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Abstract

Input design is an important issue for classical system identification methods but has not been investigated for the kernel-based
regularization method (KRM) until very recently. In this paper, we consider in the time domain the input design problem of
KRMs for LTI system identification. Different from the recent result, we adopt a Bayesian perspective and in particular make
use of scalar measures (e.g., the A-optimality, D-optimality, and E-optimality) of the Bayesian mean square error matrix as
the design criteria subject to power-constraint on the input. Instead to solve the optimization problem directly, we propose a
two-step procedure. In the first step, by making suitable assumptions on the unknown input, we construct a quadratic map
(transformation) of the input such that the transformed input design problems are convex, the number of optimization variables
is independent of the number of input data, and their global minima can be found efficiently by applying well-developed
convex optimization software packages. In the second step, we derive the expression of the optimal input based on the global
minima found in the first step by solving the inverse image of the quadratic map. In addition, we derive analytic results for
some special types of fixed kernels, which provide insights on the input design and also its dependence on the kernel structure.

Key words: Input design, Bayesian mean square error, kernel-based regularization, LTI system identification, convex
optimization.

1 Introduction

Over the past few years, the kerel-based regulariza-
tion method (KRM), which was first introduced in
Pillonetto & De Nicolao (2010) and then further de-
veloped in Chen et al. (2014, 2012); Pillonetto et al.
(2011), has received increasing attention in the sys-
tem identification community, see e.g., Chiuso (2016);
Pillonetto et al. (2014) and the references therein. It
has become a complement to the classical maximum
likelihood/prediction error methods (ML/PEM),Ljung
(1999); Söderström & Stoica (1989), which can be jus-
tified in a couple of aspects. First, the kernel, through
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which the regularization is defined, provides a carrier
for prior knowledge on the dynamic system to be iden-
tified. Second, the model complexity is tuned in a con-
tinuous manner through the hyperparameter, which is
the parameter vector used to parameterize the kernel,
Mu et al. (2017); Pillonetto & Chiuso (2015). Third,
extensive simulation results show that KRM can have
better average accuracy and robustness than ML/PEM
for the data that is short and/or has low signal-to-noise
ratio, Chen et al. (2012); Pillonetto et al. (2014), and as
a result, algorithms of KRM have been added to the Sys-
tem Identification Toolbox of MATLAB (Ljung et al.,
2015).

Most of the recent progress for KRM focus on the issues
of kernel design and hyperparameter estimation. For
the former issue, many kernels have been proposed and
analyzed to embed various kinds of prior knowledge,
Carli et al. (2017); Chen et al. (2016); Chen & Ljung
(2017); Marconato et al. (2016); Pillonetto et al. (2016);
Zorzi & Chiuso (2017). In particular, two systematic
ways are introduced to design kernels in Chen & Ljung
(2017): one is from a machine learning perspective which
treats the impulse response as a function, and the other
one is from a system theory perspective which asso-

Preprint submitted to Automatica 19 March 2018

http://arxiv.org/abs/1708.05539v1


ciates the impulse response with a linear time-invariant
(LTI) system. In Zorzi & Chiuso (2017), a harmonic
analysis is first provided for existing kernels including
the amplitude modulated locally stationary (AMLS)
kernel introduced in Chen & Ljung (2017) and then is
shown to be a useful tool to design more general ker-
nels. In contrast, there are few results reported for the
issue of hyperparameter estimation Mu et al. (2017);
Pillonetto & Chiuso (2015). In particular, it was shown
in Mu et al. (2017) that the Stein’s unbiased risk esti-
mator (SURE) is asymptotically optimal but the widely
used empirical Bayes estimator is not.

There are some issues for KRM that have not been ad-
dressed adequately including the issue of input design.
There are numerous results on this issue for ML/PEM,
see e.g., the survey papers (Gevers, 2005; Hjalmarsson,
2005; Mehra, 1974) and the books (Goodwin & Payne,
1977; Ljung, 1999; Zarrop, 1979). The current state-
of-the-art of input design for ML/PEM, see e.g.,
Hildebrand & Gevers (2003); Hjalmarsson (2009);
Jansson & Hjalmarsson (2005), is to solve the problem
in a two-step procedure. The first step is to pose the
problem in the frequency domain as a convex optimiza-
tion problem with a linear matrix inequality constraint
and then derive the optimal input power spectrum with
respect to certain design criteria, and the second step is
to derive the realization of the input corresponding to
the optimal power spectrum. The typical design criteria
are scalar measures (e.g., the trace, the determinant
or the largest eigenvalue) of the asymptotic covariance
matrix of the parameter estimate or the information
matrix of ML/PEM subject to various constrains on
the inputs (e.g., energy or amplitude constraints). The
typical realization of the input is the filtered white noise
by spectral factorization of the desired input spectrum
(Hjalmarsson, 2009; Jansson & Hjalmarsson, 2005) or
a multisine signal (Hildebrand & Gevers, 2003). In
contrast, there have been no results reported on this
issue for KRM until very recently in Fujimoto & Sugie
(2016), where for a fixed kernel (a kernel with fixed
hyperparameter), the optimal input is derived by maxi-
mizing the mutual information between the output and
the impulse response subject to energy-constraint on
the input. The proposed method in Fujimoto & Sugie
(2016) is very interesting but the number of the opti-
mization variables induced by the input design problem
is equal to the number of data and thus is expensive
to solve when the number of data is large. Moreover,
the induced optimization problem is nonconvex and the
proposed gradient-based algorithm may be inefficient
and subject to local minima issue. Nevertheless, their
simulation result looks quite promising and motivates
the interest of further investigation.

In this paper, we treat the input design problem for KRM
from a perspective different from Fujimoto & Sugie
(2016). Similar to Fujimoto & Sugie (2016), we also
assume that the kernel is fixed (otherwise, it can be

estimated from a preliminary experiment), but our
starting point is different and is the mean square error
(MSE) matrix of the regularized finite impulse response
(FIR) estimate Chen et al. (2012). Since the MSE ma-
trix depends on the unknown true impulse response,
we propose to make use of the Bayesian interpretation
of the KRM and derive the so-called Bayesian MSE
matrix, which only depends on the fixed kernel and
the input. It is then possible to use scalar measures of
the Bayesian MSE matrix as the design criteria to op-
timize the input, e.g., the A-optimality, D-optimality,
and E-optimality measures. Interestingly, the design
criterion in Fujimoto & Sugie (2016) is equivalent to
the D-optimality of the Bayesian MSE matrix intro-
duced here. Moreover, we also treat the unknown input
in a way different from Fujimoto & Sugie (2016) and
consider power-constrained input Goodwin & Payne
(1977) accordingly.

Instead to solve the optimization problem induced by
the input design in a direct way, we propose a two-step
procedure. In the first step, under the assumption on the
unknown input, we construct a quadratic map (trans-
formation) of the input such that the transformed input
design problems are convex, the number of optimization
variables is equal to the order of the FIR model, and
their global minima can be found efficiently by applying
well-developed convex optimization software packages,
such as CVX (Grant & Boyd, 2016). In the second step,
we derive the expression of the optimal input based on
the global minima found in the first step by solving the
inverse image of the quadratic map. From an optimiza-
tion point of view, a similar optimization problem to
the underlying one of our method appeared before in
Hildebrand & Gevers (2003); Jansson & Hjalmarsson
(2005). However, our method is essentially different.
First, our input design problem is posed and solved in
the time domain. Second, our method is not based on
asymptotic theory and works for any finite number of
data. Third, the optimal input is derived by solving the
inverse image of the quadratic map. In addition, we
derive analytic results for some special types of fixed
kernels, which provide insights on input design and also
its dependence on the kernel structure. In particular, we
show that the impulsive input is globally optimal and
the white noise input is asymptotically globally optimal
for all diagonal kernels, but they are often not optimal
for kernels with correlation, e.g, the diagonal correlated
(DC) kernel introduced in Chen et al. (2012). Finally,
numerical simulation results are provided to illustrate
the efficacy of our method.

