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Abstract

Distributed parameter estimation for large-scale systems is an active research problem. The goal is to derive a distributed
algorithm in which each agent obtains a local estimate of its own subset of the global parameter vector, based on local
measurements as well as information received from its neighbours. A recent algorithm has been proposed, which yields the
optimal solution (i.e., the one that would be obtained using a centralized method) in finite time, provided the communication
network forms an acyclic graph. If instead, the graph is cyclic, the only available alternative algorithm, which is based on
iterative matrix inversion, achieving the optimal solution, does so asymptotically. However, it is also known that, in the cyclic
case, the algorithm designed for acyclic graphs produces a solution which, although non optimal, is highly accurate. In this
paper we do a theoretical study of the accuracy of this algorithm, in communication networks forming cyclic graphs. To
this end, we provide bounds for the sub-optimality of the estimation error and the estimation error covariance, for a class of
systems whose topological sparsity and signal-to-noise ratio satisfy certain condition. Our results show that, at each node, the
accuracy improves exponentially with the so-called loop-free depth. Also, although the algorithm no longer converges in finite
time in the case of cyclic graphs, simulation results show that the convergence is significantly faster than that of methods
based on iterative matrix inversion. Our results suggest that, depending on the loop-free depth, the studied algorithm may be
the preferred option even in applications with cyclic communication graphs.

Key words: Distributed statistical estimation, Weighted least squares, Convergence rate.

1 Introduction

With the fast development of sensor networks and wire-
less communications, the scale of systems is becoming
increasingly large. Since centralized estimation requires
a fusion center to process all the information from the
whole graph, the computation and communication bur-
den increases with the system’s size. Thus, the central-
ized estimation approach is not suitable for large-scale
systems, and distributed approaches are needed. The
development of distributed estimation has attracted a
great deal of attention [10,15,11,21,22]. It finds applica-
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tions in industrial monitoring, multi-agent systems, the
smart grid, etc.

The distributed estimation problem consists of a net-
work of interconnected nodes, each of which aims to ob-
tain an estimate of certain vector of interest. This is
achieved through an iterative procedure in which each
node processes its available information, and exchange
relevant information with its neighbors, in order to suc-
cessively compute the required estimate as accurately
as possible. The existing distributed estimation prob-
lems can be broadly classified into four classes. These
classes are: static fully reconstructive, static partially re-
constructive, dynamic fully reconstructive and dynamic
partially reconstructive. A fully reconstructive system is
one in which each node aims to obtain an estimate of
the same vector. In contrast, in a partially reconstruc-
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tive system, each node aims to obtain an estimate of its
own partial sub-vector of interest. Also, a static system
is one in which prior knowledge of the state at a certain
time is independent of the knowledge of the same state at
previous times. A dynamic system refers to the comple-
mentary case. We point out that methods for dynamic
estimation can be readily used for static problems, by
choosing the dynamic model in a way such that the state
stays constant over time.

In the static fully reconstructive problem, the most pop-
ular distributed estimation algorithm is consensus [10].
By running average consensus on the information vec-
tor and information matrix of each node, in view of the
weighted least squares (WLS) formula, the final esti-
mate of each node converges to the one obtained via
WLS [19]. Although the average consensus algorithm is
simple, it has two main disadvantages: First, the com-
munication burden is large, as each node communicates
n×(n+3)

2 scalars to its neighbors, where n is the dimen-
sion of the estimated vector. Second, the convergence
of average consensus requires infinite iterations, and the
stopping criterion is still an open problem. To avoid
these two disadvantages, many algorithms have been
proposed [20,7,5,2]. One of the most important works
is the one in [20], where using the space structure of
measurements and doing kernel projection, each node
achieves its minimum norm solution in a finite number
of steps.

In the static partially reconstructive problem, since each
node considers its own partial state, the consensus algo-
rithm is not applicable. For the case in which the graph
induced by the communication network is acyclic (i.e.,
without loops), an algorithm is proposed in [23]. In this
algorithm, each node obtains aWLS estimate on its own
state in a finite number of steps. When the graph is
cyclic (i.e., with loops), [16] gave a novel method which,
based on Richardson iterations, solves the WLS estima-
tion problem. However, it does so asymptotically, i.e.,
in infinite iterations. We point out that most estimation
algorithms for large-scale systems are partially recon-
structive, since the whole state of the system is often of
very high dimension.

In the dynamic fully reconstructive problem, the con-
sensus algorithm is also a popular option. In [17], one
consensus algorithm is run at time each sampling time,
using the partial estimates obtained at each node, based
on their local measurements. Building on this line, a
study on the number of consensus iterations required at
each sampling time to guarantee the stability of the esti-
mator, under the observability condition, is done in [1].
Also, the so-called diffusion Kalman filter [6] runs con-
sensus on the estimates obtained at each sensor, using lo-
cal measurements as well as those from neighbors. As op-
posite to doing consensus on the estimates, the authors
of [3] found that, by running consensus on the informa-

tion matrices and vectors, observability is sufficient for
the estimation stability.

Concerning the dynamic partially reconstructive prob-
lem, information passing and processing methods guar-
anteeing a stable estimate and proposed in [28,29,9,14].
Also, the authors of [12] study systems with banded dy-
namic state transitionmatrices, concluding that the con-
tribution from faraway nodes decreases with the increase
of their distance. The authors also propose the moving
horizon estimation approach as an approximation to the
optimal state estimate.

In this paper we focus on the static partially reconstruc-
tive problem. Also, as typically done in static problems,
we assume that the vector to be estimated is determin-
istic. More precisely, we consider the algorithm in [23],
which, asmentioned, yields the optimal solution in finite-
time, only when the communication graph is acyclic. For
cyclic graphs, this algorithm is not guaranteed to pro-
duce the optimal solution. Nevertheless, in many appli-
cations, even in the presence of loops, it delivers very
good approximations to the optimal solution, in only a
very few steps. For those applications, this makes the
algorithm a valid alternative to the method in [16] even
for cyclic networks. This is because, while the later guar-
antees the optimal solution, the former one converges
much faster. Motivated by this, we study the accuracy
of the estimate produced by the algorithm in [23], under
the general setting of a cyclic graph.

For a class of systems whose topological sparsity and
signal-to-noise ratio satisfy certain condition, we are
able to determine the accuracy of the estimates and
their associated estimation error covariances, with re-
spect to those achievable via a centralizedWLS method.
Our formulas clearly show how accuracy depends on the
so-called loop-free depth of each node. More precisely,
the estimates and estimation error covariances approach
those from the centralized solution, exponentially on the
loop-free depth.

The rest of this paper is organized as follows. In Sec-
tion 2, we give the problem formulation and introduce
the distributed WLS algorithm under study. In Sec-
tion 3, we show how to convert a given graph into other
equivalent ones, which are instrumental for analyzing the
behavior of the algorithm in cyclic graphs. In Section 4,
we introduce our notation, as well as the definition of the
Riemannian Distance between matrices, together with
some of its properties. The accuracy of the information
matrices (i.e., the inverses of the error covariances) and
state estimates produced by the distributed WLS algo-
rithm are analyzed in Sections 5 and 6, respectively. In
Section 7, we provide some simulations to illustrate our
results. Finally, concluding remarks are stated in Sec-
tion 8. Complementary mathematical material (includ-
ing most proofs and some additional lemmas) appear in
the Appendix.
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2 Problem Formulation

Consider a system observed by I sensing nodes. Asso-
ciated to this system, there is a deterministic vector

xT =
[

xT1 , x
T
2 , . . . , x

T
I

]

∈ Rn, with
∑I
i=1 ni = n, called

the global state. For any i = 1, . . . , I, node i aims to es-
timate the sub-vector xi ∈ Rni . There are also two kind
of measurements. The so-called self measurements for
node i

zi = Cixi + vi, (1)

and the (pair-wise) joint measurements between nodes
i and j

zi,j = Ci,jxi + Cj,ixj + vi,j . (2)

In the above, the matrices Ci, Ci,j and Cj,i are known,
and vi and vi,j are independent measurement noises with
known covariances Ri > 0 and Ri,j > 0, respectively.
Note that 1) the pair (i, j) is unordered, i.e., (i, j) =
(j, i); 2) zi,j = zj,i and vi,j = vj,i; 3) It is not necessary
for all nodes to have self measurements or all node pairs
to have joint measurements. In fact, joint measurements
are typically sparse for large graphs.

We assume that node i and node j could communicate
if zi,j exist. Furthermore, we call node j a neighbour of
node i (i.e., j ∈ Ni) and node i a neighbour of node j
(i.e., i ∈ Nj) if there is communication between them.
In view of this, communication between nodes is always
two-ways; and therefore, the associated communication
graph (which will be formally introduced later) is always
undirected.

The target of distributed WLS estimation is to compute
the WLS estimate for each xi, and its associated estima-
tion error covariance, using a fully distributed algorithm.
The algorithm summarized in Algorithm 1, achieves this
goal. In this algorithm, at iteration N , node i computes
a local estimate x̂i(N) of its sub-vector of interest, and
its associated covariance Σi(N), using its local informa-
tion vector αi(N) and information matrix Qi(N). Then,
for each neighbor j ∈ Ni, it removes from αi(N) and
Qi(N) the information vector αj→i(N − 1) and matrix
Qj→i(N − 1), respectively, which it received at the pre-
vious iteration from neighbor j, to built the information
vector αi→j(N) and matrix Qi→j(N), that it sends to
the same neighbor at the current iteration.

Algorithm 1 requires Assumption 2, which is given be-
low. This assumption implies that each node is able to
obtain a (possibly coarse) estimate of its sub-vector of
interest, using only its self measurements. Notice that,
if this assumption is not met, we have, at time N = 1,
and node i, that Qi(1) − Qj→i(0) = CTi R

−1
i Ci. Hence,

Qi(1)−Qj→i(0) cannot be inverted in (7) and (8).

Before stating Assumption 2 we introduce some required
notation.

Algorithm 1 Distributed WLS algorithm.

