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Abstract

The paper considers a problem of detecting and mitigating biasing attacks on networks of state observers targeting cooperative state

estimation algorithms. The problem is cast within the recently developed framework of distributed estimation utilizing the vector

dissipativity approach. The paper shows that a network of distributed observers can be endowed with an additional attack detection

layer capable of detecting biasing attacks and correcting their effect on estimates produced by the network. An example is provided

to illustrate the performance of the proposed distributed attack detector.
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1. Introduction

Recent developments in the area of networked control and

estimation have been increasingly focused on resilience of net-

worked control systems to intentional malicious input attacks

aiming to compromise stability and performance of control sys-

tems. Owing to the networked nature of such control systems,

typically not all measurements are available at nodes of the net-

work to allow efficient attack and fault detection [7, 21]; this

has made distributed approaches particularly attractive. For in-

stance, [25] considers distributed fault detection for second or-

der dynamics at each node. Each node has the model of the

entire network or the model of its neighbourhood; in the latter

case interconnections of the neighbours to the agents outside

the neighbourhood are treated as undesirable disturbances to be

rejected. A bank of fault observers is constructed for each fault

model. The situation is considered where the network topology

is uncertain, and can be captured as a norm-bounded uncertain

perturbation of the global network model.

Another fault detection algorithm is proposed in [10] which

considers a fault input to the plant with multiple randomly fail-

ing sensors (random packet drop-out) for a discrete-time sys-

tem. A discrete-time system model is also considered in [8],

and it is assumed that both plant and sensors are subject to

Markovian switching. The reference considers a fault input to

the plant and uses sensor information fusion from several nodes

to generate the residuals for fault detection.

A considerable progress on the problem has been achieved

in [20] which not only considered the problem of residual gen-

eration for linear systems given in a quite general descriptor
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form, but also has characterized system vulnerabilities from the

system theoretic perspective of attack input detectability. We

also refer to [21] where connections have been drawn between

the network topology and attack input detectability.

This paper considers the problem of detecting attacks on

consensus-based distributed estimation networks. The topic of

distributed estimation has gained considerable attention in the

literature, in a bid to reduce communication bottlenecks and

improve reliability and fidelity of centralized state observers.

Filter cooperation and consensus ideas have proved to be instru-

mental in the design of distributed state observers [17, 24, 27].

At the same time, consensus-based systems are particularly vul-

nerable to intentional attacks since the compromised agents can

interfere with the functions of the entire network in a significant

way [19]. Uncertainty and noise represent another challenge

from the attack detection viewpoint — state observers are typi-

cally required in applications where uncertainty and noise make

accessing the system state difficult; this may allow the attack-

ers to remain undetected by injecting signals compatible with

the noise statistics [20]. This motivates an increased interest in

detection of rogue behaviours of state observers [14].

In this paper, we are concerned with resilience properties of

a general class of distributed state estimation networks consid-

ered, for example, in [24, 27, 29]. The attack model assumes

that the state observers at the compromised nodes are driven

by certain attack/fault inputs. Referring to conventional false-

data injection models [26], the model considered here is quite

general, with several noteworthy features. Firstly, we consider

the attacks that force a rogue behaviour at the affected node by

interfering with the data processing algorithm. Similar to bias

injection attacks considered in [26], the attack inputs are not

assumed to be constant and can include an uncertain transient

component to reflect the adversary’s desire to make the attack

stealthy. The purpose of the attack under consideration is to

force the compromised node to produce biased state estimates
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and then exploit interconnections within the network to propa-

gate those estimates across the network.

In terms of resources required to launch an attack, the ad-

versary does not require any knowledge of the system model to

carry out the attack, it relies on the misappropriated observer

to produce rogue messages which are then injected into other

nodes of the network through existing network communica-

tions. Our interest in this paper is in detecting and tracking

attack/fault inputs causing such a rogue behaviour. For this, the

paper proposes to introduce additional filters in the attack de-

tectors at every network node. The idea behind the introduction

of such filters is to differentiate imminently dangerous compo-

nents of the attack inputs from components whose effect is akin

to that of ‘ever-present disturbances’. Since distributed H∞ ob-

servers such as those considered in [24, 27, 29] are constructed

to attenuate disturbances, by design they are less sensitive to

exogenous ‘disturbance-like’ inputs. On the other hand, low-

frequency biasing inputs such as constant inputs do not directly

fit within the class of ‘finite-energy disturbances’ typically con-

sidered within the H∞ design. Such inputs may cause node ob-

servers to produce biased state estimates, therefore they are of

primary concern. The proposed filters are to assist with moni-

toring the node observers to detect biases caused by such inputs.

Tracking disturbances in a large-scale system is not uncom-

mon. E.g., in [23] distributed integral action controllers were

used for averaging constant disturbances to enable all agents in

the system to synchronize to a common reference system gov-

erned by the averaged constant disturbance. In contrast, in this

paper we aim at tracking and suppressing individual attack in-

puts applied at certain observer nodes, rather than tracking an

averaged attack vector. Additional filter dynamics introduced

in the fault detectors are instrumental to solve that task.

From the viewpoint of fault detection/input estimation, the

system subject to attack is distributed itself. This problem set-

ting is similar to [25], but is different from [10, 8] which were

focused on detecting faults in the plant. Overall, the techniques

developed in this paper have a number of distinct features:

(a) We are concerned with resilience of general multidimen-

sional consensus-based observers to biasing attacks that

target estimation algorithms at misappropriated observer

nodes rather than sensor measurements or communication

channels.

(b) The proposed attack detector is distributed and the node

detectors interact to detect and mitigate the attack.

(c) Our approach utilizes methodologies of vector dissipativity

and H∞ estimation. This allows us to accommodate uncer-

tainties in the sensors and the plant model.

(d) The proposed attack detectors utilize the same plant mea-

surements and the same communication channels that are

used by the networked observer to solve the original plant

estimation task. But extra information needs to be com-

municated between the neighbour agents. This allows us

to determine which of the node observers is compromised,

without introducing additional communication sensors or

communication channels.

The paper is an extended version of the conference paper [5].

Compared with the conference version, the paper has been

substantially extended. The present version includes complete

proofs and an example which were not included in the prelim-

inary version. The presentation has been substantially revised,

to show that the results hold under somewhat less restrictive

design conditions. Also, two new sections have been added

which discuss the detectability conditions of the network and

show that the proposed attack detectors can be used for counter-

ing biasing attacks on a network of distributed observers under

consideration, providing the distributed estimation algorithms

under consideration with an additional level of resilience.

The paper is organised as follows. In Section 2, a background

on distributed consensus based estimation is presented, and the

model of attack is introduced. The class of biasing attacks is

formally defined in Section 3, and the attack detection problem

is also formulated in that section. The main results are given in

Section 4, where sufficient conditions in terms of coupled lin-

ear matrix inequalities are expressed to enable the design of a

networked attack detector. In Section 5, we show that the out-

puts of the proposed attack detectors can be used for correcting

biased state estimates. This allows the system to remain op-

erational under attack, meeting the objective of resilient system

design. Conditions on detectability of the network are discussed

in Section 6. An illustrative example is presented in Section 7,

and finally some concluding remarks are given in Section 8.

Notation: Rn denotes the real Euclidean n-dimensional vec-

tor space, with the norm ‖x‖ = (x′x)1/2; here the symbol ′ de-

notes the transpose of a matrix or a vector. The symbol I de-

notes the identity matrix, and 0m×n denotes the zero matrix of

size m × n. We will occasionally use I and 0 for notational

convenience if no confusion is expected. The symbols | · | and

Re(·) denote respectively the magnitude and the real part of a

complex number. For real symmetric n × n matrices X and

Y, Y > X (respectively, Y ≥ X) means the matrix Y − X is

positive definite (respectively, positive semidefinite). Ker and

rank denote the null-space and rank of a matrix. The nota-

tion L2[0,∞) refers to the Lebesgue space of Rn-valued vector-

functions z(.), defined on the time interval [0,∞), with the norm

‖z‖2 ,
(∫ ∞

0
‖z(t)‖2dt

)1/2
and the inner product

∫ ∞

0
z′

1
(t)z2(t)dt.