The remaining parts of this paper are organized as fol-
lows. In Section 2, we first review briefly KRM. In Sec-
tion 3, we state the problem formulation of the input
design problem. In Section 4, we introduce the two-step
procedure to solve the input design problem. Then we
show in Section 5 that for some fixed kernels, it is pos-
sible to derive the explicit solution of the optimal in-
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put. The numerical simulation is given in Section 6 to
demonstrate the proposed method. Finally, we conclude
the paper in Section 7. All proofs of Theorems, Propo-
sitions, and Lemmas are postponed to the Appendix.

2 Regularized FIR Model Estimation

Consider a single-input single-output linear stable and
causal discrete-time system

y(t) = G0(q
−1)u(t) + v(t). (1)

Here t ∈ N is the time index, q−1 is the backshift oper-
ator (q−1u(t) = u(t− 1)), y(t), u(t) ∈ R are the output
and input of the system at time t, respectively, v(t) ∈ R

is a zero mean white noise with variance σ2 > 0 and is
independent of the input u(t), and the transfer function
G0(q

−1) of the “true” system is

G0(q
−1) =

∞∑

k=1

g0kq
−k, (2)

where the coefficients g0k ∈ R, k = 1, · · · ,∞ form the im-
pulse response of the system. Further, we assume that
the input u(t) is known (deterministic). The system iden-
tification problem is to estimate a model of G0(q

−1) as
well as possible based on the data {u(t− 1), y(t)}Nt=1.

The stability of G0(q
−1) implies that its impulse re-

sponse decays to zero, and thus it is always possible to
truncate the infinite impulse response by a high order
finite impulse response (FIR) model:

G(q−1) =
n∑

k=1

gkq
−k, θ = [g1, · · · , gn]T ∈ R

n, (3)

where n is the order of the FIR model and (·)T denotes
the transpose of a matrix or vector. With the FIR model
(3), system (1) is written as

y(t)=φT(t)θ+v(t), φ(t)=[u(t−1), · · · , u(t−n)]T , (4)

and its matrix-vector form is

Y = Φθ + V, (5)

Y = [y(1) y(2) · · · y(N)]T , (6)

Φ = [φ(1) φ(2) · · · φ(N)]T , (7)

V = [v(1) v(2) · · · v(N)]T , (8)

where the unknown input u(t) with t = −1, . . . ,−n+1,
can be handled in different ways: e.g., they can be not
used (“non-windowed”) or they can be set to zero (“pre-
windowed”); see (Ljung, 1999, p. 320) for discussions.

There are different methods to estimate θ and the sim-
plest one is perhaps the least squares (LS) method:

θ̂LSN = argmin
θ

‖Y − Φθ‖2 = (ΦTΦ)−1ΦTY, (9)

where ‖ · ‖ is the Euclidean norm. However, θ̂LSN may
have large variance and thus large mean square error
(MSE), as its variance increases approximately linearly
with respect to n. One way to mitigate the possible large
variance and reduce the MSE is by using the regularized
least squares (RLS) method, see e.g., Chen et al. (2012):

θ̂RN =argmin
θ∈Rn

‖Y − Φθ‖2 + σ2θTP−1θ (10a)

=PΦT (ΦPΦT + σ2IN )−1Y, (10b)

where P is positive semidefinite and is called the kernel
matrix (σ2P−1 is often called the regularizationmatrix),
and IN is the N -dimensional identity matrix.

Now we let θ0 = [g01 , · · · , g0n]T , where g01, . . . , g
0
n are de-

fined in (2) and we then obtain the MSE matrix of θ̂RN :

θ̂RN − θ0 = −σ2Q−1P−1θ0 +Q−1ΦTV, (11)

MN = E(θ̂RN − θ0)(θ̂
R
N − θ0)

T

= σ4Q−1P−1θ0θ
T
0 P

−1Q−1+σ2Q−1ΦTΦQ−1

(12)

Q = ΦTΦ + σ2P−1, (13)

where E(·) is the mathematical expectation. It has been
shown in Mu et al. (2017, Prop. 2) that for a suitably

chosen kernel matrix P , Tr(MN (θ̂RN )) ≤ Tr(MN (θ̂LSN )),
where Tr(·) is the trace of a square matrix.

The problem to achieve a good θ̂RN boils down to the
choice of a suitable kernel matrix P , which contains two
issues: kernel design and hyperparameter estimation.

2.1 Kernel Design

The issue of kernel design is regarding how to embed in
a kernel the prior knowledge of the underlying system to
be identified by parameterizing the kernel with a param-
eter vector, say η, called hyperparameter. The essence of
kernel design is analogous to the model structure design
for ML/PEM, and the kernel determines the underlying
model structure for the regularized FIR model (10b). So
far, several kernels have been proposed, such as the sta-
ble spline (SS) kernel (Pillonetto & De Nicolao, 2010),
the diagonal correlated (DC) kernel and the tuned-
correlated (TC) kernel (Chen et al., 2012), the latter
two of which are defined as follows:

DC : Pkj(η) = cλ(k+j)/2ρ|j−k|,
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η = [c, λ, ρ] ∈ Ω = {c ≥ 0, 0 ≤ λ ≤ 1, |ρ| ≤ 1}; (14)

TC : Pkj(η) = cλmax(k,j),

η = [c, λ] ∈ Ω = {c ≥ 0, 0 ≤ λ ≤ 1}. (15)

where the TC kernel (15) is a special case of the DC

kernel with ρ =
√
λ (Chen et al., 2012) and is also called

the first order SS kernel (Pillonetto et al., 2014).

2.2 Hyperparameter Estimation

Once a kernel is designed, the next step is to determine
the hyperparameter based on the data. The essence of
hyperparameter estimation is analogous to the model
order selection for ML/PEM, and the hyperparameter
determines the model complexity of the regularized
FIR model (10b). Several estimation methods have
been suggested in (Pillonetto et al., 2014, Section 14).
The most widely used method is the empirical Bayes
(also called marginal likelihood maximization) method.
The idea is to adopt the Bayesian perspective and em-
bed the regularization term σ2θTP−1θ in a Bayesian
framework. More specifically, we assume in (4) that v(t)
and θ are independent and Gaussian distributed with
v(t) ∼ N (0, σ2) and

θ ∼ N (0, P ). (16)

Then θ and Y are jointly Gaussian distributed andmore-
over, the posterior distribution of θ given Y is

θ|Y ∼ N (θ̂R, P̂R),

θ̂RN = PΦT (ΦPΦT + σ2IN )−1Y,

P̂R
N = P − PΦT (ΦPΦT + σ2IN )−1ΦP = σ2Q−1. (17)

Moreover, the output Y is also Gaussian with zero mean
and covariance matrix ΦP (η)ΦT +σ2IN . Therefore, the
hyperparameter η can be estimated by maximizing the
marginal likelihood, or equivalently,

EB: η̂ = argmin
η∈Ω

Y TF (η)−1Y + log det(F (η)), (18)

F = ΦTPΦ+ σ2IN , (19)

where det(·) is the determinant of a matrix. The EB (18)
has the advantage that it is robust Pillonetto & Chiuso
(2015), but not asymptotical optimal in the sense ofMSE
(Mu et al., 2017).

