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Abstract

This paper studies the input-to-state stability (ISS) properties based on the method of Lyapunov functionals for a class of semi-linear
parabolic partial differential equations (PDEs) with respect to boundary disturbances. In order to avoid the appearance of time derivatives
of the disturbances in ISS estimates, some technical inequalities are first developed, which allow directly dealing with the boundary
conditions and establishing the ISS based on the method of Lyapunov functionals. The well-posedness analysis of the considered problem
is carried out and the conditions for ISS are derived. Two examples are used to illustrate the application of the developed result.
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1 Introduction

In the past few years, there has been a considerable effort
devoted to extending the input-to-state stability (ISS) the-
ory, which was originally introduced by Sontag for finite-
dimensional nonlinear systems [28,29], to infinite dimen-
sional systems governed by partial differential equations
(PDEs). In particular, significant progresses on the estab-
lishment of ISS properties with respect to disturbances for
different PDEs have been reported in the recent literature
[1,2,4,5,6,9,12,13,14,15,16,20,21,22,23,27,31].

It is noticed that the majority of the existing work dealt
with disturbances distributed over the domain for which the
method of Lyapunov functionals is shown to be a well-
suited tool. However, difficulties may be encountered when
considering disturbances acting on the boundaries. This is
mainly due to the fact that the latter case usually leads to
a formulation involving unbounded operators, which may
be an obstacle for the construction of Lyapunov function-
als as explained in [13,14,15]. It is shown in [8,9] that for
a class of linear PDEs, the exponential stability plus a cer-
tain admissibility implies the ISS with respect to boundary
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disturbances. However, it may be difficult to characterize
the admissibility for nonlinear PDEs. To avoid dealing with
unbounded operators, it is proposed in [2] to transform the
boundary disturbance to a distributed one, which allows for
the application of the well-established tools, in particular
the method of Lyapunov functionals. However, as pointed
out in [13,14,15] the result given in [2] may end up with
ISS estimates expressed by boundary disturbances and their
time derivatives, which is not strictly in the original form
of ISS formulation. To resolve this concern, it is proposed
in [13,14,15] to derive the ISS property directly from the
estimates of the solution to the considered PDEs by using
eigenfunction expansions or finite-difference schemes. An
advantage of these methods is that they can be applied to
a wide range of linear and nonlinear PDEs. Whereas, these
methods may involve heavy computations. In a recent work
[24], a new method based monotonicity has been introduced
for studying the ISS of nonlinear parabolic equations with
boundary disturbances. As an application of this method, the
ISS properties in Lp-norm (p > 2) for some linear parabolic
equations with Dirichlet boundary disturbances have been
established. Nevertheless, it is still of great interest to in-
vestigate the applicability of the well-established method of
Lyapunov functionals to the establishment of ISS properties
with respect to boundary disturbances for nonlinear PDEs,
including those investigated recently in [13,14,15,24]. This
motivates the present work.
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The aim of this work is to establish the aforementioned
ISS property for a class of semi-linear parabolic PDEs with
Robin (or Neumann) boundary conditions based on the
method of Lyapunov functionals. To achieve this objective,
we have developed first in Section 2.2 some technical in-
equalities (Lemma 1 and Lemma 2) that establish some re-
lationships between the value of a real-valued C1-function
at any point and its norms. This is a key feature that allows
dealing directly with the boundary conditions and avoiding
the appearance of time derivatives of the disturbance in ISS
estimates. The well-posedness of the problem described in
Section 2.1 is addressed in Section 3. A quite standard Lya-
punov functional [21] is then used in Section 4 to establish
the ISS estimates of the solutions with respect to in-domain
and boundary disturbances. Finally, the ISS analysis of two
parabolic PDEs are given in Section 5 to illustrate the pro-
posed method. The main contribution of the present work is
the derivation of the ISS property of the considered PDEs
from a Lyapunov functional using the developed techniques
that can be useful in the study of other types of PDEs.

Notation. In this paper, R+ denotes the set of positive real
numbers and R≥0 := 0 ∪ R+. L2(a, b) = {u : (a, b) →
R|

∫ b

a
u2(x)dx < +∞}, which is a Hilbert space en-

dowed with the natural product 〈u, v〉 =
∫ b

a
u(x)v(x)dx.

H2(a, b) = {u : (a, b) → R| u ∈ L2(a, b) and the deriva-
tives of first order and second order ux, uxx ∈ L2(a, b)}.
C(R≥0;R) = {u : R≥0 → R| u is continuous on R≥0}.
C1([a, b];R) = {u : [a, b] → R| u and ux are contin-
uous on [a, b]}. C2(R≥0;R) = {u : R≥0 → R| u, ux

and uxx are continuous on R≥0}. C0(R≥0 × (a, b);H) =
{u : R≥0 × (a, b) → R| u(t, ·) → H, u is continu-
ous (in t) on R≥0}, where H is some function space.
C1(R+ × (a, b);H) = {u : R+ × (a, b) → R| u(t, ·) →
H, ut(t, ·) → H, u and ut are continuous (in t) on R+},
where H is some function space. Let K = {γ : R≥0 →
R≥0| γ(0) = 0, γ is continuous, strictly increasing};
K∞ = {θ ∈ K| lim

s→∞
θ(s) = ∞}; L = {γ : R≥0 → R≥0| γ

is continuous, strictly decreasing, lim
s→∞

γ(s) = 0};

KL = {β : R≥0 × R≥0 → R≥0| β(·, t) ∈ K, ∀t ∈ R≥0,
and β(s, ·) ∈ L, ∀s ∈ R≥0}.

