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Abstract

The main contribution of this paper is a new submap joining based approach for solving large-scale Simultaneous Localization
and Mapping (SLAM) problems. Each local submap is independently built using the local information through solving a
small-scale SLAM; the joining of submaps mainly involves solving linear least squares and performing nonlinear coordinate
transformations. Through approximating the local submap information as the state estimate and its corresponding information
matrix, judiciously selecting the submap coordinate frames, and approximating the joining of a large number of submaps by
joining only two maps at a time, either sequentially or in a more efficient Divide and Conquer manner, the nonlinear optimization
process involved in most of the existing submap joining approaches is avoided. Thus the proposed submap joining algorithm
does not require initial guess or iterations since linear least squares problems have closed-form solutions. The proposed Linear
SLAM technique is applicable to feature-based SLAM, pose graph SLAM and D-SLAM, in both two and three dimensions, and
does not require any assumption on the character of the covariance matrices. Simulations and experiments are performed to
evaluate the proposed Linear SLAM algorithm. Results using publicly available datasets in 2D and 3D show that Linear SLAM
produces results that are very close to the best solutions that can be obtained using full nonlinear optimization algorithm
started from an accurate initial guess. The C/C++ and MATLAB source codes of Linear SLAM are available on OpenSLAM.

Key words: SLAM; linear least squares; submap joining; feature-based SLAM; pose graph SLAM; D-SLAM.

1 Introduction

Simultaneous Localization and Mapping (SLAM) is the
problem of using a mobile robot to build a map of an
unknown environment and at the same time locating
the robot within the map [1, 2]. Recently, nonlinear op-
timization techniques have become popular for solving
SLAM problems. Following the seminal work by Lu and
Milios [3], many efficient SLAM solutions have been de-
veloped by exploiting the sparseness of the information
matrix and applying different approaches for solving the
sparse linear equations [4–8]. However, since SLAM is
formulated as a high dimensional nonlinear optimization
problem, finding the global minimum is nontrivial. Al-
though many SLAM algorithms appear to provide good
results for most of the practical datasets (e.g. [9–11]),
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there is no guarantee that the algorithm can converge
to the global optimum and having an accurate initial
value is very critical, especially for large-scale SLAM
problems. Moreover, for very large-scale SLAM prob-
lems (e.g. life long SLAM), it is in general intractable
to keep all the original data and perform full nonlinear
optimization to obtain the SLAM solution. Some sort of
information fusion is necessary to reduce the computa-
tional complexity.

Local submap joining has shown to be an efficient way
to build large-scale maps [12–18]. The idea of many map
joining algorithms such as Sparse Local Submap Join-
ing Filter (SLSJF) [15] is to treat the estimated state of
each local map as an integrated observation (the uncer-
tainty is expressed by the local map covariance matrix)
in the map joining step. By summarising the original
data within the local map in this way, the SLAM problem
can be solved more efficiently. It should be noted that
most of the existing map joining problems are formu-
lated as nonlinear estimation or nonlinear optimization
problems which are solved by Extended Kalman Filter
(EKF) [12–14], Extended Information Filter (EIF) [15]
or nonlinear least squares [16–19] techniques.
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This paper provides a new map joining framework which
only requires solving linear least squares problems and
performing nonlinear coordinate transformations. The
method can be applied to join pose-feature maps (maps
that contain both robot poses and features), pose-only
maps (maps that only contain robot poses), and feature-
only maps (maps that only contain features), for both 2D
and 3D scenarios. There is no assumption on the struc-
ture of the covariance matrices of the local maps (no need
to be spherical as in [20–22]). Since linear least squares
problems have closed-form solutions, there is no need of
an initial guess and no need of iterations to solve the re-
formulated map joining problems. It is demonstrated us-
ing publicly available datasets that the proposed Linear
SLAM algorithm can provide accurate SLAM results.
For practical applications, the proposed algorithm can
be easily combined with other robust local map build-
ing algorithms in complex unknown environments such
as [23,24] to solve practical large-scale SLAM problems
in a more robust manner.

The paper is an extended version of our preliminary work
[26]. The major improvements of this paper over [26] are:
(1) It has been shown that Linear SLAM is also applica-
ble to the joining of feature-only maps; thus it provides a
unified framework for solving different versions of SLAM
problems (pose-feature, pose-only, and feature-only); (2)
The consistency analysis of Linear SLAM is performed to
demonstrate its estimation consistency; (3) The theoret-
ical analysis on the computational complexity of Linear
SLAM is also performed to demonstrate its efficiency; (4)
More quantitive comparisons and evaluations of Linear
SLAM are performed; (5) More insights and discussions
are provided; and (6) More efficient C/C++ implemen-
tation of the algorithm is done and the source code is
available on OpenSLAM.

The paper is organized as follows. Section 2 discusses
the related work. Section 3 points out that different local
maps can be built using the same SLAM data by select-
ing different coordinate frames. Section 4 explains the
process of using linear least squares to solve the prob-
lem of joining two pose-feature maps. Section 5 explains
how to use the linear method in the sequential and Di-
vide and Conquer local submap joining. Section 6 and
Section 7 describe how to apply the linear algorithm to
the joining of two pose-only maps and two feature-only
maps, respectively. In Section 8, simulation and experi-
mental results using publicly available datasets are given
to demonstrate the accuracy of Linear SLAM, and com-
pare with some other submap joining based SLAM al-
gorithms. Section 9 discusses the pros and cons of the
proposed algorithm. Finally, Section 10 concludes the
paper. To improve the readability of the paper, some
technical details are provided in the appendices.

2 Related Work

Local submap joining has been a strategy applied by
many researchers [12–19].

The earlier work on map joining are proposed by Tardos
et al. (Map joining 1.0) [13] and Williams [14]. Both of
them apply sequential map joining where a global map
and a local map are joined at a time. In Map joining
1.0 [13], the idea used in joining two maps is to first
transform one of the map using an estimate of relative
pose from another map to have both submaps in a com-
mon reference, and then apply the coincidence constraint
to the common elements. Williams [14] uses an EKF to
fuse the local maps sequentially where each local map
is treated as an integrated observation. Since the global
map becomes larger and larger after sequentially fusing
the local maps, the dense covariance matrix makes the
EKF algorithm less efficient. To improve the efficiency
of the map joining process, SLSJF is proposed in [15]
where EIF is used and exactly sparse information ma-
trix is achieved by keeping the robot starting poses and
end poses of the local maps in the global state vector.
CF-SLAM proposed in [35] further demonstrated that
by using the Divide and Conquer strategy on top of EIF,
the efficiency (and in most cases accuracy) could be im-
proved further.

To overcome the potential estimate inconsistency of
EKF/EIF in map joining, I-SLSJF is proposed in [19],
which is an optimization based map joining treating
each local map as an integrated observation, and using
the result of SLSJF as the initial value for the non-
linear least squares optimization. More optimization
based map joining are proposed in the past few years,
for both feature-based SLAM [18, 39] and pose graph
SLAM [17, 38, 40]. In [18], the local maps without any
common nodes are first optimized independently, and
then the base node of each local map is optimized by
using the inter-measurements between different local
maps, where the linearization of the local maps can
be cached and reused. While in [39], after building the
local maps, the condensed factors are generated based
on the solution of the local maps, where the solution
to the new graph is a global configuration of the ori-
gins and the shared variables. Then a good initial guess
can be determined from the solutions of the origins
and the shared variables, and the full nonlinear least
squares is performed to get the exact results. In [38],
a hierarchical pose graph optimization on manifolds is
proposed, where only the coarse structure of the scene
is corrected, resulting in an efficient SLAM algorithm.
In [40], a closed-form online 3D pose-chain SLAM al-
gorithm is proposed. Due to the spherical assumption
on the covariance matrices, it can efficiently optimize
pose-chains by exploiting their Lie group structure. The
spherical covariance assumption significantly reduces
the complexity of the SLAM problems, as shown in re-
cent works [21, 22, 25]. In [17], a relative formulation of
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the relationship between multiple pose graphs is pro-
posed to avoid the initialization problem and thus lead
to an efficient solution; the anchor nodes are closely
related to the base nodes in [18].

Map joining has shown to be able to improve the effi-
ciency for large-scale SLAM as well as reduce the lin-
earisation errors. Similar to recursive nonlinear estima-
tion (e.g. [7]), map joining also solves a recursive ver-
sion of the problem step by step, thus rarely gets stuck
in local minima. However, when the local map informa-
tion is summarized as local map estimate and its covari-
ance matrix, the map joining problem is slightly differ-
ent from the original full nonlinear optimization SLAM
problem using the original SLAM data. In general, the
more accurate the local maps are, the closer the map
joining result to the best solution to the full nonlinear
least squares SLAM. Recently, good progress has been
made in using nonlinear optimization techniques to solve
small-scale SLAM with mathematical guarantees, such
as one-step or two-step SLAM [25] or through verifica-
tions techniques [27]. These make the application of map
joining techniques more promising.