1) Initialization: At time k = 0, node i defines:

αj→i(0) = 0, Qj→i(0) = 0. (3)

2) Main loop: At time N = 1, 2, · · · , do:
2.1) Each node i computes

αi(N) = CTi R
−1
i zi +

∑

j∈Ni

αj→i(N − 1),

Qi(N) = CTi R
−1
i Ci +

∑

j∈Ni

Qj→i(N − 1), (4)

and

x̂i(N) = Q−1
i (N)αi(N), Σi(N) = Q−1

i (N). (5)

2.2) Each node i sends to each connected node j with
j ∈ Ni:

αi→j(N) = CTj,iR
−1
i→j(N)zi→j(N),

Qi→j(N) = CTj,iR
−1
i→j(N)Cj,i, (6)

where

zi→j(N) =zi,j − Ci,j (Qi(N)−Qj→i(N − 1))
−1

· (αi(N)− αj→i(N − 1)), (7)

Ri→j(N) =Ri,j + Ci,j(Qi(N)−Qj→i(N − 1))
−1
CTi,j .

(8)

Notation 1 The superscript T denotes vector or matrix
transposition. For a matrix A, ‖A‖ denotes the induced
operator norm, i.e., the maximum singular value of A.
Also, A > 0 (A ≥ 0) means that A is positive definite
(semi-definite), i.e., xTAx > 0 (xTAx ≥ 0), for all x 6=
0. For a second matrix B, A > B (A ≥ B) means that
A−B > 0 (A−B ≥ 0).

Assumption 2 For every i = 1, 2, . . . , I, we have

CTi R
−1
i Ci > 0.

It is known that Algorithm 1 converges to the correct
estimates in a finite number of iterations, when its asso-
ciated communication graph is acyclic [23]. In fact, the
required number of iterations equals the diameter of the
graph, i.e., the maximum number of edges connecting
one node to another over the whole graphs. The fun-
damental challenge in our study is to understand how
the algorithm performs for cyclic graphs. As mentioned
in Section 1, the goal of this paper is to quantify the
accuracy of the estimate when the graph is cyclic, i.e.,
quantify the difference between the distributed estimate
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and the centralized one. We split our accuracy analysis
in that of the information matrix (Section 5) and that
of the state estimate (Section 6). In the rest of paper,
without loss of generality, we concentrate our study on
the accuracy of an arbitrary node, which is labeled as
node 1.

3 Graph Representations

In the network described above, nodes have only self
and pair-wise joint measurements. This permits using a
simple connectivity (undirected) graph, called canonical
graph, to describe the nodes and their measurements.
This is explained in Section 3.1. A drawback of this rep-
resentation for our intended analysis is that this graph
is cyclic in general. In Section 3.2 we describe how to
convert this cyclic graph into an acyclic one, with an
infinite number of nodes. It turns out that this is an
equivalent graph, as far as distributed estimation is con-
cerned. Then, in Section 3.3, we explain how to further
convert the acyclic graph into another equivalent one,
whose topology is that of a single line. For a more de-
tailed presentation of equivalent graph transformations,
the reader is referred to [26,25,24]. We point out that all
the above graphs are undirected.

3.1 Canonical graph representation

The canonical graph G has a node associated with each
sensing node i = 1, . . . , I. Also, nodes i and j are con-
nected by an undirected edge if they can communicate
with each other, i.e., j ∈ Ni.

3.2 Acyclic graph representation

We start the section with the following definition.

Definition 3 A rooted tree graph is an acyclic connected
graph, in which a node is assigned as its root. For a node
i different from the root one, we let p(i) denote its parent
(i.e., the next node when moving towards the root) and
Si denote the set of its children (i.e., all the nodes j with
i = p(j)). Also, node i is called a leaf if Si is empty.

Given a cyclic canonical graph G, we can convert it into
an acyclic one A, having a rooted tree topology, with
any arbitrary node as its root one. Since, as pointed
out before, we concentrate our study on the accuracy at
node 1, we choose this node as the root one. This graph
enjoys the property that, if Algorithm 1 is applied to
both graphs, it will produce at node 1 and iteration N ,
the same result.

Graph A has an infinite number of nodes. Each of its
nodes is associated to a node in G. With some abuse of
notation, we use G(n) to denote the node in G associated
to node n in A, and A(i) to denote the set of nodes in

A associated to node i in G. Graph A is constructed as
the limit of the following iterative procedure. We start
by defining A0 as the empty graph and A1 as the graph
having no edges, and having a single node, which is as-
sociated to node 1 of G. Then, at each step N ≥ 2, we
do the following steps:

(1) Find all leaf nodes l of the tree AN−1.
(2) Find all neighbors j of G(l) in G, excluding all nodes

in A(p(l)) (i.e., associated to the parent of l in A).
(3) For each l and j:

(a) Add a node n to the tree.
(b) Add the undirected edge from l to n to the tree.
(c) Associate n in A to j in G.

(4) Define AN as the resulting graph.

Our next step is to associate a system of measurement
equations to the acyclic graph A, in a way similar to the
way in which the system of equations (1)-(2) is associ-
ated with G. These equations need to satisfy two condi-
tions. First, their canonical graph should be A. Second,
the aforementioned equivalence at node 1 should be pre-
served. As explained in [13,26,25,24], both conditions are
satisfied if

z̄i = C̄ix̄i + v̄i, (9)

z̄i,j = C̄i,j x̄i + C̄j,ix̄j + v̄i,j (10)

for all i ∈ A and j ∈ Si, with v̄i ∼ N
(

0, R̄i
)

and v̄i,j ∼
N
(

0, R̄i,j
)

. The values of the quantities in (9)-(10) are
given by those corresponding to the nodes in G which
are associated to nodes i and j in A, i.e.,

z̄i = zG(i), v̄i = vG(i), C̄i = CG(i),

R̄i = RG(i), z̄i,j = zG(i),G(j), v̄i,j = vG(i),G(j),

C̄i,j = CG(i),G(j), R̄i,j = RG(i),G(j).

Also, all noises v̄i and v̄i,j , i = 1, · · · , I, j ∈ Ni, are
pairwise uncorrelated.

Remark 4 Recall that, in an acyclic graph, Algorithm 1
produces, at each node, the same estimate that would be
obtained using the centralized WLS method. Since the
graphAN is acyclic, the outcomes of both methods will be
the same on AN . Moreover, its measurements (9)-(10),
are designed so that, at node 1 and iteration N , this out-
come equals that resulting from applying Algorithm 1 to
graph G. Hence, G and AN are equivalent graphs only
from the point of view Algorithm 1 (at node 1 and itera-
tion N), but not from that of centralized WLS.

3.3 Representation as a line graph

Let AN be the N -layer acyclic graph with root node
1 and measurement equations (9)-(10), as described
above. We now describe how to convert AN into a line
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graph LN such that the aforementioned equivalence is
still preserved.

Indeed, LN is formed by simply grouping all the nodes in
AN , which are exactly n−1 hops away from node 1, into
a super node Tn, for all n = 1, 2, . . . , N . In particular,
T1 is just node 1.

Again, we need to associate a system of measurement
equations to LN satisfying the conditions described in
Section 3.2. This is done by grouping all the measure-
ment equations for each super node Tn, as detailed be-
low.

Denote the size of any finite set S by |S| and its elements
by S(1), S(2), . . . , S(|S|). For each n ∈ N, the state of
Tn is given by

x̃n =
[

x̄TTn(1)
, x̄TTn(2)

, . . . , x̄TTn(|Tn|)

]T

,

and its measurement equations are given by

z̃n = C̃nx̃n + ṽn, (11)

z̃n,n+1 = C̃n,n+1x̃n + C̃n+1,nx̃n+1 + ṽn,n+1. (12)

That is, z̃n consists of all the measurements z̄i with i ∈
Tn, and z̃n,n+1 consists of all the measurements z̄i,j with

i ∈ Tn and j ∈ Tn+1. Note that ṽn ∼ N (0, R̃n) and

ṽn,n+1 ∼ N (0, R̃n,n+1). The matrices C̃n, R̃n, C̃n,n+1

and R̃n,n+1 are naturally related to C̄i, R̄i, C̄i,j and R̄i,j
through the above construction. More precisely,

z̃n =
[

z̄TTn(1)
, z̄TTn(2)

, . . . , z̄TTn(|Tn|)

]T

,

C̃n =diag{C̄Tn(1), C̄Tn(2), . . . , C̄Tn(|Tn|)},
R̃n =diag{R̄Tn(1), R̄Tn(2), . . . , R̄Tn(|Tn|)}.

Similarly,

z̃n,n+1 =
[

z̀TTn(1)
, z̀TTn(2)

, . . . , z̀TTn(|Tn|)

]T

,

C̃n,n+1 = diag{C̀Tn(1), C̀Tn(2), . . . , C̀Tn(|Tn|)},
C̃n+1,n = diag{ĆTn+1(1), ĆTn+1(2), . . . , ĆTn+1(|Tn+1|)},
R̃n,n+1 = diag{R̀Tn(1), R̀Tn(2), . . . , R̀Tn(|Tn|)},

with

z̀i =
[

z̄Ti,Si(1)
, z̄Ti,Si(2)

, . . . , z̄Ti,Si(|Si|)

]T

,

C̀i =
[

C̄Ti,Si(1)
, C̄Ti,Si(2)

, . . . , C̄Ti,Si(|Si|)

]T

,

Ći =diag{C̄Si(1),i, C̄Si(2),i, . . . , C̄Si(|Si|),i},
R̀i =diag{R̄i,Si(1), R̄i,Si(2), . . . , R̄i,Si(|Si|)}.

Remark 5 Note that the statement in Remark 4 also
holds for LN . More precisely, the centralized WLS esti-
mate at node 1 in LN equals to that of Algorithm 1, when
applied to G, at the same nodes and iteration N .

In view of the above analysis, the problem of studying
the dynamics of Algorithm 1 becomes the problem of
studying the centralized WLS estimate at node 1 for the
graph LN , as N → ∞.

4 Preliminaries

In our analysis below, we will make use of the so-called
Riemannian distance between matrices [4].

Definition 6 For n × n matrices P,Q > 0, their Rie-
mannian distance is defined by

δ (P,Q) =

√

√

√

√

n
∑

k=1

log2 σk (PQ−1) ,

where σ1 (X) ≥ · · · ≥ σn (X) denote the singular values
of matrix X.

The following proposition states a number of properties
of the Riemannian distance. Its proof appears in the
appendix.

Proposition 7 For any n×n positive definite matrices
P and Q, the following results hold:

(1) δ(P, P ) = 0.
(2) δ

(

P−1, Q−1
)

= δ (Q,P ) = δ (P,Q) .

(3) If B has full row rank, δ
(

BPBT , BQBT
)

≤
δ (P,Q), and the equality holds if B is invertible.