2. Background: Continuous-time distributed estimation

Consider an observer network with N nodes and a directed

graph topology G = (V,E) where V and E are the set of ver-

tices and the set of edges (i.e, the subset of the set V × V), re-

spectively. Without loss of generality, we let V = {1, 2, . . . ,N}.

The graph G is assumed to be directed, reflecting the fact that

while node i receives the information from node j, this relation

may not be reciprocal. The notation ( j, i) denotes the edge of

G originating at node j and ending at node i. It is assumed that

the nodes of the graph G have no self-loops, i.e., (i, i) < E.

For each i ∈ V, let Vi = { j : ( j, i) ∈ E} be the set of nodes

supplying information to node i. The cardinality of Vi, known

as the in-degree of node i, is denoted pi; i.e., pi is equal to

the number of incoming edges for node i. Also, qi will denote

2



the number of outgoing edges for node i, known as the out-

degree of node i. Let A = [ai j] be the adjacency matrix of the

digraph G, i.e., ai j = 1 if ( j, i) ∈ E, otherwise ai j = 0. Then,

pi =
∑N

j=1 ai j =
∑

j∈Vi
ai j, qi =

∑N
j=1 a ji.

A typical distributed estimation problem considers a plant

described by the equation

ẋ = Ax + Bξ(t), x(0) = x0, x ∈ Rn, (1)

governed by a disturbance input ξ ∈ Rm. A network of filters

connected according to the graph G takes measurements of the

plant with the purpose to produce an estimate of x. It is assumed

that each filter takes measurements

yi = Ci x + Diξ + D̄iξi, (2)

where ξi(t) ∈ Rmi represents the measurement disturbance at the

local sensing node i, and processes them locally using an infor-

mation communicated by its neighbours j, j ∈ Vi. An under-

lying feature of the problem is that in general, the pairs (A,Ci)

are not required to be detectable. This has an implication that

the nodes with undetectable pairs (A,Ci) can only obtain biased

estimates of the plant, making cooperation between the nodes a

necessity. Requirements on local sensors and the network to en-

able unbiased cooperative networked state estimation have been

considered in the recent literature; e.g., see [6, 32, 2].

Depending on the nature of the disturbances ξ, ξi, cooperative

processing of measurements can be done using Kalman [17],

H∞ [24, 27, 29] filters, etc. Many of the existing algorithms

utilize networks of cooperating filters, each producing an esti-

mate x̂i of the state x using an observer of the form

˙̂xi = Ax̂i + Li(yi(t) −Ci x̂i) + Ki

∑

j∈Vi

H(x̂ j − x̂i), (3)

x̂i(0) = 0;

here the matrices Li, Ki are the parameters of the filter. Each

filter combines processing of innovations obtained from local

measurements with feedback from its neighbours, captured in

the last term (3) where the neighbours’ estimates are x̂ j, j ∈ Vi.

The matrix H determines what information about x̂ j is shared

between the nodes. For simplicity of presentation, we assume

that communication channels between the nodes are ideal, and

node i receives the precise value of Hx̂ j, and that the matrices

H are identical across the network. More general formulations

which allow for disturbances in communication channels and

heterogeneity in communicated information can be easily ac-

commodated within our approach, as they do not bring addi-

tional technical challenges.

The general problem of distributed estimation is to deter-

mine estimator gains Li and Ki in (3) to ensure the filter inter-

nal stability and acceptable filtering performance against distur-

bances. Therefore, from the system resilience viewpoint it is of

interest to consider the situation where one or several nodes of

the network of observers (3) are subject to an attack whose aim

is to interfere with these filtering performance objectives. A

most common scenario of such an attack considered in the lit-

erature involves the attacker tempering with the measurements

PSfrag replacements

fi

−νi

f̂i

Gi(s)
1
s

+

−

Figure 1: An auxiliary ‘input tracking’ model.

and/or communications between the nodes. In contrast, we con-

sider the situation where the attacker mounts an attack on the

observer dynamics directly. That is, we consider the scenario

where some of the nodes are misappropriated by the attacker

and, in lieu of (3), generate their estimates according to

˙̂xi = Ax̂i + Li(yi(t) −Ci x̂i)

+Ki

∑

j∈Vi

H(x̂ j − x̂i) + Fi fi, x̂i(0) = 0. (4)

Here Fi ∈ Rn×n f is a constant “fault entry matrix” (e.g., see

[22]) and fi ∈ Rn f is the unknown signal representing an attack

input. The gains of the observers and the network topology are

not affected by the attacker and are assumed to be fixed (cf. [6]).

From now on, our focus is exclusively on the network of ob-

servers (4), although our approach to detection and mitigation

of biasing attacks can be readily applied to other mentioned dis-

tributed state estimation algorithms as well. For instance, if the

communication link between node i and k : k ∈ Vi is under

attack such that node k instead of receiving x̂k receives a biased

estimate of x̂k + ℓik where ℓik is an attack signal, then this situa-

tion is still captured by the biased estimator model (4) in which

Fi = KiH and fi = ℓik. Therefore, the analysis presented in the

paper is applicable to this type of attack as well.

The class of attacks considered in this paper does not contain

attacks that cause nodes or links to fall out of the network. Our

consideration is that the objectives of the biasing attacker are

different from the objectives of a jamming attacker. Attacking

links to fail is a kind of DoS attack, and these attacks disrupt

the normal flow of information within the network. In contrast,

the biasing attacker who misappropriates a node benefits from

integrity of the network links, since it uses them to spread the

biased x̂i across the network. Therefore the analysis in the paper

is carried out under the assumption that it is not in the attacker’s

interests to block network links. Attack stealthiness considera-

tions also support this assumption. While jammers act openly

to block communication links or sensing nodes1, we consider

that the intention of a biasing attacker is to remain hidden, in

order to inject the false data for as long as possible. Unusual

patterns in nodes and links failures will likely to prompt main-

tenance which may reveal the attacker. Thus it may be risky for

the biasing attacker to disrupt connectivity if it wishes to remain

stealthy.

1Generally, it is quite difficult for the jammer to remain stealthy [30].
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3. Problem formulation

To be concrete, from now on we build the presentation

around the distributed H∞ cooperative estimation problem [27,

29], although the approach to bias attack detection proposed in

this paper is general enough to allow extensions to other types

of filters in an obvious manner. In line with the disturbance

model considered in [27, 29], it will be assumed throughout

the paper that the disturbances ξ, ξi belong to L2[0,∞). This

assumption suffices to guarantee that equation (1) has an L2-

integrable solution on any finite time interval [0, T ], even when

the matrix A is unstable.

3.1. Admissible biasing attacks

We now present a class of biasing attacks on misappropriated

nodes of the filter (4) that will be considered in this paper. First

consider a class of attack input signals fi(t), t ≥ 0, of the form

fi(t) = fi1(t) + fi2(t), (5)

where the Laplace transform of fi1(t), fi1(s), is such that f∞
i1

,

supω ‖ω fi1( jω)‖2 < ∞ and fi2 ∈ L2[0,∞). In particular, this

class includes attack inputs whose Laplace transform is rational

and has no more than one pole at the origin, with the remaining

poles located in the open left half-plane of the complex plane.

This class of inputs will be denoted F . It includes as a spe-

cial case bias injection attack inputs consisting of a steady-state

component and an exponentially decaying transient component

generated by a low pass filter introduced in [26].

It is easy to show that there exists a proper square n f × n f

transfer function2 Gi(s) for which the system in Fig. 1 is stable

and
∫ ∞

0

‖ fi − f̂i‖
2dt < ∞ (6)

for all fi with the properties stated above. Indeed, we can select

Gi(s) =
N(s)

D(s)
I, for which the system in Fig. 1 is stable; here N(s)

and D(s) are real polynomials with deg(N) ≤ deg(D). It follows

from stability of the system in Fig. 1 that jωD( jω)+N( jω) , 0

∀ω. This conclusion trivially follows from the Nyquist crite-

rion. Hence, a , supω

∣

∣

∣

∣

jωD( jω)

jωD( jω)+N( jω)

∣

∣

∣

∣

2

< ∞. Then3

1

2π

∫

+∞

−∞

‖(I +
1

jω
Gi( jω))−1 fi( jω)‖2dω

≤ f∞i1

∫ ∞

−∞

∣

∣

∣

∣

∣

D( jω)

jωD( jω) + N( jω)

∣

∣

∣

∣

∣

2

dω

+a

∫ ∞

−∞

‖ fi2( jω)‖2dω < ∞. (7)

Define νi = f̂i − fi. Denoting the Laplace transforms of fi and

νi as fi(s) and νi(s) respectively, and noting that

νi(s) = −(I +
1

s
Gi(s))−1 fi(s),

2A proper transfer function (respectively, a strictly proper transfer function)

is a transfer function in which the degree of numerator does not exceed (respec-

tively, is less than) the degree of the denominator.
3Here, ‖ · ‖ is the induced norm of a matrix.

we conclude from (7) that (6) is satisfied.