Throughout this paper, we always denote ‖u‖L2(a,b), or

‖u‖L2(0,1), by ‖u‖ for notational simplicity.

2 Problem setting and preliminaries

2.1 Problem setting

We consider the following semi-linear 1-D parabolic equa-
tion

ut − µuxx = f(t, x, u, ux) in R≥0 × (0, 1) (1)

with the boundary and initial conditions

a1u(t, 1) + a2ux(t, 1) = 0, (2a)

b1u(t, 0) + b2ux(t, 0) = d1(t), (2b)

u(0, x) = u0(x), (2c)

where d1(t) is the disturbance acting on the boundary,
a1, a2, b1, b2 are nonnegative constants and µ is a positive
constant. In (1), for the function f : R≥0×(0, 1)×R×R→
R, there exist a continuous function ρ : R≥0 × R → R≥0,
which is monotonously increasing in the second argument,
a constant γ ∈ [1, 3), and a constant ϑ ∈ (0, 1], such that
for any T ∈ R+, there hold

|f(t, x, u, p)| ≤ ρ(t, |u|)(1 + |p|γ), (3a)

|f(s, x, u, p)− f(t, x, u, q)|
≤ ρ(0, |u|)(1 + |p|γ)|s− t|ϑ, (3b)

|f(t, x, u, p)− f(t, x, u, q)|
≤ ρ(t, |u|)(1 + |p|γ−1 + |q|γ−1)|p− q|, (3c)

|f(t, x, u, p)− f(t, x, v, p)|
≤ ρ(t, |u|+ |v|)(1 + |p|γ)|u − v|, (3d)

for a.e. x ∈ (0, 1) and all s, t ∈ [0, T ), u ∈ R, v ∈ R, p ∈ R.

2.2 Preliminaries

In the subsequent development, we employ extensively the
following inequalities.

Young’s inequality: For real numbers a ≥ 0, b ≥ 0, and

ε > 0, there holds ab ≤ a2

2ε + εb2

2 .

Gronwall’s inequality: Suppose that y : R≥0 → R≥0 is
absolutely continuous on [0, T ] for any T > 0 and satisfies

for a.e. t ≥ 0 the differential inequality dy
dt
(t) ≤ g(t)y(t) +

h(t), where g, h ∈ L1([0, T ];R) for any T > 0. Then for
all t ∈ R≥0, there holds

y(t) ≤ y(0)e

∫

t

0

g(s)ds
+

∫ t

0

h(s)e

∫

t

s
g(τ)dτ

ds.

The following inequalities will be used to deal with the
items associated with boundary points. They are essential
for establishing the ISS property with respect to boundary
disturbances without invoking their time derivatives in a
priori estimates of the solution.

Lemma 1 Suppose that u ∈ C1([a, b];R), then

u2(c) ≤ 2

b− a
‖u‖2 + (b − a)‖ux‖2, ∀c ∈ [a, b].

Proof. For each c ∈ [a, b], let g(x) =
∫ x

c
u2
z(z)dz. Note that

gx(x) = u2
x(x). By Cauchy-Schwarz inequality, we have

(
∫ x

c

uz(z)dz

)2

≤
∣

∣

∣

∣

(x− c)

∫ x

c

u2
z(z)dz

∣

∣

∣

∣

= (x− c)

∫ x

c

u2
z(z)dz.

2



It follows

∫ b

a

(
∫ x

c

u2
z(z)dz

)2

dx ≤
∫ b

a

(x − c)g(x)dx

=

[

(x− c)2

2
g(x)

]
∣

∣

∣

∣

x=b

x=a

−
∫ b

a

(x− c)2

2
u2
x(x)dx

≤ (b− c)2

2

∫ b

c

u2
x(x)dx− (a− c)2

2

∫ a

c

u2
x(x)dx

=
(b− c)2

2

∫ b

c

u2
x(x)dx+

(a− c)2

2

∫ c

a

u2
x(x)dx

≤ (b− a)2

2

∫ b

a

u2
x(x)dx. (4)

Note that

u2(c)=

(

u(x) +

∫ c

x

u2
z(z)dz

)2

≤2u2(x) + 2

(
∫ c

x

u2
z(z)dz

)2

.

Integrating over [a, b] and noting (4), we get

u2(c)(b− a) ≤ 2

∫ b

a

u2(x)dx+ (b− a)2
∫ b

a

u2
x(x)dx,

which yields the claimed result. �

Lemma 2 Suppose that u ∈ C1([a, b];R).

(i) If u(c0) = 0 for some c0 ∈ [a, b], there holds

‖u‖2 ≤ (b−a)2

2 ‖ux‖2.
(ii) For any c ∈ [a, b], there holds ‖u‖2 ≤ 2u2(c)(b − a) +

(b− a)2‖ux‖2.

Proof. Note that for any w ∈ C1([0, 1]), there holds [18]

‖w‖2L2(0,1) ≤ w2(i) +
1

2
‖wx‖2L2(0,1), i = 0, 1.