Existing map joining algorithms are based on nonlinear
estimation or nonlinear optimization, with no conver-
gence guarantee. This paper proposes a new map joining
algorithm, Linear SLAM, where only solving linear least
squares and performing nonlinear coordinate transfor-
mations are needed, thus guarantees convergence. Al-
though in Map joining 1.0 [13], the idea of first trans-
forming one of the map using an estimate of relative
pose from another map to have both submaps in a com-
mon reference is similar to Linear SLAM in the case
of point features, significant inaccuracy is introduced in
Map joining 1.0 because external relative pose informa-
tion is used to perform the map transformation. This
can be clearly seen from its poor performance as com-
pared to Map joining 2.0 [12]. While, Linear SLAM has
shown to perform better than most of the existing non-
linear map joining algorithms (see Section 8).

The following sections will explain the details of Linear
SLAM.

3 Different Local Submaps in SLAM

The aim of this section is to show that we have the free-
dom to choose the coordinate frame of the local and
global maps, which is the fundamental idea of the pro-
posed Linear SLAM and the reason why the traditional
map joining methods are nonlinear without consider-
ing this. We also show that the marginalization of local
maps makes the proposed Linear SLAM a unified linear
approach for solving different SLAM problems.

A local submap in SLAM refers to a map built using
only a small portion of the SLAM data. In a feature-

based SLAM, the data used for building a local submap
contains odometry and observation information related
to a small set of robot poses and features. Fig. 1(a)
shows an example of odometry and observation informa-
tion related to three poses P0,P1,P2 and three features
F1,F2,F3.

3.1 The Freedom of Choosing the Coordinate Frame

Consider the problem of building a local map by per-
forming nonlinear least squares optimization based on
the odometry and observation information given in the
pose-feature graph shown in Fig. 1(a). Since the odome-
try and observation are all relative information, we must
specify the coordinate frame when building a map.

One common choice in SLAM is to fix the first pose P0

as (0, 0, 0) to define the coordinate frame, then we can
obtain a local map shown in Fig. 1(b) after the nonlinear
least squares optimization. The state vector of the local
map contains two poses P1 and P2 and three features,
all in the coordinate frame of P0.

Alternatively, we can fix the last pose P2 as (0, 0, 0) to
define the coordinate frame, then we can obtain a local
map shown in Fig. 1(c). The state vector of the local
map contains two poses P0 and P1 and three features,
all in the coordinate frame of P2.

The choice of the coordinate frame can also be that de-
fined by two features F1 and F2, that is, the feature po-
sition F1 is fixed as (0, 0) and the x-axis is along the di-
rection from F1 to F2. In this case, we can obtain a local
map as shown in Fig. 1(d). The state vector of this lo-
cal map contains three poses P0, P1 and P2 and feature
F3 as well as the x-coordinate of feature F2, all in the
coordinate frame defined by the two features F1 and F2.

The uncertainty of the local map is described by the as-
sociated covariance matrix (or information matrix). The
above three local maps (including their covariance ma-
trices) can be transferred from one to another by per-
forming a coordinate transformation.

3.2 The Option of Marginalization

If one wants to reduce the size of the local map,
marginalization can be performed after building the
local map containing all the poses and features. For
example, one can marginalize out all the poses apart
from the last pose, then a state vector as that used in
EKF SLAM is obtained [1]. One can also marginalize
out all the features, then a state vector as that used in
pose graph SLAM is obtained [9]. Alternatively, one can
also marginalize out all the poses, then a state vector
only containing features can be obtained, as that used
in D-SLAM mapping [28].
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P0 
P1 
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F1 
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F3 

(a) The odometry and observation information for
building a local map

P0 
P1 

P2 
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F3 

(b) Local map with coordinate frame defined by P0

P0 

P1 
P2 

F1 F2 
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(c) Local map with coordinate frame defined by P2

P0 

P1 P2 

F1 
F2 

F3 

X 

Y 

(d) Local map with coordinate frame defined by F1 and F2

Fig. 1. Different local maps built from the same odometry and observation information. Here Pi represents the robot pose
and Fj represents the feature position.

After marginalization, the new covariance matrix (or in-
formation matrix) corresponding to the state vector with
reduced dimension can be obtained.

In this paper, a map that contains both poses and fea-
tures is called a pose-feature map; a map that only con-
tains poses is called a pose-only map; while a map that
only contains features is called a feature-only map.

3.3 The Idea of Map Joining

Assuming each local map estimate is consistent, map
joining [14,15] uses each local map as an integrated ob-
servation to replace the original odometry and observa-
tion information. This significantly reduces the compu-
tational cost for large-scale SLAM. The covariance ma-
trices of the local maps play an important role since they
describe the uncertainties of the integrated observations.
Note that when computing the local map covariance ma-
trix (information matrix), the covariance matrices of the
original odometry and observation information are used,
thus the local map can be regarded as a summary of the
odometry and observation information involved.

The local maps need to have common poses or features
such that they can be joined together. At least one com-

mon pose or two common features for 2D (three com-
mon features for 3D) are required to join two local maps
together.

The key point of this section is that we have the free-
dom to choose the coordinate frame of a local map.
Moreover, we also have the freedom to choose the coor-
dinate frame of the global map. In this paper, we will
demonstrate that by judiciously selecting the coordinate
frames of the local maps at different map joining steps,
the map joining result can be obtained by solving linear
least squares problems and performing nonlinear coor-
dinate transformations. This is the major difference to
the traditional map joining. The proposed approach can
be applied to the joining of different versions of local
maps including pose-feature maps, pose-only maps and
feature-only maps. Thus, a unified linear approach for
solving SLAM problems is obtained. The following sec-
tions provide some details of the approach.

4 Joining Two Pose-feature Maps using Linear
Least Squares

A pose-feature map consists of a number of features and
either one robot pose (such as the map built by conven-
tional EKF SLAM) or a number of robot poses (such as

4
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F12 
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Y 

X 
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P1 

P2 

F12 F2 
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F12 
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P0 

P1 
P2 

F2 

Fig. 2. The proposed new way of building and joining two
maps.

the map built by nonlinear least squares optimization
without marginalizing out poses).

4.1 The Coordinate Frames of the Maps

In this paper, we propose to choose the coordinate frames
of the two pose-feature maps and the combined map as
follows (see Fig. 2).

Map 1 is built in the coordinate frame defined by its end
pose P1. Map 2 is built in the coordinate frame defined
by its start pose P1 (which is the same as the end pose of
Map 1) 1 . The coordinate frame of the combined map,
Map 12, is defined by P2, the robot end pose of Map 2.

In the following, we will show that although the join-
ing of Map 1 and Map 2 to get Map 12 in Fig. 2 is still
a nonlinear optimization problem, it is equivalent to a
linear least squares optimization problem plus a (non-
linear) coordinate transformation.

1 Map 1 and Map 2 can either be small local maps built
using the local odometry and observation information, or be
larger maps as the result of combining a number of small
local maps. There can be some other robot poses in Map 1
and Map 2, they are not shown in Fig. 2 for simplification.

4.2 Nonlinear Least Squares Formulation of Joining
Two Maps

Suppose Map 1 and Map 2 in Fig. 2 are denoted by ML1

and ML2 and are given by

ML1 = (X̂
L1
, IL1), ML2 = (X̂

L2
, IL2) (1)

where X̂
L1

and X̂
L2

are the estimates of the state vectors
XL1 and XL2 of each map, and IL1 and IL2 are the
associated information matrices.

The state vectors XL1 and XL2 are defined as 2

XL1 = [PL1
0 , XL1

F1
, XL1

F12
]

XL2 = [PL2
2 , XL2

F2
, XL2

F12
].

(2)

Note that ML1 is in the coordinate frame of P1, and
ML2 is also in the coordinate frame of P1. Here P1 is the
end pose of ML1 (also the start pose of ML2). It defines
the coordinate frame of both ML1 and ML2 and thus is
not included in the state vectors of the two maps.

In the state vectors XL1 and XL2 in (2), XL1

F1
and XL2

F2

represent the features only appear in ML1 or ML2 , re-
spectively, while XL1

F12
and XL2

F12
represent the common

features appear in both the two maps.

In the state vector XL1 in (2), the start pose P0 of ML1

is presented by

PL1
0 = [tL1

0 , rL1
0 ] (3)

where tL1
0 is the translation vector, and rL1

0 is/are the

rotation angle/angles of pose PL1
0 . Similarly, in the state

vector XL2 in (2), the end pose P2 of ML2 is presented
by

PL2
2 = [tL2

2 , rL2
2 ]. (4)

Now the state estimates X̂
L1

and X̂
L2

can be written
clearly as

X̂
L1

= [t̂
L1

0 , r̂L1
0 , X̂

L1

F1
, X̂

L1

F12
]

X̂
L2

= [t̂
L2

2 , r̂L2
2 , X̂

L2

F2
, X̂

L2

F12
].

(5)

Our goal is to join ML1 and ML2 to get the map MG12 ,
where MG12 is in the coordinate frame of P2.

2 To simplify the notations, the ‘transpose’s in the state
vectors are sometimes omitted in this paper. For example,
XL1 ,PL1

0 ,XL1
F1
,XL1

F12
are all column vectors and the rigorous

notation should be XL1 = [(PL1
0 )T , (XL1

F1
)T , (XL1

F12
)T ]T .
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Map 1 Map 2 
Linear 

Transformation 

Intermediate Map 12 

Map 12 

P0 
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F1 
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P2 
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Y 

P0 

P1 
P2 

F2 

Fig. 3. Linear way to build Map 12.

