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Abstract

This paper presents an application of mean field control to dynamic production optimization. Both noncooperative and cooperative solutions
are considered. We first introduce a market of a large number of agents (firms) with sticky prices and adjustment costs. By solving auxiliary
limiting optimal control problems subject to consistent mean field approximations, two sets of decentralized strategies are obtained and
further shown to asymptotically attain Nash equilibria and social optima, respectively. The performance estimate of the social optimum
strategies exploits a passivity property of the underlying model. A numerical example is given to compare market prices, firms’ outputs
and costs under two two solution frameworks.
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1 Introduction

Mean field game theory is effective to design decentralized
strategies in a system of many players which are individu-
ally negligible but collectively affect a particular player (see
e.g., [18], [19], [22], [31]). By identifying a consistency re-
lationship between the individual’s best response and the
mass (population macroscopic) behavior, one may obtain a
fixed-point equation to specify the mean field. This proce-
dure leads to a set of decentralized strategies as an ε-Nash
equilibrium for the actual model with a large but finite pop-
ulation. By now, mean field games have been intensively
studied in the LQG (linear-quadratic-Gaussian) framework
[18], [19], [11], [39], [12]; there is also a large body of works
on nonlinear models [22], [32], [3], [14]. For further litera-
ture, readers are referred to [17], [43], [44] for mean field
models with a major player, [46] for oblivious equilibria pro-
posed for large-scale Markov decision processes of industry
dynamics, [42] for mean field games with Markov jump pa-
rameters. For a survey on mean field game theory, see [3],
[14], and [4]. Besides noncooperative games, social optima
in mean field control have been investigated in some liter-
ature [20], [45]. Mean field games and control have found
wide applications, including smart grids [34], [7], [26], fi-
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nance, economics [46], [15], [6], [23], operation research
[28], [1], [33], [36], and social sciences [29], [21], [2], etc.

This paper aims to present an application of mean field con-
trol to production output adjustment in a large market with
many firms and sticky prices. Under the stickiness assump-
tion, the price of the underlying product does not adjust in-
stantaneously according to its demand function, but evolves
slowly and smoothly. Dynamic game models for duopolis-
tic competition with sticky prices were initially proposed by
Simaan and Takayama [38], and then extended to investi-
gate asymptotically stable steady-state equilibrium prices in
[13]. In [5], [47], the authors considered open and closed-
loop Nash equilibria for dynamic oligopoly with N firms and
compared prices’ behavior in and outside the steady-state
levels, respectively. Adjustment costs in production mod-
els have been addressed in the economic literature (see e.g.
[35]) and they have been taken into account in the study
of dynamic oligopoly [10], [37], [24]. The work [10] intro-
duces a duopoly where each firm has output level subject to
control according to a first-order integrator dynamics. How-
ever, when the number of firms is large (e.g. in a perfectly
competitive market) and the adjustment cost is considered,
the computational complexity of output adjustment is high.
In the mean field control framework, one can effectively ad-
dress the complexity issue.

Within our model, a large number of producers supply a
certain product with sticky prices, and the output adjustment
incurs a cost. The cost function of a firm is based on product
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cost, price, and adjustment cost. In [41], we combined the
price and firm’s output as a 2-dimensional system. Thus,
the cost function has indefinite state weights, which differs
from many existing LQG models of mean field games in the
literature [19], [42]. In this paper, the price in the mean field
limit model is taken as an exogenous signal without the need
of state space augmentation. This contributes to deriving a
simple condition that ensures the solvability of the resulting
equation system.

The Nash equilibrium and the social optimum are two fun-
damental solution notions to competitive markets with many
firms, where the former applies to the noncooperative model,
and the latter is for the cooperative model. In this paper, we
design Nash and social optimum strategies for the produc-
tion output control model based on the mean field control
methodology, respectively, and further compare two solu-
tions numerically. The Nash solution of our model starts by
solving a limiting optimal control problem and next applies
the consistency requirement for the mean field approxima-
tion. We then obtain a set of decentralized strategies and
show that the set of strategies is an ε-Nash equilibrium. For
the social optimum solution, we first provide an auxiliary
optimal control problem by a person-by-person optimality
approach, and then design a set of decentralized strategies by
solving the limiting auxiliary problem subject to consistent
mean field approximations. The set of strategies is shown to
be asymptotically socially optimal by exploiting a passivity
property of the underlying model.

An illustrative numerical example is given to compare mar-
ket prices, firms outputs and optimal costs under the game
and social optimum frameworks. It is numerically shown
that the social optimum has a lower average output level than
that in the noncooperative case. This is similar to the behav-
ior in a duopoly model [48] where cooperation of the two
players results in a lower total output than in the Cournot
equilibrium.