For any c ∈ [a, b], let v(x) = u(c− (c− a)x). Then we get

‖u‖2L2(a,c) = (c− a)‖v‖2L2(0,1)

≤ (c− a)v2(0) +
c− a

2
‖vx‖2L2(0,1)

= (c− a)u2(c) +
(c− a)2

2
‖ux‖2L2(a,c).

Similarly, one may get

‖u‖2L2(c,b) ≤ (b − c)u2(c) +
(b− c)2

2
‖ux‖2L2(c,b).

Finally, one has

‖u‖2L2(a,b) = ‖u‖2L2(a,c) + ‖u‖2L2(c,b)

≤ (b− a)u2(c) +
(b − a)2

2
‖u‖2L2(a,b).

Then, we can conclude that (i) and (ii) hold true. �

3 Well-posedness Analysis

Consider first the solution to (1) with disturbance free bound-
ary conditions:

a1u(t, 1) + a2ux(t, 1) = 0, (5a)

b1u(t, 0) + b2ux(t, 0) = 0, (5b)

u(0, x) = u0(x). (5c)

In this section, we always assume that

(a1 + a2)b1 6= a1b2, d1 ∈ C2(R≥0;R),

u0 ∈ H
2
(0) := {u ∈ H2(0, 1); a1u(1) + a2ux(1) = 0,

b1u(0) + b2ux(0) = 0}.

Moreover, we make the following assumptions. When
a2b2 = 0, we always assume that

a1

a2
≥ −1

2
, if a2 6= 0 and b2 = 0,

b1

b2
≤ 1

2
, if a2 = 0 and b2 6= 0.

When a2b2 6= 0, we always assume that there exist A1, A2 ∈
R≥0 satisfying A1 +A2 = 1 such that

a1

a2
≥ 2A2,

b1

b2
≤ A1, A2 − 2A1 ≥ 0, (6)

or, there exist B1, B2 ∈ R≥0 satisfying B1 + B2 = 1 such
that

a1

a2
≥ −B2,

b1

b2
≤ −2B1, B1 − 2B2 ≥ 0. (7)

Remark 1 Under the above assumptions, we always have
a21 + a22 > 0, b21 + b22 > 0 and a21 + b21 > 0.

Proposition 3 Assume that u1 ∈ H
2
(0). Then there exists a

unique solution u ∈ C0(R≥0 × (0, 1);H2
(0)) ∩ C1(R+ ×

(0, 1);L2(0, 1)) to (1) with boundary-initial conditions (5).

Proof. Let D(A) = H
2
(0) with the operator A : D(A) →

L2(0, 1) defined as Au = µuxx. For α ∈ [0, 1],
let Hα = µ(−A)α and ‖u‖α = ‖(−A)αu‖. Let
F (t, u)(x) = f(t, x, u, ux). Then (5) can be expressed

by an abstract evolutionary equation du
dt

= Au + F (t, u).

3



The proof is based on the theory of Lipschitz perturba-
tions of linear evolution equations [19, Theorem 12, §4.3]
(see also [26, §6.3, Chap. 6]), which consists in two steps:
first to prove that A is the infinitesimal generator of a
C0-semigroup of contractions on L2(0, 1); and second to
prove that F (t, u) satisfies local Hölder condition, i.e., for
F : R≥0 × U → L2(0, 1), where U is an open subset of
Hα, for every (t, u) ∈ U , there is a neighborhood V ⊂ U
and constants L ≥ 0, 0 < ϑ ≤ 1 (see, e.g., [19, Assumption
(NONLIN), §4.3], [26, Assumption (F), §6.3, Chap. 6])
such that

‖F (t1, u1)− F (t2, u2)‖ ≤L(|t1 − t2|ϑ + ‖u1 − u2‖α),
∀(ti, ui) ∈ V, i = 1, 2. (8)

First, since A is a densely defined closed linear operator
and self-adjoint, it suffices to prove that A is dissipative.
Then, the claim that A generates a C0-semigroup follows
from Lumer-Phillips theorem (see [26, Corollary 4.4, §1.4,
Chap. 1], [10, Theorem 6.1.8]). Indeed, due to

1

µ
〈Au, u〉 =

∫ 1

0

uxxudx

=ux(t, 1)u(t, 1)− ux(t, 0)u(t, 0)− ‖ux‖2,

we may argue for four cases.

(i) b2 = a2 = 0. In this case, u(t, 1) = u(t, 0) = 0. A is
obviously dissipative.

(ii) b2 = 0, a2 6= 0. In this case, u(t, 0) = 0. It follows

1

µ
〈Au, u〉 =

∫ 1

0

uxxudx = −a1

a2
u2(t, 1)− ‖ux‖2.

For a1

a2

≥ − 1
2 , −a1

a2

u2(t, 1) ≤ 1
2u

2(t, 1). By Lemma 1 and

Lemma 2, we get u2(t, 1) ≤ 2‖u‖2 + ‖ux‖2 ≤ 2‖ux‖2.
Then

1

µ
〈Au, u〉 = − a1

a2
u2(t, 1)− ‖ux‖2

≤1

2
× 2‖ux‖2 − ‖ux‖2 = 0.

(iii) b2 6= 0, a2 = 0. In this case, u(t, 1) = 0. Arguing as in

(ii), for b1
b2

≤ 1
2 , one may get 1

µ
〈Au, u〉 ≤ 0.

