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Abstract

Discrete-time linear time-varying (LTV) systems form a powerful class of models to approximate complex dynamical systems
with nonlinear dynamics for the purpose of analysis, design and control. Motivated by inference of spatio-temporal dynamics
in breast cancer research, we propose a method to efficiently solve an identification problem for a specific class of discrete-time
LTV systems, in which the states are fully observed and there is no access to system inputs. In addition, it is assumed that
we do not know on which states the inputs act, which can change between time steps, and that the total number of inputs is
sparse over all states and over time. The problem is formulated as a compressive sensing problem, which incorporates the effect
of measurement noise and which has a solution with a partially sparse support. We derive sufficient conditions for the unique
recovery of the system model and input values, which lead to practical conditions on the number of experiments and rank
conditions on system outputs. Synthetic experiments analyze the method’s sensitivity to noise for randomly generated models.

Key words: Blind Identification; Discrete-Time; Linear Time-Varying Systems; Data Science; Compressive Sensing;
Experimental Design

1 Introduction

Many complex dynamical systems, such as power grids
or biological systems, exhibit nonlinear dynamics. Un-
fortunately, the formulation of nonlinear system iden-
tification is generally hard or intractable unless system
structure can be exploited or an efficient black boxmodel
structure is used to approximate the system’s dynam-
ics [24]. Nonlinear system dynamics are therefore often
approximated by piecewise-affine or discrete-time linear
time-varying (LTV) models. In addition, efforts to iden-
tify a dynamical model for analysis or control design can
be hampered for certain systems or applications, due to
a lack of access to the inputs (or disturbances) entering
the system. An example is detection and mitigation of
malicious attacks on cyber-physical systems [26], or in-
ferring temporal protein-protein interactions in gene reg-
ulatory networks (GRNs). The blind system identifica-
tion problem (BSI) assumes that the values of inputs and
disturbances are unknown and aims to retrieve these to-
gether with the parameters of a dynamical systemmodel
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frommeasured outputs of the system dynamics [17]. This
problem is inherently challenging and typically requires
exploiting structure of the system dynamics. Here, we
apply the Occam’s razor principle by exploiting sparsity
in identification; not in the parameterization of the dy-
namic model (as generally accepted [9]), but in param-
eterizing the unknown inputs of the BSI problem.

The approach is primarily motivated by inference prob-
lems in breast cancer biology that aim to capture
protein-protein interactions in gene regulatory networks
(GRNs); whether these exist, how strong these are and
how these change over time [16]. Improving our under-
standing of how drugs and mutations affect GRNs is
critical for effective and personalized treatment design.
As such, the aim of this work is to retrieve both the
input effects of drugs, the interaction dynamics between
proteins, and how these change over time. These effects
tend to be nonlinear and time-varying. In earlier work,
a discrete-time linear time-varying modeling structure
was used to approximate these dynamics [10]. Here, we
had access to measurements of concentrations for all
proteins in the GRN, so that the output represents a
fully observed state vector at every time instance. This
assumption is increasingly practical in biological exper-
iments due to rapid developments of measurement tech-
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nologies, such as Reverse Phase Protein Array (RPPA),
which allow high sensitivity and sample throughput of
protein level measurements at a reasonable cost per
sample [3]. In such settings, the system input, which is
the effect that a drug or a mutation has on a GRN, is
typically unknown. However, it is generally true that
the input is sparse; it affects a relatively small number
of states during a small number of time steps.

Prior Work

BSI is known to be a difficult problem that is gener-
ally ill-posed. BSI of time-varying systems is known as a
challenging problem, as compared to time-invariant sys-
tems. It is well known that in order to reliably retrieve
the input and/or system parameters, further informa-
tion about the system is needed [17]. Hence, all prior
works in different areas all impose a certain structure
that is rich enough to represent complex system dynam-
ics and simple enough to allow for identification.