3 Problem Formulation for Input Design

3.1 Bayesian MSE Matrix and Design Criteria

The goal of input design is to determine, under suitable
conditions, an input sequence such that the regularized
FIR model (10b) is as good as possible. The MSE matrix

(12) is a natural measure to evaluate how good the regu-
larized FIR model estimate (10b) is. Unfortunately, the
first term of (12) depends on the true impulse response
θ0 and thus it can not be used directly.

There are different ways to deal with this difficulty.
We adopt a Bayesian perspective that is similar to the
derivation of (18). More specifically, we assume that

θ0 ∼ N (0, P ). (20)

Then taking expectation on both side of (12) leads to

MN = σ4Q−1P−1Q−1 + σ2Q−1ΦTΦQ−1

= σ2Q−1(σ2P−1 +ΦTΦ)Q−1

= σ2Q−1, “Bayesian MSE”. (21)

Since the Bayesian perspective is adopted, (21) is called
the Bayesian MSE matrix of the regularized FIR model
estimate (10b) under the assumption (20). Interestingly,
the Bayesian MSE matrix (21) is equal to the posterior
covariance of the regularized FIR model estimate (17)
under the assumption (16).

We will tackle the input design problem by minimiz-
ing a scalar measure of the Bayesian MSE matrix (21)
of the regularized FIR model estimate (10b). This idea
is similar to that of the traditional input design prob-
lem by minimizing a scalar measure of the asymptotic
covariance matrix of the parameter estimate (Ljung,
1999). The typical A-optimality, D-optimality, and E-
optimality scalar measures of the Bayesian MSE matrix
(21) will be chosen as the design criteria for the input
design problem and given below:

D − optimality : det(MN)
△
= det(σ2Q−1), (22)

A− optimality : Tr(MN )
△
= Tr(σ2Q−1), (23)

E − optimality : λmax(MN)
△
= λmax(σ

2Q−1), (24)

where λmax(·) is the largest eigenvalue of a matrix.

Remark 1 Another possible way to deal with the un-
known θ0 in the MSE matrix (12) is to replace θ0 by an
estimate obtained in advance, for example, the LS esti-
mate (9). In this case, the MSE matrix (12) becomes

σ4Q−1P−1θ̂LSN (θ̂LSN )TP−1Q−1 + σ2R−1ΦTΦQ−1. (25)

Clearly, the input design would depend on the quality of
the chosen estimate.

Remark 2 Interestingly, the D-optimality measure
(22) is equivalent to the mutual information between
the true impulse response and the output Y given in
Fujimoto & Sugie (2016).
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3.2 Problem Statement

Now we are able to state the input design problem based
on the design criteria (22)–(24).

Assume that the kernel matrix P (η) and the variance
σ2 of the noise are known in advance (otherwise, they
can be estimated with a preliminary experiment) and
also note that the construction of the regression matrix
Φ in (7) requires the inputs u−n+1, · · · , uN−1. Then the
input design problem is to determine an input sequence

u−n+1, · · · , u−1, u0, u1, · · · , uN−1, (26)

where, for simplicity, ut is used to denote u(t) hereafter,
such that the input sequence (26) minimizes the design
criteria (22)–(24) subject to certain constraints.

It should be noted that the inputs u−n+1, · · · , u−1 are
unknown for the identification problem but can be
treated as design variables for the input design problem.
In particular, Fujimoto & Sugie (2016) sets the inputs
u−n+1, · · · , u−1 to be zero, i.e.,

u−n+1 = · · · = u−1 = 0, (27)

and essentiallyminimizes theD-optimality measure (22)
subject to an energy-constraint

U = {u|uTu ≤ E , u ∈ R
N},

u = [u0, u1, · · · , uN−1]
T ,

(28)

where E > 0 is a known constant and is the maximum
available energy for the input.

Here, we treat u−n+1, · · · , u−1 in a different way. Our
idea is not only to reduce the number of optimization
variables of the input design problem, but also to bring
it certain structure such that it becomes easier to solve,
see Section 4 for details. In particular, we assumeN ≥ n
and set

u−i = uN−i, i = 1, · · · , n− 1. (29)

The advantage of doing so is that the regression matrix

Φ has a good structure and becomes a circulant matrix:

Φ =




u0 uN−1 · · · uN−n+2 uN−n+1

u1 u0 · · · uN−n+3 uN−n+2

...
...

. . .
...

...

un−2 un−3 · · · u0 uN−1

un−1 un−2 · · · u1 u0

un un−1 · · · u2 u1

...
...

. . .
...

...

uN−1 uN−2 · · · uN−n+1 uN−n




.

Moreover, we consider the power constraint on the input
sequence (26) used for the traditional ML/PEM input
design problem, see e.g., (Goodwin & Payne, 1977, p.
129, eq. (6.3.12)), i.e.,

N∑

t=1

u2
t−i = E , i = 1, . . . , n, (30)

Under the assumption (29), the input design problem of
minimizing the design criteria (22)–(24) subject to the
constraint (30) can be equivalently written as follows:

u∗
D

△
= arg min

u∈U
det(σ2Q−1), (31)

u∗
A

△
= arg min

u∈U
Tr(σ2Q−1), (32)

u∗
E

△
= arg min

u∈U

λmax(σ
2Q−1), (33)

where the constraint (30) under the assumption (29)
becomes

U = {u|uTu = E , u ∈ R
N},

u = [u0, u1, · · · , uN−1]
T ,

(34)

It is worth to note that the optimal input is not unique
in general. To check this, note that if an input sequence
u∗ is optimal, then −u∗ is also optimal, where u∗ can be
any of u∗

D, u
∗
A and u∗

E. Therefore, u
∗
D, u

∗
A, u

∗
E should be

understood as the set of all optimal inputs minimizing
(31), (32), (33), respectively.

4 Main Results

Similar to Fujimoto & Sugie (2016), we can also try
to solve the input design problems (31)–(33) by using
gradient-based algorithms. However, such algorithms
may have the following problems:

1) the input design problems (31)–(33) is expensive to
solve for largeN , because the number of optimization
variables is N .
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2) the gradient-based algorithms may be subject to the
issue of local minima, because the input design prob-
lems (31)–(33) are non-convex.

We propose to solve the input design problems (31)–(33)
in a two-step procedure, and its idea is sketched below:

1) under the assumption (29), we construct a quadratic
map (transformation) of u, say f(u), such that the
transformed input design problems of (31)–(33) are
convex and thus can be solved efficiently.

2) by exploiting the properties of f(·) and based on
the globally minima of the transformed input design
problems of (31)–(33), we derive the optimal inputs
by solving the inverse of the map f(·).

4.1 A Quadratic Map

Under the assumption (29), we define

r = [r0, r1, · · · , rn−1]
T ,

rj =

N−1∑

k=0

ukuk−j , j = 0, . . . , n− 1.
(35)

Then we have

R
△
= ΦTΦ =




r0 r1 · · · rn−2 rn−1

r1 r0
. . . rn−3 rn−2

...
. . .

. . .
. . .

...

rn−2 rn−3
. . . r0 r1

rn−1 rn−2 · · · r1 r0




, (36)

which is a positive semidefinite Toeplitz matrix.

Actually, the definition (35) determines a quadratic
vector-valued function

r = f(u) = [f0(u), · · · , fn−1(u)]
T . (37)

The domain of f(·) is U which has been defined in (34)
and is convex and compact, and the j-element of f(·) is

fj(u) = uTLju, j = 0, . . . , n− 1, (38)

Lj =
1

2

[
0 IN−j

Ij 0

]
+

1

2

[
0 Ij

IN−j 0

]
. (39)

It follows that the corresponding value r0 is E for any
input u ∈ U . Moreover, denote the image of f(·) under
U by

F = {f(u)|u ∈ U }, (40)

which is a convex polytope (See Theorem 2 below).