The paper is organized as follows. Section II introduces the
game and social optimum problems with N players. In Sec-
tion III, we first design a set of decentralized strategies by the
mean field control methodology and then show its asymp-
totic Nash equilibrium property. In Section IV, we construct
a set of decentralized strategies, which is shown to be asymp-
totically socially optimal. In Section V, a comparison of two
solutions is demonstrated by a numerical example. Section
VI concludes the paper.

Notation: ‖ · ‖ denotes the Euclidean vector norm or matrix
spectral norm. For a matrix M, |M| denotes the determi-
nant of M. C([0,∞),Rn) denotes the class of n-dimensional
continuous functions on [0,∞); Cb([0,∞),Rn) is the class
of bounded and continuous functions; Cρ([0,∞),Rn) =

{ f | f ∈C([0,∞),Rn),supt≥0 | f (t)|e−ρ ′t < ∞ for some ρ ′ ∈
[0,ρ)}. For a family of Rn-values random variables
{x(λ ),λ ≥ 0}, σ(x(λ ),λ ≤ t) is the σ -algebra gen-
erated by the collection of random variables; ‖x‖ρ =

[
E
∫

∞

0 e−ρt |x(t)|2dt
]1/2; ‖x‖∞ = supt≥0 |x(t)|. For two se-

quences {an,n= 0,1, · · ·} and {bn,n= 0,1, · · ·}, an =O(bn)
denotes limsupn→∞ |an/bn| ≤ C, and an = o(bn) denotes
limsupn→∞ |an/bn| = 0. For convenience of presentation,
we use C,C1,C2, · · · to denote generic positive constants,
which may vary from place to place.

2 Problem Description

2.1 Dynamic oligopoly with sticky prices

Dynamic game models for oligopolistic competition with
sticky prices were initially proposed by Simaan and
Takayama [38], and then further investigated in [13], [5],
[47]. According to the model in [5], [47], the sticky price
evolves by

d p
dt

= α(β −δ

N

∑
j=1

q j− p), p(0) given,

where q j is the output of firm j, j = 1, · · · ,N, and has the
role of control. The payoff function of firm i is described by

Ki(q1, · · · ,qN) =
∫

∞

0
e−ρt(pqi− cqi−

1
2

q2
i )dt.

The constants α,β ,δ and c are positive, and c is the cost of
unit output.

2.2 Output adjustment in a mean field framework

The paper considers a large market of many firms. Based
on the formulation of sticky prices in [13], [47], we assume
that the price evolves by

d p(t)
dt

=α[β − p(t)−q(N)(t)]

=−α p(t)−αq(N)(t)+αβ , (1)

where α > 0 denotes the speed of adjustment to the level on
the demand function, and q(N)(t) = 1

N ∑
N
i=1 qi(t) is the aver-

age of firms’ outputs. The output of each firm is described
by the stochastic differential equation (SDE)

dqi(t) =−µqi(t)dt +biui(t)dt +σdwi(t), (2)

where {wi(t), i = 1, · · · ,N} are independent standard Brow-
nian motions, which are also independent of initial outputs
of all firms {qi(0), i = 1, · · · ,N}. The constants α,β , µ and
bi are positive.

Adjustment costs in production models have been addressed
in the economic literature (see e.g. [35]) and they have been
taken into account in the study of dynamic oligopoly [10],
[9], [37], [24]. The work [10] introduces a duopoly where
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each firm has output level qi subject to control ui according to
a first order integrator dynamics. In the resulting differential
game, the instantaneous payoff of each firm is determined
from its net profit minus quadratic penalty terms of qi and ui

Remark 1 As in [13], β −q(N) is the price on the demand
function for the given level of firms’ outputs. In the static
case, the inverse demand function has a linear version p =
β − δq(N); here for simplicity we set δ as 1. The scaling
factor 1/N for q(N) is standard in modelling and analysis
of large markets, and some closely related price modelling
in a large dynamic market can be found in [30], [40]. µ is
used to indicate friction in adjusting the output, and wi is
random shocks in output.

The cost function of each firm is given by

Ji(u) = E
∫

∞

0
e−ρtL(p,qi,ui)dt, (3)

where
L =−p(t)qi(t)+ cqi(t)+ ru2

i (t),
u = (u1, · · · ,ui, · · · ,uN),

r > 0 and 0 < c < β . Here, c denotes the production cost,
and ru2

i (t) denotes the adjustment cost. The minimization
of Ji(u) is equivalent to maximizing the payoff

Ki(u) = E
∫

∞

0
e−ρt [qi(t)(p(t)− c)− ru2

i (t)]dt.

We only consider the case β > c to make the subsequent
optimization problems be of practical interest. Otherwise,
given a positive q(N), the production cost already exceeds the
price, and the optimization problem is not too meaningful.

The social cost is defined as

J(N)
soc (u) =

1
N

N

∑
j=1

J j(u). (4)

Based on costs (3) and (4), one may formulate a standard
LQG game and an optimal control problem, respectively. A
limitation of this approach is that the control strategy will be
centralized. Our goal is to look for decentralized strategies
for the corresponding optimization criterion.