Furthermore, if Gi(s) is selected so that

lim
s→0
‖(I +

1

s
Gi(s))−1‖ = 0, (8)

then for all inputs fi ∈ F ,

lim
t→∞
‖ fi(t) − f̂i(t)‖ = 0. (9)

The proof of this fact is given in the Appendix.

In summary, we have observed that a large class of biasing

inputs (which includes bias injection attack inputs introduced

in [26]) can be represented as

fi = f̂i − νi,

where νi is an L2 integrable discrepancy between the attack in-

put fi and its ‘model’ f̂i. For this, the model generating transfer

function Gi(s) needs to satisfy very mild assumptions - it must

be proper, and the closed loop system in Fig. 1 must be stable.

Other than that, Gi(s) can be chosen arbitrarily. This allows us

to proceed assuming formally that a collection of transfer func-

tions Gi(s), i = 1, . . . ,N, with the above properties has been

selected, and a set of biasing inputs fi is associated with this se-

lection of transfer functions consisting of all signals fi for which

(6) holds. We will refer to the inputs from this set as admissi-

ble biasing inputs. Clearly, such set is quite rich; as we have

shown, it subsumes all inputs (5) and, consequently, the input

set F and biasing attack inputs defined in [26]. In addition, L2-

integrable inputs fi which represent attack inputs with a limited

energy resource [26] also belong to the set of admissible inputs

since they are trivially represented in the form (5). It must be

stressed that even though Gi(s) is selected, the details of admis-

sible biasing inputs, e.g., the asymptotic steady-state value or

the shape of the transient, remain unknown to the designer.

We conclude this section by presenting a state space form of

the system in Fig. 1 which will be used in the sequel. Since

Gi(s) is proper, the transfer function 1
s
Gi(s) is strictly proper.

Hence, a state space realization for the system in Fig. 1, e.g.,

the minimal state space realization, is of the form

ǫ̇i = Ωiǫi + Γiνi, ǫi(0) = 0, (10)

f̂i = Υiǫi,

where νi = f̂i − fi is an L2-integrable input. For example, for

the system Gi(s) = di

s+2βi
I, we can let ǫi ∈ R2n f , and

Ωi =

[

0 I

0 −2βiI

]

, Γi =

[

0

−diI

]

, Υi = [I 0]. (11)

In what follows, the state space model (10) will be used in the

derivation of attack detectors, and the sufficient conditions for

attack detection proposed in the paper will include the parame-

ters of the model (10). Some trials may be required in order to

select these parameters to obtain satisfactorily performing de-

tectors.
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3.2. The distributed attack detector

The objective of the paper is to design a distributed attack

detection system which is capable of tracking and suppressing

admissible attack inputs. To achieve this task, we first summa-

rize the information about the network available at each node,

which will be used by the attack detectors. This information

consists of the pair of innovation output signals

ζi = yi −Ci x̂i = Ci(x − x̂i) + Diξ + D̄iξi, (12)

ζ̄i =
∑

j∈Vi

H(x̂ j − x̂i). (13)

The idea behind introducing these outputs is as follows. If node

i is under attack, then its predicted sensor measurement Ci x̂i

is expected to be biased, compared to the actual measurement

yi. This must lead to a significant difference between these two

signals, i.e., we must expect a large energy in ζi. Likewise, the

plant state estimate x̂i at the misappropriated node i, is expected

to deviate, at least during an initial stage of the attack, from the

estimates produced at the neighbouring nodes. Thus, the vari-

able ζ̄i describing dynamics of the disagreement between node

i and its neighbours is expected to differ from similar variables

produced by network nodes not affected by the attack. This

motivates using the innovation signals (12), (13) as inputs to

the attack detector. They can be readily generated at node i;

computing them only requires the local measurement yi, the lo-

cal estimate Hx̂i computed by the observer at node i and the

neighbours’ signals Hx̂ j, j ∈ Vi, available at node i; see (4).

Let ei = x − x̂i be the local estimation error at node i. Us-

ing (1) and (4), it is straightforward to verify that each error ei

satisfies the following equation:

ėi = (A − LiCi)ei + Ki

∑

j∈Vi

H(e j − ei)

+(B − LiDi)ξ − LiD̄iξi − Fi fi, ei(0) = x0. (14)

Combine the system (14) with the auxiliary input tracking

model (10):

ėi = (A − LiCi)ei + Ki

∑

j∈Vi

H(e j − ei) − FiΥiǫi

+ (B − LiDi)ξ − LiD̄iξi + Fiνi, ei(0) = x0,

ǫ̇i = Ωiǫi + Γiνi ǫi(0) = 0. (15)

Here, we have used the relation fi = Υiǫi − νi; see (10). The

resulting system (15) equipped with the outputs (16), (17) can

be regarded as an uncertain system governed by L2-integrable

inputs ξ, ξi and νi. Each such system is interconnected with its

neighbours via inputs e j, and the collection of all such systems

represents a large-scale system. The innovations (12), (13) can

be regarded as outputs of this large-scale system since they can

be written in terms of the estimation errors as

ζi = Ciei + Diξ + D̄iξi, (16)

ζ̄i = −
∑

j∈Vi

H(e j − ei). (17)

We propose the following distributed H∞ observer for the

large-scale system (15) as an attack detector for the observer

network (4). The detector is to utilize the outputs (12), (13) of

the system (4) (equivalently, the outputs (16), (17)) to estimate

dynamics ei and ǫi of the system (15) while attenuating the dis-

turbances ξ, ξi and νi, i = 1, . . . ,N. The proposed detector is

therefore as follows:

˙̂ei = (A − LiCi)êi + Ki

∑

j∈Vi

H(ê j − êi) − FiΥiǫ̂i

+ L̄i(ζi − Ciêi) + K̄i

















ζ̄i +
∑

j∈Vi

H(ê j − êi)

















,

˙̂ǫi = Ωiǫ̂i + Ľi(ζi −Ciêi) + Ǩi

















ζ̄i +
∑

j∈Vi

H(ê j − êi)

















,

ε̂i = Υiǫ̂i, (18)

êi(0) = 0, ǫ̂i(0) = 0.

The coefficients L̄i, K̄i, Ľi, Ǩi are to be found to ensure that the

output ε̂i = Υiǫ̂i of the system (18) tracks the output f̂i of the

auxiliary system (10). Since f̂i converges to fi in the L2[0,∞)

sense, we propose that ε̂i is to be used as a residual variable

indicating whether the attack is taking place.

Remark 1. The proposed attack detector requires each node to

dynamically update two other vectors, namely êi and ǫ̂i. Thus,

in all, each node will require updating an augmented vector

whose dimension is 2n+n f . This potentially increases the com-

putational burden on the filtering nodes. This is the price of

dynamically estimating the state observer error ei and ǫi. In

a typical distributed state estimation scenario, state estimation

errors are not observed. However, in our problem concerned

with resilient estimation, we require additional variables to de-

tect and track changes in the observer dynamics and to mitigate

the effect of the attack.

To formalize the above idea, introduce the error vectors zi =

ei − êi, δi = ǫi − ǫ̂i for the attack detector system (18). It can be

seen from (15) and (18) that the evolution of these error vectors

is governed by the following equations

żi = (A − LiCi)zi + Ki

∑

j∈Vi

H(z j − zi) − FiΥiδi

− L̄iCizi + K̄i

∑

j∈Vi

H(z j − zi)

+ (B − LiDi)ξ − LiD̄iξi + Fiνi − L̄iDiξ − L̄iD̄iξi,

δ̇i = Ωiδi − ĽiCizi + Ǩi

∑

j∈Vi

H(z j − zi)

− ĽiDiξ − ĽiD̄iξi + Γiνi,

̟i = f̂i − ε̂i = Υiδi, (19)

zi(0) = x0, δi(0) = 0.