(4) If P ≥ Q and W ≥ 0, then δ (P +W,Q) ≥
δ (P,Q) .

(5) For anym×mmatrixW > 0 andm×nmatrix B,
we have

δ(W +BP−1BT ,W +BQ−1BT ) ≤ α

α+ β
δ(P,Q),

whereα = max{‖BP−1BT ‖, ‖BQ−1BT ‖} and β =
σmin (W ), with σmin(W ) denoting the smallest sin-
gular value of W .

(6) If P > Q, then ‖P −Q‖ ≤
(

eδ(P,Q) − 1
)

‖Q‖ .

We now introduce some notation that will be used in the
rest of the paper.

Notation 8 For a graph C, we use x̂i(C), Qi(C) and
αi(C) to denote the final (after convergence) state es-
timate, information matrix and information vector, re-
spectively, obtained by running Algorithm 1 on C.
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Notation 9 Let Q(i,j),0 ≥ 0, for each i =
1, · · · , I, j ∈ Ni, and define the set Q =
{

Q(i,j),0 : i = 1, 2, . . . , I, j ∈ Ni

}

. Suppose that we run
Algorithm 1 on the network G, but replacing the initial-
ization (3) by Qj→i(0) = Q(i,j),0, for all i = 1, · · · , I,
j ∈ Ni. We use x̂1(N,Q) and Q1(N,Q) to denote the
estimate and information matrix, respectively, yield by
such algorithm at node 1 and step N .

Notation 10 If zi,j exists, the pair (i, j) is called an
(undirected) edge.Notice that since edges are undirected,
the pairs (i, j) and (j, i) denote the same edge. A path
is a concatenation of contiguous edges, and its length is
the number of edges forming it. A cycle is a path with no
repetitions of vertices and edges, except for the necessary
repetition of the starting and ending vertices. For each
i, j ∈ {1, · · · , I}, the distance between nodes i and j is
defined as the minimum length of a path joining these
two nodes. Let N1(l) denote the subgraph of G formed by
nodes whose distance from node 1 is less than or equal to
l. The loop-free depth l1 of node 1 is the largest integer
such that N1(l1) is acyclic (i.e., without cycles).

We also introduce the following constants

ū := max
i

|Ni| − 1, n̄ := max
i

dimxi,

m̄ := max{max
i

dim zi,max
i,j

dim zi,j}.

5 Accuracy Analysis for the Information Ma-
trix

In this section we derive a bound for the difference be-
tween the information matrix yield by the Algorithm 1
and that obtained using the centralized WLS method.
For a class of system, we provide a lower bound for the
time after which the difference falls within this bound.
Moreover, this bound decreases exponentially with the
increase of the loop free-depth. Our main result is given
in the Subsection 5.1. Its proof appears in Subsection 5.2.

5.1 Main Result

The main result on the accuracy of the information ma-
trix is given below.

Theorem 11 Let CovWLS
1 be the estimation error co-

variance obtained at node 1 when using centralized WLS.
If ρ < 1, then there exists a constant ̟ (only dependent
on the system parameters ū, n̄, Ci,j , Ci, Ri,j and Ri)
such that, for any N ≥ l1 + 1,

‖CovWLS
1 −Q−1

1 (N)‖ ≤ ̟ρl1 ,

where

ρ = λ
√
ū, λ =

α1

α1 + β1

α2

α2 + β2
,

α1 = ūmax
i,j

‖CTi,jR−1
i,j Ci,j‖, β1 = min

i
σmin(C

T
i R

−1
i Ci),

α2 = max
i,j

‖Ci,j(CTi R−1
i Ci)

−1CTi,j‖, β2 = min
i,j

σmin(Ri,j).

Remark 12 Theorem 11 states that, if the graph/system
satisfies ρ < 1, the inverse of the information matrix
Q−1

1 (N) yield by Algorithm 1 at node 1, exponentially
approaches the estimation error covariance of centralized
WLS, as its loop-free depth l1 increases.

Remark 13 Since ρ = λ
√
ū, the result is mainly given

for a class of graph with sparse connections (small ū) and
where the ratio between the signal-to-noise-ratio (SNR)
of local measurements and the SNR of each joint mea-
surement is small (small λ). Notice that the later con-
dition is relatively mild, since each joint measurement
typically has a lower SNR than the local one.

5.2 Proof of Theorem 11

Recall that, in view of the graph conversions described
in Section 3, we have Q1(N) = Q1(AN ) = Q1(LN ). The
proof of Theorem 11 uses this fact. It also requires the
following lemmas, whose proofs appear in the Appendix.

Lemma 14 Let Q1 and Q2 be initial sets both satisfying
0 ≤ Qc(i,j),0 ≤ CTi,jR

−1
i,j Ci,j , for all Qc(i,j),0 ∈ Qc and

c ∈ {1, 2}. Then, in the notation of Theorem 11, for all
N ∈ N,

δ (Q1(N,Q1)−Q1(N,Q2)) ≤ ρN−1δ̄,

with

δ̄ =
√

(ū + 1)n̄

×max
i

log ‖I + (
∑

j∈Ni

CTi,jR
−1
i,j Ci,j)(C

T
i R

−1
i Ci)

−1‖.

Notation 15 Let

QM =
{

QM
(i,j),0 : i = 1, . . . , I and j ∈ Ni

}

,

Q0 =
{

Q0
(i,j),0 : i = 1, . . . , I and j ∈ Ni

}

,

with

QM
(i,j),0 = CTi,jR

−1
i,j Ci,j , Q0

(i,j),0 = 0.

In particular, notice that Q0 is the initialization used
in Algorithm 1, i.e., x̂1(N) = x̂1(N,Q

0) and Q1(N) =
Q1(N,Q

0).
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Lemma 16 Recall the definition of loop-free depth l1
from Notation 10. For any N ≥ l1 + 1, we have

∥

∥Q−1
1 (N)− CovWLS

1

∥

∥

≤
∥

∥Q−1
1 (l1 + 1,QM)−Q−1

1 (l1 + 1,Q0)
∥

∥ . (13)

The proof of Theorem 11 uses the above property to pro-
vide an upper bound for the difference between Q−1

1 (N)

and CovWLS
1 .

PROOF. (of Theorem 11) Since both QM and Q0 sat-
isfy the condition in Lemma 14, it follows that

δ(Q−1
1 (l1 + 1,Q0), Q−1

1 (l1 + 1,QM)) ≤ ρl1 δ̄.

From the Proposition 7,

‖Q−1
1 (l1 + 1,Q0), Q−1

1 (l1 + 1,QM)‖
≤ (eρ

l1 δ̄−1)‖Q−1
1 (l1+1)‖ ≤ (eρ

l1 δ̄−1)‖(CT1 R−1
1 C1)

−1‖
≤ β−1

1 (eδ̄ − 1)ρl1 ,

where the last inequality follows from Lemma 30. Since
the quantity β−1

1 (eδ̄ − 1) depends only on ū, n̄ and the
system parameters Ci,j , Ci, Ri,j , Ri for some i and j, the
result then follows from (13).

6 Accuracy Analysis for the State Estimate

In this section, we derive a bound for the difference be-
tween the estimate yield by Algorithm 1 and that ob-
tained using the centralized WLS method. For a class
of system, we provide a lower bound for the time after
which the difference falls within this bound. Moreover,
this bound decreases exponentially with the increase of
the loop-free depth. Our main result is given in the Sub-
section 6.1 and its proof appears in Subsection 6.2.

6.1 Main Result

The main result on the accuracy of the estimate is given
below.

Theorem 17 Let x̂WLS
1 be the estimate obtained at

node 1 when using centralized WLS. If κ < 1, then there
exists a constant ̟ (only dependent on the system pa-
rameters m̄, ū, n̄, Ci,j, Ci, Ri,j and Ri as well as on the
measurements zi,j, zi) such that, for all N ≥ l1 + 1,

‖x̂1(N)− x̂WLS
1 ‖ ≤ ̟κl1+1

where with

κ = max{ū√ω,
√
ūι1/ζ}, ω =

a1
a1 + b1

a2
a2 + b2

,

a1 = r−1ūmax
i,j

‖Ci,j‖2 , a2 = max
i,j

‖Ci,j‖2
ūr̄

ε2
,

b1 = r̄−1ε2, b2 = r, ι =

√
q −√

q
√
q +

√
q
,

q = ε2r−1, q = ε2r−1, ζ = 2+ log 1√
ω
(q/q).

r = max
i

{‖Ri‖, ‖Ri,j‖}, r = min
i
{σmin(Ri), σmin(Ri,j)},

ε = max
i,j

√

‖Ci‖2 + 4ū ‖Ci,j‖2, ε = min
i
σmin(Ci).

Remark 18 From the definition of κ, the observation
made in Remark 13 also applies to Theorem 17. However,
since κ ≥ ρ, the condition required for Theorem 17 is
stronger than that for Theorem 11.

6.2 Proof of Theorem 17

We split the proof of Theorem 17 into three parts. In
Section 6.2.1 we derive a bound for the increment x̂1(N+
1)− x̂1(N) in a graph with line topology. In Section 6.2.2
we generalize this result for an arbitrary graph. Finally,
in Section 6.2.3 we use this result to bound the difference
between the state estimate yield by the Algorithm 1 and
that obtained using the centralized WLS method.

6.2.1 Bound of the increment in a line graph

Consider a line graph LN with measurement equations
given by (11)-(12). Let

yi =
[

z̃Ti , z̃
T
i,i+1

]T
, wi =

[

ṽTi , ṽ
T
i,i+1

]T
,

Ai,i =

[

C̃i

C̃i,i+1

]

, Ai,i+1 =

[

0

C̃i+1,i

]

,

Si =

[

R̃i 0

0 R̃i,i+1

]

(14)

for any i = 1, 2, . . . , N − 1, and

yN = z̃N , wi = ṽN , AN,N = C̃N , SN = R̃N .

Then, (11) and (12) become

yi = Ai,ix̃i +Ai,i+1x̃i+1 + wi,
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with wi ∼ N (0, Si). We also define

xN =
[

x̃T1 , · · · , x̃TN
]T
, yN =

[

yT1 , · · · , yTN
]T
,

wN =
[

wT1 , · · · , wTN
]T
,

[AN ]n,m =

{

An,m, 0 ≤ m− n ≤ 1,

0, otherwise.