(iv) b2 6= 0, a2 6= 0. For a1

a2

≥ 2A2,
b1
b2

≤ A1, A2 − 2A1 ≥
0, note that by Lemma 1 and Lemma 2 there hold

‖ux‖2 ≥ u2(t, 0)− 2‖u‖2,
‖ux‖2 ≥ ‖u‖2 − 2u2(t, 1).

(9)

Then we get

1

µ
〈Au, u〉

=− a1

a2
u2(t, 1) +

b1

b2
u2(t, 0)−A1‖ux‖2 −A2‖ux‖2

≤− a1

a2
u2(t, 1) +

b1

b2
u2(t, 0)−A2(‖u‖2 − 2u2(t, 1))

−A1(u
2(t, 0)− 2‖u‖2)

=

(

2A2 −
a1

a2

)

u2(t, 1) +

(

b1

b2
−A1

)

u2(t, 0)

+ (2A1 −A2)‖u‖2 ≤ 0.

Similarly, for a1

a2

≥ −B2,
b1
b2

≤ −2B1, B1− 2B2 ≥ 0, one

may get 1
µ
〈Au, u〉 ≤ 0. Thus, A is a dissipative operator.

The second step of proof can be proceeded in the same way
as in [19, Proposition 7, §4.4]. First, since A is a Sturm-
Liouville operator [3,25], all eigenvalues of A are real, and
form an infinite, increasing sequence 0 > λ1 > λ2 >
· · · > λn > · · · with lim

n→∞
λn = −∞. Corresponding to

each λn ∈ R, n = 1, 2, . . ., there is exactly one eigenfunc-
tion ϕn ∈ D(A) ∩ C2([0, 1]) satisfying Aϕn = λnϕn.
The eigenfunctions form an orthonormal basis of L2(0, 1).
Second, one may proceed exactly as in [19, §4.3,§4.4] to
show that the norm ‖u‖ + ‖u‖α on Hα is equivalent to
the norm ‖u‖α and Hα ⊂ W 1,2γ(0, 1) ∩ L∞(0, 1) for

max{ 3
4 ,

5γ−3
4γ } < α < 1. Furthermore, Theorem 12 in [19,

§4.3] holds. Then proceeding exactly as in (4.17)-(4.20) in
[26, Theorem 4.4, §8.4, Chap. 8], one may verify thatF (t, u)
satisfies (8).

Finally, Theorem 12 in [19, §4.3] guarantees the existence
of a unique classical solution. �

Remark 2 Conditions on the constants ai, bi(i = 1, 2) are
only required in order to guarantee exponential stability of
a semigroup in the proof of Proposition 3.

Theorem 4 There exists a unique solution u ∈ C0(R≥0 ×
(0, 1);H2

(0)) ∩ C1(R+ × (0, 1);L2(0, 1)) of (1) satisfying

(2a), (2b), and (2c).

Proof. Consider first the case where b21+b22 = 1. Let g(x) =
b1 + b2x + c1x

2 + c2x
3, where c1, c2 ∈ R satisfy (a1 +

2a2)c1+(a1+3a2)c2 = −a1b1−(a1+a2)b2. The existence
of c1, c2 is guaranteed by a21 + a22 6= 0. One may check that
a1g(1)+a2gx(1) = b1g(0)+b2gx(0) = 0 due to b21+b22 = 1.

Let f̃(t, x, v, p) = d1t(t)g(x) + µd1(t)gxx(x) + f(t, x, v +
d1(t)g(x), p+d1(t)gx(x)). Consider the following equation

vt − µvxx = f̃(t, x, v, vx), (10a)

a1v(t, 1) + a2vx(t, 1) = 0, (10b)

b1v(t, 0) + b2vx(t, 0) = 0, (10c)

v(0, x) = v0(x), (10d)

where v0 = u0 − d1(0)g(x) ∈ H
2
(0) since u0 ∈ H

2
(0).

Note that |g(x)| ≤ |b1| + |b2| + |c1| + |c2| := g0, |gx| ≤

4



|b2| + 2|c1| + 3|c2| := g1 and |gxx| ≤ 2|c1| + 6|c2| := g2.
Let ρ̃(t, r) = g0|d1t(t)|+µg2|d1(t)|+2γ(1 + g

γ
1 |d1(t)|γ)×

ρ(t, r+2g0|d1(t)|), which is continuous in t and r. One may

verify that f̃(t, x, v, p) satisfies the structural conditions (3)
with ρ̃(t, r) instead of ρ(t, r). According to Proposition 3,
(10) has a unique solution v ∈ C0(R≥0 × (0, 1);H2

(0)) ∩
C1(R+× (0, 1);L2(0, 1)). Finally, u = v+d1(t)g(x) is the
unique solution of (1) and satisfies (2a), (2b) and (2c).

For b21 + b22 6= 1, we set b̃i = bi√
b2
1
+b2

2

(i = 1, 2), d̃1 =

d1√
b2
1
+b2

2

. Then the boundary condition (2b) is equivalent to

b̃1u(t, 0)+b̃2ux(t, 0) = d̃1(t), where b̃21+b̃22 = 1. Therefore,
(1) has a unique solution u ∈ C0(R≥0 × (0, 1);H2

(0)) ∩
C1(R+ × (0, 1);L2(0, 1)). �

4 Stability Assessment

In stability analysis, we choose the energy of the system,
E(t) = ‖u(t, ·)‖2, as the Lyapunov functional candidate.
Let H2

(0) be defined as in Section 3. Note that in order to

apply Lemma 1 and Lemma 2 to deal with the terms of ux

on the boundaries, we always assume that b2 6= 0 (i.e., we
consider the problem with Robin (or Neumann) boundary
conditions).