The basic objective of this paper is to seek Nash solutions
and social solutions to mean field production output control
with sticky prices. Specifically, we study the following two
problems:

Problem I: Find ε-Nash equilibrium strategies for agents to
minimize the individual cost Ji over the set of decentralized
strategies

Ud,i =
{

ui : ui(t) is adapted to F i
t ,E

∫
∞

0
e−ρtu2

i (t)dt < ∞

}
,

where F i
t = σ{qi(0),wi(s),s≤ t}, t ≥ 0, i = 1, · · · ,N.

Problem II: Find asymptotic social optimum strategies for
agents to minimize J(N)

soc over the set of decentralized strate-
gies Ud,i, i = 1, · · · ,N.

For a large market, a natural way of modeling the sequence
of parameters b1, · · · ,bN is to view them as being sampled
from a space such that this sequence exhibits certain sta-
tistical properties when N → ∞. Define the associated em-
pirical distribution function FN(θ) =

1
N ∑

N
i=1 I[θi≤θ ], where

I[θi≤θ ] = 1 if θi ≤ θ and I[θi≤θ ] = 0 otherwise.

We introduce the assumptions.

A1) The initial price p(0) = p0 > 0 is a constant. The initial
outputs of all firms {qi(0), i = 1, · · · ,N} are independent.
Eqi(0) = q0 > 0 for all i = 1, · · · ,N; there exists c0 < ∞

independent of N such that maxi=1,··· ,N E|qi(0)|2 ≤ c0.

A2) There exists a distribution function F(·) such that
the empirical distribution FN converges weakly to F ,
where FN(b) = 1

N ∑
N
i=1 I[bi≤b]. Furthermore, each bi > 0 and∫

R θ 2dF(θ)> 0.

A3) For all N, {bi, i = 1, · · · ,N} is contained in a fixed com-
pact set Θ, and

∫
Θ

θdF(θ) = 1.

3 Nash Solutions to Output Adjustment

3.1 Optimal control for the limiting problem

Assume that q̄ ∈Cρ/2([0,∞),R) is given for approximation
of q(N). Replacing q(N) in (1) by q̄, we introduce

d p̄(t)
dt

= α[β − p̄(t)− q̄(t)], p̄(0) = p0. (5)

Accordingly, by replacing p in (3) with p̄ we define the cost
function:

J̄i(ui) = E
∫

∞

0
e−ρt [(c− p̄)qi + ru2

i ]dt. (6)

The corresponding admissible control set is Ud,i.

We first take p̄ as an exogenous signal and solve the problem
in (2), (5) and (6). For a general initial condition qi(t) = qi
at time t, define the value function

Vi(t,qi) = inf
ui∈Ud,i

E
[∫

∞

t
e−ρ(τ−t)L(qi,ui)dτ

∣∣∣qi(t) = qi

]
.
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We introduce the HJB equation:

ρVi = inf
ui∈R

{
∂Vi

∂ t
+

∂Vi

∂qi
(−µqi +biui)

+
σ

2
∂ 2Vi

∂q2
i
+(c− p̄)qi + ru2

i

}
, (7)

where Vi ∈ Cρ([0,∞),R). Let Vi(t,qi) = kiq2
i + 2si(t)qi +

gi(t). Then the optimal control law is

ūi =−
1
2r

bi
∂Vi

∂qi
=−bi

r
(kiqi + si). (8)

Substituting the control (8) into (7), we obtain

ρ(kiq2
i +2siqi +gi) = (−2µki−

b2
i
r

k2
i )q

2
i

+2
[

dsi

dt
+(−µ− b2

i
r

ki)si +
c− p̄

2

]
qi

+
dgi

dt
− b2

i
r

s2
i +σki.

This yields

ρki =−2µki−
b2

i
r

k2
i , (9)

ρsi =
dsi

dt
+(−µ− b2

i
r

ki)si +
c− p̄

2
, (10)

ρgi =
dgi

dt
− b2

i
r

s2
i +σki. (11)

Lemma 1 ki = 0 is the unique solution to the algebraic

Riccati equation (9) such that −µ− b2
i
r ki− ρ

2 < 0.

Proof. By solving (9), we have ki = 0 or ki =− r
b2

i
(ρ +2µ).

If ki = 0, −µ − b2
i
r ki− ρ

2 = −µ − ρ

2 < 0. Otherwise, when

ki =− r
b2

i
(ρ +2µ), −µ− b2

i
r ki− ρ

2 = ρ

2 +µ > 0. 2

Remark 2 The inequality in Lemma 1 specifies a stability
condition for the closed-loop system which must be satisfied
by the solution of ki.