Using the notation L̃i = Li + L̄i, K̃i = Ki + K̄i, (19) can be

simplified as

żi = (A − L̃iCi)zi + K̃i

∑

j∈Vi

H(z j − zi) − FiΥiδi

+ (B − L̃iDi)ξ − L̃iD̄iξi + Fiνi, zi(0) = x0,
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δ̇i = Ωiδi − ĽiCizi + Ǩi

∑

j∈Vi

H(z j − zi)

− ĽiDiξ − ĽiD̄iξi + Γiνi, δi(0) = 0. (20)

Our design objective can formally be expressed as the prob-

lem concerned with asymptotic behaviour of the system (20).

Problem 1 (The distributed H∞ detector design problem).

The distributed attack detection problem is to determine L̄i, K̄i,

Ľi, Ǩi for the distributed attack detector (18) which ensure that

the following properties hold:

(i) The large-scale system (20) is internally stable. That is,

the disturbance and attack-free large-scale system

żi = (A − L̃iCi)zi + K̃i

∑

j∈Vi

H(z j − zi) − FiΥiδi,

δ̇i = Ωiδi − ĽiCizi + Ǩi

∑

j∈Vi

H(z j − zi), (21)

zi(0) = x0, δi(0) = 0,

must be asymptotically stable.

(ii) In the presence of L2-integrable disturbances and admis-

sible biasing inputs, the system (20) achieves a guaran-

teed level of H∞ disturbance attenuation:

sup
x0,w,0

∫ ∞

0

∑N
i=1(δ′

i
Qiδi + z′

i
Q̄izi)dt

‖x0‖
2
P
+

∑N
i=1 ‖wi‖

2
2

≤ γ2, (22)

where Qi = Q′
i
> 0, Q̄i = Q̄′

i
≥ 0 are given matrices,

‖x0‖
2
P
= x′

0
Px0, P = P′ > 0 is a fixed matrix to be de-

termined later, wi , [ξ′, ξ′
i
, ν′

i
]′, w , [w′

1
, . . . ,w′

N
]′, and

γ > 0 is a constant.

Properties (i) and (ii) reflect a desirable behaviour of the at-

tack detector. Indeed, it follows from (22) that each attack de-

tector output variable ε̂i = Υiǫ̂i provides an H∞ estimate of f̂i.

We now show that for admissible attacks, this output converges

to fi, and hence it can be used as a residual output indicating

whether an admissible attack is taking place.

Theorem 1. (i) Suppose fi are admissible biasing inputs and

the distributed networked attack detector (18) is such that

condition (22) holds. Then
∫ ∞

0
‖ε̂i − fi‖

2dt < ∞ ∀i.

(ii) Furthermore, if in addition the disturbance and attack-

free large-scale system (21) is asymptotically stable, and

also (22) holds with Q̄i > 0, then limt→∞ zi = 0,

limt→∞ ‖ε̂i − fi‖ = 0 for all biasing inputs fi ∈ F .

Proof: To prove statement (i), let σ̄ , maxi ‖Υi‖
2, and σ >

0 be a constant such that Qi > σI ∀i. Then, since for any

admissible attack input fi, νi = f̂i − fi is L2-integrable (see (6)),

we have

N
∑

i=1

∫ ∞

0

‖ε̂i − fi‖
2dt

≤ 2

∫ ∞

0

N
∑

i=1

‖̟i‖
2dt + 2

∫ ∞

0

N
∑

i=1

‖νi‖
2dt

≤
2σ̄

σ

∫ ∞

0

N
∑

i=1

δ′i Qiδidt + 2

∫ ∞

0

N
∑

i=1

‖νi‖
2dt < ∞. (23)

Next we prove statement (ii). First consider the disturbance

and attack free system comprised of the plant (1) and the net-

work of observers (4), when ξ ≡ 0, ξi ≡ 0 and fi ≡ 0 ∀i. In this

case, we also have f̂i ≡ 0, and νi ≡ 0 since the system in Fig. 1

has zero initial conditions; see (10). Asymptotic stability of the

system (21) implies that in the disturbance and attack free case,

zi → 0, δi → 0 asymptotically. The latter property implies that

‖ǫ̂i − f̂i‖ → 0, and since fi = f̂i ≡ 0, then ‖ǫ̂i − fi‖ → 0 ∀i.

When a disturbance or an attack input is present, i.e., if ξ . 0

or, for at least one j, ξ j . 0 or f j . 0, then it follows from

(22) that δi, zi, are L2-integrable for all i = 1, . . . ,N. Further-

more, according to (20), δ̇i and żi are also L2-integrable; this

fact implies that zi → 0, δi → 0 and ̟i → 0 as t → 0 for all

i = 1, . . . ,N. Then, to establish that limt→∞ ‖ε̂i − fi‖ = 0 ∀i, we

consider two cases.

Case 1: For all nodes i which are not under attack, fi ≡

0 and f̂i ≡ 0. In this case, δi → 0 implies ε̂i = −̟i → 0

asymptotically, and since fi ≡ 0, we have limt→∞ ‖ε̂i − fi‖ = 0.

Case 2: When node i is under attack, then fi . 0. At that

node, we have ‖ε̂i − fi‖ ≤ ‖̟i‖ + ‖νi‖. Equation (9) states that

limt→∞ ‖νi‖ = 0, and we have established previously that̟ j →

0 asymptotically for all j = 1, . . . ,N, including j = i. This

implies that ε̂i tracks fi. asymptotically. �

Remark 2. Part (i) of Theorem 1 guarantees that each residual

output of the detector converges to the corresponding admissi-

ble attack input fi in an L2 sense. In part (ii), by taking into

account the properties of admissible biasing attack inputs of

class F , (of which the biasing attack inputs considered in [26]

are a special case), a sharper asymptotic tracking behaviour of

the residual variables ε̂i is obtained. This however requires a

version of the condition (22) to hold in which Q̄i > 0 ∀i. In the

sequel, conditions will be given which guarantee this. �

We explain in the next section how the coefficients L̃i, K̃i,

Ľi, and Ǩi can be found to guarantee satisfaction of the condi-

tions stated in Problem 1. This will provide a complete solution

to the problem of detecting biasing attacks on distributed state

observer networks under consideration. Further in Section 5,

it will be shown that the proposed detector can also be used to

negate effects of biasing attacks.

4. A vector dissipativity-based design of the attack detector

In the previous section we have recast the problem of attack

detection under consideration as a problem of distributed stabi-

lization of the large-scale system comprised of subsystems (20)

via output injection. References [9, 27, 29] developed a vec-

tor dissipativity approach to solve this class of problems. This

approach will be applied here to obtain an algorithm for con-

structing a state observer network to detect biasing attacks on
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distributed filters. The idea behind this approach is to deter-

mine the coefficients L̃i, K̃i, Ľi, and Ǩi for the error dynamics

system (20) to ensure that each subsystem (20) satisfies certain

dissipation inequalities

V̇i + 2αiVi + δ
′
i Q̌iδi + z′i Q̃izi ≤

∑

j∈V j

π jV j + γ
2‖wi‖

2, (24)

where Vi(zi, δi) is a candidate storage function for the error dy-

namics system (20), Q̌i ≥ 0, Q̃i ≥ 0 are symmetric positive

semidefinite matrices, and αi > 0 and πi > 0, i = 1, . . . ,N, are

constants selected so that qiπi < 2αi.

Unlike standard dissipation inequalities, the vector dissipa-

tion inequalities (24) are coupled. Next, we show how they can

be used to establish input tracking properties of the distributed

attack detector (18). It utilizes a collection of quadratic storage

functions Vi(zi, δi) = [z′
i
δ′

i
]Xi[z

′
i
δ′

i
]′, with Xi = X′

i
> 0.