Originally, blind identification was well studied for Fi-
nite Impulse Response (FIR) systems, in which the fil-
ter represents the system’s dynamics. For an extensive
overview of BSI for time-invariant systems, the reader
is referred to [1, 17]. More recently, the advent of ubiq-
uitous sensing and data collection has spurred new ef-
forts to perform BSI for larger-scale multi-input, multi-
output systems [25, 28]. The BSI literature for systems
with time-varying dynamics is sparse. Typically these
systems are modeled as an extension of time-invariant
FIR filters using a basis extension approach [31, 32, 14].
These results are solely for single-input, multi-output
systems. In addition, FIR model cannot model feedback
dynamics, which requires infinite impulse response (IIR)
models. Unfortunately, IIR systems driven by unknown
inputs are inherently not identifiable [17]. In control the-
ory, identification methods have been proposed for cer-
tain classes of time-varying systems that are restricted
to certain structures and parameter changes. In [21], a
discrete-time LTV state spacemodel is identified, assum-
ing no input and stable dynamics. A widely studied ap-
proach is that of Linear Parameter-Varying (LPV) sys-
tems, for which identification procedures are proposed
by [20], [33] and [4], and for which [30] provides a broad
and rigorous overview.These approaches tend to be hard
to scale [30], and none of these time-varying methods
consider scenarios with unknown inputs.

In network inference, sparse recovery theory has been
applied and further developed to reconstruct networks
from data exploiting the sparsity in network connectiv-
ity [23, 35, 36, 15, 7]. Most work in this area assumes
a linear time-invariant (LTI) model that governs the
dynamic propagation of signals, often without any ex-
ternal inputs. [27] develops a method for inferring au-
toregressive models with exogenous inputs (ARX), in
which the parameter vector changes a limited number of

times. The use and identification of time-varying graph-
ical models are proposed in [2, 18, 19, 34]. [6] gives a gen-
eral overview of how time-varying graphs and dynamic
networks are used in different fields and application. In
[2], a ℓ1-regularized logistic regression formalism is used
to capture network structure and its changes over time.
While scaling well to larger networks, the method does
not consider the effect of external inputs. [19] introduces
auto-regressive time-varying models to describe and in-
fer gene-regulation networks and infers the model using
a Reversible Jump Markov Chain Monte Carlo proce-
dure. This model class neatly encodes the time-varying
dynamics with an LTV mapping, but does not consider
the effect of external inputs.

Contributions

We propose a blind system identification method for
discrete-time LTV dynamical systems with four impor-
tant characteristics: multiple inputs that have a sparse
effect on the system state and over time, internal feed-
back dynamics, a fully observed state vector, and re-
peated experiments. The first two characteristics address
relevant open challenges in the literature of blind iden-
tification of time-varying systems. The third character-
istic is an assumption that is practical in the context
of inferring GRNs, and, in some sense, represents the
price to pay to overcome the complexity of the former
two characteristics. In addition, we assume that exper-
iments can be repeated multiple times, with the same
time-varying dynamics but different input values, in or-
der to collect sufficient data for identification. This is a
fair assumption for biological studies, in which experi-
mental conditions can be replicated efficiently, but it can
form a challenge for other applications.

Notation

Denote by A⊤ the transpose of a matrix, and by vec(·) :
R

m×D → R
mD the function that vectorizes a matrix

column-by-column. The function ‖x‖0 (the “ℓ0-norm”)
returns the number of nonzero entries in the vector x,
which is said to be s-sparse if at most s of its entries are
nonzero: ‖x‖0 ≤ s. We will use subscript i = 1, . . . , n to
denote the i-th entry of a vector in R

n.

2 Problem Formulation

In this section, we first represent an experimental data
set as the evolution of a dynamical system using an
LTV modeling framework. We then formulate the sys-
tem identification and input retrieval problem in a sparse
recovery framework.

The problem is formulated as an experimental design
problem, with the aim to understand necessary and suf-
ficient conditions on perturbations and collected output
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measurements of system dynamics that guarantee suc-
cessful inference of parameters related to system dynam-
ics and inputs/disturbances. Consider a series of q ex-
periments, representing different perturbations and sam-
ples of the system state z ∈ R

n. State output measure-
ments are taken at kf moments, not necessarily equally
sampled through time, but at fixed instances for all ex-
periments. The dynamics of the LTV system during an
experiment j are modeled as:

z(j)[k + 1] = A[k]z(j)[k] + u(j)[k] + w(j)[k],

j ∈ {1, . . . , q}, k ∈ {0, . . . , kf − 1},
(1)

where z(j)[k], u(j)[k], w(j)[k] ∈ R
n are the state vector,

input vector and noise vector of a single experiment j,
and A[k] ∈ R

n×n is a matrix describing the dynamical
interactions between the state variables for the transi-
tion from time k to k+1. The matricesA[k] are constant
across experiments. The state vector z(j)[k] is assumed
to be measured at all k ∈ {0, . . . , kf}. We consider sce-

narios for which the noise is bounded by ‖w(j)[k]‖2 ≤
ηj , ∀j, k. Note that we allow for the same number of in-
puts as states - these are both n-dimensional. The inputs
can vary over the different experiments. We assume that
the inputs are sparse over all q experiments, that is out
of all nkfq input values only s < nkfq are nonzero. By
penalizing sparsity in our problem formulation, we will
ensure that the number of nonzero inputs is low. The
central questions of this work are, given the collection of
dynamic output data z(j)[k], how and under what con-
ditions can we correctly infer the parameters in (1): A[k]
(n2kf values) and the unknown inputs u(j)[k] (s values)
for j ∈ {1, . . . , q}, k ∈ {0, . . . , kf − 1}?

