

W (iy + 1, iu, (hy(iy, ey), eu +DCwy))
=W y(iy + 1, hy(iy, ey)) + σWu(iu, eu +DCwy)

≤ (λy + σM
u

αcWy

∣DC∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶= λ̃yMES

W y(iy, ey) + σWu(iu, eu), (A.2)

Similarly, one obtains for the case q(iy, iu, e) = 2 that

W (iy, iu + 1, (ey +DPwu, hu(iu, eu)))

≤W y(iy, ey) + (λu + My

σαcWu

∣DP∣)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∶= λ̃uMES

σWu(iu, eu). (A.3)

Note now that, when (53) is satisfied, we have

λ̃yMES < 1 and λ̃uMES < 1. (A.4)

To show now UGES of the system (42)-(43) for the MES
protocol, we will make use of the properties induced by
the switching law q of (52). In particular, define the con-
stants 0 < ρy, ρu < 1 such that

λ̃yMES+(1−ρ
y)σµ−1 < 1 and λ̃uMES+(1−ρu)σ−1µ < 1,

which always exist as (A.4) holds (just take ρy, ρu suf-
ficiently close to one), and consider now the case of
q(iy, iu, e) = 1, i.e., W y(iy, ey) ≥ µWu(iu, eu). Based on
(A.2), we have that

W (iy + 1, iu, hsp(iy, iu, e))
≤ λ̃yMESW

y(iy, ey) + (ρy + (1 − ρy))σWu(iu, eu)
(52)
≤ (λ̃yMES + (1 − ρy)σµ−1)W y(iy, ey) + ρyσWu(iu, eu)
≤ max{ρy, λ̃yMES + (1 − ρy)σµ−1}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶ λ̄yMES ∈ (0,1)

W (iy, iu, e).

Similarly, one can obtain that in the case of q(iy, iu, e) =
2, i.e., W y(iy, ey) ≤ µWu(iu, eu), that (cf. (A.3))

W (iy, iu + 1, hsp(iy, iu, e))
≤ (ρu + (1 − ρu))W y(iy, ey) + λ̃uMESσW

u(iu, eu)
(52)
≤ (λ̃uMES + (1 − ρu)σ−1µ)σWu(iu, eu) + ρuW y(iy, ey)
≤ max{ρu, λ̃uMES + (1 − ρu)σ−1µ}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∶ λ̄uMES ∈ (0,1)

W (iy, iu, e).

This analysis shows that UGES of the system (42)-(43)
is indeed guaranteed for the switching law of (52). In
particular, we have that (with some abuse of notation)
also (18b) is satisfied for the switching law of (52) with
λ = max{λ̄yMES , λ̄

u
MES} ∈ (0,1). Moreover, observe that

λ̄yMES reaches its minimal value when ρy = (λ̃yMES +
σµ−1)(1+σµ−1)−1, and, similarly, λ̄uMES reaches its min-

imal value for ρu = (λ̃uMES +σ−1µ)(1+σ−1µ)−1. As such,
we have that (18b) also holds with

λ = max{
λ̃yMES + σµ−1

1 + σµ−1
,
λ̃uMES + σ−1µ

1 + σ−1µ
} .

This completes the proof. ∎

B Trajectory evolution for the RR protocol

Consider the discrete-time system of (22) with (28) with-
out any mixed nodes and the partitioned error vector

e(i) = (e1(i), . . . , e`y(i), e`y+1(i), . . . , e`y+`u(i))
= (ey(i), eu(i)).

(B.1)

For the considered RR protocol, we can now compute
the trajectory from any initial condition e(0) ∈ Rme . To
this end, we also partition the matrices DP and DC to
reflect the structure of (B.1), i.e., we have that

DP =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D11
P ⋯ D1`u

P

⋮ ⋱ ⋮
D
`y1
P ⋯ D

`y`u
P

⎤⎥⎥⎥⎥⎥⎥⎥⎦

and DC =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

D11
C ⋯ D

1`y
C

⋮ ⋱ ⋮
D`u1

C ⋯ D
`u`y
C

⎤⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the RR protocol is a `-periodic protocol, it suffices
to compute the first ` steps of the trajectory. According
to (29), we first have an update of the first node, i.e., in
(28) we have that ∆(i) = diag{Im1 ,0m2 , . . . ,0m`}, which
implies that (22) for the first step results in

15



e(1) = (ey(1), eu(1))

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

e2(0)
⋮

e`y(0)
e`y+1(0)

⋮
e`(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0my

D11
P ⋯ D1`u

P

⋮ ⋱ ⋮
D
`y1
P ⋯ D

`y`u
P

D11
C ⋯ D

1`y
C

0mu⋮ ⋱ ⋮
D`u1

C ⋯ D
`u`y
C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

e1(0)
0

⋮
0

0

⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= (0, e2(0),⋯, e`y(0), e`y+1(0) +D11
C e1(0),
⋯, e`(0) +D`u1

C e1(0))
for any initial condition e(0) ∈ Rme . Hence, one can see
that an update of a sensor node does not influence the
error vector ey (except for the node that is updated). As a
result, repeating the update for all sensor nodes results in

e(`y) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⋮
0

e`y+1(0) +D11
C e1(0) +⋯ +D1`y

C e`y(0)
⋮

e`(0) +D`u1
C e1(0) +⋯ +D`u`y

C e`y(0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (0, eu(0) +DCey(0)) = (ey(ly), eu(ly)).

Similarly, the next update corresponding to the first ac-
tuator node results in

e(`y + 1) =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⋮
0

0

e`y+2(`y)
⋮

e`(`y)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0my

D11
P ⋯ D1`u

P

⋮ ⋱ ⋮
D
`y1
P ⋯ D

`y`u
P

D11
C ⋯ D

1`y
C

0mu⋮ ⋱ ⋮
D`u1

C ⋯ D
`u`y
C

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

⋮
0

e`y+1(`y)
0

⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=(D11

P e`y+1(`y),⋯,D`y1
P e`y+1(`y),0, e`y+2(`y),⋯, e`(`y)) .

Hence, we can again observe that an update of an actu-
ator node does not influence the error vector eu (except
for the node that is updated). This implies that after all
the actuator nodes have been updated, we have that

e(l) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11
P e`y+1(`y) +⋯ +D1`u

P e`(`y)
⋮

D
`y1
P e`y+1(`y) +⋯ +D`y`u

P e`(`y)
0

⋮
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡⎢⎢⎢⎢⎣

DPeu(`y)
0

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

DPeu(0) +DPDCey(0)
0

⎤⎥⎥⎥⎥⎦
.

As such, it now directly follows that the evolution of the
discrete-time system given by (22) with the RR protocol
of (28) after j` steps, j ∈ N, is given by

e(j`) =
⎡⎢⎢⎢⎢⎣

(DPDC)j−1
DPeu(0) + (DPDC)j ey(0)

0mu

⎤⎥⎥⎥⎥⎦
,

where 0mu denotes the vector of all zeros of size mu.
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[23] D. Nešić and A.R. Teel. Input-output stability properties of
networked control systems. IEEE Transactions on Automatic
Control, 49(10):1650–1667, 2004.

[24] N. Noroozi, R. Postoyan, D. Nešić, S.H.J. Heijmans, and
W.P.M.H. Heemels. Stability analysis of networked control
systems with direct-feedthrough terms: Part I - The nonlinear
case. In Proceedings of the IEEE 55th Conference on Decision
and Control, pages 6820–6825, 2016.
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