4.2 Transformed Input Design Problem

Interestingly, the quadratic map (37) makes the trans-
formed input design problems of (31) to (33) convex.

To show this, note that the matrix Q in (13) can be
written as

Q(r) = r0In + r1Q1 + · · ·+ rn−1Qr−1 + σ2P−1, (41)

where Qi ∈ R
n×n, i = 1, . . . , n − 1 is symmetric and

zero everywhere except the (jl)-element which is one if
|j − l| = i with j, l = 1, . . . , n. The map (37) transforms
the input design problems (31)–(33) to the following op-
timization problems, respectively,

r∗D = argmin
r∈F

log det(σ2Q(r)−1) (42)

r∗A = argmin
r∈F

Tr(σ2Q(r)−1) (43)

r∗E = argmin
r∈F

λmax(σ
2Q(r)−1) (44)

where log det(·) is used instead of det(·).

Proposition 1 Consider the transformed input design
problems (42) to (44). It follows that

• The problems (42) and (43) are strictly convex and
thus r∗D and r∗A are unique in F .

• The problem (44) is convex and r∗E exists but may be
not unique in F .

Remark 3 From an optimization point of view, the
optimization problems (42) to (44), modulo the con-
straint, appeared before, see e.g., Jansson & Hjalmarsson
(2005). However, the contexts are different: the ele-
ments of r are the auto-correlation coefficients of the
input power spectrum in Jansson & Hjalmarsson (2005)
but they do not have such interpretation here unless we
divide them by N and let N go to ∞. In addition, the
positivity constraint of the input spectrum is transformed
into a linear matrix inequality by applying the Kalman-
Yakubovich-Popov lemma in Jansson & Hjalmarsson
(2005), while the constraint here is the feasible set F ,
which is a convex polytope (See Remark 6 below).

Remark 4 An optimal r∗ satisfies r∗0 = E , where r∗0 is
the first element of r∗, and r∗ could be r∗D r∗A, and r∗E.

Remark 5 For i = 1, . . . , n − 1, the elements of the
gradient of (42) and (43) are respectively given by

∂ log det(σ2Q(r)−1)

∂ri
=−Tr(Q(r)−1Qi), (45)

∂Tr(σ2Q(r)−1)

∂ri
= −σ2Tr(Q(r)−2Qi). (46)
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4.3 Finding Optimal Inputs

Now we assume that the global minima of the trans-
formed input design problems (42) to (44) have been
found and denoted by r∗ ∈ F , which could be any one
of r∗D, r

∗
A, and r∗E. Then we consider the problem how to

derive the optimal input u∗ from r∗ ∈ F by exploiting
the properties of the quadratic map f(·) and the inverse
map of f(·) for a given vector r ∈ F .

4.3.1 Properties of the Quadratic Map

Themap f(·) has the following properties, which ease the
derivation of the optimal input as will be seen shortly.

Theorem 1 Consider the map f(·) defined in (37).
Then there exists a matrix S ∈ R

n×N and an orthogonal
matrixW ∈ R

N×N such that the map f(·) can be written
in a composite form as follows:

f(u) = h1(h2(h3(u))) with (47)

h1(x) = Sx (48)

h2(z) = [z20 , z
2
1 , · · · , z2N−1]

T (49)

h3(u) = WTu (50)

where x = [x0, x1, · · · , xN−1]
T , z = [z0, z1, · · · , zN−1]

T ,
Moreover, the image of h3(·) is

Z = {h3(u)|u ∈ U } = {z|zT z = E },

the image of h2(·)

X = {h2(z)|z ∈ Z } (51)

=

{
x
∣∣∣
N−1∑

i=0

xi=E , xi ≥ 0, i=0, 1, . . . , N−1

}
, (52)

is a convex polytope and the image of h1(·)

F = {f(u)|u ∈ U } = {Sx|x ∈ X } (53)

is also a convex polytope.

One choice for the matrices S and W in Theorem 1 is
given in the following theorem.

Theorem 2 Let ̟ = 2π/N and define the vectors

ξj =




1

cos(j̟)

cos(2j̟)
...

cos((N−1)j̟)




, ζj =




0

sin(j̟)

sin(2j̟)
...

sin((N−1)j̟)




for j = 0, 1, . . . . Then, one choice for the matrices W
and S in Theorem 1 is

1) when N is even,

W =

√
2

N

[
ξ0√
2
, ξ1, · · · , ξN−2

2

,
ξN

2√
2
, ζN−2

2

, · · · , ζ1
]

(54)

S =
[
ξ0, ξ1, · · · , ξn−1

]T

=
[
ξ0(1 :n), ξ1(1 :n), · · · , ξN

2
(1 :n), · · · , ξ1(1 :n)

]
(55)

and rank(S) = min(N/2+1, n). Also,

F =conv
{
E ξ0(1 :n), E ξ1(1 :n), · · · , E ξN

2
(1 :n)

}
(56)

where conv{· · · } is the convex hull of the corresponding
vectors and ξj(1 :n) is the vector consisting of the first n
elements of ξj.

2) when N is odd,

W =

√
2

N

[
ξ0√
2
, ξ1, · · · , ξN−1

2

, ζN−1

2

, · · · , ζ1
]

(57)

S =
[
ξ0, ξ1, · · · , ξn−1

]T

=
[
ξ0(1 :n), ξ1(1 :n), · · · , ξN−1

2

(1 :n),

ξN−1

2

(1 :n), · · · , ξ1(1 :n)
]

(58)

and rank(S) = min((N+1)/2, n). In addition,

F =conv
{
E ξ0(1 :n), E ξ1(1 :n), · · · , E ξN−1

2

(1 :n)
}
.

(59)

Remark 6 The transformed input design problems
(42), (43), (44) can be solved effectively by CVX
(Grant & Boyd, 2016). The optimization criteria of
(42), (43), (44) are standard in CVX and we only need
to rewrite the feasible set F as a number of linear equal-
ities and inequalities by the definition of convex hull (56)
or (59):

• when N is even, we have from (56) that

E S(:, 1:N/2+1)a = r

a = [a1, a2, · · · , aN/2+1]
T , aj ≥ 0

(60)

where r ∈ F , S(:, 1 :N/2+1) denotes the first N/2+
1 columns of S, and the first equality constraint is∑N/2+1

j=1 aj = 1 since the first element of r is E and all
the elements of the first row of S are one.
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• when N is odd, we have from (59) that

E S(:, 1:(N+1)/2)a = r

a = [a1, a2, · · · , a(N+1)/2]
T , aj ≥ 0.

(61)

Since the columns of S are symmetric (See (55) and
(58)), F can be uniformly expressed by for even and odd
N

E Sa = r

a = [a1, a2, · · · , aN ]T , aj ≥ 0.
(62)

4.3.2 Derivation of the Optimal Input

Given any r ∈ F , the inverse image f−1(r) of f(·) can
be derived in the following way based on (47)–(50):

1) we find the inverse image of h1(·) for r ∈ F :

X (r)
△
= {x|Sx = r, x ∈ X }
= {K (S)⊕ S†r} ∩ X (63)

where S† is the Moore-Penrose pseudoinverse of S
and K (S) = {x|Sx = 0} is the null space of S, and
⊕ is the direct sum between two subspace.