For each time step k, we stack all our experiments to-
gether into matrices for states, inputs and noise vectors:

Zk =
[

z(1)[k] · · · z(q)[k]
]

∈ R
n×q ,

Uk =
[

u(1)[k] · · ·u(q)[k]
]

∈ R
n×q ,

Wk =
[

w(1)[k] · · ·w(q)[k]
]

∈ R
n×q .

(2)

We further organize the data and variables as:

Z ,















Z1

Z2

...

Zkf















, U ,















U0

U1

...

Ukf−1















,W ,















W0

W1

...

Wkf−1 .















(3)

We then vectorize Z, U, W and A[k] as follows: zzz =
vec(Z) ∈ R

nkfq, uuu = vec(U) ∈ R
nkfq, www = vec(W) ∈

R
nkf q and aaa = vec(A[0], · · · , A[kf − 1]) ∈ R

n2kf (or Rn2

for LTI models). The i-th scalar output in (1) can be
rewritten as

z
(j)
i [k + 1] =

n
∑

l=1

ail[k]z
(j)
l [k] + u

(j)
i [k] + w

(j)
i [k] , (4)

for i = 1, . . . , n, j = 1, . . . , q and k = 0, . . . , kf . Here,
ail[k] denotes the entry in A[k] on the i-th row and l-th
column. Equivalently, the dynamics of one experiment
can be formulated as

z(j)[k + 1] =
[

0n×n(kf (j−1)+k−1) | In | 0n×n(kf (q−j)+(kf−k))

]

uuu+
[

0n×n2(k−1) | In ⊗ (z(j)[k])⊤ | 0n×n2(kf−k)

]

aaa+ w(j)[k] .

(5)
Or in short

z(j)[k + 1] =
[

ψ(j)
u [k] | ψ(j)

a [k]
]

[

uuu

aaa

]

+ w(j)[k] . (6)

Here,⊗ denotes the Kronecker product. By stacking this
equation vertically for all time steps k = 1, . . . , kf and
experiments j = 1, . . . , q we can construct

zzz = [ Ψu | Ψa ]

[

uuu

aaa

]

+www = Ψ

[

uuu

aaa

]

+www , (7)

where Ψu = Inkf q and

Ψa =















blkdiag
(

In ⊗ (z(1)[k])⊤
)

blkdiag
(

In ⊗ (z(2)[k])⊤
)

...

blkdiag
(

In ⊗ (z(q)[k])⊤
)















∈ R
nkfq×n2kf . (8)

Here, for each experiment j = 1, . . . , q, blkdiag(·)
constructs a block-diagonal matrix with blocks In ⊗
(z(j)[k])⊤ for k = 0, . . . kf − 1. Note that in the case of
an LTI system, the block diagonal structure collapses,
resulting in

Ψa =



































In ⊗ (z(1)[0])⊤

...

In ⊗ (z(1)[kf − 1])⊤

...

In ⊗ (z(q)[0])⊤

...

In ⊗ (z(q)[kf − 1])⊤



































∈ R
nkf q×n2

. (9)
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Ψ ∈ R
nkf q×(nkf q+n2kf ) denotes the sensing matrix and

www ∈ R
nkf q a vector with stacked measurement noise val-

ues. By exploiting prior knowledge about the statistics
of www, we can determine a bound on ℓ2-norm: ‖www‖2 ≤ η,
and hence we can formulate the constraint

‖zzz −Ψuuuu−Ψaaaa‖2 ≤ η . (10)

Exploiting the sparsity of uuu, a compressive sensing for-
mulation for inferring the unknowns (uuu,aaa) with noisy
measurements now reads

min
uuu,aaa

‖uuu‖1 , subject to ‖zzz−Ψuuuu−Ψaaaa‖2 ≤ η . (11)

Note that we have assumed that the vector aaa, represent-
ing all parameters in the dynamics matrices A[k] , k =
0, . . . , kf−1, is not sparse. This is a realistic assumption,
as the discrete time matrices A[k] typically are integrals
over some continuous dynamics representing the propa-
gation of dynamic interactions over the state space, lead-
ing to a dense matrix even if few state interactions exist.
We therefore attempt to find a partially sparse solution
in which sparsity is only enforced on uuu, and not neces-
sarily on aaa. If an application yields sparsity in aaa, this can
be addressed by adding the ℓ1-norm of aaa, yielding a com-
pressive sensing problem with a fully sparse support.