We then have

yN = ANxN +wN ,

with wN ∼ N (0,SN ) and SN = diag {S1, · · · , SN}.

The WLS estimate x̂N of xN is given by

x̂N = Q−1
N qN ,

where qN = AT
NS−1

N yN =
[

qT1 , · · · , qTN
]T

with

qi =

{

ATi,iS
−1
i yi, i = 1,

ATi,iS
−1
i yi + ATi−1,iS

−1
i−1yi−1, i > 1,

(15)

and the (i, j)-th entry Qi,j of QN = AT
NS−1

N AN given
by

Qi,i =

{

ATi,iS
−1
i Ai,i, i = 1,

ATi,iS
−1
i Ai,i +ATi−1,iS

−1
i−1Ai−1,i, i > 1,

Qi,i+1 = ATi,iS
−1
i Ai,i+1, Qi+1,i = QTi,i+1, (16)

Qi,j = 0, |i− j| ≥ 2.

Let ΣN = Q−1
N and [ΣN ]i,j be its (i, j)-th block. From

the inverse formula for band matrices given in Theo-
rem 3.1 of [18], it follows that the first block row of ΣN
is given by

[ΣN ]1,j =

(

j−1
∏

k=1

∆−1
k Qk,k+1

)

Φ−1
j (N) (17)

with

Φj(N) = Γj(N)−Qj,j−1∆
−1
j−1Qj−1,j , (18)

∆k =

{

Qkk, k = 1,

Qkk −Qk,k−1∆
−1
k−1Qk−1,k, k > 1,

Γk(N) =

{

Qkk, k = N,

Qkk −Qk,k+1Γ
−1
k+1(N)Qk+1,k, k < N,

for any j = 1, 2, . . . , N . Then, the first entry [x̂N ]1 of
x̂N is given by

[x̂N ]1 =
N
∑

j=1

[ΣN ]1,j qj . (19)

Recall that x̂1(LN ) = [x̂N ]1, it then follows from (19)
that

‖x̂1(LN+1)− x̂1(LN )‖ ≤
N
∑

j=1

∥

∥

∥[ΣN+1]1,j − [ΣN ]1,j

∥

∥

∥ ‖qj‖

+
∥

∥

∥[ΣN+1]1,N+1

∥

∥

∥ ‖qN+1‖ . (20)

The main result of this section is given in Lemma 26.
It bounds the decay rate in (20). Its proof requires a
number of lemmas, which are stated below.

We start by stating bounds for certain quantities,
namely, AN ,QN ,∆k,Γk(N),Φk(N). This is done in
Lemmas 19-21. Some of the proofs are given in the Ap-
pendix.

Lemma 19 For any N ∈ N,

ε̃I ≤ AN ≤ ε̃I,

with

ε̃=max
i

(
∥

∥

∥C̃i

∥

∥

∥

2

+ 2max{‖C̃i−1,i‖2, ‖C̃i,i−1‖2}

+2max{‖C̃i,i+1‖2, ‖C̃i+1,i‖2})1/2,
ε̃=min

i
σmin(C̃i).

Lemma 20 For any N ∈ N,

q̃I ≤ QN ≤ q̃I,

with

q̃ =
ε̃2

r̃
, ˜̄r = max

i

{∥

∥

∥
R̃i

∥

∥

∥
,
∥

∥

∥
R̃i,i+1

∥

∥

∥

}

,

q̃ =
ε̃
2

r̃
, r̃ = min

i

{

σmin(R̃i), σmin(R̃i,i+1)
}

.

PROOF. Since QN = AT
NS−1

N AN , from Lemma 19, it
follows that

ε̃2

σmax(SN )
I ≤ QN ≤ ε̃

2

σmin(SN )
I.

The result then follows from r̃I ≤ SN ≤ r̃I.

Lemma 21 For every 1 ≤ k ≤ N ,

q̃I ≤ ∆k,Γk(N),Φk(N) ≤ q̃I.
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Our next goal is to bound the difference ‖x̂1(LN+1) −
x̂1(LN )‖. From (17) and (20), this requires an upper
bound for

∥

∥Φ−1
j (N + 1)− Φ−1

j (N)
∥

∥. This is given in the
following lemma, whose proof appears in the Appendix.

Lemma 22 For any 1 ≤ j ≤ N , we have

∥

∥Φ−1
j (N + 1)− Φ−1

j (N)
∥

∥ ≤ q̃−1
(

eψ̃N λ̃
N−j
N − 1

)

with

ψ̃N =
√

n̄|TN | ˜̄ξN ,
˜̄ξN =max

i≤N
log σmax[I + (C̃Ti,i+1R̃

−1
i,i+1C̃i,i+1)

·(C̃Ti R̃−1
i C̃i)

−1],

λ̃N =
α̃1,N

α̃1,N + β̃1,N

α̃2,N

α̃2,N + β̃2,N
,

where

α̃1,N = max
i≤N

‖C̃Ti,i+1R̃
−1
i,i+1C̃i,i+1‖,

α̃2,N = max
i≤N

‖C̃i+1,i(C̃
T
i+1R̃

−1
i+1C̃i+1)

−1C̃Ti+1,i‖,

β̃1,N = min
i≤N

σmin(C̃
T
i R̃

−1
i C̃i), β̃2,N = min

i≤N
σmin(R̃i,i+1).

Combining the results in Lemmas 21-22 and (17), we

can obtain upper bounds for
∥

∥

∥[ΣN+1]1,j − [ΣN ]1,j

∥

∥

∥ and
∥

∥

∥
[ΣN ]1,j

∥

∥

∥
. These are given in Lemmas 23 and 24, respec-

tively.

Lemma 23 For any 1 ≤ j ≤ N ,

∥

∥

∥[ΣN+1]1,j − [ΣN ]1,j

∥

∥

∥ ≤ q̃
−1
r̃j
(

eψ̃N λ̃
N−j
N − 1

)

with r̃ = q̃/q̃.

PROOF. From Lemma 31, for all k ∈ N,

‖Qk,k+1‖ ≤ q̃.

We then have
∥

∥

∥[ΣN+1]1,j − [ΣN ]1,j

∥

∥

∥

=

∥

∥

∥

∥

∥

(

j−1
∏

k=1

∆−1
k Qk,k+1

)

(

Φ−1
j (N + 1)− Φ−1

j (N)
)

∥

∥

∥

∥

∥

≤(

j−1
∏

k=1

∥

∥∆−1
k Qk,k+1

∥

∥)
∥

∥Φ−1
j (N + 1)− Φ−1

j (N)
∥

∥

≤q̃j−1
(

j−1
∏

k=1

∥

∥∆−1
k

∥

∥)
∥

∥Φ−1
j (N + 1)− Φ−1

j (N)
∥

∥ .

Then, using Lemmas 21 and 22, we get

∥

∥

∥[ΣN+1]1,j − [ΣN ]1,j

∥

∥

∥≤ 1

q̃

(

q̃

q̃

)j−1
(

eψ̃N λ̃
N−j
N − 1

)

≤ q̃
−1
r̃j
(

eψ̃N λ̃
N−j
N − 1

)

.

Lemma 24 For all 1 ≤ j ≤ N ,

∥

∥

∥
[ΣN ]1,j

∥

∥

∥
≤ c̃ι̃j ,

with

c̃ =
r̃ − 1

2q̃ι̃
, ι̃ =

√
r̃ − 1√
r̃ + 1

.

PROOF. Since QN is 2-banded(please refer to Defini-
tion 32 in Appendix), it follows from Lemma 33 by let-
ting a = q̃ and b = q̃.

It follows from (20) that, in addition to the bounds given
in Lemmas 23 and 24, we also need an upper bound for
‖qi‖. This is given in the following lemma.

Lemma 25 For any N ∈ N,

max
n≤N

‖qn‖ ≤ η̃N ,

with

η̃N = max
i≤N

23/2ε̃
√

m̄|Ti|˜̄zN
r̃

,

˜̄zN = max
i≤N

{‖z̃i‖∞, ‖z̃i,i+1‖∞} .

PROOF. From (14) and (15),

‖qn‖ ≤
ε̃(‖yn‖+ ‖yn−1‖)

r̃
. (21)

For any n = 1, 2, . . . , N , the result then follows from

‖yn‖ ≤max
i≤N

√

2m̄|Ti|‖yn‖∞ ≤ max
i≤N

√

2m̄|Ti|˜̄zN .

We now state the main result of this subsection.

Lemma 26 For any 1 ≤ J ≤ N ,

‖x̂1(LN+1)− x̂1(LN )‖

≤η̃N+1

(

r̃J

(r̃ − 1)q̃

(

eψ̃N λ̃
N−J
N − 1

)

+
2c̃

1− ι̃
ι̃J
)

.
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PROOF. From Lemmas 23-25 and (20),

‖x̂1(LN+1)− x̂1(LN )‖

≤
J−1
∑

j=1

∥

∥

∥[ΣN+1]1,j − [ΣN ]1,j

∥

∥

∥ ‖qj‖

+

N
∑

j=J

∥

∥

∥[ΣN+1]1,j − [ΣN ]1,j

∥

∥

∥ ‖qj‖

+
∥

∥

∥[ΣN+1]1,N+1

∥

∥

∥ ‖qN+1‖

≤η̃N+1





J−1
∑

j=1

q̃
−1
r̃j
(

eψ̃N λ̃
N−j
N − 1

)

+ 2c̃
N
∑

j=J

ι̃j + c̃ι̃N+1





≤η̃N+1





J−1
∑

j=1

q̃
−1
r̃j
(

eψ̃N λ̃
N−J
N − 1

)

+ 2c̃

N+1
∑

j=J

ι̃j





=η̃N+1

(

q̃
−1
(

eψ̃N λ̃
N−J
N − 1

) r̃J − r̃

r̃ − 1
+ 2c̃

ι̃J − ι̃N+2

1− ι̃

)

≤η̃N+1

(

q̃
−1
(

eψ̃N λ̃
N−J
N − 1

) r̃J

r̃ − 1
+ 2c̃

ι̃J

1− ι̃

)

.

6.2.2 Bound of the increment in an arbitrary graph

For each N , the value of x̂1(N) obtained by running
Algorithm 1 on G equals the one x̂1(AN ) obtained by
running the same algorithm on the equivalent acyclic
graph AN . The latter in turn equals the one x̂1(LN )
obtained by running the algorithm on the equivalent line
graphLN . Then, fromLemma 26we obtain the following
result, which applies to an arbitrary graph G, and whose
proof appears in the Appendix.