4.1 The case where the function f(t, x, u, p) is in a general
form

We assume that there exists d(t, x) ∈ C1(R≥0 × (0, 1);R)
such that

f(t, x, u, p)u ≤ M1u
2 + (|d(t, x)| +M2|p|)|u|,

for a.e. x ∈ (0, 1) and all t ∈ R≥0, u ∈ R, p ∈ R, and
M1 ∈ R and M2 ∈ R≥0 are constants. Note that d(t, x)
can be used to describe the disturbance in the domain. For
simplicity, we assume that |d(x, t)| ≤ |d2(t)| for almost all
x ∈ (0, 1) and any t > 0, where d2 ∈ C1(R≥0;R), i.e., we
assume that

f(t, x, u, p)u ≤ M1u
2 + (|d2(t)|+M2|p|)|u|, (11)

for a.e. x ∈ (0, 1) and all t ∈ R≥0, u ∈ R, p ∈ R.

Definition 1 System (1) with (2) is said to be input-to-
state stable (ISS), or respectively integral input-to-state sta-
ble (iISS), w.r.t. the disturbances d1(t) and d2(t), if there
exist functions β ∈ KL, θ1, θ2 ∈ K∞ and γ1, γ2,∈ K such
that the solution of (1) with (2) satisfies

‖u(t, ·)‖ ≤β(‖u0‖, t) + γ1(‖d1‖L∞(0,t))

+ γ2(‖d2‖L∞(0,t)), ∀t ≥ 0,
(12)

or respectively

‖u(t, ·)‖ ≤β(‖u0‖, t) + θ1

(
∫ t

0

γ1(|d1(s)|)
)

+ θ2

(
∫ t

0

γ2(|d2(s)|)
)

, ∀t ≥ 0.

(13)

Moreover, System (1) with (2) is said to be exponential
input-to-state stable (EISS), or exponential integral input-to-
state stable (EiISS), w.r.t. the disturbances d1(t) and d2(t),
if there exist β′ ∈ K∞ and a constat λ > 0 such that
β(‖u0‖, t) ≤ β′(‖u0‖)e−λt in (12) or (13).

Remark 3 While the ISS typically refers to norm-estimates
for the input/disturbance in the L∞-norm, other norms
can also be considered. It should be mentioned that the
latter case usually relates to the integration of the in-
put/disturbance and can be defined as the “integral input-
to-state stability (iISS)” (see, e.g., [8, Definition 2.6]). This
property differs from the ISS in the sense that it allows for
unbounded inputs that have “finite energy” [30]. There in-
deed exist many practically relevant systems that are iISS,
but not ISS (see, e.g., [11,23] for more detailed discussions).

In order to obtain the stability of the system, we need some
additional assumptions on a1, a2, b1, b2,M1 andM2. Specif-
ically, if a2 6= 0, we make the following assumptions.

Assumption 1 Suppose that (6) holds. Moreover, suppose
that there exist A′

1, A
′
2, A

′
3 ∈ R≥0 satisfyingA′

1+A′
2+A′

3 =
µ and

a1

a2
µ ≥ 2A′

2,
b1

b2
µ < A′

1. (14)

Assume further that there exists ε0 ∈ R+ such that

M1 +
ε0M2

2
< A′

2 − 2A′
1,

M2

2ε0
≤ A′

3. (15)

Assumption 2 Suppose that (7) holds. Moreover, suppose
there exist B′

1, B
′
2, B

′
3 ∈ R≥0 satisfying B′

1+B′
2+B′

3 = µ
and

a1

a2
µ ≥ −B′

2,
b1

b2
µ < −2B′

1. (16)

Assume further that there exists ε0 ∈ R+ such that

M1 +
ε0M2

2
< B′

1 − 2B′
2,

M2

2ε0
≤ B′

3. (17)

If a2 = 0, we make the following assumption.
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Assumption 3 We assume that b1
b2

< 1
2 , which guarantees

that there exist A′
1, A

′
2, A

′
3 ∈ R≥0 satisfying A′

1+A′
2+A′

3 =

µ and b1
b2
µ < A′

1. Assume further that there exists ε0 ∈ R+

such that

M1 +
ε0M2

2
< A′

2 − 2A′
1,

M2

2ε0
≤ A′

3.

Theorem 5 Let u ∈ C0(R≥0 × (0, 1);H2
(0)) ∩ C1(R+ ×

(0, 1);L2(0, 1)) be the unique solution of (1), (2a),(2b) and
(2c). Under Assumption 1, or Assumption 2, or Assump-
tion 3, System (1) with (2) is EiISS and EISS having the
estimates:

‖u(t, ·)‖2 ≤‖u(0, ·)‖2e−C0t + C1

∫ t

0

|d1(s)|2ds

+ C2

∫ t

0

|d2(s)|2ds, (18)

and

‖u(t, ·)‖2 ≤‖u(0, ·)‖2e−C0t +
(

1− e−C0t
)

×
(

C1‖d1‖2L∞(0,t) + C2‖d2‖2L∞(0,t)

)

(19)

for some positive constants C0, C1, C2.