The state vector of MG12 containing pose P0, pose P1

and all the features is defined as

XG12 = [PG12
0 , PG12

1 , XG12

F1
, XG12

F2
, XG12

F12
]

= [tG12
0 , rG12

0 , tG12
1 , rG12

1 , XG12

F1
, XG12

F2
, XG12

F12
]

(6)

where all the variables in the state vector XG12 are in
the coordinate frame of P2.

Similar to [19], in the map joining problem, the state es-

timates X̂
L1

and X̂
L2

are treated as two integrated “ob-
servations” where the associated information matrices
IL1 and IL2 describe the uncertainties of the observa-
tions. The optimization problem of joining the two maps
is to minimize the following objective function

f(XG12) = ‖e1‖2IL1 + ‖e2‖2IL2

=

∥∥∥∥∥∥∥∥∥∥∥


R1 (tG12

0 − tG12
1 )− t̂

L1

0

r−1(R0R
T
1 )− r̂L1

0

R1 (XG12

F1
− tG12

1 )− X̂
L1

F1

R1 (XG12

F12
− tG12

1 )− X̂
L1

F12



∥∥∥∥∥∥∥∥∥∥∥

2

IL1

+

∥∥∥∥∥∥∥∥∥∥∥


−R1 tG12

1 − t̂
L2

2

r−1(RT
1 )− r̂L2

2

R1 (XG12

F2
− tG12

1 )− X̂
L2

F2

R1 (XG12

F12
− tG12

1 )− X̂
L2

F12



∥∥∥∥∥∥∥∥∥∥∥

2

IL2

(7)

where ei, (i = 1, 2) is the residual vector of the inte-
grated “observation”, and ‖ei‖2ILi

= eT
i I

Liei (i = 1, 2)
denotes the weighted norm of vector ei with the given
information matrix ILi .

In (7), R0 = r(rG12
0 ) and R1 = r(rG12

1 ) are the rotation

matrices of pose PG12
0 and PG12

1 in the global state vector

XG12 , respectively. And r(·) and r−1(·) are the angle-to-

matrix and matrix-to-angle functions. For 2D scenarios,
r−1(R0R

T
1 ) = rG12

0 − rG12
1 and r−1(RT

1 ) = −rG12
1 .

The problem of minimizing (7) is a nonlinear least
squares problem. Solving it we can obtain the estimate
of Map 12 together with its information matrix as

MG12 = (X̂
G12

, IG12). (8)

4.3 Linear Method to Obtain MG12

If we define new variables as follows (they are actually
the seven distinct (nonlinear) functions in (7))

t̄
G12

0 = R1 (tG12
0 − tG12

1 )

r̄G12
0 = r−1(R0R

T
1 )

t̄
G12

2 = −R1 tG12
1

r̄G12
2 = r−1(RT

1 )

X̄
G12

F1
= R1 (XG12

F1
− tG12

1 )

X̄
G12

F2
= R1 (XG12

F2
− tG12

1 )

X̄
G12

F12
= R1 (XG12

F12
− tG12

1 )

(9)

and define a new state vector as

X̄
G12 = [t̄

G12

0 , r̄G12
0 , t̄

G12

2 , r̄G12
2 , X̄

G12

F1
, X̄

G12

F2
, X̄

G12

F12
]

= g(XG12)
(10)

then the nonlinear least squares problem to minimize
the objective function (7) becomes a linear least squares
problem to minimize the following objective function

f̄(X̄
G12) =

∥∥∥∥∥∥∥∥∥∥∥


t̄
G12

0 − t̂
L1

0

r̄G12
0 − r̂L1

0

X̄
G12

F1
− X̂

L1

F1

X̄
G12

F12
− X̂

L1

F12



∥∥∥∥∥∥∥∥∥∥∥

2

IL1

+

∥∥∥∥∥∥∥∥∥∥∥


t̄
G12

2 − t̂
L2

2

r̄G12
2 − r̂L2

2

X̄
G12

F2
− X̂

L2

F2

X̄
G12

F12
− X̂

L2

F12



∥∥∥∥∥∥∥∥∥∥∥

2

IL2

.

(11)

This linear least squares problem can be written in a
compact form as

minimize f̄(X̄
G12) = ‖A X̄

G12 − Z‖2IZ (12)

where Z is the constant vector combining the state esti-
mates of the two maps

Z = [X̂
L1
, X̂

L2
], (13)

IZ is the corresponding information matrix given by

IZ = diag(IL1 , IL2), (14)

6



X̄
G12 is the state vector represents the global map de-

fined in (10). The coefficient matrix A is sparse and is
given by

A =



E

E

E

E

E

E

E

E


(15)

where E denotes the identity matrix with the size cor-
responding to the different variables in the state vector

X̄
G12 .

The optimal solution ˆ̄XG12 to the linear least squares
problem (12) can be obtained by solving the sparse linear
equation

AT IZA
ˆ̄XG12 = AT IZZ. (16)

The corresponding information matrix can be computed
by

ĪG12 = AT IZA. (17)

From (10), we have XG12 = g−1(X̄
G12). Note that the

function g−1(·) has a closed-form as follows:

XG12 = g−1(X̄
G12)

⇒



tG12
0 = R̄2 (t̄

G12

0 − t̄
G12

2 )

rG12
0 = r−1(R̄0R̄

T
2 )

tG12
1 = −R̄2 t̄

G12

2

rG12
1 = r−1(R̄T

2 )

XG12

F1
= R̄2 (X̄

G12

F1
− t̄

G12

2 )

XG12

F2
= R̄2 (X̄

G12

F2
− t̄

G12

2 )

XG12

F12
= R̄2 (X̄

G12

F12
− t̄

G12

2 )

(18)

where R̄2 = r(r̄G12
2 ), R̄0 = r(r̄G12

0 ) are the rotation ma-
trices of pose P2 and pose P0.

Now the solution to the nonlinear least squares problem
(7) can be obtained by

X̂
G12

= g−1( ˆ̄XG12). (19)

The corresponding information matrix IG12 can be ob-
tained by

IG12 = ∇T ĪG12 ∇ (20)

where ∇ is the Jacobian of X̄
G12 with respect to XG12 ,

evaluated at X̂
G12

∇ =
∂g(XG12)

∂XG12
|
X̂

G12 . (21)

Remark 1. An intuitive explanation of the above pro-

cess is shown in Fig. 3. In fact, X̄
G12 = g(XG12) in

(9) and (10) is the coordinate transformation function,
transforming pose P0, P1 and feature F in the coordi-
nate frame of P2, into P0, P2 and F in the coordinate

frame of P1. Thus XG12 = g−1(X̄
G12) in (18) has the

closed-form formula which is another coordinate trans-
formation, from P0, P2 and F in the coordinate frame
of P1, back to P0, P1 and F in the coordinate frame of
P2. The linear way to solve the map joining problem is
equivalent to solving a linear least squares problem first
and then performing a coordinate transformation, as il-
lustrated in Fig. 3. The fact that the two maps are built
in the same coordinate frame is the key to make this lin-
ear map joining approach possible.

The following lemma states rigorously that the map
MG12 obtained using the linear method is equivalent to
that obtained using the nonlinear method.

Lemma 1: Joining ML1 and ML2 to build the global
map MG12 in the coordinate frame of the end pose of
ML2 , is equivalent to first building the global map M̄G12

in the coordinate frame of the start pose of ML2 , and
then transforming the global map M̄G12 into MG12 by
coordinate transformation.

Proof: See Appendix A.

4.4 TraditionalWay of Building and Joining TwoMaps

As comparison, the basic step in traditional map joining
(such as sequential [14,15] or Divide and Conquer [12]) is
also joining two maps, the process of which is illustrated
in Fig. 4.

In traditional map joining, Map 1 is built in the coordi-
nate frame defined by its start pose P0. Map 2 is built
in the coordinate frame defined by its start pose P1 (the
end pose of Map 1). Comparing to (1) and (5), Map 1 in
traditional map joining is

ML0
1 = (X̂

L0
1
, IL

0
1)

X̂
L0

1
= [t̂

L0
1

1 , r̂
L0

1
1 , X̂

L0
1

F1
, X̂

L0
1

F12
]

(22)

where P0 defines the coordinate frame of ML0
1 , and thus

is not included in the state vector of the Map 1. Map 2
ML2 is the same as used in the Linear SLAM in Section
4.2.
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Fig. 4. Traditional way of joining two maps (nonlinear, e.g.
in SLSJF [15]).

The coordinate frame of the combined map is defined by

P0, which is the same as Map 1 ML0
1 . The state vector

of the combined map in traditional map joining is

XG0
12 = [t

G0
12

1 , r
G0

12
1 , t

G0
12

2 , r
G0

12
2 , X

G0
12

F1
, X

G0
12

F2
, X

G0
12

F12
].