2) we find the inverse image of h2(·) for x ∈ X (r):

Z (r)
△
={z|h2(z) ∈ X (r)}
=
{
[±√

x0, · · · ,±
√
xN−1]

T |x ∈ X (r)
}
. (64)

3) we find the inverse image of h3(·) for z ∈ Z (r):

U (r)
△
=
{
u|WTu ∈ Z (r)

}
= {Wz|z ∈ Z (r)} .

(65)

It is worth to note that X (r) is still a convex polytope.

Proposition 2 The inverse image X (r) is a convex
polytope and is determined by a group of halfspaces and
hyperplanes:

X (r) = {x|Sx = r, xi ≥ 0, i = 0, . . . , N−1} . (66)

This means that the optimal inputs u∗ = U (r∗), where
u∗ can be any of u∗

D, u
∗
A and u∗

E.

Remark 7 Noting that W is orthogonal and the row
vectors of S are part of the column vectors of W subject
to some scaling factors, a basis of K (S) can be derived
as follows:

• when N is even, a basis of K (S) is





{ζ1, · · · , ζN−2

2

} if n−1 ≥ N/2,

{ξn, · · · , ξN

2
, ζ1, · · · , ζN−2

2

} if n−1 < N/2.

• when N is odd, a basis of K (S) is





{ζ1, · · · , ζN−1

2

} if n−1 ≥ (N−1)/2,

{ξn, · · · , ξN−1

2

, ζ1, · · · , ζN−2

2

} if n−1 < (N−1)/2.

Remark 8 As can be seen from the algorithm given
above for finding the optimal inputs u∗ from r∗ ∈ F ,
the key is to determine the set X (r∗) while steps 2) and
3) are straightforward. Actually, some elements belong-
ing to X (r∗) can be derived from the global minima of
the optimization problems (42)–(44). Assume that the
global minima corresponding to the constraints (60) is
{r∗, a∗}, respectively, where a∗ = [a∗1, a

∗
2, · · · , a∗N/2+1]

T .

Then all vectors

E

[
a∗1, α2a

∗
2, · · · , αN

2
a∗N

2

, a∗N
2
+1
, (1−αN

2
)a∗N

2

, · · · , (1−α2)a
∗
2

]T

belong to X (r∗) for 0 ≤ αi ≤ 1, i = 2, · · · , N/2. Accord-
ingly, for the constraint (61) with a∗ = [a∗1, a

∗
2, · · · , a∗N+1

2

]T ,

we have all vectors

E

[
a∗1, α2a

∗
2, · · · , αN+1

2

a∗N+1

2

, (1−αN+1

2

)a∗N+1

2

, · · · , (1−α2)a
∗
2

]T

belong to X (r∗) for 0 ≤ αi ≤ 1, i = 2, · · · , (N+1)/2. At
last, for the constraint (62) with a∗ = [a∗1, a

∗
2, · · · , a∗N ]T ,

we have the vector E a∗ belongs to X (r∗).

5 Optimal Input for Some Special Cases

In general, there is no analytic solution to the input de-
sign problems. In this section, we study the optimal in-
put for some special types of fixed kernels. The obtained
analytic results provide insights on input design and also
its dependence on the kernel structure.

5.1 Diagonal Kernel Matrices

We first consider the ridge kernel matrix and then more
general diagonal kernel matrices.

5.1.1 Ridge Kernel Matrix

When the kernel matrix is

P = cIn, with c > 0, (67)

it is possible to obtain the explicit expression of r∗D and
r∗A, which is given in the following proposition.
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Proposition 3 Consider the ridge kernel matrix (67).
Then we have

r∗D = r∗A = [E , 0, · · · , 0︸ ︷︷ ︸
n−1 zeros

]T
△
= r†. (68)

Proposition 3 shows that for ridge kernel matrix (67),
any input such that ΦTΦ = E In is the global minimum
of (31) and (32). The optimal input given in Proposi-
tion 3 is identical with the classic result of input de-
sign for FIR model estimation with ML/PEM given in
Goodwin & Payne (1977). In fact, this result is not sur-
prising since the ridge kernel assumes that the prior dis-
tribution of the true impulse response is independent and
identically distributed Gaussian, which does not provide
any information on the correlation and the decay rate
of the true impulse response. The optimal solution (68)
implies that the optimal inputs could be:

1) Impulsive inputs: [±
√

E , 0, · · · , 0]T ;
2) White noise inputs as N → ∞.

Note that the impulsive input is globally optimal since
it satisfies (68) exactly. In contrast, it was only shown
in Fujimoto & Sugie (2016) that the impulsive input is
locally optimal. In addition, as N → ∞, the white noise
input is also globally optimal. Clearly, the white noise
input is approximately globally optimal for large N .

5.1.2 General Diagonal Kernel Matrices

When the kernel matrix is

P = diag([λ1, λ2, · · · , λn]) (69)

where λi > 0, i = 1, . . . , n, and diag(·) represents a
diagonal matrix, the optimal r∗D and r∗A are same as the
one in Proposition 3.

Theorem 3 Consider the diagonal kernel matrix (69).
Then we have

r∗D = r∗A = r†. (70)

Note that the diagonal kernel matrix (69) contains the
DI kernel matrix studied in Chen et al. (2012) as a spe-
cial case, which takes the following form

P = diag(c[λ, λ2, · · · , λn]), c, λ > 0.

Theorem 3 shows that for general diagonal kernel ma-
trices the information on the decay rate of the impulse
response is not useful for the input design, if no infor-
mation on the correlation of the true impulse response
is provided.

5.2 Nondiagonal Kernel Matrices

Theorem 3 motivates an interesting question that, for
nondiagonal kernel matrices, whether r∗D and r∗A are still
equal to r† or not.

5.2.1 Kernel matrix with a tridiagonal inverse

To answer this question, we first consider a class of kernel
matrices P such that it is nonsingular and its inverse is
tridiagonal, i.e., P−1 can be written as follows:

P−1 =




p1 −e2

−e2 p2 −e3
. . .

. . .
. . .

−en−1 pn−1 −en

−en pn




(71)

where pi > 0 for 1 ≤ i ≤ n. Then, we have the following
result.

Theorem 4 Consider a kernel matrixP which has tridi-
agonal inverse (71). Then we have

r∗D 6= r† and r∗A 6= r† (72)

for the following two cases:

1) ej > 0 for j = 2, . . . , n with any N ;
2) ej < 0 for j = 2, . . . , n with even N .

One may wonder whether there exist kernel matrices
such that its inverse is tridiagonal. The answer is pos-
itive. Actually, the DC kernel (14) has tridiagonal in-
verse Carli et al. (2017), and moreover, the simulation
induced kernels with Markov property of order 1 also
have tridiagonal inverse (Chen & Ljung, 2017, Section
4.5). In particular, the inverse of the DC kernel matrix is

P−1
DC =

1

c(1− ρ2)




1
λ − ρ

λ
3
2

· · · 0 0

− ρ

λ
3
2

1+ρ2

λ2

. . . 0 0

...
. . .

. . .
. . .

...

0 0
. . . 1+ρ2

λn−1 − ρ

λ
2n−1

2

0 0 · · · − ρ

λ
2n−1

2

1
λn




(73)

where c > 0, 0 < λ ≤ 1, and |ρ| < 1. Thus we have the
following result on r∗D and r∗A for the DC kernel.
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Corollary 1 Consider the DC kernel (14). Then for ρ >
0 with any N , or for ρ < 0 with even N , we have r∗D 6=
r† and r∗A 6= r†. In particular, for the TC kernel (15),
r∗D 6= r† and r∗A 6= r† for any N .

5.2.2 More general nondiagonal kernel matrices

Now we consider more general nondiagonal kernel ma-
trices and we start from a simple case when n = 2.