Lemma 1. Suppose a set of matrices Xi = X′
i
> 0 and con-

stants αi > 0, πi ∈ (0, 2αi/qi) can be found which verify the in-

equalities (24). Then the collection of detectors (18) has prop-

erties stated in Problem 1, with the following matrices P and

Qi, Q̄i in (22):

P = γ−2

N
∑

i=1

X11
i ,

where X11
i

is the upper left block in the partition of Xi compat-

ible with the dimensions of zi and δi; and

Qi = Q̌i + ρλmin(Xi)I > 0, and

Q̄i = Q̃i + ρλmin(Xi)I > 0, (25)

where ρ = mini(2αi − qiπi) > 0.

The proof of the lemma is similar to the proof of the corre-

sponding vector dissipativity results in [27, 29, 28]. For com-

pleteness, it is included in the Appendix.

Remark 3. One appropriate candidate for πi is πi =
2αi

qi+1
,

where qi is the out-degree of the graph node i. Clearly πi =
2αi

qi+1
<

2αi

qi
, which makes the value of πi a suitable candidate to

be used in condition (24). �

We now present a method to compute the coefficients L̃i, K̃i,

Ľi, Ǩi to satisfy the dissipation inequalities (24). Let

Ai =

[

A −FiΥi

0 Ωi

]

, B1i =

[

Fi

Γi

]

, B2 =

[

−B 0

0 0

]

,

Di =

[

Di D̄i

]

, Ci =

[

Ci 0
]

, H =
[

H 0
]

,

Li =

[

L̃i

Ľi

]

, Ki =

[

K̃i

Ǩi

]

, Qi =

[

Q̃i 0

0 Q̌i

]

. (26)

Suppose Di and D̄i satisfy the condition

Ei , DiD
′
i = DiD

′
i + D̄iD̄i

′
> 0; (27)

this is a standard assumption made in H∞ control problems [1].

Lemma 2. Suppose the digraph G, the matrices Q̌i = Q̌′
i
≥ 0,

Q̃i = Q̃′
i
≥ 0 and the constants αi > 0, πi ∈ (0, 2αi/qi), i =

1, . . . ,N, are such that the coupled linear matrix inequalities in

(29) (on the next page) with respect to the variables Xi = X′
i
> 0

and Mi, i = 1, . . . ,N, are feasible. Then choosing

Ki = −X−1
i Mi,

Li = (γ2X−1
i C′i − B2D′i)E

−1
i (28)

ensures that the condition (24) holds.

The proof of this lemma is given in the Appendix. Com-

bined with Theorem 1, this lemma provides a complete result

on the design of biasing attack detectors for the distributed ob-

server (4). This result is now formally stated. The first part of

the following theorem is concerned with detecting general ad-

missible attacks targeting any of the observer nodes, while the

second part particularizes this result to biasing attacks of class

F , including bias injection attacks considered in [26].

Theorem 2. Suppose the coupled linear matrix inequalities in

(29) with respect to the variables Xi = X′
i
> 0 and Mi,

i = 1, . . . ,N, are feasible. Then, partitioning the matrices

in (28) to obtain L̃i, K̃i, Ľi, Ǩi, and letting L̄i = L̃i − Li,

K̄i = K̃i − Ki guarantees that for all admissible attack inputs,
∫ ∞

0
‖ε̂i − fi‖

2dt < ∞ ∀i. Furthermore, limt→∞ ‖ε̂i − fi‖ = 0 for

all attack inputs fi of class F . In particular, this conclusion

holds for all biasing attack inputs of the form ‘a constant plus

an exponentially decaying transient’.

Proof: The theorem follows from Lemmas 1 and 2 and The-

orem 1. �

The claim of Theorem 2 involves the collection of LMIs (29)

coupled in the variables Xi and γ. When the attack detector

network is designed offline, these LMIs can be solved in a rou-

tine manner using the existing software. Also, the LMI prob-

lem (29) can be formulated within an optimization framework

where one seeks to determine a suboptimal level of disturbance

attenuation in condition (22). It has been shown in [34] that

a similar optimization problem can be solved in a distributed

manner, where each network node computes its own gain co-

efficients by communicating with its nearest neighbours over a

balanced graph. The algorithm was based on the well known

distributed optimization methods [3, 4]. [34] considered the

problem of suboptimal disturbance attenuation stated in [27].

However [27] and this paper have a common feature in that

the original problem is reduced to the problem of stabilization

of an uncertain large-scale system by output injection, and in

both cases, the LMIs reflect vector dissipativity properties of

the error dynamics. This leads us to suggest that the approach

of [34] can potentially be a candidate to consider should one

need to synthesize a distributed attack detector network of the

form (18) online.

Remark 4. This paper derives the attack detector for the

worst-case scenario where potentially all nodes can be com-

promised at the same time. We do not impose an upper bound

on the number of nodes that can be compromised, and our re-

sult guarantees the detector performance for this worst case
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+

(
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scenario. However, it is not unreasonable to query whether the

performance of the proposed attack detector can be improved if

one knows that certain nodes are safe. First, we note that at the

safe node we have fi(t) ≡ 0 and νi(t) ≡ 0. Therefore, reducing

the number of compromised nodes will immediately manifest

itself in the reduced total energy of the ‘attack tracking’ errors
∑N

i=1

∫ ∞

0
‖νi‖

2dt which bounds the energy in the detection error;

see (23). Furthermore, if we know that certain node i is safe,

this knowledge can be captured by letting Fi = 0. In the case,

it follows from (15) that ǫi(t) ≡ 0, and the error ei satisfies the

same equation as the error ei of the original unbiased observer

(however, this does not mean that the two errors are identical

since e j in (15) can be biased). Also, we can choose the trans-

fer function Gi(s) = 0 for this node, which means we can let

Γi = 0. As a result, the matrix B1i becomes a zero matrix, and

this simplified modeling will result in the detector error system

at this node subjected to ‘less uncertainty’; see equation (42) in

the Appendix. We expect that this should have an effect on the

convergence rate of the detector and its robustness.

Remark 5. Unlike [14, 16], it is not necessary for the network

graph in this paper to be dense. It is assumed in [14, 16] that

the communication graph must be very dense to allow removing

of suspicious nodes while preserving the connectivity between

the agents. Such a restrictive assumption is not required in this

paper. We take advantage of the dynamic model (10) of bias-

ing attack inputs. As a result, our attack detection algorithm is

based on a model based estimation technique which generally

does not limit the number of affected nodes. This approach con-

trasts with the approach in [14, 16], which makes no assump-

tions about the type of the biasing signal but limits the number

of compromised nodes that can be tolerated.

Remark 6. A question arises as to how the network structure

plays a role in satisfying the LMIs (29). Ultimately, as is com-

mon in the H∞ control theory, the feasibility of the LMIs (29)

is related to detectability properties of the system (20), and we

will explain in Section 6 how the network topology influences

detectability of the detector network.

5. Resilient distributed estimation

Based on the foregoing analysis, we now show that equipping

the network of estimators (4) with the attack detectors (18) al-

lows to obtain state estimates of the plant (1) that are resilient

to admissible biasing attacks. More precisely, consider the net-

work of estimators (4) augmented with the attack detectors (18)

and introduce ‘corrected’ estimates

ˆ̂xi = x̂i + êi; (30)

here x̂i is the ‘biased’ estimate produced by the observer (4),

and êi is the correction term representing an estimate of the er-

ror ei produced by the attack detector (18). Note that the cor-

rection term is added at every network node, so that each node

of the augmented observer-detector system (4), (18) produces

two estimates of the plant state, x̂i and ˆ̂xi.

Clearly, x − ˆ̂xi = ei − êi = zi. That is, zi is the error asso-

ciated with the estimate (30). It follows from Theorem 1, that

for biasing attacks of class F , solving Problem 1 with Q̄ > 0

ensures that this error vanishes asymptotically. That is, unlike

estimates x̂i delivered by (4) which become biased when fi . 0,

the corrected estimates ˆ̂xi maintain fidelity under attack. Fur-

thermore, equation (22) provides a bound on performance of

the distributed estimator comprised of the node estimators (4),

the attack detectors (18) and the outputs (30). This discussion

is now summarized as the following theorem.