Lemma 27 If κ̌ < 1, then, in the notation of Theo-
rem 17, for all N ∈ N,

‖x̂1(N + 1)− x̂1(N)‖ ≤ ˇ̄χκ̌N ,

where

ˇ̄χ =
ψ̌η̌

(q − q)λ
+

2η̌c

1− ι
, κ̌ = max{ū

√
λ,

√
ūι1/ζ̌},

with

ψ̌ =
(

eξ̄
√
n̄(ū+1) − 1

)

, η̌ =
εz̄
√

8m̄(ū + 1)

r
,

ζ̌ = 2 + log 1√
λ

(q/q), c =
q − q

2qqι
,

ξ̄ = max
j

log ‖I + (
∑

k∈Nj

CTj,kR
−1
j,kCj,k)

(

CTj R
−1
j Cj

)−1 ‖,

z̄ = max
i,j

{‖zi‖∞, ‖zi,j‖∞} .

Remark 28 The above lemma shows that, when κ̌ < 1,
the sequence of state estimates produced by the Algo-
rithm 1 converges exponentially.

6.2.3 Accuracy analysis

Let x̂WLS
1 (N) denote the centralizedWLS estimate of x1

obtained by considering only the subgraph N1(N − 1)
(i.e., of nodes in G which arewithinN−1 steps away from
node 1). It follows from [23] that, in an acyclic graph, if
the Algorithm 1 is initialized by Q0 (as done in (3)), it
generates the true WLS estimate. Hence, based on the
definition of the loop-free depth l1 (see Notation 10), for
any N ≤ l1 + 1,

x̂1(N) = x̂WLS
1 (N). (22)

From Lemma 27, if κ̌ < 1, for any N ∈ N,

‖x̂1(N + 1)− x̂1(N)‖ ≤ ˇ̄χκ̌N . (23)

Let Ťk denote the set of nodes in G which are precisely
k−1 steps away from node 1. We collect all the nodes in
Ťk and their inner connections into a single node. This
yields a graph Ľ having line topology, whose structure is
given in Appendix H. The number of nodes in Ľ is given
by

r1 = max
j
d1,j + 1,

where di,j is the minimum distance from node i to node j
in G.

Recall that Lemma 27 provides a bound for the state
estimate increments for Algorithm 1. If we follow the
steps of that proof, but considering Ľ in place of LN , we
would arrive to the following result.

Lemma 29 Recall the notations in Theorem 17 and
Lemma 27, for all N ∈ N, if κ < 1,

∥

∥x̂WLS
1 (N + 1)− x̂WLS

1 (N)
∥

∥ ≤
{

χ̄κN , N ≤ r1,

0, N > r1,
(24)

where

χ̄ =
ψ̄η̄

(q − q)ω
+

2η̄c

1− ι

ψ̄ = eξ̄(ū+1)
√
n̄ − 1, η̄ = εz̄(ū+ 1)

√
8m̄r−1.

Combining (22)-(23) and Lemma 29, we can prove our
main result.
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PROOF. (of Theorem 17) Clearly, κ̌ ≤ κ < 1. Hence,
from (22)-(24)

‖x̂1(N)− x̂WLS
1 ‖

=‖x̂1(N)− x̂1(l1 + 1) + x̂WLS
1 (l1 + 1)− x̂WLS

1 (r1)‖
≤‖x̂1(l1 + 1)− x̂1(N)‖+ ‖x̂WLS

1 (l1 + 1)− x̂WLS
1 (r1)‖

≤ ˇ̄χ

N−1
∑

t=l1+1

κ̌t + χ̄

r1−1
∑

t=l1+1

κt ≤ χ̄

1− κ
κl1+1 +

ˇ̄χ

1− κ̌
κ̌l1+1.

Since a1 ≥ α1, a2 ≥ α2, b1 ≤ β1 and b2 ≤ β2, it follows
that ω ≥ λ and ζ ≥ ζ̌. We also have ˇ̄χ ≤ χ̄ and κ̌ ≤ κ.
It then follows that

‖x̂1(N)− x̂WLS
1 ‖ ≤ 2χ̄

1− κ
κl1+1.

Since the quantity 2χ̄
1−κ only depends on m̄, ū, n̄ and

the system parameters Ci,j , Ci, Ri,j , Ri, zi,j , zi for some
i and j, the result then follows.

7 Simulations

In this section we present experimental evidence to sup-
port our claims, namely, that in the case of cyclic com-
munication graphs, the studied distributed WLS algo-
rithm (DWLS) converges faster than the iterativematrix
inversion (IMI) algorithm in [16], and that the accuracy
of the DWLS algorithm at a given node improves with
the size of the loop-free depth of that node. To this end,
we use a network formed by 330 nodes, whose commu-
nication graph is depicted in Figure 1. In this network,
all nodes have the same measurements equations, which
are given by

zi = xi + vi;

zi,j = 0.4xi + 0.4xj + vi,j .

with xi ∈ R3, Ri = Ri,j = 0.01, for all i = 1, 2, . . . , 330
and j ∈ Ni.

In the first simulation we compare the convergence rate
of the DWLS and IMI methods. As explained in [16],
before starting with the matrix inversion iterations, the
IMI method needs to invest a number δIMI of iterations
in order to obtain estimates of the largest and smallest
eigenvalues of certain matrix. This delayed start is re-
quired in order to avoid that the transients caused by
too rough estimates of these eigenvalues brings the esti-
mation mismatch (with respect to the estimation yield
by the centralized WLS method) to very big values from
which the algorithm would take a long time to converge.
In Figure 2 we show the combined estimation mismatch
of all 330 nodes, yield by the DWLS algorithm and the
IMI algorithm with δIMI ranging from 0 to 6. We see
that the DWLS algorithm converges much faster than

Fig. 1. Network communication graph.

the IMI one, regardless of the value of δIMI used in the
latter.

Fig. 2. Comparison between DWLS and IMI algorithms. The
delayed start δIMI of the IMI algorithm ranges from 0 to 6.

In the second simulation we evaluate the mismatches be-
tween the estimation and its associated covariance, pro-
duced at each node, and at time li + 1 (recall that li
denotes the loop-free depth of node i), with respect to
those yield by the centralized WLS method. Figures 3
and 4 show these differences for the covariance and es-
timate, respectively, for each node, as a function of the
loop-free depth. We see how both differences decay ex-
ponentially with the loop-free depths of each node. We
also show in the same figures the bound on these decays
derived in Theorems 11 and 17, respectively.

8 Conclusions

A recently proposed distributed WLS estimation al-
gorithm converges in finite time if the communication
graph is acyclic. We studied the accuracy of this algo-
rithm, when used in cyclic graphs. We showed that, for a
class of system satisfying certain requirements in terms

11
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Fig. 3. Covariance mismatch between DWLS and centralized
WLS.
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Fig. 4. Estimation mismatch between DWLS and centralized
WLS.

of topological sparsity and signal-to-noise ratio, the er-
ror between the state estimate yield by this distributed
algorithm, and that from centralized WLS, decrease ex-
ponentially at each node, with the increase of its local
loop-free depth. The same property holds for the differ-
ence between the estimation error covariance produced
by the distributed algorithm and that from centralized
WLS. The derived expressions are explicit and easy to
interpret. An implication of our results is that, even in
applicationswhere the communication graph has a cyclic
topology, due to its faster convergence, the studied algo-
rithm may be a preferred option over algorithms based
on iterative matrix inversion, provided that the loop-free
depths of those nodes of interest are sufficiently large.

A Proof of Proposition 7

Properties 1)-2) come from definition and P. 947 in [4].

Property 3): Let X ∈ Rn×n and Γk denote the set of
all k-dimensional subspaces of Rn. Recall that σ1(X) ≥

· · · ≥ σn(X) denote the singular-values of X . We have

σk
(

PQ−1
)

= σk

(

Q−1/2PQ−1/2
)

= max
V∈Γk

min
x∈V

〈

Q−1/2PQ−1/2x, x
〉

〈x, x〉

= max
V∈Γk

min
x∈V

〈

PQ−1/2x,Q−1/2x
〉

〈x, x〉

= max
V∈Γk

min
x∈V

〈Px, x〉
〈

Q1/2x,Q1/2x
〉

= max
V∈Γk

min
x∈V

〈Px, x〉
〈Qx, x〉 . (A.1)

For a given subspace V ∈ Γk, let

Ξ(V) = min
x∈V

〈Px, x〉
〈Qx, x〉 .

Let also P̃ = BPBT and Q̃ = BQBT , we then have

σk

(

P̃ Q̃−1
)

= max
V∈Γk

min
x∈V

〈

P̃ x, x
〉

〈

Q̃x, x
〉

= max
V∈Γk

min
x∈V

〈

PBTx,BTx
〉

〈QBTx,BTx〉
= max

V∈Γk

Ξ
(

BTV
)

≤ max
W∈Γk

Ξ (W)

= σk
(

PQ−1
)

.

Then, Property 3) follows because the number of non-

zero eigenvalues of PQ−1 is no less than that of P̃ Q̃−1.

Property 4): For any vector x, we have

〈

Q−1/2 (P +W )Q−1/2x, x
〉

=
〈

Q−1/2PQ−1/2x, x
〉

+
〈

Q−1/2WQ−1/2x, x
〉

≥
〈

PQ−1x, x
〉

.

Hence, δ(P+W,Q) ≥ δ(P,Q) holds from above inequal-
ity, equality (A.1) and the fact that σk(PQ

−1) ≥ 1 for
all k.

Property 5): The case when B is invertible follows im-
mediately from the invariance of eigenvalues under simi-
larity transformations[4]. Hence, we show the case when
B is non-invertible. Let Λ = Q1/2P−1Q1/2 and de-
compose B into B = UTdiag{∆, 0}V , where U and V
are unitary matrices and ∆ > 0 is diagonal. Let also
V Q−1/2 = [T T XT ]T , with T having as many rows as

12



∆. Then,

BP−1BT = UT

[

∆ 0

0 0

]

V Q−1/2ΛQ−1/2V T

[

∆T 0

0 0

]

U

= UT

[

∆ 0

0 0

][

T

X

]

Λ
[

T T XT
]

[

∆T 0

0 0

]

U

= UT

[

∆TΛT T∆T 0

0 0

]

U.