Theorem 1 For the optimal control problem in (2), (5) and
(6), assume that q̄ ∈Cρ/2([0,∞),R) is given. Then we have
1) there exists a unique solution si ∈Cρ/2([0,∞),R) to (10);
2) the optimal control law is uniquely given by ūi =− bi

r si;
3) there exists a unique solution gi ∈Cρ([0,∞),R) to (11),
and the optimal cost is given by

Vi(0,qi(0)) = 2si(0)q0 +gi(0).

Proof. Note that by (5), q̄ ∈ Cρ/2([0,∞),R) implies p̄ ∈
Cρ/2([0,∞),R). We can prove parts 1) and 3) by show-
ing that si(0) and gi(0) are uniquely determined from the
fact si ∈Cρ/2([0,∞),R) and gi ∈Cρ([0,∞),R), respectively
(see e.g., [17], [19]). To show part 2) we first obtain a
prior integral estimate of qi (see (12)) and then use the
completion of squares technique (see e.g., [20], [45]). By
Lemma A.1, E

∫
∞

0 e−ρtu2
i dt < ∞ implies E

∫
∞

0 e−ρtq2
i dt < ∞,

which further gives that J̄i is well defined to be finite since
p̄ ∈Cρ/2([0,∞),R). By Proposition A.1, J̄i(ui)< ∞ leads to
E
∫

∞

0 e−ρtu2
i dt < ∞ which further implies

E
∫

∞

0
e−ρtq2

i dt < ∞. (12)

2

3.2 Control synthesis and analysis

Following the standard approach in mean field games [18],
[19], we construct the equation system as follows:

d p̄
dt

=α[β − p̄− q̄]. (13)

ρs =
ds
dt
−µs+

c− p̄
2

(14)

dq̄θ

dt
=−µ q̄θ −

θ 2

r
s (15)

q̄ =
∫
R

q̄θ dF(θ). (16)

In the above, θ is a continuum parameter. q̄θ is regarded
as the expectation of the state given the parameter θ in
the individual dynamics. The last equation is due to the
consistency requirement for the mean field approximation.
p(0) = p0,qθ (0) = q0 and s(0) is to be determined. For
further analysis, we make the following assumption.

A4) There exists a solution (s, q̄θ ,θ ∈ R) to (13)-(16) such
that for each θ ∈ R, both s and q̄θ are within Cb([0,∞),R).

Some sufficient conditions for ensuring A4) may be obtained
by using the fixed-point methods similar to those in [18],
[19].

Proposition 1 If

1
2rµ(ρ +µ)

∫
Θ

θ
2dF(θ)< 1,

then A4) holds. 2
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Proof. By (13)-(15), we have

p̄(t) =p̄(0)e−αt +
∫ t

0
e−α(t−τ)[αβ −α q̄(τ)]dτ,

s(t) =
∫

∞

t
e(ρ+µ)(t−τ)

[ p̄(τ)− c
2

]
dτ,

q̄θ (t) =q̄θ (0)+
∫ t

0
e−µ(t−τ)

[
− θ 2

r
s(τ)

]
dτ.

Thus,

q̄(t) =
∫

Θ

q̄θ (0)dF(θ)+
∫

Θ

dF(θ)
∫ t

0
e−µ(t−τ1)

·
{
− θ 2

r

∫
∞

τ1

e(ρ+µ)(τ1−τ2)(A q̄)(τ2)dτ2

}
dτ1

∆
= (T q̄)(t),

where (A q̄)(τ2) = 1
2 p̄(0)e−ατ2 + 1

2
∫ τ2

0 e−α(τ2−τ3)(αβ −
α q̄(τ3))dτ3 − c

2 . It can be verified that T is a map
from the Banach space Cb([0,∞),R) to itself. For any
q̄1, q̄2 ∈Cb([0,∞),R),

|(T q̄1−T q̄2)(t)|

≤ ‖q̄1− q̄2‖∞

∫
Θ

∫ t

0
e−µ(t−τ1)

{
θ 2

r

∫
∞

τ1

e(ρ+µ)(τ1−τ2)

·
[1

2

∫
τ2

0
e−α(τ2−τ3)αdτ3

]
dτ2

}
dτ1dF(θ)

≤ ‖q̄1− q̄2‖∞

∫
Θ

θ 2

2rµ(ρ +µ)
dF(θ).

It follows that T is a contraction and hence has a unique
fixed point q̄ ∈Cb([0,∞),R). 2

3.2.1 The case of uniform agents

We now consider the case of uniform agents, i.e., bi ≡ b,
i = 1, · · · ,N. In this case, (13)-(16) reduce to the following
equation:

d
dt


p̄

q̄

s

=


−α −α 0

0 −µ − b2

r
1
2 0 ρ +µ




p̄

q̄

s

+


αβ

0

− c
2

 .
Let

M =


−α −α 0

0 −µ − b2

r
1
2 0 ρ +µ

 , b̄ =


αβ

0

− c
2

 .
Then

d
dt


p̄

q̄

s

= M


p̄

q̄

s

+ b̄. (17)

By direct computations, we have

|M|= αµ(ρ +µ)+
αb2

2r

and the equation Mz+ b̄ = 0 has the solution

z =
[2rβ µ(ρ +µ)+b2c

2rµ(ρ +µ)+b2 ,
b2(β − c)

2rµ(ρ +µ)+b2 ,

rµ(c−β )

2rµ(ρ +µ)+b2

]T
.