Theorem 3. Consider the observer network (4) augmented

with the distributed networked attack detector (18) whose coef-

ficients L̄i, K̄i, Ľi, Ǩi are obtained from the LMIs (29) using the

procedure described in Theorem 2. Then the following state-

ments hold

(a) In the absence of disturbances and attack, ˆ̂xi → x exponen-

tially for all i = 1, . . . ,N;

(b) In the presence of perturbations and biasing attacks of

class F , limt→∞ ‖x − ˆ̂xi‖ = 0 ∀i. Furthermore, the esti-

mation error zi = x − ˆ̂xi satisfies (22) with Qi > 0, Q̄i > 0

defined in (25). That is, ˆ̂xi provides a resilient estimate of

the plant when the observer network is subject to a biasing

attack. In particular, this conclusion holds for all biasing

attack inputs of the form ‘a constant plus an exponentially

decaying transient’.

Proof: The conditions of the theorem guarantee that (24)

holds for every i; see Lemma 2. Furthermore, as was shown in

Lemma 2, this implies that statements (i) and (ii) of Problem 1

hold, with Qi > 0, Q̄i > 0 defined in (25). Finally, we have
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observed in the proof of Theorem 1 that since according to (22),

δi, zi are L2-integrable for all i, we have żi ∈ L2, for all L2-

integrable ξ, ξi and admissible fi. This implies that zi → 0. �

Theorem 3 shows that the proposed attack detection network

is capable of mitigating biasing attacks on distributed state esti-

mation networks. Condition (22) characterizes its performance

under attack. Of course, when the system is attack free, perfor-

mance of the augmented observer-detector filter (4), (18) may

be inferior to performance of the original unbiased distributed

filter (3), and we do not propose ˆ̂xi as a replacement for x̂i in

the attack free situation. On the other hand, when some of the

network nodes are misappropriated and are subject to biasing

attacks, the signals ˆ̂xi produced by the augmented observer-

detector system (4), (18) are unbiased. This shows that aug-

menting the observer network (4) with the network of attack

monitors (18) provides a guarantee of resilience, ensuring that

the distributed observer remains functional during hostile oper-

ating conditions. Of course, we do not suggest using inferior

estimates ˆ̂xi in an attack free situation. When the network is not

under attack, we have fi = 0 and the state observer (4) produces

unbiased estimates x̂i of the plant state x which are identical to

the estimates produced by the original observer (3). In this case,

we do not observe a performance degradation. The attack de-

tector will produce zero residuals in this case. However when

the network is subjected to a biasing attack, the residuals will

deviate from zero. This will signal the presence of an attack.

A threshold-based policy can then be devised to switch the ob-

server outputs from the original estimates x̂i to the resilient es-

timates ˆ̂xi. The design of such threshold-based policy is well

studied in the fault detection literature, and we refer the reader

to that literature; see e.g. [12].

6. Detectability of biasing attacks and relation to the net-

work topology

The role of the network topology in facilitating distributed

estimation is an interesting question which is under active in-

vestigation. For networks of observers of the form (3), condi-

tions for detectability were obtained in [32, 31]. In particular,

this necessarily requires the pair (Ā, [C̄′, H̄′]′) to be detectable;

here Ā = IN ⊗ A, C̄ = diag[C1, · · · ,CN], H̄ = L ⊗ H, and

L is the N × N Laplacian matrix of the graph. It was shown

in [32, 31] that several factors affect the detectability of the

network: (a) the decomposition of the network into compo-

nents spanned by trees, (b) the detectability properties of the

pairs (A,Ci), (c) the observability properties of the pair (A,H).

From the results in [32, 31], for (Ā, [C̄′, H̄′]′) to be detectable,

each node must be able to reconstruct from its interconnec-

tions with the neighbours the portion of the state information

which cannot be obtained from its local measurements. This

makes estimation task feasible even when the Laplacian ma-

trix L has more than one zero eigenvalue. A general condition

on the graph structure is that there should be a path in the net-

work from the sensors that can measure a certain portion of the

states to those that cannot measure this portion. So in general,

if there are several sensors that can measure the same portion

of the state, it is not necessary for them to be connected, and

they provide this information to other nodes in the subgraphs

they belong to. More recently, similar conclusions have been

made in [18, 15, 33], where somewhat more general data fusion

schemes were considered using observers whose dimension is

greater than the dimension of the plant’s state vector x.

In this section we build on the results in [32, 31] and provide

some insight into some fundamental attack input detectability

properties of the proposed distributed attack detector.

Define ēi = [z′
i
δ′

i
]′ and let ē be the vector of all detector errors

stacked together, ē = [z, δ], z = [z′
1
, . . . z′

N
]′, δ = [δ′

1
, . . . , δN]′.

Then the disturbance and attack-free detection error dynamics

in (21) can be written in a compact form,

˙̄e =

[

Ā −F̄

0 Ω̄

]

ē +

[

−L̃ −K̃

−Ľ −Ǩ

] [

C̄ 0

H̄ 0

]

ē, (31)

where L̃ = diag{L̃i}, K̃ = diag{K̃i}, F̄ = diag{FiΥi}, Ľ =

diag{Ľi}, Ǩ = diag{Ǩi} and Ω̄ = diag{Ωi}. Also, define

A =

[

Ā −F̄

0 Ω̄

]

, C =

[

C̄ 0

H̄ 0

]

. (32)

We conclude that for the system (20) to be stabilizable via out-

put injection, the pair (A ,C ) must necessarily be detectable.

We now relate this condition to the detectability of the pair

(Ā, [C̄′, H̄′]′) of the original observer network (4).

Let s∗ and ∆̄(s∗) be an unstable eigenvalue and the corre-

sponding eigenspace of Ω̄. Define the following sets,

D(s∗) =
{

y : y = F̄δ, δ ∈ ∆̄(s∗)
}

,

Y (s∗) =
{

y : y = (Ā − s∗I)z, z ∈ KerC̄ ∩ KerH̄
}

.

Theorem 4. The pair (A ,C ) is detectable if and only if the

following conditions hold:

(i) the pair

(

Ā,

[

C̄

H̄

])

is detectable;

(ii) the pair (Ω̄, F̄) is detectable; and

(iii) For every unstable eigenvalue s∗ of Ω̄,

Y (s∗) ∩D(s∗) = {0}. (33)

Proof: The pair (A ,C ) is detectable if and only if [11]

rank

[

A − sI

C

]

= n, ∀s ∈ C : Re(s) ≥ 0. (34)

In other words, (A ,C ) is detectable if and only if ∀s ∈ C :

Re(s) ≥ 0, the following equations hold only for [z′ δ′]′ = 0:

(A − sI)

[

z

δ

]

= 0, C

[

z

δ

]

= 0. (35)

Expanding (35) we obtain

(Ā − sI)z − F̄δ = 0, (36a)

(Ω − sI)δ = 0, (36b)

C̄z = 0, (36c)

9



H̄z = 0. (36d)

Sufficiency. We now verify that under the conditions (i)–(iii)

of the theorem, (36) hold only if z = 0, δ = 0.

First consider the case where s, Re(s) ≥ 0, is not an eigen-

value of Ω̄. In this case, (36b) implies δ = 0 and the remaining

conditions (36) read that

(Ā − sI)z = 0, (37a)

C̄z = 0, (37b)

H̄z = 0. (37c)

It then follows from (i) and (37) that z = 0. Hence, if s, Re(s) ≥

0, is not an eigenvalue of Ω̄ then (36) implies z = 0, δ = 0.

Next, suppose s = s∗, where s∗ is an unstable eigenvalue of

Ω̄. In this case, (36b) allows for both a zero and a nonzero solu-

tion δ∗. The case where δ∗ = 0 has been considered previously,

it has led to the conclusion that z = 0, δ = 0 is the only solu-

tion to the system (36). In the case where δ∗ , 0, we conclude

that δ∗ is an eigenvector corresponding to s∗ and δ∗ ∈ ∆̄(s∗).

Furthermore, since (Ω̄, F̄) is detectable according to (ii), then

F̄δ∗ , 0. It then follows from (33) that for any z which satisfies

(36c) and (36d), (Ā − s∗I)z − Fδ∗ , 0. Hence, (36) cannot have

a nonzero solution in this case as well.