Proof. We prove first the case for a2 6= 0 under Assump-
tion 1. Multiplying (1) with u and integrating over [0, 1], we
have

∫ 1

0

utudx− µ

∫ 1

0

uxxudx =

∫ 1

0

f(t, x, u, ux)udx

≤
∫ 1

0

(

(|d2(t)|+M2|ux|)|u|+M1u
2
)

dx := I1,

which is

d

dt
‖u‖2 − µux(t, 1)u(t, 1) + µux(t, 0)u(t, 0) + µ‖ux‖2 ≤ I1.

By (2a), (2b) and Young’s inequality, it follows

d

dt
‖u‖2 + µ‖ux‖2

≤I1 −
1

b2
d1(t)µu(t, 0) +

b1

b2
µu2(t, 0)− a1

a2
µu2(t, 1)

≤I1 +
µ|d1(t)|2
2ε1b22

+

(

b1

b2
+

ε1

2

)

µu2(t, 0)− a1

a2
µu2(t, 1).

(20)

By Young’s inequality, we have

I1 ≤ |d2(t)|2
2ε2

+

(

ε2

2
+M1 +

ε3M2

2

)

‖u‖2 + M2

2ε3
‖ux‖2.

(21)

Then we infer from (20), (21) and (9) that

d

dt
‖u‖2 + A′

1u
2(t, 0) + (A′

2 − 2A′
1)‖u‖2 − 2A′

2u
2(t, 1)

+ A′
3‖ux‖2

=
d

dt
‖u‖2 +A′

1(u
2(t, 0)− 2‖u‖2)

+ A′
2(‖u‖2 − 2u2(t, 1)) +A′

3‖ux‖2

≤ d

dt
‖u‖2 +A′

1‖ux‖2 +A′
2‖ux‖2 +A′

3‖ux‖2

=
d

dt
‖u‖2 + µ‖ux‖2

≤µ|d1(t)|2
2ε1b22

+
|d2(t)|2
2ε2

+

(

b1

b2
+

ε1

2

)

µu2(t, 0)

− a1

a2
µu2(t, 1) +

(

ε2

2
+M1 +

ε3M2

2

)

‖u‖2

+
M2

2ε3
‖ux‖2. (22)

Recalling (14) and (15), one may choose ε3 = ε0 and
ε1, ε2 > 0 small enough such that

C0 := A′
2 − 2A′

1 −
(

ε2

2
+M1 +

ε3M2

2

)

> 0,

(

b1

b2
+

ε1

2

)

µ ≤ A′
1,

M2

2ε3
≤ A′

3.

Then we have

d

dt
‖u‖2 ≤ −C0‖u‖2 +

µ|d1(t)|2
2ε1b22

+
|d2(t)|2
2ε2

:= −C0‖u‖2 + C1|d1(t)|2 + C2|d2(t)|2 (23)

≤ −C0‖u‖2 + C1‖d1‖2L∞(0,t) + C2‖d2‖2L∞(0,t).

(24)

By (23) and Gronwall’s inequality, we obtain (18). By (24)
and Gronwall’s inequality, we obtain (19).

For a2 6= 0 and under Assumption 2, it suffices to note that
by Lemma 1 and Lemma 2, we have ‖ux‖2 ≥ u2(t, 1) −
2‖u‖2 and ‖ux‖2 ≥ ‖u‖2 − 2u2(t, 0). Then proceeding as
above, one may get

d

dt
‖u‖2 + (B′

1 − 2B′
2)‖u‖2 +B′

3‖ux‖2 − 2B′
1u

2(t, 0)

+B′
2u

2(t, 1)

≤µ|d1(t)|2
2ε1b22

+
|d2(t)|2
2ε2

+

(

b1

b2
+

ε1

2

)

µu2(t, 0)

− a1

a2
µu2(t, 1) +

(

ε2

2
+M1 +

ε3M2

2

)

‖u‖2

+
M2

2ε3
‖ux‖2.
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The ISS can be established as well.

Now for a2 = 0, it suffices to note that u(t, 1) = 0. Under
Assumption 3, the ISS can be obtained as above. �

Remark 4 It should be noticed that the assumptions that
(6) (or (7)) holds in Assumption 1 (or Assumption 2) are only
for assuring the existence of a solution. For ISS assessment,
it suffices to relax these assumptions to (14) and (15) (or
(16) and (17)), or some other weaker conditions.

4.2 The case where the function f(t, x, u, p) has a special
form

In the following part, we assume that f(t, x, u, p) is with
the form

f(t, x, u, p) = d(t, x) +M1u+M2p, (25)

where M1,M2 ∈ R are constants, |d(t, x)| ≤ |d2(t)| for
a.e. x ∈ (0, 1), d2 ∈ C(R≥0;R). As f(t, x, u, p) grows
lineally w.r.t. u and p, the conditions given in Assumption 1,
Assumption 2, and Assumption 3 can be relaxed.

For the case where a2 6= 0, we make the following assump-
tions.

Assumption 4 Suppose that there exist A′
1, A

′
2 ∈ R≥0 sat-

isfying A′
1 +A′

2 = µ and

−a1

a2
µ+

M2

2
≤ −2A′

2,
b1

b2
µ− M2

2
< A′

1, M1 < A′
2 − 2A′

1.