Note that

|λ I−M|=(λ +α)(λ +µ)[λ − (ρ +µ)]− αb2

2r
=λ

3 +(α−ρ)λ 2− (µ2 +ρµ +αρ)λ

−αµ(ρ +µ)− αb2

2r
. (18)

In what follows, we use Routh’s stability criterion [8] to
determine the number of roots of |λ I−M|= 0 with negative
real parts. The first column of the Routh array for |λ I−M| is
−1, ρ−α, µ2 +ρµ +αρ + 2rαµ(ρ+µ)+αb2

2r(ρ−α) , αµ(ρ +µ)+

αb2

2r . It can be verified that the first column of the Routh array
always has a sign change. By Routh’s stability criterion,
(18) has a root with a positive real part, and two roots with
negative real parts.

Let λ1,λ2 be two roots of (18) with negative real parts,
and ξ1,ξ2 be the corresponding (generalized) complex
eigenvectors. Let [ ˜̄p, ˜̄q, s̃]T = [p̄, q̄,s]T − z. The solution
to equation (17) given by z + eMt [ ˜̄p(0), ˜̄q(0), s̃(0)]T is in
Cb([0,∞),R3) if and only if there exist constants a1,a2 such
that [ ˜̄p(0), ˜̄q(0), s̃(0)]T = a1ξ1 +a2ξ2. Indeed, suppose

[ ˜̄p(0), ˜̄q(0), s̃(0)]T = a1ξ1 +a2ξ2 +a3ξ3,

where λ3 is a root of (18) with a positive real part and ξ3 is
the corresponding complex eigenvector. The solution

z+ eMt [ ˜̄p(0), ˜̄q(0), s̃(0)]T = z+
3

∑
i=1

hi(t)eλitξi

is in Cb([0,∞),R3) if and only if a3 = 0, where hi(t) are
polynomials of t.

Denote ξ1 = [(ξ †
1 )

T ,ξ ‡
1 ]

T , ξ2 = [(ξ †
2 )

T ,ξ ‡
2 ]

T and z =

[(z†)T ,z‡]T , where ξ
‡
1 ,ξ

‡
2 ,z

‡ ∈ R. Then we have

a1ξ
†
1 +a2ξ

†
2 = [ ˜̄p(0), ˜̄q(0)]T . (19)

5



Note that [ ˜̄p(0), ˜̄q(0)]T = [p0,q0]
T −z† is given. There exists

a unique solution (a1,a2) to (19) if and only if ξ
†
1 and ξ

†
2

are linearly independent.

From the analysis above, we have the following result.

Proposition 2 (17) admits a unique solution (s, q̄θ ) such
that s and q̄θ are in Cb([0,∞),R) if and only if ξ

†
1 and ξ

†
2

are linearly independent. In this case, A4) holds. 2

Example 1 Take parameters as [α β µ bi σ ρ r] =
[1 10 0.15 1 0.2 0.6 1]. Let p(0) = 1, qi(0) ∼ N(2,0.2).
In this case, M has only two eigenvalues with negative
real parts −0.6875 + 0.3944i and −0.6875 − 0.3944i.
The corresponding eigenvectors are [−0.8557, 0.2674 +
0.3375i, 0.2768 + 0.0759i]T and [−0.8557, 0.2674 −
0.3375i, 0.2768−0.0759i]T , respectively. By (19), we have
a1 = 1.4429 + 7.8552i and a2 = 1.4429− 7.8552i. Then
(17) admits a unique solution in Cb([0,∞),R3). However,

b2

2rµ(ρ+µ) = 4.444 > 1. The parameters in this example sat-
isfy the condition of Proposition 2, but not of Proposition 1.

3.3 ε-Nash equilibrium

Consider the system of N firms. Let the control strategy of
firm i be given by

ûi =−
bi

r
s, i = 1, · · · ,N, (20)

where s∈Cb([0,∞),R) is determined by the equation system
(13)-(16). After the strategy (20) is applied, the closed-loop
dynamics for firm i may be written as follows:

d p̂(t)
dt

=−α p̂(t)−α q̂(N)(t)+αβ , (21)

dq̂i(t) =−µ q̂i(t)dt− b2
i
r

s(t)dt +σdwi, i = 1, · · · ,N. (22)

Denote εN =
∣∣∣∫Θ

θ 2dFN(θ)−
∫

Θ
θ 2dF(θ)

∣∣∣.
Theorem 2 For the system (1)-(2), if assumptions A1)-A4)

hold, then the closed-loop system (21)-(22) satisfies

sup
t≥0,N≥1

{
E|p̂(t)|2 +E|q̂(N)(t)|2

}
≤C0, (23)

sup
t≥0

E
{
|p̂(t)− p̄(t)|2 + |q̂(N)(t)− q̄(t)|2

}
=O(ε2

N +1/N). (24)

Proof. By (22), it follows that

dq̂(N)(t) =
[
−µ q̂(N)(t)− 1

N

N

∑
i=1

b2
i
r

s(t)
]
dt +

1
N

N

∑
i=1

σdwi(t).