3 Analysis

Consider the measurement equation

y = Ψx+ w , (12)

where y ∈ R
m, x̄ ∈ R

D, and ‖w‖2 ≤ η is a bounded noise
signal. In general,m < D yields an underdetermined sys-
tem of equations, with an infinite number of solutions. It
turns out that if the sensing matrix Ψ adheres to certain
conditions and the signal x̄ that generated the data y is
sufficiently sparse, then x̄ can be retrieved exactly from
far fewer measurements (i.e. m ≪ D) than asserted by
the Nyquist sampling theorem [5]. The sparsest solution
to the underdetermined system of equations y = Ψx can
be found by solving:

min
x∈RD

‖x‖0 , subject to ‖y −Ψx‖ ≤ η . (13)

Lemma 3.1 (Unique retrieval of the sparsest solution
[11, Lemma 2.1]) If the sparsest solution to (13) has
‖x‖0 = s and D ≥ 2s and all subsets of 2s columns of Ψ
are full rank, then this solution is unique.

Notice that this Lemma assumes that a s-sparse data-
generating signal x exists. In general, (13) is a NP-hard
optimization problem that is both combinatorial and
non-convex, and hence impractical to solve. In contrast,

the Basis Pursuit method [8] solves the convex relax-
ation of (13) efficiently,

min
x∈RD

‖x‖1 , subject to ‖y −Ψx‖ ≤ η . (14)

Definition 3.1 The spark of a matrix Ψ is the smallest
number of columns of Ψ that are linearly dependent [12],
which is upper bounded by rank(Ψ) + 1.

Given this definition, the following lemma provides suffi-
cient conditions for equivalence between the compressed
sensing problem (13) and its convex relaxation (14).

Lemma 3.2 (Spark Equivalence Condition [12]) For the
system of linear equations Ψx = y (Ψ ∈ R

m×D full-rank
with m < D), if a solution x exists obeying

‖x‖0 <
1

2
spark(Ψ) , (15)

that solution is both the unique solution to the convex
relaxation (14), and the unique solution to the original
NP-hard compressive sensing problem (13).

Returning to our central problem (11), the support of the
solution is partially sparse due to aaa being a potentially
dense vector. We determine under what conditions, the
vectors (ūuu, āaa) that generated measurements zzz can be re-
trieved. Let suuu = ‖ūuu‖0 denote the number of nonzero
entries of ūuu ∈ R

nkf q. Denote the fraction of nonzero en-
tries in ūuu as

ρuuu ,
suuu

nkfq
. (16)

Theorem 3.1 Suppose that the signal (ūuu, āaa) that gener-
ated the measurements zzz, as in (7), is also the sparsest
solution to (11) with ‖āaa‖0 = n2kf , and ‖ūuu‖0 = suuu with
ρuuu ≤ 1

2 . If Ψa is full column rank, then the solution to
(11) is unique and equivalent to the solution of the NP-
hard ℓ0-problem.

Proof 3.1 First note that as āaa is a dense vector, we re-
quire Ψa to be full column rank in order for all infor-
mation in āaa to be maintained. Now assume āaa is known,
define the vector z̃zz = zzz −Ψaāaa, and rewrite (11) as

min
uuu

‖uuu‖1 ,

s.t. ‖z̃zz −Ψuuuu‖2 ≤ η .
(17)

As Ψu = Inkf q (identity matrix) is full rank and ρuuu ≤ 1
2 ,

all subsets of 2suuu columns ofΨu are also full rank. Hence,
following Lemma 3.1, any (suuu+nkfq)-sparse solution to
the NP-hard ℓ0-problem is unique. In addition, the same
full-rank condition yields that spark(Ψu) = nkfq + 1.
With ‖ūuu‖0 = suuu ≤ 1