Similarly, we obtain

BQ−1BT = UT

[

∆TT T∆T 0

0 0

]

U.

Thus, for any ε > 0, it follows that

δ(εI +BP−1BT , εI +BQ−1BT )

=δ(εI +∆TΛT T∆T , εI +∆TT T∆T ). (A.2)

Since ∆T has full row rank, it follows from Property 3)
that

δ(∆TΛT T∆T ,∆TT T∆T )

≤δ(Λ, I) = δ(P−1, Q−1) = δ(P,Q). (A.3)

Then, from (A.2) and (A.3), we have

δ(W +BP−1BT ,W +BQ−1BT )

= lim
ε→0+

δ[(W − εI) + (εI +BP−1BT ),

(W − εI) + (εI +BQ−1BT )]

(b)

≤ α

α+ β
lim
ε→0+

δ(εI +BP−1BT , εI +BQ−1BT )

=
α

α+ β
lim
ε→0+

δ(εI +∆T1ΛT
T
1 ∆T , εI +∆T1T

T
1 ∆T )

=
α

α+ β
δ(∆T1ΛT

T
1 ∆T ,∆T1T

T
1 ∆T )

≤ α

α+ β
δ(P,Q),

where (b) above follows from [4, Proposition 1.6] and

α = lim
ε→0+

max{‖εI +BP−1BT ‖, ‖εI +BQ−1BT ‖}

= max{‖BP−1BT ‖, ‖BQ−1BT ‖},
β = lim

ε→0+
σmin(W − εI) = σmin(W ).

Property 6): We have

δ(P,Q) =

√

√

√

√

n
∑

k=1

log2 σk(PQ−1) ≥ log
∥

∥PQ−1
∥

∥ .

Then,

∥

∥PQ−1
∥

∥ ≤ eδ(P,Q) ⇒ PQ−1 ≤ eδ(P,Q)I ⇒
P ≤ eδ(P,Q)Q⇒ P −Q ≤

(

eδ(P,Q) − 1
)

Q,

and the result follows.

B Proof of Lemma 14

For each N ∈ N, consider the line LN built from G
as described in Section 3.3. Recall the Notation 9, let
Q̃i(n,Q), n ≤ N , denote the information matrix at
Node i and step n, when running the distributed WLS
algorithm in the network LN with initial condition set
Q. And the similar notation follows Q̃i→i−1(n,Q) and

Q̃i→i+1(n,Q). To simplify the expressions, we denote

Q̃i→i−1,i(n,Q) := Qi(n,Q) − Qi−1→i(n − 1,Q) in this
proof.

Then, based on the properties in Proposition 7, the Rie-
mannian distance between Q̃1(N,Q1) and Q̃1(N,Q2) is
given by

δ
(

Q̃1(N,Q1), Q̃1(N,Q2)
)

=δ(C̃T1 R̃
−1
1 C̃1 + C̃T1,2(R̃1,2 + C̃2,1Q̃

−1
2→1,2(N − 1,Q1)

· C̃T2,1)−1C̃1,2, C̃
T
1 R̃

−1
1 C̃1 + C̃T1,2(R̃1,2

+ C̃2,1Q̃
−1
2→1,2(N − 1,Q2)C̃

T
2,1)

−1C̃1,2)

≤ α̃1,N

α̃1,N + β̃1,N
δ(R̃1,2 + C̃2,1Q̃

−1
2→1,2(N − 1,Q1)C̃

T
2,1

, R̃1,2 + C̃2,1Q̃
−1
2→1,2(N − 1,Q2)C̃

T
2,1)

≤ α̃1,N

α̃1,N + β̃1,N

α̃2,N

α̃2,N + β̃2,N

· δ(Q̃2→1,2(N − 1,Q1), Q̃2→1,2(N − 1,Q2)),

where

α̃1,N = max
i≤N

‖C̃Ti,i+1R̃
−1
i,i+1C̃i,i+1‖,

α̃2,N = max
i≤N

‖C̃i+1,i(C̃
T
i+1R̃

−1
i+1C̃i+1)

−1C̃Ti+1,i‖,

β̃1,N = min
i≤N

σmin(C̃
T
i R̃

−1
i C̃i),

β̃2,N = min
i≤N

σmin(R̃i,i+1).

Recall the definition of line LN in Subsection 3.3, it
follows that α̃1,N ≤ α1, α̃2,N ≤ α2 and β̃1,N ≥ β1,

13



β̃2,N ≥ β2. Then, we have

δ
(

Q̃1(N,Q1), Q̃1(N,Q2)
)

≤λδ
(

Q̃2→1,2(N − 1,Q1), Q̃2→1,2(N − 1,Q2)
)

≤λN−1δ
(

Q̃N→N−1,N(1,Q1), Q̃N→N−1,N (1,Q2)
)

.

Now, for any initial condition Q,

Q̃N→N−1,N(1,Q) = C̃TN R̃
−1
N C̃N + Q̃N+1→N (0,Q),

hence

C̃TN R̃
−1
N C̃N ≤ Q̃N→N−1,N(1,Q)

≤ C̃TN R̃
−1
N C̃N + C̃TN,N+1R̃

−1
N,N+1C̃N,N+1.

Recall that |Ti| is the number of nodes in the i-th layer
of AN . Since |Ti| ≤ (ū + 1)ūi−1, we then have

δ
(

Q̃N→N−1,N(1,Q1), Q̃N→N−1,N(1,Q2)
)

≤δ(C̃TN R̃−1
N C̃N

, C̃TN R̃
−1
N C̃N + C̃TN,N+1R̃

−1
N,N+1C̃N,N+1)

≤
√

n̄|TN |
max
i≤N

log ‖I + (C̃Ti,i+1R̃
−1
i,i+1C̃i,i+1)(C̃

T
i R̃

−1
i C̃i)

−1‖

≤
√
n̄
√

|TN |

max
j

log

∥

∥

∥

∥

∥

∥

I +





∑

k∈Nj

CTj,kR
−1
j,kCj,k





(

CTj R
−1
j Cj

)−1

∥

∥

∥

∥

∥

∥

≤δ̄ū(N−1)/2.

Thus,

δ (Q1(N,Q1), Q1(N,Q2)) = δ
(

Q̃1(N,Q1), Q̃1(N,Q2)
)

≤ δ̄ū(N−1)/2λN−1
1 = δ̄ρN−1.

C Proof of Lemma 16

For eachN ∈ N, consider the networkLN built from G as
described in Section 3.3. Recall the notations Q̃i(N,Q)

and Q̃i→i−1,i(N,Q) for any initial condition Q in the
proof of Lemma 14, We have that

Q̃i→i−1,i(N,Q) = C̃Ti R̃
−1
i C̃i + C̃Ti,i+1(R̃i,i+1

+ C̃i,i+1(Q̃i+1→i,i+1(N − 1,Q))−1C̃Ti+1,i)
−1C̃i,i+1

is a increasing function of Q̃i+1→i,i+1(N − 1,Q).

Also, Q̃j→j−1,j(2,Q
M) ≤ Q̃j→j−1,j(1,Q

M) and

Q̃j→j−1,j(2,Q
0) ≥ Q̃j→j−1,j(1,Q

0), for any j. Hence,

Q̃i→i−1,i(N,Q
M) is a decreasing function of N and

Q̃i→i−1,i(N,Q
0) is an increasing function of N . Thus,

we have

Q−1
1 (l1 + 1,QM) ≤ Q−1

1 (N) ≤ Q−1
1 (l1 + 1,Q0). (C.1)

The computation of Q̃−1
1 (l1 + 1,Q0) is done by im-

plicitly assuming that Q̃l1+2→l1+1(0,Q
0) = 0. On the

other hand, notice that Q̃−1
1 (l1 + 1,Q0) would equal

CovWLS
1 if Q̃l1+2→l1+1(0,Q

0) is given with a properly
chosen positive semi-definite value. Hence, it follows that
Q̃−1

1 (l1 + 2,Q0) ≥ CovWLS
1 .

Similarly, on the computation of Q̃−1
1 (l1 + 1,QM),

it is implicitly assumed that Q̃l1+2→l1+1(0,Q
M) =

C̃T
l1+1,l1+2R̃

−1
l1+1,l1+2C̃l1+1,l1+2, which means that the es-

timate of x̃l1+2 do not have error, i.e., ˆ̃xl1+2 = x̃l1+2.

Hence, Q̃−1
1 (l1 + 1,QM) ≤ CovWLS

1 , and we have

Q−1
1 (l1 + 1,QM) ≤ CovWLS

1 ≤ Q−1
1 (l1 + 1,Q0). (C.2)

Then, the result follows from (C.1) and (C.2).

D Proof of Lemma 19

Recall that xTN =
[

x̃T1 , · · · , x̃TN
]

, we have

‖ANxN‖2

=

N
∑

i=1

∥

∥

∥C̃ix̃i

∥

∥

∥

2

+

N−1
∑

i=1

∥

∥

∥C̃i,i+1x̃i + C̃i+1,ix̃i+1

∥

∥

∥

2

≤
N
∑

i=1

∥

∥

∥
C̃i

∥

∥

∥

2

‖x̃i‖2 +
N−1
∑

i=1

∥

∥

∥
[C̃i,i+1, C̃i+1,i]

∥

∥

∥

2
∥

∥

∥

∥

∥

[

x̃i

x̃i+1

]∥

∥

∥

∥

∥

2

=
N
∑

i=1

∥

∥

∥C̃i

∥

∥

∥

2

‖x̃i‖2 +
N−1
∑

i=1

∥

∥

∥[C̃i,i+1, C̃i+1,i]
∥

∥

∥

2

‖x̃i‖2

+

N
∑

i=2

∥

∥

∥[C̃i−1,i, C̃i,i−1]
∥

∥

∥

2

‖x̃i‖2

≤
N
∑

i=1

(

∥

∥

∥C̃i

∥

∥

∥

2

+
∥

∥

∥[C̃i,i+1, C̃i+1,i]
∥

∥

∥

2

+
∥

∥

∥[C̃i−1,i, C̃i,i−1]
∥

∥

∥

2
)

‖x̃i‖2

≤max
i

{‖C̃i‖2 + ‖[C̃i−1,i, C̃i,i−1]‖2

+ ‖[C̃i,i+1, C̃i+1,i]‖2}
N
∑

j=1

‖x̃j‖2 .
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Combining with

‖[C̃i,i+1, C̃i+1,i]‖ ≤
√
2max{‖C̃i,i+1‖, ‖C̃i+1,i‖},

we have
‖ANxN‖2 ≤ ε̃

2 ‖xN‖2 .