From this together with (21), we have[
d p̂

dq̂(N)

]
=

[
−α −α

0 −µ

][
p̂

q̂(N)

]
dt

−

 αβ

1
N ∑

N
i=1

b2
i
r s

dt +

[
0

1
N ∑

N
i=1 σdwi(t)

]
. (25)

By s ∈Cb([0,∞),R) and elementary linear SDE estimates,
we have

sup
t≥0,N≥1

{
E|p̂(t)|2 +E|q̂(N)(t)|2

}
≤C0.

Denote η = [p̂− p̄, q̂(N)− q̄]T . By (13), (15) and (25), we
have

dη = Gηdt +

[
0

∆s

]
dt +

[
0

1
N ∑

N
i=1 σdwi

]
,

where

G =

[
−α −α

0 −µ

]
, (26)

∆s =
∫

Θ

θ 2

r
sdF(θ)− 1

N

N

∑
i=1

b2
i
r

s.

By solving this linear SDE and using the fact that G is
Hurwitz, we can show

sup
t≥0

E‖η(t)‖2 = O(ε2
N +

1
N
),

which leads to (24). 2

By the above theorem, we can obtain the next corollary.

Corollary 1 For the system (1)-(2), if assumptions A1)-A4)
hold, then the closed-loop system (21)-(22) satisfies

sup
t≥0,N≥1

E
∫

∞

0
e−ρt{|p̂(t)|2 + |q̂(N)(t)|2

}
dt ≤C0,

E
∫

∞

0
e−ρt{|p̂(t)− p̄(t)|2 + |q̂(N)(t)− q̄(t)|2

}
dt

=O(ε2
N +1/N).

We are now in a position to show an asymptotic Nash equi-
librium property. Denote

Uc =
{

ui : ui(t) is adapted to σ{∪N
j=1F

j
t },

E
∫

∞

0
e−ρtu2

i (t)dt < ∞

}
.

û−i =(û1, · · · , ûi−1, ûi+1, · · · , ûN).
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Theorem 3 For the problem (1)-(2), assume that A1)-A4)
hold. Then the set of strategies (û1, · · · , ûN) given by (20) is
an ε-Nash equilibrium, i.e.,

Ji(ûi, û−i)− ε ≤ inf
ui∈Uc

Ji(ui, û−i)≤ Ji(ûi, û−i), (27)

where ε = O(εN + 1√
N
).

Proof. See Appendix A. 2

4 Social Solutions to Output Adjustment

We first construct an auxiliary optimal control problem by
examining the social cost variation due to the control pertur-
bation of a single agent. Then, by mean field approximations
we design a set of decentralized strategies which is shown
to have asymptotic social optimality.

4.1 An auxiliary optimal control problem

We now provide a property of the social optimum problem
which implies that J(N)

soc has a minimizer.

Lemma 2 J(N)
soc (u) is coercive with respect to (u1, · · · ,uN),

i.e., there exist constants C2 > 0 and C3 > 0 such that

J(N)
soc (u)≥

C2

N
E
∫

∞

0
e−ρt

N

∑
i=1

u2
i dt−C3.

Proof. From Lemma B.2, we can get the lemma immediately.
2

This lemma ensures the existence of a centralized optimal
solution to the social optimum problem in (1)-(2) and (4)
(see [27]).

We now derive an auxiliary optimal control problem from the
original social optimum problem by perturbing the strategy
of a fixed agent. Denote the control problem (P1):

d p
dt

=−α p− α

N
qi−α q̂(N)

−i +αβ ,

dqi =−µqidt +biuidt +σdwi,

dvi

dt
=−αvi−αqi, vi(0) = 0,

J∗i (ui) =E
∫

∞

0
e−ρt

[
(c− p)qi− viq̂

(N)
−i + ru2

i

]
dt,

where q̂(N)
−i = 1

N ∑
N
j=1, j 6=i q̂ j and û−i is given.

Lemma 3 If û = (û1, . . . , ûN) minimizes J(N)
soc where each

ûi ∈Uc, then ûi is necessarily the optimal strategy of Prob-
lem (P1).

Proof. It follows from (3) that

J(N)
soc =

1
N

N

∑
i=1

Ji(û1, · · · , ûi−1,ui, ûi+1, · · · , ûN)

=
1
N

E
∫

∞

0
e−ρt(Yi +Y ′i )dt,

where

Yi = (c− p)qi− p
N

∑
j=1, j 6=i

q̂ j + ru2
i ,

Y ′i = c
N

∑
j=1, j 6=i

q̂ j +
N

∑
j=1, j 6=i

rû2
j .