Assumption 5 Suppose that there exist B′
1, B

′
2 ∈ R≥0 sat-

isfying B′
1 +B′

2 = µ and

−a1

a2
µ+

M2

2
≤ B′

2,
b1

b2
µ− M2

2
< −2B′

1, M1 < B′
1 − 2B′

2.

For the case where a2 = 0, we make the following assump-
tion.

Assumption 6 We assume that there exist A′
1, A

′
2 ∈ R≥0

satisfying A′
1 +A′

2 = µ such that

b1

b2
µ− M2

2
< A′

1, M1 < A′
2 − 2A′

1.

Theorem 6 Let u ∈ C0(R≥0 × (0, 1);H2
(0)) ∩ C1(R+ ×

(0, 1);L2(0, 1)) be the unique solution of (1), (2a),(2b) and
(2c). Under Assumption 4, or Assumption 5, or Assump-
tion 6, System (1) with (2) is EiISS and EISS having the
estimates:

‖u(t, ·)‖2 ≤‖u(0, ·)‖2e−C3t + C4

∫ t

0

|d1(s)|2ds

+ C5

∫ t

0

|d2(s)|2ds,

and

‖u(t, ·)‖2 ≤‖u(0, ·)‖2e−C3t +
(

1− e−C0t
)

×
(

C4‖d1‖2L∞(0,t) + C5‖d2‖2L∞(0,t)

)

for some positive constants C3, C4, C5.

Proof. We proceed as in Theorem 5 and only prove the re-
sult under Assumption 4. Multiplying (1) with u and inte-
grating over [0, 1], we have

d

dt
‖u‖2 − µux(t, 1)u(t, 1) + µux(t, 0)u(t, 0) + µ‖ux‖2

=

∫ 1

0

f(t, x, u, ux)udx

≤
∫ 1

0

(

|d2(t)||u|+M1u
2 +M2uxu

)

dx := I2.

Note that
∫ 1

0 uxudx = 1
2u

2(t, x)|x=1
x=0 = 1

2 (u
2(t, 1) −

u2(t, 0)). It follows

I2 ≤|d2(t)|2
2ε2

+
ε2

2
‖u‖2 +M1‖u‖2 +

M2

2
(u2(t, 1)− u2(t, 0))

=
|d2(t)|2
2ε2

+

(

ε2

2
+M1

)

‖u‖2 + M2

2
(u2(t, 1)− u2(t, 0)).

Then we have

d

dt
‖u‖2 + µ‖ux‖2

≤I2 −
1

b2
d1(t)µu(t, 0) +

b1

b2
µu2(t, 0)− a1

a2
µu2(t, 1)

≤µ|d1(t)|2
2ε1b22

+
|d2(t)|2
2ε2

+

(

ε2

2
+M1

)

‖u‖2

+

(

b1µ

b2
− M2

2
+

ε1µ

2

)

u2(t, 0) +

(

M2

2
− a1

a2
µ

)

u2(t, 1).

We get by splitting µ‖ux‖2 as in (22) and using (9)

d

dt
‖u‖2 + A′

1u
2(t, 0) + (A′

2 − 2A′
1)‖u‖2 − 2A′

2u
2(t, 1)

=
d

dt
‖u‖2 +A′

1(u
2(t, 0)− 2‖u‖2)

+ A′
2(‖u‖2 − 2u2(t, 1))

≤ d

dt
‖u‖2 + µ‖ux‖2

≤µ|d1(t)|2
2ε1b22

+
|d2(t)|2
2ε2

+

(

ε2

2
+M1

)

‖u‖2
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+

(

b1µ

b2
− M2

2
+

ε1µ

2

)

u2(t, 0)

+

(

M2

2
− a1

a2
µ

)

u2(t, 1).

Choosing ε1, ε2 small enough, such that

b1µ

b2
− M2

2
+

ε1µ

2
≤ A′

1,

ε2

2
+M1 < A′

2 − 2A′
1,

M2

2
− a1

a2
µ ≤ −2A′

2.

Then we have

d

dt
‖u‖2 ≤ −C3‖u‖2 + C4|d1(t)|2 + C5|d2(t)|2

≤ −C3‖u‖2 + C4‖d1‖2L∞(0,t) + C5‖d2‖2L∞(0,t).

Finally, one may obtain the desired results by Gronwall’s
inequality. �

Remark 5 Note that with Assumption 4, or Assumption 5,
or Assumption 6, Proposition 3 guarantees that the opera-
tor A generates an exponentially stable semi-group, when
d1(t) = 0. Then, it follows directly from Proposition 4 in
[23] or Proposition 2.13 in [8] that System (1) with (2) is
ISS w.r.t. d2 in Lp-norm (p ≥ 1). For d1(t) 6= 0, the ISS w.r.t.
disturbances in L∞-norm is obtained in [8,15]. This result
is weaker than that obtained in Theorem 6, which gives an
ISS w.r.t. disturbances in L2-norm. It should be mentioned
that a strict Lyapunov functional has also been constructed
to establish the ISS w.r.t. in-domain disturbances for a semi-
linear parabolic PDE with periodic boundary conditions
[21, Theorem 3].

5 Illustration Examples

Two examples are used to illustrate the developed results.