In summary, we conclude that the pair (A ,C ) is detectable.

Necessity. In this part of the proof (A ,C ) is assumed to be

detectable. We now show that a violation of any of the condi-

tions in (i)–(iii) results in (36) having a nonzero solution (z, δ).

Suppose that

(

Ā,

[

C̄

H̄

])

is not detectable. Then there exists

z∗ , 0 which satisfies (37). Substituting z = z∗ into (36) results

in the equations

F̄δ = 0, (Ω̄ − sI)δ = 0, (38)

which are satisfied with δ = 0. Thus, when

(

Ā,

[

C̄

H̄

])

is not

detectable, then (36) admits a nonzero solution (z∗, 0). This

contradicts the assumption that (A ,C ) is detectable.

Next, suppose (Ω̄, F̄) is not detectable. Let s∗ be an unstable

unobservable mode of (Ω̄, F̄), and let δ∗ be a nonzero solution

of (38) with s = s∗. Substituting δ = δ∗ and z = 0 into (36)

shows that (0, δ∗) is a solution to (36) when s = s∗. We have

arrived at a contradiction with the assumption that (A ,C ) is

detectable.

Finally, suppose that Ω̄ has an unstable eigenvalue s∗ for

which the set Y (s∗) ∩ D(s∗) contains y∗ , 0. This implies

the existence of a nonzero z∗ ∈ KerC̄ ∩ KerH̄ and a nonzero

δ∗ ∈ ∆(s∗) such that (Ā − s∗I)z∗ = F̄δ∗ = y∗. Hence, we con-

clude that (z∗, δ∗) , 0 satisfies (36). Again, this conclusion is in

contradiction with the assumption that (A ,C ) is detectable. �

Condition (i) can be related to detectability properties of each

node and properties of the network topology. As mentioned, de-

tectability of the pair

(

Ā,

[

C̄

H̄

])

is related to the properties of the

network graph, detectability properties of the pairs (A,Ci) and

observability properties of (A,H). We refer the reader to [32]

for the analysis of this relationship. As far as our analysis in

this paper is concerned, we consider attacks on a given net-

work of observers (3), therefore it is reasonable to assume that

the pair

(

Ā,

[

C̄

H̄

])

is detectable, otherwise such a network will

not be functional. The detectability of the pair (Ω̄, F̄) (condi-

tion (ii)) is immediately related to the detectability of every pair

(Ωi, FiΥi) i = 1, . . . ,N. If the attack tracking model does not

guarantee this, this creates a possibility for the attack detector to

have an undetectable subspace. Estimation errors within those

subspaces cannot be monitored accurately, and the attacker can

exploit this fact to create biased estimates. Condition (iii) is

more subtle; it is directly related to the network structure since

it involves a set which is a linear transformation of a subset of

KerL ⊗ H; the latter set depends on the graph Laplacian L .

The failure to satisfy this condition will also lead to biased de-

tector errors.

7. Simulations

To illustrate the performance of the fault detection algorithm

proposed in this paper, we revisit the example in [27] where

A =



















































0.3775 0 0 0 0 0

0.2959 0.3510 0 0 0 0

1.4751 0.6232 1.0078 0 0 0

0.2340 0 0 0.5596 0 0

0 0 0 0.4437 1.1878 −0.0215

0 0 0 0 2.2023 1.0039



















































,

B = 0.1I6×6, H = I6×6,

Di = 02×6, D̄i = 0.01I2, ∀i = 1, . . . , 6,

(39)

and each sensor i measures the i-th and (i+ 1)-th coordinates of

the state vector, with sensor 6 measuring the 6th and 1st coor-

dinates. Therefore, for example for the 4th sensor, we have

C4 =

[

0 0 0 1 0 0

0 0 0 0 1 0

]

. (40)

The reason why this example is chosen is that all the pairs

(A,Ci), i = 1, · · · , 6 in this example are not observable, and

A is anti-stable which ensures that at every node of the net-

work, the unobservable modes of A are not detectable. In

[27], a distributed observer was constructed for this system

which consisted of N = 6 observer nodes interconnected over

a simple circular digraph, with V = {1, 2, 3, 4, 5, 6} and E =

{(6, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)}.

We assume that scalar biasing attacks can be applied at any

node of the observer network, and assume Fi = [1 1 1 1 1 1]′

∀i = 1, . . . , 6. We limit attention to the special case of bias

inputs admissible with Gi(s) = 1
s+2βi

I6, βi > 0 and design an L2-

tracking detector based on Theorem 2. We let βi, i = 1, · · · , 6

in (11) be βi = 10. Letting all αi = 2 and γ2
= 0.5, it was

found using the YALMIP software [13] that the LMI problem

in (29) was feasible. The LMI variables Ki and Li in (28) were

calculated using YALMIP, and then using (26), the values for

L̃i, K̃i, Ľi and Ǩi were obtained. Using the gain values Li and Ki

of the observer in (3) obtained in the example in [27], we then
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calculated the observer gain values in (18), L̄i = L̃i − Li and

K̄i = K̃i − Ki.

To illustrate performance of the obtained attack detectors

(18) and the corresponding resilient estimators (4), (30), the

system was simulated using Matlab. The initial conditions of

the plant (1) were chosen randomly, and the process and mea-

surement disturbances were selected to be broadband white

noises of intensity 1. An attack signal f2 was applied at node 2

at time t = 2s which lasted for 5s. During this time, the value

of f2(t) in (4) changes from zero at t = 2s to the value of 5 and

becomes zero again at t = 7s.

Figures 2–5 show the errors exhibited by the obtained attack

detectors (18) and the corresponding biased and resilient ob-

servers (4) and (30), respectively, in response to this attack.

It can be seen in Fig. 2, all nodes in the system are affected

by the attack, and the estimation errors at every node become

biased during the time interval 2 ≤ t ≤ 7. As expected, the

biasing effect of the attack is most prominent at node 2, and

node 1 is least affected, as ‖x(t) − x̂1(t)‖ < ‖x(t) − x̂i(t)‖ <

‖x(t) − x̂2(t)‖ for i = 3, · · · , 6 and for almost all t ∈ [2, 7].

However, Fig 3 shows that the attack detectors (18) are able to

reliably identify the source of attack and track the attack input

quite accurately. This figure shows that ε̂2(t) changes at t = 2s

and t = 7s indicating an attack at node 2, while other residual

variables ε̂i(t), i , 2 appear to be unaffected by the attack. Also,

the estimates ˆ̂xi computed according to (30) show much greater

resilience to the attack, compared with x̂i. Although ˆ̂xi tend

to be somewhat less accurate than x̂i under normal conditions,

their error appear to be not affected by the attack; see Fig. 4. To

further illustrate this point, Figures 5 and 6 compare the errors

of the two observers at the most affected node 2 and the least

affected node 1. As one can see, in both cases the estimates ˆ̂xi

appear to be unaffected by the attack.

Figure 2: Norms of the errors of the observers (4).

8. Conclusion

The paper is concerned with the problem of distributed at-

tack detection in sensor networks. We consider a group of

Figure 3: Norms of the residual outputs ε̂i(t) of the attack detectors (18). All

residuals except that at the misappropriated node 2, have low amplitude and

only respond to disturbances in the system. On the other hand, the residual

ε̂2(t) is able to detect and track the biasing input f2(t).

Figure 4: Norms of the errors of the resilient estimates (30), produced using the

biased observers (4) augmented with the attack detectors (18).

consensus-based distributed estimators and assume that the es-

timator dynamics are under attack. Then we propose a dis-

tributed attack detector which allows for an uncertainty in the

sensors and the plant model, as well as a range of bias attack

inputs, and show that the proposed attack detector can detect

an biasing attack and identify the misappropriated node. Also,

we show that these detectors can be used to compensate the bi-

asing effect of the attack, once it is detected. Although under

normal circumstances, the proposed resilient estimates are less

accurate than the estimates produced by the original network,

they show superior resilience to the attack, in that they asymp-

totically converge to the state of the plant under a broad range

of L2 integrable perturbations and biasing attack inputs. The

limitation of the proposed scheme lies in the assumption that

in principle, admissible attack inputs can be tracked using a

low-pass filter and that the tracking error is L2 integrable. This

restricts the class of attack inputs that can be detected and coun-

tered using our approach. Future effort will be directed towards

11
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Figure 5: Norms of the errors of the biased and resilient estimates at the misap-

propriated node 2. The error of the resilient observer incorporating the attack

detector is substantially lower than the error of the corresponding observer of

the biased network. The estimate (30) at this node appears to be not affected

by the attack, it maintains roughly the same level of accuracy during the attack

as before and after the attack. However, the error is somewhat greater than the

error of the original observer from [27] when it operates normally.

relaxing this assumption.