By (1),

p(t) =e−αt p(0)+
∫ t

0
e−α(t−τ)(αβ −α q̂(N)

−i )dτ

− α

N

∫ t

0
e−α(t−τ)qidτ.

Thus, Yi = Zi +Z′i where

Zi = (c− p)qi +α

∫ t

0
e−α(t−τ)qidτ · q̂(N)

−i + ru2
i ,

Z′i =−
[
e−αt p(0)+

∫ t

0
e−α(t−τ)(αβ −α q̂(N)

−i )dτ

] N

∑
j=1, j 6=i

q̂ j.

Note that J(N)
soc = 1

N E
∫

∞

0 e−ρt(Zi +Z′i +Y ′i )dt, where neither

Z′i nor Y ′i changes with ui. Thus, for agent i minimizing J(N)
soc

is equivalent to minimizing E
∫

∞

0 e−ρtZidt, which in turn is
equal to J∗i (ui). 2

4.2 Mean field approximation

To approximate Problem (P1) for large N, we construct the
auxiliary limiting optimal control problem (P2):

d p̄

dqi

dvi

=


−α 0 0

0 −µ 0

0 −α −α




p̄

qi

vi

dt +


0

bi

0

uidt

+


αβ −α q̄

0

0

dt +


0

1

0

dwi,


p̄(0)

qi(0)

vi(0)

=


p0

qi(0)

0

 (28)

with cost function

J̄∗i (ui) = E
∫

∞

0
e−ρt [(c− p̄)qi− q̄vi + ru2

i ]dt. (29)
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Here q̄ ∈Cρ/2([0,∞),R) is a deterministic function, which
is an approximation of q(N) for large N.

For the system (28)-(29), we take p̄ as an exogenous signal.

Lemma 4 J̄∗i (ui) is strictly convex and coercive.

Proof. For the system (28)-(29), the state is (qi,vi); p̄ and q̄
are not dependent on the control ui. We can directly show
that J̄∗i (ui) is strictly convex in ui. Following the proof of
Proposition A.1, we can show that J̄∗i (ui) is coercive. 2

Let

A =

[
−µ 0

−α −α

]
, Bi =

[
bi

0

]
.

By Theorem 1, Lemma 4 and [27], Problem (P2) has the
unique optimal control given by

ui =−
1
r

BT
i š,

where š ∈Cρ/2([0,∞),R2) is determined from

ρ š =
dš
dt

+AT š+
1
2
[c− p̄,−q̄]T .

Let Bθ = [θ ,0]T . When θ = bi, we have Bθ =Bi, and yθ = yi.
yθ is regarded as the expectation of (qθ ,vθ )

T given the pa-
rameter θ in the individual dynamics. Following the stan-
dard approach in mean field control [19], [20], we construct
the equation system as follows:

d p̄
dt

=α[−p̄+β − q̄], (30)

ρ š =
dš
dt

+AT š+
1
2
[c− p̄,−q̄]T , (31)

dyθ

dt
=Ayθ −

1
r

Bθ BT
θ š, (32)

q̄ =[1,0]
∫

Θ

yθ dF(θ), (33)

where yθ (0) = [q0,0]T . For further analysis, we assume

A5) There exists a solution (š,yθ ,θ ∈ Θ) to (30)-(33) such
that for any θ ∈Θ, both š and yθ are within Cb([0,∞),R2).

For the case of uniform agents (bi ≡ b), the equation system
(30)-(33) reduces to

d p̄
dt

=α[β − p̄− q̄], (34)

ρ š =
dš
dt

+AT š+
1
2
[c− p̄,−q̄]T , (35)

dy
dt

=Ay− 1
r

BBT š, (36)

where p̄(0) = p0, y(0) = [q0,0]T and B = [b,0]T . Let

Ms =



−α 0 0 −α 0
1
2 ρ +µ α 0 0

0 0 ρ +α
1
2 0

0 − b2

r 0 −µ 0

0 0 0 −α −α


, (37)

b̄s =



αβ

− c
2

0

0

0


, ϕ =


p̄

š

y

 .

Then
dϕ

dt
= Msϕ + b̄s. (38)

By straightforward computation, we can show Msϕ + b̄s = 0
has a unique solution, denoted as zs. Furthermore, we have

|λ I−Ms|= (λ +α)×
[
λ

4−2ρλ
3

+(ρ2− (α +µ)ρ−α
2−µ

2)λ 2 +ρ[(α +µ)ρ +α
2 +µ

2]λ

+αµ(ρ +α)(ρ +µ)+
αb2

2r
(ρ +2α)

]
.

By Routh’s stability criterion [8], we obtain that |λ I−Ms|=
0 has two roots with positive real parts, and three roots with
negative real parts.