5.1 Ginzburg-Landau equations with real coefficients

Consider first the Ginzburg-Landau equation with real co-
efficients (see, e.g., [17])

ut = µuxx + αu − β|u|2u, (26)

and the generalized Ginzburg-Landau equation with real co-
efficients (see, e.g., [7])

ut = µuxx + αu− β|u|2u− γ|u|4u+ λux, (27)

under the Robin (or Neumann) boundary conditions

u(x, 1) = 0, b1u(x, 0) + b2ux(t, 0) = d(t),

where µ, β, γ > 0, α, λ, b1, b2 ∈ R, b2 6= 0 and d ∈
C2(R≥0;R).

In the above boundary conditions, a1 = 1, a2 = 0, d1(t) =
d(t), and d2(t) = 0. In (26), f(t, x, u, p) = αu − β|u|2u.
In (27), f(t, x, u, p) = αu− β|u|2u− γ|u|4u+ λp. In both
cases, f(t, x, u, p) satisfies the structural conditions (3). As-

sume that b1
b2

≤ 1
2 , then there exists a unique real solution

of (26) and (27) respectively.
Now for (26), f(t, x, u, p) satisfies (11) with M1 = α,M2 =
0. If we assume further that b1

b2
< 1

3 , α < 0, and set

A′
1 = 1

3µ,A
′
2 = 2

3µ,A
′
3 = 0, then Assumption 3 holds.

Therefore (26) is ISS.
For (27), f(t, x, u, p) satisfies (11) with M1 = α,M2 = |λ|.
If we assume further that b1

b2
< 1

4 , α+ |λ| < 0, |λ| ≤ µ, and

set A′
1 = 1

4µ,A
′
2 = 1

2µ,A
′
3 = 1

4µ, ε0 = 2, then Assumption
3 holds. Therefore (27) is ISS.

5.2 1-D transport partial differential equation

We consider the following 1-D transport PDE:

ut = µuxx −mux − nu, (28)

under the following boundary conditions

ux(t, 1) =

(

m

2µ
− a

)

u(t, 1),

ux(t, 0) =

(

m

2µ
− b

)

u(t, 0) + d(t),

(29)

where µ > 0,m ≥ 0, n, a, b ∈ R and d ∈ C2(R≥0;R).

In order to make the manipulations easier, we set

w(t, x) = e
mx
2µ u(t, x). We can then transform the PDE (28)

with boundary conditions to the following problem (see
also [13]):

wt = µwxx −
(

m2

4µ
+ n

)

w, (30a)

wx(t, 1) = −aw(t, 1), (30b)

wx(t, 0) = −bw(t, 0) + d(t). (30c)

In this case,

a1 = a, a2 = 1, b1 = b, b2 = 1,

d1(t) = d(t), d2(t) = 0,M1 = −
(

m2

4µ
+ n

)

,M2 = 0.

If we assume that a ≥ 4
3 , b < 1

3 ,
m2

4µ + n > 0, and set

A1 = 1
3 , A2 = 2

3 , A
′
1 = 1

3µ,A
′
2 = 2

3µ, then condition (6)

and Assumption 4 hold. If we assume that a ≥ − 1
3 , b <

− 4
3 ,

m2

4µ +n > 0, and set B1 = 2
3 , B2 = 1

3 , B
′
1 = 2

3µ,B
′
2 =

1
3µ, then condition (7) and Assumption 5 hold. Under the
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above two assumptions, (30) has a unique solution and (30)
is ISS, and so is (28).

Remark 6 If it is easy to fix A′
i, B

′
i (i = 1, 2), one may

verify the conditions in Assumption 4 and Assumption 5 to
conclude the ISS of (28) directly. It should be noticed that
Assumption 4 or Assumption 5 is not a necessary condition
for the ISS. Therefore, the system may be ISS even if As-
sumption 4 or Assumption 5 fails (see also Remark 4).

Remark 7 The system (28) was considered in [13] under
the boundary conditions:

(i) Dirichlet boundary conditions:
u(t, 1) = 0, u(t, 0) = d(t).

(ii) Robin (or Neumann) boundary conditions:

u(t, 0) = d(t), ux(t, 1) =
(

m
2µ − a

)

u(t, 1), (a ≥ 0).

In the above boundary conditions, b2 = 0, which is slightly
different from (29). The ISS property of (28) was obtained
by Parseval’s identity and the expansions of eigenfunctions
of the Sturm-Liouville operator under the same assumption

that m2

4µ +n > 0. For the system (28) (m = 0) with Dirichlet

boundary conditions under a boundary state feedback, the
ISS in Lp-norm (p ∈ (2,+∞)) is established in [24] by the
monotonicity-based method.

6 Conclusion

This paper demonstrated via the considered semi-linear PDE
that the ISS property with respect to Robin (or Neumann)
boundary disturbances can be derived from suitable Lya-
punov functionals. The obtained results confirmed that the
appearance of the derivatives of boundary disturbances in
the ISS estimates can be avoided by directly dealing with
the boundary conditions with disturbances. Compared to the
work reported in [13,14,15], the application of Lyapunov
functionals in the establishment of a priori estimates of
the solution seems to be less computationally demanding.
Therefore, it can be expected that the developed techniques
may be applicable in the study of ISS properties for a wider
class of PDEs. Finally, it should be mentioned that the tech-
nique developed in this work cannot deal with the ISS w.r.t.
Dirichlet boundary disturbances, which is the case where
b2 = 0 in (2). To tackle this type of problems, a method is
developed in a parallel work [32].
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