Proposition 4 Consider the kernel matrix

P−1 =

[
p1 −e

−e p2

]
(74)

where p1 > 0, p2 > 0, and e 6= 0. Then we have r∗D 6=
r† and r∗A 6= r† for any N .

Then we consider nondiagonal kernel matrices with n ≥
2 and n ∈ N.

Theorem 5 Suppose the kernel matrix P is positive def-
inite. When N ≥ 2n−2, we have

r∗D 6= r†

if at least one of the values {Tr(Q(r†)−1Qi), 1≤ i≤ n−1}
is nonzero and

r∗A 6= r†

if at least one of the values {Tr(Q(r†)−2Qi), 1≤ i≤ n−1}
is nonzero.

Corollary 2 Consider the DC kernel (14). Then we
have r∗D 6= r† and r∗A 6= r†, if N ≥ 2n−2.

Theorems 4 to 5 and Corollaries 1 to 2 show that there
exist cases such that r∗D and r∗A are no longer r†, implying
that the information on the correlation of the impulse
response indeed has influence on the input design.

Finally, one may wonder whether it is possible to claim
that for all nondiagonal kernels, r∗D and r∗A are not equal
to r†. Unfortunately, this claim is not true as can be seen
from the following counter example.

Example 1 Let E = 1, σ2 = 1, and

P−1 =




1 1
2 − 1

8

1
2 1 − 1

2

− 1
8 − 1

2 1


 , (75)

which has the eigenvalues 0.3526, 0.875, and 1.7724, and
thus is positive definite, and yields

Q(r†)−1 =




8
15 − 2

15 0

− 2
15

17
30

2
15

0 2
15

8
15


 .

Then it can be shown that Tr(Q(r†)−1Q1) = 0 and
Tr(Q(r†)−1Q2) = 0, which implies that the gradient of
log det(σ2Q(r)−1) at r = r† is zero and thus r∗D = r† for
nondiagonal kernel matrix (75) and for any N ≥ 3.

6 Numerical Simulation

We illustrate by Monte Carlo simulations that the op-
timal input derived from the proposed method can im-
prove the quality of the regularized FIR model estimate
(10b) in contrast with the white noise input.

6.1 Test Systems

Wefirst use themethod inChen et al. (2012); Pillonetto & Chiuso
(2015) to generate 1000 30th order LTI systems. For
each system, we truncate its impulse response at the
order 50 and obtain a FIR model of order 50 accord-
ingly, which is treated as the test system. In this way,
we generate 1000 test systems.

6.2 Preliminary Data-Bank

For each test system, we generate a preliminary data
record as follows, whose usage is to get a preliminary
estimate of the kernelmatrix P (η) and the noise variance
σ2 necessary for the input design. We simulate each test
system with a white Gaussian noise input with N = 50
and E = 10, treat the unknown inputs according to
(29), and get the noise-free output with N = 50. The
noise-free output is then corrupted by an additive white
Gaussian noise. The signal-to-noise ratio (SNR), i.e., the
ratio between the variance of the noise-free output and
the noise, is uniformly distributed over [1, 10]. In this
way, we get 1000 preliminary data records.

6.3 Optimal Input

For each test system and preliminary data record, we
derive the optimal input as follows:

1) We consider FIR model with order n = 50 and es-
timate the noise variance σ2 by LS method, as de-
scribed in Chen et al. (2012); Goodwin et al. (1992)
and the hyperparameter η of the TC kernel matrix
P (η) given in (15) by the EB method (18).
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Fig. 1. Boxplots of the 1000 fits of the RLS estimates based
on the preliminary data-bank and test databank.

2) Then for the obtained kernel matrix and noise vari-
ance, we derive the optimal input u∗

D, u
∗
A, and u∗

E by
solving the input design problems (31), (32), (33),
respectively, with N = 50 and E = 10 and the
proposed two-step procedure. For comparison, we
also derive the optimal input in Fujimoto & Sugie
(2016) with their gradient-based algorithm. It is
worth to recall from (27) that the unknown inputs
are set to zero in Fujimoto & Sugie (2016).

6.4 Test Data-Bank

For each test system and each optimal input, we generate
a test data record as follows, whose usage is to illustrate
the efficacy of the input design. We simulate each test
systemwith the optimal input, treat the unknown inputs
according to (29), and get the noise-free output with
N = 50. The noise-free output is then corrupted by an
additive white Gaussian noise with the same variance
as the additive white Gaussian noise in the preliminary
data record. In this way, for each test system and each
optimal input, we get 1000 test data records.

6.5 Simulation Results

The simulation results are summarized in Table 1 and
Fig. 1, where W, FS, D, A, E are used to denote the
corresponding simulation results for different inputs, re-
spectively, and W denotes the result corresponding to
the white noise input in the preliminary data-bank. In
particular, Table 1 shows the averagemodel fits and Fig.
1 shows the boxplots of the 1000 model fits, where the
model fit (Ljung, 2012) is defined as follows

Fit = 100×
(
1− ‖θ̂RN − θ0‖

‖θ0 − θ̃0‖

)
, θ̃0 =

1

50

50∑

k=1

g0k

where θ̂RN represents the regularized FIR model estimate
(10b) corresponding to each data record, the regression
matrix Φ is constructed by the input according to (29),
and the estimated noise variance and TC kernel matrix
from the preliminary data record are used.

6.6 Findings

In contrast with the white noise input, all optimal inputs
including the one given in Fujimoto & Sugie (2016) and
u∗
D, u

∗
A, and u∗

E given in this paper improve the average
fit of the regularized FIR model estimate (10b) from 66
to 73 and are more robust. An intuitive explanation for
this improvement is that the data records generated by
the optimal inputs may have higher average SNRs than
the preliminary data record generated by the white noise
input. This guess is verified for the data records in this
experiment. In addition, the fits of the estimates of the
data records generated by all optimal inputs are quite
close.
Table 1
Average fits of the regularized FIR model estimate (10b)
given in Fig. 1 based on 1000 Monte Carlo runs.

W FS D A E

66.24 73.56 73.44 73.87 73.46

7 Conclusions

In this paper, the input design of kernel-based regular-
ization method for LTI system identification has been
investigated by minimizing the scalar measures of the
BayesianMSEmatrix. Under suitable assumption on the
unknown inputs andwith the introduction of a quadratic
map, the non-convex optimization problem associated
with the input design problem is transformed into a
convex optimization problem. Then based on the global
minima of the convex optimization problem, the opti-
mal input is derived by solving the inverse image of the
quadratic map. For some special types of fixed kernels,
some analytic results provide insights on the input de-
sign and also its dependence on the kernel structure.

Appendix A

Appendix A contains the proof of the results in the
paper, for which the technical lemmas are placed in
Appendix B. The proofs of Propositions 1 and 2 are
straightforward and thus omitted.

A.1 Proof of Theorem 1

First, we introduce the cyclic permutation matrix C ∈
R

N defined by

C
△
=

[
0 IN−1

1 0

]
, (A.1)
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which has the following properties

CiCj = Ci+j , CN = IN , (Ci)T = CN−i. (A.2)

Note that L0 = IN and Lj = (Cj + (Cj)T )/2 is real
symmetric for j = 1, . . . , n − 1. Clearly, Li commutes
withLj by using the properties (A.2) for i, j = 1, . . . , n−
1 and i 6= j. It follows from Theorem B1 in Appendix B
that there exists an orthogonal matrix W such that

WTLjW = Sj , j = 0, . . . , n− 1, (A.3)

where Sj = diag[sj0, · · · , sj,N−1] is a real diagonal ma-
trix. Therefore, we have

fj(u) = uTWSjW
Tu =

N−1∑

i=0

sjiz
2
i (A.4)

where z = [z0, z1, · · · , zN−1]
T = WTu. We obtain

f(u)=




s00 s01 · · · s0,N−1

s10 s11 · · · s1,N−1

...
...