(23)

Joining these two maps optimally is clearly a nonlinear
optimization problem [19] because the coordinate frames
of the two maps are different

f̃(XG0
12) =∥∥∥∥∥∥∥∥∥∥∥∥


t
G0

12
1 − t̂

L0
1

1

r
G0

12
1 − r̂

L0
1

1

X
G0

12

F1
− X̂

L0
1

F1

X
G0

12

F12
− X̂

L0
1

F12



∥∥∥∥∥∥∥∥∥∥∥∥

2

I
L0
1

+

∥∥∥∥∥∥∥∥∥∥∥


R0

1 (t
G0

12
2 − t

G0
12

1 )− t̂
L2

2

r−1(R0
2R

0
1
T

)− r̂L2
2

R0
1 (X

G0
12

F2
− t

G0
12

1 )− X̂
L2

F2

R0
1 (X

G0
12

F12
− t

G0
12

1 )− X̂
L2

F12



∥∥∥∥∥∥∥∥∥∥∥

2

IL2

(24)

where R0
1 = r(r

G0
12

1 ) and R0
2 = r(r

G0
12

2 ) are the rotation
matrices of poses P1 and P2 in the global state vector

XG0
12 , respectively.

Thus, in the traditional map joining algorithms, the vec-
tor in the first term of objective function (24) is linear,
while the vector in the second term in (24) is nonlinear.
And it is impossible to choose an intermediate state vec-
tor to make (24) linear.

5 Joining A Sequence of Local Maps

Based on the linear solution to joining two maps as
shown in Fig. 2, Fig. 3 and Section 4.3, we can use ei-
ther sequential map joining or Divide and Conquer map
joining to solve large-scale SLAM problems.

5.1 Proposed Sequential Map Joining

The new sequential map joining process we proposed can
be illustrated in Fig. 5(a). Please note: (1) Local map 1
is built in the coordinate frame of its end pose instead
of its start pose; Thus it can be fused with Local map 2
using the linear method in Section 4.3. (2) Global map
12, the result of joining Local map 1 and Local map 2, is
in the coordinate frame of the end pose of Local map 2.
Thus it can be fused with Local map 3 using the linear
method in Section 4.3.

As comparison, in traditional map joining algorithms
(such as [14, 15]), all the initial local map 1, 2 and 3
are built in the coordinate frames of their start poses.
And at each step, the global map (map 12 or map 123)
is always built in the coordinate frame of its start pose
which is the coordinate frame of map 1.

5.2 Proposed Divide and Conquer Map Joining

The new Divide and Conquer map joining process we
proposed is illustrated in Fig. 5(b). Please note: (1) Local
map 1 and Local map 2 are built in the same coordinate
frame; Local map 3 and Local map 4 are built in the
same coordinate frame; (2) Global map 12 is built in the
same coordinate frame as Global map 34. Thus Global
map 12 and Global map 34 can be joined together using
the linear method in Section 4.3.

While in traditional map joining (such as [12]), local map
1, 2, 3 and 4 are all in the coordinate frames of their start
poses. Global map 12 is built in the same coordinate
frame as local map 1. Global map 34 is built in the same
coordinate frame as local map 3. And the final global
map 1234 is built in the same coordinate frame as local
map 1.

Remark 2. Local map 1 in Fig. 5(a) or Fig. 5(b) can
be simply built by performing a nonlinear least squares
using all the observation and odometry data with state
vector defined as the robot poses and feature positions
in the coordinate frame of the robot end pose in the local
map (see Fig. 1(c)). Alternatively, we can first build the
local map in the coordinate frame of the robot start pose
P0, and then apply a coordinate transformation.

5.3 Computational Complexity

Suppose in the feature-based SLAM problem, the total
number of feature/odometry observations is OG and the

8



Local map 1 Local map 2 Local map 3 

 

 

Current Global Map 12 

Current Global Map 123 

P0 

P1 

F1 

F2 

X 

Y 

X 

Y 

P1 

P2 

F2 F3 

X 

Y 

P2 

P3 

F3 F4 

F1 

F2 

X 

Y 

P0 

P1 
P2 

F3 

F3 

P3 

F4 

F1 

F2 

X 

Y 

P0 

P1 

P2 

(a) Proposed sequential map joining.

P3

 

 

F1

F2

X

Y

P0

P1
P2

P3

F4

F5

X

Y

P4F3

 

X

Y
P0

P1

F1

F2

X

Y

P1

P2

F2 F3

P2

F3

F4

X

Y

X

Y

P3

P4

F4 F5

P3

P2

F4

F5

X

Y

P4F3

F1

F2

X

Y

P0

P1
P2

F3
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Fig. 5. Sequential map joining and Divide and Conquer map joining.

number of robot poses/features in the state vector is SG.
In each iteration, the nonlinear system is first linearized
and the linear least squares to be solved in each iteration
is similar to the problem in (12). Then, the computa-
tional complexity of one iteration for the full nonlinear
least squares SLAM is Θ(OG + S3

G), where the compu-
tational complexity of computing the information ma-
trix JT IZJ in (16) (here A is replaced by J , where J
is the Jacobian of the observations w.r.t the state vec-
tor) is proportional to the number of the observations
Θ(OG) [48], and Θ(S3

G) is the computational complexity
of solving the traditional resolution of the linear system
(16) [48] 3 . Thus, by considering the iteration number
m, the computational complexity of solving nonlinear
least squares SLAM is Θ(mOG +mS3

G).

For the proposed Linear SLAM algorithm, the computa-
tional cost consists of two parts: building the local maps
and joining the local maps.

Suppose the observations and the robot poses/features
in the state vector are equally divided to build n local
maps. Thus in each local map, there are 1

nOG observa-

tions and 1
nSG poses and features. Similar to building

the global map described above, if each local map is built

3 The sparsity and ordering of the information matrix also
have a significant impact on the computational cost of solving
linear system. This is not discussed here.

by using nonlinear least squares SLAM with m itera-
tions, the computational complexity of building n local

maps is Θ( 1
nOG +( 1

nSG)
3
)×m×n = Θ(mOG + m

n2S
3
G).

Thus, the computational complexity of building n lo-
cal maps is much less than that of directly building the
global map by nonlinear least squares SLAM.

For the linear joining of two local maps in Section 4, the
computational complexity of computing the information
matrix in (12) depends on the number of observations in
the two local maps, which is Θ( 2

nSG). While, the com-
putational complexities of solving the linear system (16)
and transforming the joint map in (19) and (20) both de-
pends on the number of poses/features in the state vector

of the joint map, which are Θ(( 2
nSG)

3
) and Θ( 2

nSG), re-
spectively. Thus, the computational complexity of join-
ing of two local maps using the proposed linear method
is Θ( 4

nSG + 8
n3S

3
G). The iteration number m is not ap-

plied here, since it is linear least squares optimization.

Thus, when joining a sequence of local maps in the se-
quential way, the overall computational complexity of
the linear SLAM algorithm is

Θ(mOG +
m

n2
S3
G) +

n∑
i=2

Θ(
2i

n
SG + (

i

n
SG)3), (25)

where i is the ID of the current local map to be joined.
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Table 1
Computational Complexity† of Linear SLAM and Nonlinear Map Joining with Different Local Map Numbers (n) in Comparison
with Nonlinear Least Squares SLAM
Victoria Park dataset, OG = 52288, SG = 7197 and suppose m = 10.

Linear SLAM Nonlinear Map Joining

Sequential Divide and Conquer Sequential Divide and Conquer

n Local Map Joining Overall Joining Overall Joining Overall Joining Overall

1* 1 N/A N/A N/A N/A N/A N/A N/A N/A

5 0.0400 0.1792 0.2192 0.1640 0.2040 1.7920 1.8320 1.6400 1.6800

10 0.0100 0.3024 0.3124 0.1680 0.1780 3.0240 3.0340 1.6800 1.6900

20 0.0025 0.5512 0.5537 0.1690 0.1715 5.5124 5.5149 1.6900 1.6925

50 4.0e-4 1.3005 1.3009 0.1393 0.1397 13.005 13.005 1.3928 1.3932

100 1.0e-4 2.5502 2.5503 0.1393 0.1394 25.502 25.503 1.3932 1.3933

†The computational complexity is relative to the nonlinear least squares SLAM.
*One local map means it is the nonlinear least squares SLAM to obtain the global map directly. The computational complexity
is set to 1 as the benchmark for comparison.

While, in the Divide and Conquer manner, the overall
computational complexity of the linear SLAM algorithm
is

Θ(mOG +
m

n2
S3
G) + Θ(2SG + S3

G)

+

c(log2(n))−1∑
k=1

Θ(
2k+1

n
SG + (

2k

n
SG)3)× z( n

2k
)

(26)

where k is the level in the Divide and Conquer process,
c(·) is the function which round toward positive infinity
and z(·) is the function which round toward zero. Thus,
c(log2(n)) is the number of levels and z( n

2k
) is the number

of times of performing joining two local maps at the kth

level in the Divide and Conquer process.

In comparison, for the traditional nonlinear map join-
ing algorithm using nonlinear least squares optimiza-
tion, suppose the iteration number is also m when join-
ing each of two local maps, the computation cost in the
sequential manner is

Θ(mOG +
m

n2
S3
G) +

n∑
i=2

Θ(
mi

n
SG +m(

i

n
SG)3). (27)

And the computation cost of the traditional nonlinear
map joining algorithms in the Divide and Conquer man-
ner is

Θ(mOG +
m

n2
S3
G) + Θ(mSG +mS3

G)

+

c(log2(n))−1∑
k=1

Θ(
2km

n
SG +m(

2k

n
SG)3)× z( n

2k
).