Also,

‖ANxN‖2 ≥ σ2
min(C̃1)‖x̃1‖2 + σ2

min(C̃2)‖x̃2‖2 + . . .

+ σ2
min(C̃N )‖x̃N‖2 ≥ ε̃2‖xN‖2,

completing the proof.

E Proof of Lemma 21

From [16, S 4], it follows that ∆k is the information
matrix at node k of the system yk = Akxk+wk. Hence,
∆−1
k = [Σk]kk. Then,

σmin (∆k) = σ−1
max

(

∆−1
k

)

= σ−1
max ([Σk]kk)

(a)

≥ σ−1
max (Σk) = σmin (Qk) ≥ q̃,

where (a) follows from [27, S 2]. Following a similar ar-
gument, we obtain

σmax (∆k) ≤ q̃,

which proves the result for ∆k. The result for Γk(N)
follows from a similar argument, after noting that Γk(N)
is the information matrix at node k of the system











yk
...

yN











=

















Akk Ak,k+1 0

0
. . . 0

...
. . . AN−1,N

0 · · · AN,N



























x̃k
...

x̃N











+











wk
...

wN











.

Finally, Φk(N) is the information matrix at node k of
the system yN = ANxN+wN , and the result for Φk(N)
also follows.

F Proof of Lemma 22

We split the proof into four steps:

Step 1: From (14) and (16), we obtain

Qjj =



























C̃T1 R̃
−1
1 C̃1 + C̃T1,2R̃

−1
1,2C̃1,2, j = 1,

C̃Tj R̃
−1
j C̃j + C̃Tj,j+1R̃

−1
j,j+1C̃j,j+1

+C̃Tj,j−1R̃
−1
j,j−1C̃j,j−1, 2 ≤ j ≤ N − 1,

C̃TN R̃
−1
N C̃N

+C̃TN,N−1R̃
−1
N−1,N C̃N,N−1, j = N

(F.1)

and
Qj,j+1 = C̃Tj,j+1R̃

−1
j,j+1C̃j+1,j . (F.2)

Let
Γ̃j(N) = Γj(N)− C̃Tj,j−1R̃

−1
j−1,jC̃j,j−1.

Putting (F.1)-(F.2) into (18), for any j = 1, 2, . . . , N−1,
we get

Γ̃j(N) = C̃Tj R̃
−1
j C̃j + C̃Tj,j+1Γ̌

−1
j (N)C̃j,j+1. (F.3)

with

Γ̌−1
j (N) = R̃−1

j,j+1 − R̃−1
j,j+1C̃j+1,jΓ

−1
j+1(N)C̃Tj+1,j R̃

−1
j,j+1

= R̃−1
j,j+1 − R̃−1

j,j+1C̃j+1,j [Γ̃j+1(N)

+ C̃Tj+1,jR̃
−1
j,j+1C̃j+1,j ]

−1C̃Tj+1,jR̃
−1
j,j+1.

Using the matrix inversion lemma, for any j =
1, 2, . . . , N − 1, we obtain

Γ̌j(N) = R̃j,j+1 + C̃j+1,j Γ̃
−1
j+1(N)C̃Tj+1,j . (F.4)

Following similar steps, we also define

∆̃j = ∆j − C̃Tj,j+1R̃
−1
j,j+1C̃j,j+1,

and obtain that

∆̃j = C̃Tj R̃
−1
j C̃j + C̃Tj,j−1∆̌

−1
j C̃j,j−1,

∆̌j = R̃j−1,j + C̃j−1,j∆̃
−1
j−1C̃

T
j−1,j .

Step 2: From (F.3)-(F.4), and using the properties of
Riemannian Distance in Proposition 7, we get

δ
(

Γ̃j(N + 1), Γ̃j(N)
)

=δ(C̃Tj R̃
−1
j C̃j + C̃Tj,j+1Γ̌

−1
j (N + 1)C̃j,j+1

, C̃Tj R̃
−1
j C̃j + C̃Tj,j+1Γ̌

−1
j (N)C̃j,j+1)

≤ π̃1,j(N)

π̃1,j(N) + τ̃1,j(N)
δ
(

Γ̌−1
j (N + 1), Γ̌−1

j (N)
)

=
π̃1,j(N)

π̃1,j(N) + τ̃1,j(N)
δ
(

Γ̌j(N + 1), Γ̌j(N)
)

=
π̃1,j(N)

π̃1,j(N) + τ̃1,j(N)
δ(R̃j,j+1 + C̃j+1,j Γ̃

−1
j+1(N + 1)

· C̃Tj+1,j , R̃j,j+1 + C̃j+1,j Γ̃
−1
j+1(N)C̃Tj+1,j)

≤ π̃1,j(N)

π̃1,j(N) + τ̃1,j(N)

π̃2,j(N)

π̃2,j(N) + τ̃2,j(N)

· δ(Γ̃−1
j+1(N + 1), Γ̃−1

j+1(N))

=
π̃1,j(N)

π̃1,j(N) + τ̃1,j(N)

π̃2,j(N)

π̃2,j(N) + τ̃2,j(N)

· δ
(

Γ̃j+1(N + 1), Γ̃j+1(N)
)

,
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where

π̃1,j(N) = max
Ñ=N,N−1

∥

∥

∥C̃Tj,j+1Γ̌
−1
j (Ñ)C̃j,j+1

∥

∥

∥

≤max
i≤N

‖C̃Ti,i+1R̃
−1
i,i+1C̃i,i+1‖ = α̃1,N ,

τ̃1,j(N) = σmin

(

C̃Tj R̃
−1
j C̃j

)

≥min
i≤N

σmin

(

C̃Ti R̃
−1
i C̃i

)

= β̃1,N ,

π̃2,j(N) = max
Ñ=N,N−1

‖C̃j+1,j Γ̃
−1
j+1(Ñ)C̃Tj+1,j‖

≤max
i≤N

‖C̃i+1,i(C̃
T
i R̃

−1
i C̃i)

−1C̃Ti+1,i‖
= α̃2,N ,

τ̃2,j(N) = σmin

(

R̃j,j+1

)

≥ min
i≤N

σmin

(

R̃i,i+1

)

= β̃2,N .

Recall that λ̃N =
α̃1,N

α̃1,N+β̃1,N

α̃2,N

α̃2,N+β̃2,N
, we then have

δ
(

Γ̃j(N + 1), Γ̃j(N)
)

≤λ̃N δ
(

Γ̃j+1(N + 1), Γ̃j+1(N)
)

≤λ̃N−j
N δ

(

Γ̃N (N + 1), Γ̃N (N)
)

≤λ̃N−j
N δ

(

C̃TN R̃
−1
N C̃N , C̃

T
N R̃

−1
N C̃N + C̃TN,N+1R̃

−1
N,N+1C̃N,N+1

)

≤ λ̃N−j
N

√

n̄|TN | ˜̄ξ2N = ψ̃N λ̃
N−j
N ,

Step 3: From (18), we have

Φj(N) = Γj(N)−Qj,j−1∆
−1
j−1Qj−1,j

= Γj(N) + ∆j −Qj,j

= Γj(N) + ∆j − C̃Tj R̃
−1
j C̃j

− C̃Tj,j+1R̃
−1
j,j+1C̃j,j+1 − C̃Tj,j−1R̃

−1
j,j−1C̃j,j−1

= Γ̃j(N) + ∆̃j − C̃Tj R̃
−1
j C̃j

= Γ̃j(N) + C̃Tj,j−1∆̌
−1
j C̃j,j−1.

Then,

δ
(

Φ−1
j (N + 1),Φ−1

j (N)
)

= δ (Φj(N + 1),Φj(N))

= δ(Γ̃j(N+1)+C̃Tj,j−1∆̌
−1
j C̃j,j−1, Γ̃j(N)+C̃Tj,j−1∆̌

−1
j C̃j,j−1)

≤ δ
(

Γ̃j(N + 1), Γ̃j(N)
)

≤ ψ̃N λ̃
N−j
N .

Step 4: From the Proposition 7,

∥

∥Φ−1
j (N + 1)− Φ−1

j (N)
∥

∥

≤
(

eδ(Φ
−1
j

(N+1),Φ−1
j

(N)) − 1
)

∥

∥Φ−1
j (N)

∥

∥ .

Now, using Lemma 21, we get

∥

∥Φ−1
j (N + 1)− Φ−1

j (N)
∥

∥

≤
(

eψ̃N λ̃
N−j
N − 1

)

∥

∥Φ−1
j (N)

∥

∥ ≤ q̃−1
(

eψ̃N λ̃
N−j
N − 1

)

.

G Proof of Lemma 27

Following the equivalence between x̂1(N) in G and
x̂1(LN ) in LN , we have

‖x̂1(N + 1)− x̂1(N)‖ = ‖x̂1(LN+1)− x̂1(LN )‖ .

Since ψ̃N =
√

n̄|TN | ˜̄ξN and η̃N+1 =

maxi≤N+1
23/2 ε̃

√
m̄|Ti|˜̄zN
r̃ , from Lemma 26 and taking

J = ⌈Nα̌ ⌉, we have

‖x̂1(LN+1)− x̂1(LN )‖

≤η̃N+1

(

r̃N/α̌+1

(r̃ − 1)q̃

(

eψ̃N λ̃
N−N/α̌−1

N − 1
)

+
2c̃

1− ι̃
ι̃N/α̌

)

= max
i≤N+1

23/2ε̃
√

m̄|Ti|˜̄zN
r̃

[
r̃N/α̌+1

(r̃ − 1)q̃

·
(

e
√
n̄|TN | ˜̄ξN λ̃N−N/α̌−1

N − 1
)

+
2c̃

1− ι̃
ι̃N/α̌]

Following the similar definition as in Lemma 23, we let
r = q/q. Substituting the structure of LN in Subsec-
tion 3.3, it follows that

‖x̂1(LN+1)− x̂1(LN )‖

≤ max
i≤N+1

23/2ε
√

m̄|Ti|z̄
r

[
r(N/ζ̌)+1

(r − 1)q

·
(

e
√
n̄|TN |ξ̄λN−(N/ζ̌)−1 − 1

)

+
2c

1− ι
ιN/ζ̌ ]. (G.1)

Combining with maxi≤N |Ti| ≤ (ū + 1)ūN−1, the in-
equality in (G.1) is upper bounded by

‖x̂1(LN+1)− x̂1(LN )‖

≤ 23/2ε
√

m̄(ū + 1)ūN z̄

r
[
r(N/ζ̌)+1

(r − 1)q

·
(

e
√
n̄(ū+1)ūN−1ξ̄λN−(N/ζ̌)−1 − 1

)

+
2c

1− ι
ιN/ζ̌ ]. (G.2)
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Under condition κ̌ < 1 and J = ⌈N
ζ̌
⌉, combining that

ζ̌ > 2, it follows that

ū(N−1)/2λN−(N/ζ̌)−1 ≤ (λū)(N−1)/2 ≤ κ̌ < 1.