2nkfq <
1
2 (nkfq+1) = 1

2spark(Ψu),
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the spark equivalence condition in Lemma 3.2 is also
satisfied, which guarantees that the solution of our ℓ1-
relaxation in (11) is equivalent to the solution of the cor-
responding ℓ0-problem. ✷

This result suggests that if a data-generating signal (ūuu, āaa)
exists and is the sparsest signal explaining the measure-
ments, then it will be uniquely recovered with (11), as
long as less than half of the entries in ūuu are nonzero and
the matrix Ψa, which is determined by the measurement
data, is full column rank. If a is also sparse, this will
make the problem easier; the rank conditions on Ψa is
not necessary anymore, and the sparsity of the overall
vector [uuu;aaa] is bounded by 1

2 (nkfq+n
2kf ). Taking The-

orem 3.1, further inspection of Ψa reveals conditions on
the number of experiments and the measured data.

Corollary 3.1 (Rank Conditions on Output Matrices)
Ψa being full column rank (as required by Theorem 3.1),
implies that

(1) LTV case: For k = 0, . . . , kf − 1, the matrix Zk ∈
R

n×q, as defined in (2), is full row rank.
(2) LTI case: The dynamics measured over all times,

i.e. the matrix
[

Z0 · · · Zkf

]

is full row rank.

Proof 3.2 (1) LTV case: Due to the structure of Ψa,
as defined in (8), each k-th block of n columns has
at most q rows with nonzero entries, equivalent to
the matrix

Z⊤
k =

[

z(1)[k] · · · z(q)[k]
]⊤

∈ R
q×n, ∀k = 0, . . . , kf ,

(18)
as initially constructed in (2). Every consecutive
block of n columns in Ψa has its nonzero rows in
different rows, due to the blkdiag(·)) operation. As
such, the full column rank condition proposed for Ψa

can be reinterpreted as a full column rank condition
on each block of n columns, and thus on each matrix
Z⊤

k for k = 0, . . . , kf − 1.
(2) LTI case: Here, aaa is only n2-dimensional and the

blkdiag(·) structure in (8) disappears, resulting in
(9). Each consecutive block of n columns in Ψa has
at most kf q rows with nonzero entries, equivalent to
a row permutation of the matrix

[

Z0 · · · Zkf−1

]⊤
. (19)

Every consecutive block of n columns in Ψa has its
nonzero rows in different rows. As such, the full col-
umn rank condition proposed for Ψa can be reinter-
preted as a full row rank condition on (19). ✷

The LTV condition implies that each time step we re-
quire sufficient (or persistent) excitation in the system
state over all experiments j = 1, . . . , q. This result con-
firms that the number of experiments should at least be

equal to or greater than the number of state variables,
that is q ≥ n. The LTI condition implies that we require
persistency of excitation in the system over both experi-
ments j = 1, . . . , q and time steps k = 0, . . . kf−1, which
is, unsurprisingly, easier to satisfy than the LTV condi-
tion. This confirms that the number of time steps times
the number of experiments should at least be greater
than or equal to the number of state variables, that is
kfq ≥ n. Corollary 3.1 provides interesting experimental
conditions that are sufficient, which are intuitive from
the perspective of system identification, a field that tra-
ditionally tries to understand how many and what qual-
ity experiments are necessary to guarantee the identifi-
ability of a dynamical system model. The notion of per-
sistency of excitation covers this general challenge, and
is typically used to understand if an input signal is able
to excite the different dynamic modes of a system [22].
When inputs cannot be designed, Corollary 3.1 can be
used to check if the output measurements reflect persis-
tent excitation, and combine the right data to construct
a well-posed problem.

Note that in some settings, the condition q > n can
be restrictive, for instance for identifying larger systems
with thousands of states. In the context of LTI systems,
different researchers have addressed this challenge and
showed that the use of multiple inputs per experiment
can reduce the necessary number of experiment if states
are excited simultaneously [29, 13]. These principles were
further developed for sparse LTI network identification
viaCS [15]. Extending these result to LTV systems seems
relevant and remains an open problem.