(28)

The computational complexity of the proposed Linear
SLAM algorithm and the traditional map joining algo-

rithm using nonlinear least squares optimization with
respect to the global nonlinear least squares SLAM
are shown in Table 1. As an example of using Victoria
Park dataset, performing Linear SLAM in the Divide
and Conquer manner the computational complexity is
always much less than that of global nonlinear least
squares SLAM. While, in the sequential manner the
computational complexity can be more if the number
of local maps is large. The number and size of local
maps also affect the computational complexity of the
map joining algorithm. Ideally as shown in Table 1, the
larger the number of local maps are built from the orig-
inal dataset, the more the computational complexity is
in the sequential manner, while the computational com-
plexity will remain similar in the Divide and Conquer
manner. While, as shown in Fig. 8, the real computa-
tional cost also depends on the implementation of the
algorithm, e.g. the memory operation in the implemen-
tation of Divide and Conquer.

6 Joining Two Pose-only Maps

Recently pose graph SLAM becomes popular where rel-
ative poses among the robot poses are computed using
the sensor data and then an optimization is performed
to obtain an estimate of the state vector containing only
robot poses. The linear approach proposed in Section 4
and Section 5 can also be applied to the joining of pose-
only maps. A pose-only local map can be the result of
solving a small pose graph SLAM or the marginalization
(of all the features) from a pose-feature local map. In this
section, we explain the process of joining two pose-only
maps using linear least squares, which can be illustrated
using Fig. 2 (by replacing all the features by poses).
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6.1 Local Pose-only Maps

Suppose there are two pose-only maps ML1 and ML2

given in the form of (1) where X̂
L1

and X̂
L2

are the

estimates of the state vectors XL1 and XL2 defined as

XL1 = (XL1

PL1
, XL1

PL12
)

XL2 = (XL2

PL2
, XL2

PL12
)

(29)

and IL1 and IL2 are the associated information matrices.
Both ML1 and ML2 are in the coordinate frame of P1.

In the state vector XL1 and XL2 in (29), XL1

PL12
and

XL2

PL12
are the common poses between ML1 and ML2 ,

while XL1

PL1
and XL2

PL2
are the poses that appear in only

one of the maps. All the poses can be defined similarly
as (3) in Section 4.2.

6.2 Joining Two Pose-only Maps by Linear Least
Squares

Joining these two pose-only mapsML1 andML2 to build

the intermediate map M̄G12 = ( ˆ̄XG12 , ĪG12) can also
be solved by linear least squares. Here the global state

vector X̄
G12 is defined as

X̄
G12 = (X̄

G12

PL1
, X̄

G12

PL2
, X̄

G12

PL12
) (30)

where X̄
G12

PL12
are the common poses, X̄

G12

PL1
and X̄

G12

PL2
are

the poses that only appear in ML1 and ML2 , respec-

tively. All the variables in the global state vector X̄
G12

are in the coordinate frame of P1. This intermediate map
M̄G12 can then be transformed into MG12 by the non-
linear coordinate transformation, whereMG12 is defined
in the coordinate frame of P2.

Remark 3. It should be mentioned that, for the pose-
feature map joining, the only common pose between the
two local maps defines the coordinate frames of the two
local maps as shown in Fig. 2; this pose is not in the
state vectors of the two local maps. So there is no com-
mon pose in the observations Z in (13). While, for the
pose-only map joining problem, there can be many com-
mon poses between two local maps, and the wraparound
of the rotation angles of the common poses must be
carefully considered when performing map joining. As
pointed out in [29,30], wraparound of the orientation an-
gles is a critical issue in the linear formulation. However,
as only two maps are joined each time in the proposed
Linear SLAM algorithm, it is sufficient to wrap the an-
gle in one of the two observations of a common pose in
Z to make the difference between the two angles in the
observations fall into (−π, π].

Map 1 Map 2 

Map 12 

F1 F2 F’X 

X 

Y 

X 

Y 

X 

Y 

FO 
FX 

FO 
FX 

F2 

F’O 

FX 

F’O 
F’X 

F2 

F1 

FO 

Fig. 6. The proposed way of building and joining two fea-
ture-only maps. Map 1 and Map 2 are both in the coordinate
frame defined by Feature FO and FX , while Map 12 is in
the coordinate frame defined by Feature F′

O and F′
X .

7 Joining Two Feature-only Maps

Apart from traditional feature-based SLAM and pose
graph SLAM, an alternative approach for SLAM is de-
coupling the localization and mapping (D-SLAM [28]).
In the D-SLAM mapping part, the map only consists of
a number of features. In this paper, we call this kind of
maps “feature-only maps”. A feature-only map can also
be obtained by marginalizing out all the poses from a
pose-feature map (marginalizing out P0, P1 and P2 in
the map in Fig. 1(d)). In this paper, we propose to use
Linear SLAM to join 2D or 3D feature-only maps by first
extending the idea in [28] and [31] into 3D case.

7.1 Local Feature-only Maps

Suppose there are two feature-only maps ML1 and ML2

given in the form of (1), where the state vectors XL1

and XL2 of each map are defined similarly to those in
Section 6.1, by replacing the poses by features.

In feature-only maps, there is no robot pose in the map.
Instead, two features for 2D [28] and three features for
3D are used to define the coordinate frame of the map.
The details of the coordinates definition are described
in Appendix B.

When joining two feature-only maps, at least two com-
mon features for 2D (three common features for 3D) are
required to make sure there are enough information to
combine the two maps together [31].
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Fig. 7. 2D and 3D pose-feature map joining results of Linear SLAM (LSLAM). Fig. 7(a) and Fig. 7(b) are the results of joining
the 200 local maps for 2D Victoria Park and DLR datasets. Fig. 7(c) and Fig. 7(d) are the results of Victoria Park and DLR
datasets by joining 6898/3298 local maps. The 2D results are compared with CF-SLAM, T-SAM, SLSJF and nonlinear least
squares optimization. Fig. 7(e) is the result of a 3D simulation with 870 local maps. It is only compared to the ground truth
as the algorithms compared above are only applicable for 2D case. The quantitive comparison is given in Table 2.

As shown in Fig. 6, for the proposed map joining ap-
proach, both ML1 and ML2 are in the same coordinate
frame defined by the common features between them.

7.2 Joining Two Feature-only Maps by Linear Least
Squares

The goal is to join the two feature-only maps ML1

and ML2 to build the feature-only map MG12 =

(X̂
G12

, IG12) as shown in Fig. 6. Similar to the
joining of pose-feature maps, the intermediate map

M̄G12 = ( ˆ̄XG12 , ĪG12) which is in the same coordinates
as ML1 and ML2 , is first built by linear least squares,
and then it is transformed into MG12 .

Remark 4. The process of building M̄G12 and the trans-
formation from M̄G12 to MG12 is similar to those de-
scribed in Section 4.3. The transformation of the state
vector of feature-only maps is different from that of pose-
feature maps or pose-only maps since the coordinate
frame is not defined by a pose. The details of the defini-
tion and the transformation of the coordinate frames in
feature-only maps in both 2D and 3D cases are described
in Appendix B.

8 Simulation and Experimental Results Using
Benchmark Datasets

In this section, 2D and 3D simulation and real datasets
of feature-based SLAM and pose graph SLAM have been
used to evaluate the proposed Linear SLAM algorithm.
All the Linear SLAM results presented below are from
the Divide and Conquer map joining which is computa-
tionally less expensive (Section 5.3) than the sequential
map joining. All the experiments are run on an Intel i5-
3230M@2.6GHz CPU on a laptop.

8.1 Pose-feature Map Joining

8.1.1 2D Pose-feature Map Joining

For 2D pose-feature map joining, the Victoria Park
dataset [32] and the DLR dataset [33] are used.
Here, VicPark200(6898) / DLR200(3298) means the
200(6898) / 200(3298) local maps built from the Victo-
ria Park / DLR dataset. These local map datasets are
all available on OpenSLAM under project 2D-I-SLSJF.

The results of Linear SLAM using the four local map
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Table 2
RMSE* and χ2 of Different Feature-Based SLAM Algorithms

CF-SLAM T-SAM SLSJF Linear SLAM Nonlinear LS

Dataset Pose Feature χ2 Pose Feature χ2 Pose Feature χ2 Pose Feature χ2 χ2

VicPark200 0.1949 0.3191 3654 0.2154 0.3599 3644 0.0391 0.0643 3645 3643

DLR200 0.2391 0.2400 34480 3.6574 3.6773 14603 0.1537 0.1545 12577 11164

VicPark6898 0.0330 0.0509 9098 0.9329 1.4080 117229 0.0718 0.1169 9013 0.1401 0.2348 9021 9013

DLR3298 0.6308 0.6339 85827 0.6064 0.5976 112474 2.5066 2.5449 28316 0.0976 0.1042 28373 27689

* RMSE (in meters) of the position of poses and features is w.r.t. the results of the full nonlinear least squares optimization
(Nonlinear LS). For VicPark200 and DLR200 datasets, the Nonlinear LS means the optimization with all the local maps
together as the observations. For VicPark6898 and DLR3298 datasets, the Nonlinear LS is the optimization with all the original
observations. Because the building and joining submaps in T-SAM is different from the ones in the others, the RMSE and χ2

of the results from T-SAM are w.r.t. the Nonlinear LS with the original observations.
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Fig. 8. The impact on the accuracy and computational cost
by the number of local maps using the Victoria Park dataset.

datasets are shown in Fig. 7(a) to Fig. 7(d). The com-
putational time are 1.42s, 0.47s, 2.83s and 0.85s, respec-
tively. For comparison, the results from CF-SLAM [35],
T-SAM [18], SLSJF [15] and nonlinear least squares op-
timization (Nonlinear LS) algorithms are also shown in
the figures. The root-mean-square error (RMSE) of Lin-
ear SLAM and the other three algorithms as compared
with the optimal nonlinear LS results are shown in Ta-
ble 2. The final χ2 errors of the different algorithms are
also compared in Table 2.