. . .
...

sn−1,0 sn−1,1 · · · sn−1,N−1




︸ ︷︷ ︸
S




z20

z21
...

z2N−1



. (A.5)

Since WTW = IN , the orthogonal linear mapping h3(·)
has the property that the image is Z = {z|zTz = E }.
Then the image of h2(·) under Z is the polytope X

given in (52) by the definition of h2(·). Finally, the con-
clusion that F is a polytope follows from that a linear
transform of a polytope is still a polytope (Brøndsted,
1983, p. 18, 2.5). This completes the proof.

A.2 Proof of Theorem 2

We only prove the case for even N . The proof for odd N
is similar and thus omitted.

For convenince, we place the construction of the matrices
W and S in Lemma B1. So we first consider the claim
rank(S) = min(N/2+1, n), which follows from that the
vectors ξ0, ξ1, · · · , ξN

2
are orthogonal to each other and

ξj = ξN−j for j = 0, . . . , N .

Then note that the polyhedron X in Theorem 1 can be
written as a polytope

X = conv {d0, d1, · · · , dN−1} , (A.6)

where for j = 0, . . . , N − 1, dj is the vector whose ele-
ments are zero except the j+1-element that is equal to
E . Since cos(lj̟) = cos((N − l)j̟) for any integer l

and j = 0, . . . , N−1, the matrix S can be expressed in
the form of (55).

Now we denote by C the convex hull of the column vec-
tors of S in (55) and we will show that F = C . On the
one hand, note that

Sdj = SdN−j = E ξj(1 :n), j = 0, . . . , N/2. (A.7)

This implies that the image of (A.6) under the linear
transform h1(x) = Sx is included in C and hence F ⊂
C . On the other hand, for each element r in C , there

exist aj ≥ 0, j = 0, . . . , N/2 with
∑N/2

j=0 aj = 1 such that

r =

N/2∑

j=0

ajE ξj(1 :n) = S
(N/2∑

j=0

ajdj

)
∈ F

where (A.7) is used. This concludes C ⊂ F . Therefore,
we have F = C . This completes the proof.

A.3 Proof of Proposition 3

First, we show that r† ∈ F . This can be done by find-
ing a point x0 ∈ X such that Sx0 = r†. We can choose
x0 = E [1, · · · , 1]T /N ∈ X . Applying the property that
ξ0 is orthogonal to the vectors {ξj , 1 ≤ j ≤ N/2} for even
N or {ξj , 1 ≤ j ≤ (N−1)/2} for odd N yields Sx0 = r†.
Then we check the gradient of log det(σ2Q(r)−1) with
respective to the last n−1 variables of r is zero at r = r†.
For ridge kernels, we have σ2P−1 = σ2In/c and accord-
ingly Q(r†) is (E + σ2/c)In. Thus we find that

−Tr(Q(r†)−1Qi) = 0, i = 1, . . . , n−1.

Since the problem (42) is strictly convex, r† is the unique
stationary point and r∗D = r†.

The proof for r∗A = r† can be derived in a similar way.

A.4 Proof of Theorem 3

The proof of Theorem3 is the same as that of Proposition
3 since Q(r†) is still diagonal in this case.

A.5 Proof of Theorem 4

First, we consider the case ej > 0 for j = 2, . . . , n. In
this case, we have each element of Q(r†)−1 = (E In +
σ2P−1)−1 is positive by Theorem B3. This implies that
each element of the gradient at r = r† is negative by
(45) and the definition of Qi. It follows that

[∇ log det(σ2Q(r†)−1)]T ξ0(2 : n) < 0,
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since all elements of ξ0(2 : n) are equal to one. This vio-
lates Lemma B2 in Appendix B, which gives the neces-
sary and sufficient condition for r∗D = r†. Thus r∗D 6= r†

for this case.

Then we consider the case where ej < 0 for j = 2, . . . , n
and N is even. In this case, we have (Q(r†)−1)ij > 0
when |i − j| is even and (Q(r†)−1)ij < 0 when |i −
j| is odd by Theorem B3. This yields that the sign

of the i-th element ∂ log det(σ2Q(r†)−1)
∂ri

of the gradient

∇ log det(σ2Q(r†)−1) is positive for odd i and negative
for even i. This shows that

[∇ log det(σ2Q(r†)−1)]T ξN/2(2 : n) < 0

since the i-th element of ξN/2(2 : n) is (−1)i. This vio-

lates the necessary and sufficient condition for r∗D = r†,
and thus r∗D 6= r† for this case.

The proof of r∗A 6= r† is similar and thus omitted.

A.6 Proof of Corollary 1

The proof is trivial by noting (73) and Theorem 4.

A.7 Proof of Proposition 4

It follows that

Q(r†)−1=
1

det(Q(r†))

[
E +σ2p2 σ2e

σ2e E +σ2p1

]
.

Then we have −Tr(Q(r†)−1Q1) = −2σ2e/ det(Q(r†)).
In this case, we have ξj(2 : n) = ξj(2 : 2) = cos(j̟). As
a result, there always exists an index j such that e and
cos(j̟) have the same sign for j = 0, . . . , N/2 when N
is even and for j = 0, . . . , (N−1)/2 when N is odd. One
obtains that −e cos(j̟) < 0 for this j, which violates
(B.14). Therefore, r∗D 6= r†. The proof of r∗A 6= r† is
similar and is omitted.

A.8 Proof of Theorem 5

It follows from Lemma B3 in Appendix B that 0 is an
interior point of F ′ = {r′ ∈ R

n−1|[E , r′T ]T ∈ F} when
N ≥ 2n− 2. Since P−1 is nondiagonal, we have Q(r†)−1

is also nondiagonal. The condition that at least one of
the values Tr(Q(r†)−1Qi), i = 1, . . . , n − 1, is nonzero
implies that r† is not a stationary point of the problem
(42). This means that r∗D 6= r†. The proof for r∗A 6= r† is
similar and thus omitted.

A.9 Proof of Corollary 2

For the DC kernel (14), by Theorem B3 as used in the
proof of Theorem 4 we have

1) When ρ > 0, (Q(r†)−1)ij > 0 and (Q(r†)−2)ij > 0.
2) When ρ < 0, (Q(r†)−1)ij > 0 and (Q(r†)−2)ij > 0 if

|i− j| is even and (Q(r†)−1)ij < 0 and (Q(r†)−2)ij <
0 if |i− j| is odd.

This implies that Tr(Q(r†)−1Qi) 6= 0 andTr(Q(r†)−2Qi) 6=
0 for all indices i = 1, . . . , n− 1. As a result, the propo-
sition is true by Theorem 5.

Appendix B

This appendix contains the technical lemmas used in the
proof in Appendix A.

Theorem B1 (Jiang & Li, 2016, Theorem 9) Real sym-
metric matrices {IN , A1, · · · , Am} with Ai ∈ R

N×N and
i = 1, . . . ,m are simultaneously diagonalizable via an or-
thogonal congruent matrix if and only if Ai commutes
with Aj for i, j = 1, 2, · · · ,m and i 6= j.

Theorem B2 (Gray (2006, Theorem 3.1);Tee (2007))
Denote the circulant matrix B generated by a row vector
b = [b0, b1, · · · , bN−1] by

B = circ(b)
△
=




b0 b1
. . . bN−2 bN−1

bN−1 b0
. . . bN−3 bN−2

. . .
. . .