4 Experimental Validation

The method is tested via synthetic experiments to study
its sensitivity to noise, and to relate numerical results to
the theoretical results derived in Section 3. We fix the
number of states n = 10 and time steps kf = 4, and
consider an LTVmodel. We create datasets and increase
the number of experiments q and study the method un-
der increasing levels of noise. The synthetic data sets
are constructed using the formulation in (1). The entries
of each A[k] are drawn from a standard normal distri-
bution and potentially scaled by a factor αA. The in-
put u(j)[k] ∈ R

n is sparse, and acting on one randomly
picked state variable at each time point in every exper-
iment, hence s = 1 · kf · q = 4q. The targeted node of
each experiment is randomized, such that the nodes are
perturbed uniformly throughout all experiments. The
nonzero input entries are constructed randomly from a
standard normal distribution and scaled by a factor αu.
w(j)[k] ∈ R

n represents the noise acting on the state
variables, sampled from a bounded distribution (either
thresholded standard normal or uniform) and scaled by
a factor αw. In our experiments we have set αA = 1,
αu = 1 and varied αw for simulating different levels of
noise that can be interpreted as noise percentage. Fol-
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lowing this setup, we have that the cardinality percent-

age of the input ρuuu =
s

nkfq
=

1

10
. Lemma 3.1 tells us

that ρuuu =
1

10
≤

1

2
.

To assess the performance of our algorithm, we run a
Monte Carlo experiment with T iterations and compare
the retrieved signal uuu∗ to the signal ūuu that generated the
data zzz. We introduce two complementary metrics. First,
to assess howmany entries inuuu∗ were recovered correctly
(regardless of magnitude), we compute the Mean Av-
erage Percentage Error of the cardinality (MAPEcard)
by computing the number of false positives (#FP ) and
false negatives (#FN):

MAPEcard

(

{uuu∗(t)}Tt=1

)

=
1

T

T
∑

t=1

#FP +#FN

nkfq

(20)
Second, for the s nonzero entries of the data-generating
signal ūuu, coined ūuunz, we compute the AverageRootMean
Square Error (ARMSEnz) to assess the error in the
magnitude:

ARMSEnz

(

{uuu∗(t)}Tt=1

)

=

√

√

√

√

1

Tsq

T
∑

t=1

‖ūuunz(t)− uuu∗nz(t)]‖
2
2

(21)
For āaa,aaa∗, we simply track the standard ARMSE over
all entries, unless we try to retrieve a sparse solution.

Figures 1 and 2 present the results of our synthetic ex-
periments. In Figure 1 we took three different levels
of measurement noise (0%, 1% and 5%, equivalent to
αw ∈ {0, 0.01, 0.05}) and increased the number of ex-
periments q. In Figure 2 we fixed the number of ex-
periments (q = 30), and increased the noise level. As
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Fig. 1. Average entry-wise error for three different levels of
noise and increasing number of experiments.
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Fig. 2. Average entry-wise error for increasing levels of noise
and a fixed number of experiments (q = 30).

anticipated by Section 3, for the LTV case, we need
q > n to correctly retrieve the model parameters and in-
put values. Across the different levels of noise, full con-
vergence is reached between 20 to 30 experiments, de-
pending on the necessary accuracy. Since the unknowns
are all drawn from a standard normal distribution, the
ARMSE and MAPE metrics can be interpreted as a rel-
ative percentage-style error. We see that, for sufficient
experiments q, the ARMSE and MAPE dive under the
noise level added to the dynamics. As expected, higher
levels of noise yield a higher asymptotic error, which is
clearly visualized in Figure 2. We see that the dynami-
cal system model parameters in aaa absorb an entry-wise
error that is roughly a factor 5 higher than the entry-
wise error in the nonzero input values of uuu. Lastly, we
notice that the ARMSE errors grow gradually and sub-
linearly, whereas the MAPE error jumps to 5.3% for 1%
noise and then increases slightly to 6.2% for 15% noise.

5 Conclusions

This paper developed a method for blind system identi-
fication of discrete-time linear time-varying (LTV) mod-
els in settings where all states can be observed. A sparse
recovery problem was formulated to retrieve the dynam-
ical system parameters and unknown input values by ex-
ploiting a priori knowledge that the effect of unknown
inputs is limited to affect a limited number of states
and time points. An optimization problem was formu-
lated as a compressive sensing problem with a partially
sparse support, which allowed analysis via sparse re-
covery theory. This yielded sufficient conditions stating
that the number of experiments should be greater than
the number of states, less than half of the input values
should be nonzero, and the matrices with system out-
put measurements across time and experiments should
be full rank. Assessment of the method with synthetic
data confirmed theoretical insights and provided further
directions for designing experiments. This work opens
the further investigation of the blind system identifica-
tion problem for time-varying systems. The authors are
exploring the incorporation of more structured inputs to
reduce the search space and make the overall recovery
problem more efficient, and have applied the method to
help design experiments in breast cancer research [10].
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