For VicPark200 and DLR200 datasets, since the original
inputs are the local maps (in the EKF SLAM format),
we use I-SLSJF [19] (full nonlinear least squares with
all the local maps as observations) as implementation
for the Nonlinear LS. For VicPark6898 and DLR3298
datasets, since each local map was directly obtained us-
ing the observations of features from one pose together
with the odometry to the next pose, the I-SLSJF re-
sults using these two datasets are equivalent to those us-

ing full least squares optimization with all the original
observations and odometry information. Also for these
two datasets, the whole Linear SLAM algorithm only
requires linear least squares (plus nonlinear coordinate
transformations) because there is no nonlinear optimiza-
tion process for local map building involved.

For the comparison, in CF-SLAM, the inputs are also the
local maps datasets from 2D-I-SLSJF on OpenSLAM,
which are the same as the ones used in Linear SLAM and
SLSJF. For T-SAM, because the building and joining
of local maps are different from SLSJF, CF-SLAM and
Linear SLAM, in our implementation, 200 local maps
are built from the original observations and odometries
for Victoria Park and DLR datasets in the way proposed
in [18] (the way of cutting original dataset into local
maps for T-SAM may not be optimal, and a better cut
may further improve the results of T-SAM. However, it
is not discussed in this paper). And as all the robot poses
are kept in T-SAM, the accuracy and χ2 of the results are
w.r.t. the Nonlinear LS with the original observations.

As shown in Fig. 7(a) to Fig. 7(d) and Table 2, for the
pose-feature map joining, in terms of RMSE, three out
of four results of Linear SLAM are better than those
of CF-SLAM and SLSJF, and all the four results are
better than those of T-SAM, while nearly the same as the
optimal Nonlinear LS results. The χ2 of Linear SLAM
results are smaller than those of CF-SLAM, similar to
those from the SLSJF results, and very close to that of
the optimal nonlinear least squares solutions.

8.1.2 Impact of the Size of the Local Maps

The impact of the size of local maps on the accuracy and
computational cost by the proposed Linear SLAM algo-
rithm is illustrated using the Victoria Park dataset. The
result is shown in Fig. 8. The time used for building all
the local maps decreases when the number of local maps
increases from 5 to 100. For the map joining, the com-
putational time slightly increases as the number of local
maps increases due to the property of the hierarchical
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Fig. 9. 2D feature-based SLAM simulations and Linear
SLAM results for consistency check.

Divide and Conquer process. The total time of local map
building plus map joining remains similar, in which the
smallest is when the number of local maps is 20. In terms
of the accuracy, the result does not vary much when the
number of local maps is changed from 5 to 100. The RM-
SEs of both the poses and features are the smallest when
there are only 5 local maps. It should be noted that the
impact of the size of local maps can be different for dif-
ferent datasets due to the different number of observa-
tions and the different number of poses/features.

8.1.3 Consistency Analysis

Two 2D simulation datasets Simu8240 (with 50 local
maps) and Simu35188 (with 700 local maps) which are

Table 3
Consistency of Linear SLAM Results by NEES Check (95%)

Datasets Dimension 95% bound NEES

Simu8240 1224 1.3065e+03 1.2392e+03

Simu35188 8404 8.6184e+03 7.9163e+03

available on OpenSLAM (project 2D-I-SLSJF) are used
to check the consistency of the proposed Linear SLAM
algorithm for pose-feature map joining. Fig. 9(a) and
Fig. 9(b) illustrate the simulation scenarios (the ground
truth) and the results of pose-feature map joining using
Linear SLAM.

All the features present in the final global map and the
corresponding information matrix were used to compute
the normalised estimation error squared (NEES) [36] for
checking the consistency [37] of Linear SLAM algorithm.
The results shown in Table 3 indicate that the Linear
SLAM results are consistent.

The uncertainties obtained from the proposed Linear
SLAM algorithm are also compared to the uncertain-
ties obtained by performing the Nonlinear LS algorithm.
Both VicPark6898 and DLR3298 datasets are employed
to this comparative evaluation. The uncertainties of the
features estimated from Linear SLAM and Nonlinear LS
are shown in Fig. 10(a)(b) and Fig. 11(a)(b) in red and
blue, respectively. And the uncertainties of the poses
estimated from both two algorithms are shown in Fig.
10(c) and Fig. 11(c). As we can see from the figures, the
uncertainties estimated from the proposed Linear SLAM
algorithm is very close to those obtained from the Non-
linear LS algorithm, which indicates that the proposed
Linear SLAM algorithm can obtain accurate results in
term of both estimates and uncertainty.

8.1.4 3D Pose-feature Map Joining

For the 3D pose-feature map joining, a simulation is
done with a trajectory of 871 poses and uniformly dis-
tributed features in the environment. The pose-feature
map joining using Linear SLAM is applied with 870 lo-
cal maps and the result is shown in Fig. 7(e). The RMSE
of the position of poses and features by Linear SLAM
as compared with the ground truth are 0.003266m and
0.003158m, respectively, with the computational cost of
1.00s.

8.2 Pose-only Map Joining

For 2D pose-only map joining, three 2D pose graph
SLAM datasets, including one experimental dataset In-
tel [34] and two simulation datasets Manhattan [9] and
City10000 [8], are used. For 3D pose-only map joining,
two 3D pose graph SLAM datasets, including one simu-
lation dataset Sphere [7] and one experimental dataset
Parking Garage [6], are used.
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Fig. 10. Uncertainty estimations of both features (a and b) and poses (c) by Linear SLAM and Nonlinear LS for Victoria Park
dataset. For better visualisation, the uncertainty shows in (a) and (b) is scaled by 2.
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Fig. 11. Uncertainty estimations of both features (a and b) and poses (c) by Linear SLAM and Nonlinear LS for DLR dataset.

Table 4
The Absolute and Relative RMSE* and χ2 of Different Pose Graph SLAM Algorithms

HOG-Man COP-SLAM Linear SLAM Nonlinear LS

Dataset RMSE(Abs) RMSE(Rel) χ2 RMSE(Abs) RMSE(Rel) χ2 RMSE(Abs) RMSE(Rel) χ2 χ2

Intel 0.054648 0.017277 972.00 0.006571 0.000216 546.51 546.46

Manhattan 1.180292 0.028890 548.01 1.114862 0.011576 214.12 137.91

City10000 0.062695 0.019269 1276.5 0.191676 0.004678 601.38 511.99

Sphere 1.854379 0.090491 2051.6 2.877556 0.236187 5532.6 1.303615 0.050658 1363.8 1154.5

ParGarage 2.315629 0.008350 2.1998 4.847823 0.273661 1268.9 1.603590 0.004693 1.5978 1.2888

* Both absolute RMSE (RMSE(Abs)) and relative RMSE (RMSE(Rel)) (in meters) of the pose positions are w.r.t. the results
of the Nonlinear LS.

The results of 2D pose-only map joining using Linear
SLAM are shown in Fig. 12(a) to Fig. 12(c) while the
results of 3D pose-only map joining using Linear SLAM
are shown in Fig. 12(d) to Fig. 12(e). For these five
datasets, each local map is directly obtained using the
relative poses with respect to one pose, thus there is no
nonlinear optimization process for local map building in-
volved in the Linear SLAM algorithm. For comparison,
HOG-Man [38] and Nonlinear LS are applied to get the
SLAM results for these five pose graph datasets. COP-
SLAM [40] is also performed to the 3D Sphere and Park-

ing Garage datasets. The results are also shown in Fig.
12. The RMSE of both the absolute trajectory error [41]
and the relative trajectory error [42], as well as the χ2

of Linear SLAM, HOG-Man, and COP-SLAM as com-
pared with the Nonlinear LS SLAM results are shown in
Table 4. It can be seen that, almost all the RMSE and
the χ2 of the results from Linear SLAM are smaller than
those from HOG-Man and COP-SLAM (only the abso-
lute RMSE of Linear SLAM using City10000 dataset is
slightly larger than that of HOG-Man).
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Fig. 12. 2D and 3D pose-only map joining results of Linear SLAM (LSLAM). Fig. 12(a) to Fig. 12(c) are the results of Intel,
Manhattan and City10000 2D pose graph datasets. Fig. 12(d) and Fig. 12(e) are the results of Sphere and Parking garage 3D
pose graph datasets. All results are compared with those of HOG-Man and nonlinear least squares. The COP-SLAM is also
compared using 3D Sphere and Parking garage datasets. The quantitive comparison is given in Table 4.