Then, following the Lemma 30, it follows

e
√
n̄(ū+1)ūN−1ξ̄λN−(N/ζ̌)−1 − 1

≤
(

eξ̄
√
n̄(ū+1) − 1

)

(
√
ū)NλN−(N/ζ̌)−1.

Denote d = r/λ, it follows that

ζ̌ = log 1√
λ

d,

and we have

‖x̂1(N + 1)− x̂1(N)‖

≤23/2ε
√

m̄(ū+ 1)ūN z̄

r
(

(

eξ̄
√
n̄(ū+1) − 1

)

dN/ζ̌+1

(r − 1)q

·
(√

ūλ
)N

+
2c

1− ι
ιN/ζ̌)

≤εz̄
√

8m̄(ū+ 1)

r

·





(

eξ̄
√
n̄(ū+1) − 1

)

d

(r − 1)q

(

ū
√
λ
)N

+
2c

1− ι
(
√
ūι1/ζ̌)N





≤η̌
(

ψ̌d

(r − 1)q

(

ū
√
λ
)N

+
2c

1− ι
(
√
ūι1/ζ̌)N

)

=
ψ̌rη̌

(r − 1)λq
(ū
√
λ)N +

2η̌c

1− ι
(
√
ūι1/ζ̌)N ≤ ˇ̄χκ̌N .

H The structure of Ľ in Subsection 6.2.3

Suppose that the j ∈ Ťk, denote the parent set of Node j
by P̌j := {p|p ∈ Ťk−1, p ∈ Nj} and child set of Node j

by Šj := {p|p ∈ Ťk+1, p ∈ Nj}. For any i ∈ Ťk, its
rank number in Ťk is denoted by bŤk

(i). Furthermore, for

any i, j ∈ Ťk, if j ∈ Ni, the rank number of connection
{i, j} is denoted by (i, j)(a scalar number). And the set
of all connections between nodes in Ťk is denoted by
UŤk

= {(i, j)|i, j ∈ Ťk and j ∈ Ni}.

For each n = 1, · · · , r1, the n-th Node in Ľ for x̂WLS
1 (k)

follows

žn = Čnx̌n + v̌n, (H.1)

žn,n+1 = Čn,n+1x̌n + Čn+1,nx̌n+1 + v̌n,n+1, (H.2)

where

x̌n =
[

xŤ T
n (1), xŤ T

n (2), . . . , x
T
Ťn(|Ťn|)

]T

.

Here,

Čn =

[

ȞŤn

V̌Ťn

]

,

Čn,n+1 =diag{F1,Ťn(1)
, F1,Ťn(2)

, . . . , F1,Ťn(|Ťn|)},
Čn+1,n =diag{F2,Ťn(1)

, F2,Ťn(2)
, . . . , F2,Ťn(|Ťn|)}

with

ȞŤn
=diag{CŤn(1)

, CŤn(2)
, . . . , CŤn(|Ťn|)},

[

V̌Ťn

]

x,y
=







Cu,v, x = (u, v) and y = bŤn
(u),

Cv,u, x = (u, v) and y = bŤn
(v),

0, else.

as the (x, y)-th block of V̌Ťn
, and

F1,i =
[

CT
i,Ši(1)

CT
i,Ši(2)

. . . CT
i,Ši(|Ši|)

]T

,

F2,i =
[

CTŠi(1),i
CTŠi(2),i

. . . CTŠi(|Ši|),i

]T

.

Also, v̌n ∼ N
(

0, Řn
)

and v̌n,n+1 ∼ N
(

0, Řn,n+1

)

, with

Řn = diag{RŤn(1)
, RŤn(2)

, . . . , RŤn(|Ťn|)
, Ru,v|(u,v)=1, . . . , Ru,v|(u,v)=|UŤn

|},

and

Řn,n+1 =diag{F3,Ťn(1)
, F3,Ťn(2)

, . . . , F3,Ťn(|Ťn|)},
F3,i =diag{Ri,Ši(1)

, Ri,Ši(2)
, . . . , Ri,Ši(|Ši|)}.

Finally

žn = col{zŤn(1)
, zŤn(2)

, . . . , zŤn(|Ťn|)
, zu,v|(u,v)=1, . . . , zu,v|(u,v)=|UŤn

|},

and

žn,n+1 =
[

FT
4,Ťn(1)

, FT
4,Ťn(2)

, . . . , FT
4,Ťn(|Ťn|)

]T

,

F4,i =
[

zT
i,Ši(1)

, zT
i,Ši(2)

, . . . , zT
i,Ši(|Ši|)

]T

.

Note that the line Ľ for x̂WLS
1 (k) given in (H.1) and

(H.2) is another expression of origin graph G.
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I Some Additional lemmas

Lemma 30 For every x ∈ R and 0 ≤ y ≤ 1,

exy − 1 ≤ (ex − 1) y.

PROOF. Fix x ∈ R. Let fx(y) = exy − 1 and gx(y) =
(ex − 1) y. We have that

fx(0) = 0 = gx(0), fx(1) = ex − 1 = gx(1).

Hence, the result follows since the function fx is concave
and gx is linear.

Lemma 31 If

[

A BT

B C

]

≥ 0, then ‖B‖ ≤
√

‖A‖ ‖C‖.

PROOF. Taking the Schur complement of A, we have
that

A−BTC−1B ≥ 0.

Hence,

‖A‖ ≥
∥

∥BTC−1B
∥

∥ = max
‖x‖=1

xTBTC−1Bx

≥ σmin

(

C−1
)

max
‖x‖=1

xTBTBx =
‖B‖2
‖C‖ ,

and the result follows.

Definition 32 We say that the block matrix A = [Aij ]
is m-banded if Aij = 0, whenever |i− j| > m/2.

The following lemma is a straightforward generalization
of [8, Proposition 2.2] to the case of block matrices.

Lemma 33 If A is an m-banded block matrix, for any
(i, j)-th block of A−1, we have

∥

∥

∥

[

A−1
]

ij

∥

∥

∥ ≤ cλ|i−j|

where

c =
r − 1

2b
, λ =

(√
r − 1√
r + 1

)
2
m

,

r = b/a and a ≤ σ(A) ≤ b.

PROOF. Fix i and j and let n < 2
m |i− j|. From [8,

Proposition 2.1], there exists a polynomial p, of degree
n, satisfying

sup
x∈[a,b]

∣

∣

∣

∣

1

x
− p(x)

∣

∣

∣

∣

= Kqn+1,

with

K =
(1 +

√
r)

2

2ar
, q =

√
r − 1√
r + 1

.

Then,

∥

∥A−1 − p(A)
∥

∥ = sup
x∈σ(A)

∣

∣

∣

∣

1

x
− p(x)

∣

∣

∣

∣

≤ Kqn+1.

Since An is nm-banded, it follows that p(A) is nm-
banded. Hence,

|i− j| > mn

2
⇒ [p(A)]ij = 0.

Then

∥

∥

∥

[

A−1
]

ij

∥

∥

∥ =
∥

∥

∥

[

A−1 − p(A)
]

ij

∥

∥

∥ ≤
∥

∥A−1 − p(A)
∥

∥

≤ Kqn+1 ≤ Kq
2
m |i−j|+1 = Kq

(

q
2
m

)|i−j|
,

and the result follows.
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[2] Jirı Ajgl and Miroslav Šimandl. On linear estimation fusion
under unknown correlations of estimator errors. In 19th IFAC

World Congress, 2014.

[3] Giorgio Battistelli and Luigi Chisci. Kullback-Leibler
average, consensus on probability densities, and distributed
state estimation with guaranteed stability. Automatica,
50(3):707–718, 2014.

[4] Philippe Bougerol. Kalman filtering with random coefficients
and contractions. SIAM Journal on Control and

Optimization, 31(4):942–959, 1993.

[5] Giuseppe Calafiore and Fabrizio Abrate. Distributed linear
estimation over sensor networks. International Journal of

Control, 82(5):868–882, 2009.

[6] Federico Cattivelli and Ali Sayed. Diffusion strategies for
distributed kalman filtering and smoothing. Automatic

Control, IEEE Transactions on, 55(9):2069–2084, 2010.

[7] Lingji Chen, Pablo Arambel, and Raman Mehra. Estimation
under unknown correlation: covariance intersection revisited.
IEEE Transactions on Automatic Control, 47(11):1879–1882,
2002.

[8] Stephen Demko, William Moss, and Philip Smith. Decay
rates for inverses of band matrices. Mathematics of

computation, 43(168):491–499, 1984.

[9] Marcello Farina, Giancarlo Ferrari-Trecate, and Riccardo
Scattolini. Moving-horizon partition-based state estimation
of large-scale systems. Automatica, 46(5):910–918, 2010.

18



[10] Federica Garin and Luca Schenato. A survey on distributed
estimation and control applications using linear consensus
algorithms. Lecture Notes in Control and Information

Sciences, 406(1):75–107, 2010.

[11] Vijay Gupta, Amir Dana, Joao Hespanha, Richard Murray,
and Babak Hassibi. Data transmission over networks for
estimation and control. IEEE Transactions on Automatic

Control, 54(8):1807–1819, 2009.

[12] Aleksandar Haber and Michel Verhaegen. Moving horizon
estimation for large-scale interconnected systems. IEEE

Transactions on Automatic Control, 58(11):2834–2847, 2013.

[13] Alexander T Ihler, John Iii, and Alan S Willsky. Loopy
belief propagation: convergence and effects of message errors.
Journal of Machine Learning Research, pages 905–936, 2005.
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