Another future problem is to consider link failures under de-

nial of service attacks which aim to disrupt the normal flow

of information within the network. Sparse networks are more

likely to fail under a jamming attack, and for the observer to

maintain resilience, additional connectivity within the network

may be required. This contrasts with the problem considered

in this paper where the attacker relies on dense connectivity to

spread the biased x̂i across the network. In this situation, sparse

topologies appear to be beneficial for the defender. An inter-

esting problem would be to determine which strategy is more

beneficial for the attacker facing a particular network (biasing,

jamming or a combination of both), and which network struc-

ture provides for the best resilient performance under this strat-

egy. We leave this challenging problem for future research.
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Appendix

8.1. Proof of equation (9)

Observe that an input fi of class F has a Laplace transform

of the form fi(s) =
R0

s
+

∑

k
Rk

(s+pk)lk
with Re(pk) < 0, lk ≥ 1,

∀k. By assumption, (I + 1
s
Gi(s))−1 has all its poles in the region

Re(s) < 0, therefore ∀ fi ∈ F ,

νi(s) = −(I +
1

s
Gi(s))−1 fi(s) =

R̂0

s
+

∑

k

R̂k

(s + p̂k)l̂k

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2
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Biased and resilent estimator errors at node 1
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1
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‖x

−
ˆ̂ x
1
‖

 

 

‖e1‖

‖x−
ˆ̂x1‖

Figure 6: Norms of the errors of the biased and resilient estimates at node 1,

which is most distant from the misappropriated node. Even at the most distant

node, the error of the resilient observer incorporating the attack detector is al-

most half of the error of the corresponding observer of the biased network. The

error appears to be unaffected by the attack, although it is somewhat greater

than the error of the original observer from [27] when it operates normally.

with Re( p̂k) < 0, l̂k ≥ 1, ∀k. This time the summation is car-

ried out over the joint set of poles which includes stable poles

of both (I + 1
s
Gi(s))−1 and fi(s). Hence limt→∞ νi(t) exists. Fur-

thermore,

‖sνi(s)‖ ≤ ‖(I +
1

s
Gi(s))−1‖ · ‖s fi(s)‖

and lims→0 ‖s fi(s)‖ = limt→∞ ‖ fi(t)‖ < ∞. Then according to

the final value theorem,

lim
t→∞
‖ fi(t) − f̂i(t)‖ ≤ lim

s→0

(

‖(I +
1

s
Gi(s))−1‖ · ‖s fi(s)‖

)

= 0.

8.2. Proof of Lemma 1

Let V =
∑N

i=1 Vi. Adding the inequalities (24) and selecting

πi <
2αi

qi
will result in

V̇ +

N
∑

i=1

(δ′i Qiδi + z′i Q̃izi)

≤ −ρV + γ2

N
∑

i=1

(‖ξ‖2 + ‖ξi‖
2
+ ‖νi‖

2); (41)

here ρ = mini(2αi − qiπi) > 0. This implies that when ξ = 0

and fi = 0, ξi = 0 ∀i, then V̇ < −ρV, and since Xi > 0, we

have zi → 0, δi → 0 exponentially. That is, condition (i) of

Problem 1 is established.

Also, when at least one of the signals ξ, ξi or fi is not equal

to zero (the latter is equivalent to νi . 0), then it follows from

(41) that with Qi, Q̄i defined in (25),

N
∑

i=1

∫ T

0

(δ′i Qiδi + z′i Q̄izi)dt ≤

N
∑

i=1

[Vi(zi(0), δi(0))

+ γ2

∫ T

0

(‖ξ‖2 + ‖ξi‖
2
+ ‖νi‖

2)dt

]

.

12



Note that Vi(zi(0), δi(0)) = x′
0
X11

i
x0. Hence (22) also holds with

P = γ−2
∑N

i=1 X11
i

and Qi, Q̄i defined in (25).

8.3. Proof of Lemma 2

With the notation (26) and letting µi = [z′
i
δ′

i
]′, the system

(20) can be represented in the form

µ̇i = (Ai − LiCi)µi +

∑

j∈Vi

KiH(µ j − µi)

+ B1iνi − (B2 + LiDi)wi(t), (42)

µi(0) =

[

zi(0)

δi(0)

]

, wi ,

[

ξ

ξi

]

.

To establish the vector dissipativity properties of the system

(42) we proceed as in [28, 29].

By pre-multiplying and post-multiplying the matrix inequal-

ity (29) by [µ′
i
φ′

1
φ′

2
µ′

j1
· · ·µ′

jpi

] and its transpose we obtain

0 > 2µ′iXi(Ai + αiI − LiCi)µi + 2µ′iXiKiH
∑

j∈Vi

µ j

+2γ2µ′iC
′
i E
−1
i Ciµi − 2piµ

′
i XiKiHµi

+µ′iQiµi − γ
2µ′i C

′
iE
−1
i Ciµi − γ

2‖φ1 −
1

γ2
B′1iXiµi‖

2

+
1

γ2
µ′i XiB1iB

′
1iXiµi − γ

2‖φ2 −
1

γ2

(

I − D′i E
−1
i Di

)

B′2Xiµi‖
2

+
1

γ2
µ′i XiB2

(

I − D′iE
−1
i Di

)

B′2Xiµi −
∑

j∈Vi

π jµ
′
jX jµ j.

Note that
(

I − D′
i
E−1

i
Di

)

is a projection matrix and thus
(

I − D′
i
E−1

i
Di

) (

I − D′
i
E−1

i
Di

)

=

(

I − D′
i
E−1

i
Di

)

. Fur-

thermore, it can be shown by direct calculations that
1
γ2 B2

(

I − D′
i
E−1

i
Di

)

B′
2
=

1
γ2 (B2 + LiDi)(B2 + LiDi)

′ −

γ2X−1
i

C′
i
E−1

i
CiX

−1
i
. Hence for any vector [µi µ j1 · · ·µ jp

] , 0,

letting φ2 =
1
γ2

(

I − D′
i
E−1

i
Di

)

B′
2
Xiµi and φ1 =

1
γ2 B′

1i
Xiµi leads

to the inequality

0 > 2µ′i Xi(Ai + αiI − LiCi)µi + µ
′
iQiµi −

∑

j∈Vi

π jµ
′
jX jµ j

+γ2‖νi −
1

γ2
(B1i)

′Xiµi‖
2
+ 2µ′i XiB1iνi − γ

2‖νi‖
2

+γ2‖wi +
1

γ2
(B2 + LiDi)

′Xiµi‖
2 − γ2‖wi‖

2

−2µ′iXi(B2 + LiDi)wi + 2µ′i XiKiH
∑

j∈Vi

(µ j − µi).

Then it follows from the above inequality that

V̇i ≤ −2αiµ
′
i Xiµi − µ

′
i Qiµi + γ

2‖νi‖
2
+ γ2‖wi‖

2
+

∑

j∈Vi

π jµ
′
jX jµ j.

Thus for all i = 1, · · · ,N the inequality (24) holds.
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for cooperative H∞-type estimation. In Proc. IEEE Multi-Conference on

Systems and Control, Sydney, Australia, 2015.

14

http://arxiv.org/abs/1406.5622

	1 Introduction
	2 Background: Continuous-time distributed estimation
	3 Problem formulation
	3.1 Admissible biasing attacks
	3.2 The distributed attack detector

	4 A vector dissipativity-based design of the attack detector
	5 Resilient distributed estimation
	6 Detectability of biasing attacks and relation to the network topology
	7 Simulations
	8 Conclusion
	8.1 Proof of equation (9)
	8.2 Proof of Lemma 1
	8.3 Proof of Lemma 2