The computational cost of Linear SLAM for these five
datasets are 0.22s, 0.85s, 5.01s, 2.52s and 1.50s, respec-
tively. For the pose graph SLAM datasets, the compu-
tational cost of Linear SLAM is about 20 times cheaper
than that of HOG-Man [38]. Both of the two algorithms
solve the SLAM problem in a hierarchical manner. Our
implementation of Linear SLAM is slower than g2o [6]
mainly due to the way our code is structured (g2o code
is highly optimized and is one of the fastest implementa-
tions of Nonlinear LS SLAM). In the experiments, g2o
is initialized by using the results from Linear SLAM.
While, Linear SLAM does not require any initial value.
The COP-SLAM [40] is faster than Linear SLAM when
performing the two 3D datasets, while the accuracy is
the worst comparing to Linear SLAM and HOG-Man.

8.3 Feature-only Map Joining

For 2D feature-only map joining, the VicPark200 and
DLR200 datasets are used. Here the local map datasets
are the same as the ones used in the experiment of 2D
pose-feature map joining in Section 8.1. Similar to D-
SLAM map joining (DMJ) [31], a preprocessing is done
to make sure there are at least 2 (for 2D) or 3 (not
collinear, for 3D) common features between every two

contiguous local maps such that the local maps can be
combined together (If there are not enough common fea-
tures between the two local maps, then the Linear SLAM
algorithm for pose-feature maps is used to join them to-
gether to form a larger local map). Then the local maps
are transformed into the coordinates defined by features
and all the poses are marginalized out before the map
joining.

The results of 2D feature-only map joining using Linear
SLAM algorithm for the two datasets are shown in Fig.
13(a) and Fig. 13(b). For comparison, the results from
DMJ and Iterated DMJ (I-DMJ) [31] are also shown in
the figures. Similar to I-SLSJF, the result of I-DMJ is
equivalent to that of performing nonlinear least squares
optimization using all the feature-only local maps as ob-
servations [31]. As shown in Fig. 13(a) and Fig. 13(b), the
results of Linear SLAM are better than those of DMJ,
while close to the optimal I-DMJ results.

The RMSE of Linear SLAM and DMJ as compared with
the optimal I-DMJ results are shown in Table 5. The
computational cost of Linear SLAM for VicPark200 and
DLR200 datasets are 1.14s, 0.58s respectively, which is
significantly cheaper than that of DMJ (I-DMJ) [31].
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Fig. 13. 2D and 3D feature-only map joining results using Linear SLAM (LSLAM). Fig. 13(a) is the result of 2D Victoria Park
datasets in the coordinate frame defined by Feature 84 and 85. Fig. 13(b) is the result of 2D DLR datasets in the coordinate
frame defined by Feature 367 and 369. Both the 2D results are compared with DMJ and I-DMJ [31]. Fig. 13(c) is the result
of the 3D simulation with 870 local maps in the coordinate frame defined by Feature 1758, 1757 and 1359.

Table 5
RMSE* of Feature Locations for Different Feature-Only Map
Joining Algorithms

DMJ Linear SLAM I-DMJ

Dataset Feature Feature Feature

VicPark200 0.268626 0.193141 0

DLR200 0.536729 0.393460 0

3D Simu871 N/A 0.0014850 N/A

* For joining 2D feature-only maps, the result of I-DMJ is
used as the benchmark. For the 3D Simu871 dataset used in
feature-only map joining, the ground truth is the benchmark.

For the 3D feature-only SLAM, the simulated 3D
Simu871 dataset is used, and the result of Linear SLAM
algorithm as well as the ground truth are shown in Fig.
13(c). The RMSE of Linear SLAM as compared with the
ground truth is shown in Table 5. The computational
cost of Linear SLAM is 2.61s.

In summary, simulation and experimental results using
publicly available datasets demonstrated that the pro-
posed Linear SLAM is consistent and efficient and can
produce results very close to the full nonlinear least
squares based methods. For most of the datasets, its ac-
curacy is better than other map joining based SLAM
algorithms and some efficient SLAM algorithms such as
COP-SLAM and HOG-Man.

9 Discussions

The Linear SLAM algorithm proposed in this paper is
based on map joining. Map joining has already been
shown to be able to improve the efficiency for large-scale
SLAM as well as reduce the linearization errors. Similar
to recursive nonlinear estimation (e.g. [7]), map joining
also solves a recursive version of the problem step by
step, thus does not get stuck in local minima very of-

ten. Apart from the advantages of existing map joining
based algorithms, the key advantage of Linear SLAM
is that it only requires solving linear least squares in-
stead of nonlinear least squares. Thus there is no need
to compute initial value and no need to perform itera-
tions. The key to make the map joining problem linear
is that the two maps to be fused are always built in the
same coordinate frame. Basically, when joining two lo-
cal maps built at different coordinate frames, the esti-
mation/optimization problem is nonlinear, which is the
case in most of the existing map joining algorithms. But
when joining two local maps with the same coordinate
frame, the problem can be linear, which is the idea used
in this paper. The sequential map joining [13–15] and
Divide and Conquer map joining [12]) join two maps at
a time, thus both strategies can be applied in Linear
SLAM.

Similar to SLSJF [15], CF-SLAM [35] and other opti-
mization based submap joining approaches [31, 38], the
sparseness of the information matrix is maintained in the
proposed linear map joining algorithm as the coefficient
matrix A in (15) is always sparse. Also similar to SLSJF
and CF-SLAM, there is no information loss or informa-
tion reuse in the Linear SLAM algorithm. The simula-
tion and experimental results demonstrated that Linear
SLAM results are better than that of CF-SLAM and
SLSJF in most of the cases. The reason is, when joining
two maps, CF-SLAM and SLSJF use EIF while Linear
SLAM performs the optimal linear least squares. The
Linear SLAM result is not as good as that of I-SLSJF
because an additional smoothing step through nonlinear
optimization is applied in I-SLSJF. It is clear that fusing
local maps built in different coordinate frames optimally
using linear approach is impossible. Thus if we want to
apply smoothing after joining all the local maps together
by Linear SLAM, we have to use nonlinear optimization.

The difference between the result of Linear SLAM and
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the best solution to the full nonlinear least squares
SLAM comes from two reasons: (i) Instead of using
the original odometry and observation information, we
summarize the local map information as the local map
estimate together with its uncertainty (information ma-
trix) and use this information in the map joining. This
is the case for many map joining algorithms including
CF-SLAM, SLSJF and I-SLSJF. (ii) Instead of fusing
all the local maps together in one go using nonlinear op-
timization (as in I-SLSJF), we fuse two maps at a time
(as in CF-SLAM and SLSJF), resulting in a suboptimal
solution. It should be pointed out that the difference is
due to the linearization performed (Linear SLAM, CF-
SLAM, SLSJF, I-SLSJF are all equivalent to full least
squares SLAM when the odometry and observation
functions are linear).

In general, the more accurate the local maps are, the
closer the Linear SLAM result to the best solution to the
full nonlinear least squares SLAM. In some of the exper-
imental results shown in Section 8 (e.g. all the Linear
SLAM results using the pose graph SLAM datasets), one
local map was directly obtained using the information re-
lated to one pose. In this case, Linear SLAM completely
avoids the nonlinear optimization in the local map build-
ing process. However, its performance may be sacrificed
because the quality of the local maps is not well con-
trolled. To improve the performance of Linear SLAM, we
recommend to use nonlinear optimization techniques to
build high quality small local maps (accurate estimate
and small covariance matrix) taking into account the
connectivity of the local map graph [43], and then apply
our linear map joining algorithm. Furthermore, the so-
lution from Linear SLAM (using least squares to build
local maps without marginalization) can be used as an
(excellent) initial guess for the iterative approaches to
solve the full nonlinear least squares SLAM, similar to T-
SAM2 [44] or [39]. However, this will add more nonlinear
components in the algorithm. The tradeoff between im-
proving the accuracy of the result and reducing the non-
linear components in Linear SLAM algorithm requires
further investigations.

It should also be pointed out that the three local maps
in Fig. 1(b), Fig. 1(c) and Fig. 1(d) are all optimal for
the given local map data; they are equivalent and can be
transferred from one to another using coordinate trans-
formations. However, when using these different versions
of local maps in map joining, the final results can be
slightly different due to the different linearization per-
formed. For the actual nonlinear odometry and obser-
vation models, using which version of local maps gives
the best solution depends on many factors (such as the
size and number of local maps, the number of features
observed at each step, the noise level of odometry and
observation, etc.) and requires further investigations.

We would like to point to literature [20, 21] indicating
that SLAM problem is close to linear and its dimen-

sionality can be substantially reduced as possible rea-
sons why the linear approximation proposed in this pa-
per produces solutions that are very close to those ob-
tained using optimal nonlinear least squares SLAM. Lin-
ear SLAM is a nice way to separate the linear compo-
nents from the nonlinear components in the SLAM prob-
lem through submap joining.