. . .
. . .

. . .

b2 b3
. . . b0 b1

b1 b2
. . . bN−1 b0




. (B.8)

Then B has unit eigenvectors

v(m) =
1√
N

[
1, exp(−ι̟m), · · · , exp(−ι̟(N−1)m)

]T
,

m = 0, · · · , N− 1,

where ̟ = 2π/N and ι is the imaginary unit (ι2 = −1),
and the corresponding eigenvalues

τ (m) =

N−1∑

k=0

bk exp(−ιmk̟)

= b[1, exp(−ιm̟), · · · , exp(−ιm(N − 1)̟)]T

and can be expressed by

B = Adiag([τ (0), · · · , τ (N−1)])AH
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where A = [v(0), · · · , v(N−1)] is unitary and AH denotes
the complex conjugate transpose of A.

Theorem B3 LetA be a symmetric and positive definite
tridiagonal matrix of dimension n,

A =




a1 −b2

−b2 a2 −b3
. . .

. . .
. . .

−bn−1 an−1 −bn

−bn an




(B.9)

and denote the (i, j)-element of A−1 by (A−1)ij . Then
we have (A−1)ij > 0 when bl > 0 for l = 2, . . . , n, while
(A−1)ij < 0 if |i− j| is odd and (A−1)ij > 0 if |i− j| is
even when bl < 0 for l = 2, . . . , n.

Proof. The result is obtained by applying Theorem 2.3
of Meurant (1992) when A is positive definite.

Theorem B4 (Boyd & Vandenberghe, 2004, Section
4.2.3, page 139) Let ϕ : R

m −→ R be a differentiable
convex function, and let B ⊂ R

m be a nonempty closed
convex set. Consider the problem

minimize ϕ(h) subject to h ∈ B. (B.10)

A vector h∗ is optimal for this problem if and only if
h∗ ∈ B and

∇ϕ(h∗)T (y − h∗) ≥ 0 for all y ∈ B (B.11)

where

∇ϕ(·) △
=

[
∂ϕ(·)
∂h1

, · · · , ∂ϕ(·)
∂hm

]T

is the gradient of ϕ(·) with respect to h = [h1, · · · , hm]T .

Lemma B1 The matrices {Lj, j = 0, · · · , n−1} can be
diagonalized simultaneously by the matrix W , i.e.,

WTLjW = Sj = diag(ξj), j = 0, . . . , n− 1. (B.12)

Proof. First, we consider the case where N is even.
It follows that L0 = IN = circ([1, 0, · · · , 0]) and
Lj = circ(lj/2), j = 1, · · · , n − 1, where lj is the N -
dimensional row vector whose elements are zero except
that the j+1-th and N−j+1-th elements are one. Then
by Theorem B2, the eigenvalues of Lj are

τ (m,j) = lj [1, exp(−ιm̟), · · · , exp(−ιm(N − 1)̟)]T /2

= exp(−ιmj̟)/2 + exp(−ιm(N − j)̟)/2

= cos(mj̟), m=0, · · · , N−1,

the eigenvectors {v(m),m = 0, · · · , N − 1} is an or-
thonormal basis for all matrices Lj , j = 0, · · · , n − 1.

Moreover, we have v(0) = ξ0/
√
N and v(N/2) = ξN

2
/
√
N

are real, and τ (m,j) = τ (N−m,j), which implies that the
eigenvectors v(m) and v(N−m) of Lj correspond to the
same eigenvalue cos(mj̟). Thus the linear combina-

tions (v(m) + v(N−m))/2 = ξm/
√
N and ι(v(N−m) −

v(m))/2 = ζm/
√
N of the eigenvectors v(m) and v(N−m)

corresponding to the m-th and (N −m)-th eigenvalue
cos(mj̟) ofLj are real and orthogonal. Further we have

|ξm| = |ζm| =
√
N/2, and thus

{
ξ0,

√
2ξ1, · · · ,

√
2ξN−2

2

, ξN

2
,
√
2ζN−2

2

, · · · ,
√
2ζ1

}/√
N

is a group of real orthonormal eigenvectors of Lj and the
corresponding eigenvalues are {1, cos(j̟), · · · , cos((N−
1)j̟)}, which are actually the elements of ξj . This com-
pletes the proof for the case for even N . The proof for
odd N is similar and thus omitted.

Lemma B2 The vector r† ∈ F is the solution of the
problem

minimize ϕ(r) subject to r ∈ F (B.13)

whereϕ(r) represents log det(σ2Q(r)−1) orTr(σ2Q(r)−1),
if and only if

[∇ϕ(r†)]T ξj(2 : n) ≥ 0 (B.14)

with j = 0, . . . , N/2 for even N or j = 0, . . . , (N−1)/2

for odd N , where ∇ϕ(r†) =
[
∂ϕ(r†)
∂r1

, · · · , ∂ϕ(r†)
∂rn−1

]T
.

Proof. Note that the first element of each member in F

is E and hence the first element of the difference r − r†

is zero for any r ∈ F . In addition, we have the last n−1
elements of r† are zero. By applying Theorem B4, we see
that r† is the solution of (B.13) if and only if

[∇ϕ(r†)]T (r̃ − 0) ≥ 0, (B.15)

where r̃ is any convex linear combination of the points
{ξj(2 : n), j = 0, · · · , N/2} when N is even, namely,

r̃ =
∑N/2

j=0 ajξj(2 : n) with aj ≥ 0 and
∑N/2

j=0 aj = 1.

Clearly, the condition (B.15) is equivalent to (B.14) for
j = 0, · · · , N/2. The case when N is odd can be proved
in a similar way and thus omitted.

Lemma B3 The zero vector 0 ∈ R
n−1 is an interior

point of F ′ = {r′ ∈ R
n−1|[E , r′T ]T ∈ F} if N ≥ 2n−2.

Proof. This conclusion is proved by considering two
cases, respectively: 1) for even N with N ≥ 2n−2; 2) for
odd N with N ≥ 2n−1. Let us explore the first case. It
is clear that the dimension of F ′ is equal to or less than
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n−1. It follows from Theorem 2 that rank(S) = n. This
means that the dimension of F ′ is n − 1 and F ′ con-
sists of all convex combinations of affinely independent
n vectors from {E ξj(2 :n), j = 0, . . . , N/2} (Brøndsted,
1983, p. 14, Corollary 2.4). Now we will prove the re-
sult by contradiction. Assume that 0 is not an interior
point of F ′. Thus 0 must be located on a facet of F ′

and the dimension of this facet is n− 2 since the dimen-
sion of F ′ is n − 1 and hence 0 is a convex combina-
tion of at most n− 1 affinely independent vectors from
{E ξj(2 :n), j = 0, . . . , N/2} (Brøndsted, 1983, Corollary
2.4). In contrast, 0 can be expressed by a convex combi-
nation in the following way

0 =
1

N
(E S(2 : n, :))ξ0 =

1

N

(
E ξ0(2 :n) + E ξN

2
(2 :n)

)

+
2

N

N

2
−1∑

j=1

(E ξj(2 :n)) (B.16)

due to the orthogonal vectors {ξj , j = 0, 1, · · · } and the
expression (55) of S. Further, the expression (B.16) can
be rewritten as a convex combination of affinely indepen-
dent n vectors from {ξj(2 : n), j = 0, . . . , N/2} and all
the weights are positive since the remaining N/2+1−n
vectors of {ξj(2 :n), j = 0, . . . , N/2} are convex combi-
nations of these n affinely independent vectors. This con-
tradiction means that the proposition is true. The proof
for odd N with N ≥ 2n−1 is similar and thus omitted.
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