Unlike traditional local submap joining, the final global
map obtained from this Linear SLAM algorithm is not
in the coordinate frame of the first local map. For Divide
and Conquer map joining, the coordinate frame of the
final global map is the same as the coordinate frame of
the last two maps that were fused together. For sequen-
tial map joining, the coordinate frame of the final global
map is the last robot pose in the last local map. This is
somewhat similar to the robocentric mapping [45] where
the map is transformed into the coordinate frame of the
current robot pose in order to reduce the linearization
error in the EKF framework. As discussed in Section 3.1,
if a final global map in the coordinate frame of the first
robot pose is required, e.g. in order to compare the result
with traditional local submap joining, only a coordinate
transformation described in Section 4.3 is needed. The
global map after the coordinate transformation is equiv-
alent to the global map obtained from the Linear SLAM
algorithm.

Using the proposed Linear SLAM framework, the pose
graph SLAM and the D-SLAM mapping can be solved
in the same way as feature-based SLAM. The differences
are the treatments of orientation of poses and the co-
ordinate transformations. The feature-only map joining
requires the coordinate transformation to be done where
the coordinate frames are defined by 2 (for 2D cases) or
3 features (for 3D cases). In pose graph SLAM, there can
be a number of common poses in the two pose graphs
to be fused. Thus the wraparound of robot orientation
angles need to be considered. Because we only fuse two
maps at a time, the wraparound issue can be dealt with
very easily. This is different from the wraparound issue in
the linear approximation approach proposed in [29, 46].
Some other limitations of the linear method in [29] are:
(1) it can only be applied to 2D pose graph SLAM; (2)
it requires special structure on the covariance matrices.

Data association is not considered in the experimental
results presented in this paper. However, since our Lin-
ear SLAM approach is using linear least squares and
the associated information matrices are always available,
many of the data association methods suggested for EIF
based SLAM algorithms (such as SLSJF [15], CF-SLAM
[35] and ESEIF [47]), or optimization based SLAM al-
gorithms (such as iSAM [7]), including the strategies for
covariance submatrix recovery, can be applied together
with the proposed Linear SLAM algorithm.
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10 Conclusion

This paper demonstrated that submap joining can
be implemented in a way such that only solving lin-
ear least squares problems and performing coordinate
transformations are needed. There is no assumption
on the structure of local map covariance matrices and
the approach can be applied to feature-based SLAM,
pose graph SLAM, as well as D-SLAM, for both 2D
and 3D scenarios. Since closed-form solutions exist for
linear least squares problems, this new approach avoids
the requirements of accurate initial value and iterations
which are necessary in most of the existing nonlinear
optimization based SLAM algorithms.

Simulation and experimental results using publicly
available datasets demonstrated the consistency, effi-
ciency and accuracy of the Linear SLAM algorithms,
and that Linear SLAM outperforms some other map
joining based SLAM algorithms and some recent devel-
oped efficient SLAM algorithms. Although the result of
Linear SLAM looks very promising, it is not equivalent
to the optimal solution to SLAM based on nonlinear
least squares starting from an accurate initial value.
Like some other submap joining algorithms, how differ-
ent the Linear SLAM result is from the optimal solution
depends on many factors such as the quality of the orig-
inal sensor data as well as the size and quality of the
local maps. Further research is necessary to analyze this
in details and develop smart strategies for separating
SLAM data for building local maps in order to optimize
the performance of Linear SLAM.
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A Proof of Lemma 1

In this appendix, we provide a proof of Lemma 1 in
Section 4.3. Here we use some notations in Section 4.

Suppose (Z, IZ) are the information from the two lo-
cal maps defined in (13) and (14). The unique optimal
solution to minimize (12) is given by (16) and the corre-
sponding information matrix is given by (17).

That is, for any X̄
G12 6= ˆ̄XG12 ,

‖Z −AX̄
G12‖2IZ > ‖Z −A ˆ̄XG12‖2IZ . (A.1)

The one-to-one transformation function that transform-
ing between the state vector X̄

G12 and XG12 are given
in (9) and (18).

The nonlinear least squares problem for building the
global mapMG12 in the coordinate frame of the end pose
of local map 2 is to minimize (7), which can be reformu-
lated as

‖Z −Ag(XG12)‖2IZ . (A.2)
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Fig. A.1. Definition of coordinate frame in 2D feature-only
map.

The unique optimal solution to minimize (A.2) must be

X̂
G12

= g−1( ˆ̄XG12). (A.3)

Because for any XG12 6= g−1( ˆ̄XG12), g(XG12) 6= ˆ̄XG12 ,
and thus

‖Z −Ag(XG12)‖2IZ 6= ‖Z −A
ˆ̄XG12‖2IZ . (A.4)

Since ‖Z −A ˆ̄XG12‖2IZ is the minimal objective function
value, thus

‖Z−Ag(XG12)‖2IZ > ‖Z−A ˆ̄XG12‖2IZ = ‖Z−Ag(X̂
G12

)‖2IZ .
(A.5)

Now we have proved that the optimal solution to (A.2)
must be (A.3). That is, applying the coordinate trans-
formation on the linear least squares solution.

Because the Jacobian J of Ag(XG12) with respect to

XG12 , evaluated at X̂
G12

can be computed by

J = A∇ (A.6)

where∇ is the Jacobian of g(XG12) with respect to XG12 ,

evaluated at X̂
G12

, as given in (21), thus the correspond-
ing information matrix can be computed as

IG12 = JT IZJ = ∇T AT IZA∇ = ∇T ĪG12 ∇ (A.7)

which is equivalent to computing the information matrix

through the information matrix of ˆ̄XG12 as in (20).

Thus we have proved Lemma 1.
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Fig. B.1. Definition of coordinate frame in 3D feature-only
map.

B Formula of Coordinate Transformation for
Feature-only Maps

In this appendix, we provide the details about the defini-
tion of the coordinate frame and the coordinates trans-
formation for feature-only map, in 2D and 3D scenarios.

B.1 Coordinate Frame in 2D Feature-only Map

In a 2D feature-only map, two features are used to define
the coordinate frame of the map.

Suppose the two features which are used to define the
coordinate frame are FO and FX . We define FO as the
origin of the map, and define the direction from feature
FO to FX (the vector FX −FO) as the x axis of the co-
ordinate frame. The coordinate frame defined by feature
FO and FX is shown in Fig. A.1.

By definition of the coordinate frame using FO and FX ,
FO = [0, 0]T and the y coordinate of FX is 0. These
three parameters are not included in the state vector of
the feature-only map.

B.2 Coordinate Frame in 3D Feature-only Map

In a 3D feature-only map, three features are used to
define the coordinate frame of the map.

Suppose the three features which are used to define the
coordinate frame are FO, FX and FY . We first define
FO as the origin of the map and define the direction from
feature FO to FX (the vector FX − FO) as the x axis
of the coordinate frame. Then the x-y plane is defined
by the x axis and the vector FY − FO. Thus the z axis
can be defined by the cross product of the x axis and
FY −FO, which is perpendicular to the x-y plane. Then,
the y axis can be defined by the cross product of z and
x axis. The coordinate frame defined by feature FO, FX

and FY is shown in Fig. B.1.
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Because FX − FO and FY − FO are used to define the
x-y plane, the three features which define the coordinate
frame of the 3D feature-only map cannot be collinear.

By definition of the coordinate frame using FO, FX and
FY , FO is the origin thus FO = [0, 0, 0]T . FX is on the
x axis thus the y and z coordinates of FX are 0. FY is in
the x− y plane thus the z coordinate of FY is 0. These
six parameters defines the 6 DOF 3D coordinate frame,
thus are not included in the state vector of the feature-
only map.

B.3 Coordinate Transformation for 2D Feature-only
Map

Suppose in the current coordinate frame, FO =
[xFO

, yFO
]T , FX = [xFX

, yFX
]T and a feature position

is F. In the new coordinate frame defined by FO and
FX as described in Appendix B.1, the new coordinates
of the same feature, F′, can be obtained by a coordinate
transformation

F′ = R (F− t). (B.1)

From Fig. A.1, it is easy to see that the translation
t = FO. And the rotation angle φ from the current co-
ordinate frame to the new coordinate frame can be com-
puted as

φ = atan2 (yFX
− yFO

, xFX
− xFO

) . (B.2)

Thus the rotation matrix R = r(φ) where r(·) is the
angle-to-matrix function.

B.4 Coordinate Transformation for 3D Feature-only
Map

Now we consider the 3D coordinate transformation from
the current coordinate frame to the coordinate frame
defined by the features FO, FX and FY .

The coordinate transformation in 3D is also in the for-
mat of (B.1). The translation in the 3D coordinate trans-
formation is also t = FO.

For the rotations, suppose vectors v1, v2 and v3 are
computed as 

v1 = FX − FO

v3 = v1 × (FY − FO)

v2 = v3 × v1

(B.3)

As described in Appendix B.2, v1, v2 and v3 are the
vectors in the direction of the x, y and z axis of the
coordinate frame defined by the features FO, FX and

FY , respectively. Thus we have
R v1 = [‖v1‖, 0, 0]T

R v2 = [0, ‖v2‖, 0]T

R v3 = [0, 0, ‖v3‖]T .
(B.4)

So the rotation matrix R in (B.1) is given by

R = [v1/‖v1‖,v2/‖v2‖,v3/‖v3‖]T . (B.5)
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