Let λ̌1, λ̌2, λ̌3 be two roots of |λ I−Ms| = 0 with negative
real parts, and ζ1,ζ2,ζ3 be the corresponding (generalized)
complex eigenvectors. Let ϕ̃(0) = [ ˜̄pT (0), ˜̌sT (0), ỹT (0)]T =
ϕ(0) − zs. The solution to equation (38) given by
zs + eMst ϕ̃(0) is in Cb([0,∞),R5) if and only if there exist
constants ǎ1, ǎ2, ǎ3 such that ϕ̃(0) = ǎ1ζ1 + ǎ2ζ2 + ǎ3ζ3.

Denote ζi = [(ζ †
i )

T ,(ζ ‡
i )

T ,(ζ §
i )

T ]T and ϑi = [(ζ †
i )

T ,(ζ §
i )

T ]T ,
where ζ

†
i ∈ R and ζ

‡
i ,ζ

§
i ∈ R2, i = 1,2,3. Then we have

ǎ1ϑ1 + ǎ2ϑ2 + ǎ3ϑ3 = [ ˜̄p(0), ỹ(0)]T . (39)

Note that [ ˜̄p(0), ỹ(0)]T is given. There exists a unique so-
lution (ǎ1, ǎ2, ǎ3) to (39) if and only if ϑ1, ϑ2 and ϑ3 are
linearly independent.

From the analysis above, we have the following result.

Proposition 3 A5) holds if (39) admits a solution. In par-
ticular, (34)-(36) admits a unique solution (š,yθ ) such that
š and yθ are within Cb([0,∞),R2) if and only if ϑ1, ϑ2 and
ϑ3 are linearly independent. 2
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4.3 Asymptotic optimality

Consider the system of N firms. Let the control strategy of
firm i be given by

ǔi =−
1
r

BT
i š, i = 1, · · · ,N, (40)

where š ∈Cb([0,∞),R2) is determined by the equation sys-
tem (30)-(33). After the strategy (40) is applied, the closed-
loop dynamics for firm i may be written as follows:

d p̌
dt

=−α p̌−α q̌(N)+αβ , (41)

dq̌i =−µ q̌i−
[b2

i
r
,0
]
šdt +σdwi, (42)

dv̌i

dt
=−α q̌i−α v̌i, (43)

where p̌(0) = p0, q̌i(0) = qi(0), and v̌i(0) = 0.

Theorem 4 Assume that A1)-A3) and A5) hold. The set of
strategies {ǔi =− 1

r BT
i š, i = 1, · · · ,N} has asymptotic social

optimality, i.e.,∣∣∣∣J(N)
soc (ǔ)− inf

ui∈Uc
J(N)

soc (u)
∣∣∣∣= O(

1√
N
+ εN).

Proof. See Appendix B. 2

We now give a closed-form expression of the asymptotic
social cost.

Theorem 5 Assume that A1)-A3) and A5) hold. Then the
asymptotic optimal social cost is given by

lim
N→∞

inf
ui∈Uc

J(N)
soc (u) =2š1(0)q0 +

∫
R

ǧθ (0)dF(θ)

+
∫

∞

0
e−ρt q̄(t)v̄(t)dt,

where š1
∆
= [1,0]š, v̄(t) = −α

∫ t
0 e−α(t−τ)q̄(τ)dτ and ǧi ∈

Cb([0,∞),R) satisfies

ρ ǧi =
dǧi

dt
− b2

i
r

š2
1.

Proof. From Lemma B.1 and Schwarz’s inequality, it follows
that

max
1≤i≤N

∣∣∣∣Ji(ǔ)−E
∫

∞

0
e−ρt [(c− p̄)q̌i + rǔ2

i ]dt
∣∣∣∣=O(εN +

1√
N
).

Let J∗i (ǔi) be the optimal cost of Problem (P2). By Theorem
1, we have

1
N

N

∑
i=1

E
∫

∞

0
e−ρt [(c− p̄)q̌i + rǔ2

i ]dt

=
1
N

N

∑
i=1

J∗i (ǔi)+
1
N

N

∑
i=1

E
∫

∞

0
e−ρt q̄v̌idt

=
1
N

N

∑
i=1

{
2š(0)[q0,0]T + ǧi(0)

−αE
∫

∞

0
e−ρt q̄(t)

∫ t

0
e−ρτ q̌i(τ)dτdt

}
=2š1(0)q0 +

1
N

N

∑
i=1

ǧi(0)+E
∫

∞

0
e−ρt q̄(t)v̌(N)(t)dt, (44)

where
v̌i(t) =−α

∫ t

0
e−ρτ q̌i(τ)dτ,

and ǧi ∈Cb([0,∞),R) satisfies

ρ ǧi =
dǧi

dt
− b2

i
r

š2
1.

By Schwarz’s inequality and Lemma B.1,∣∣∣∣E ∫ ∞

0
e−ρt q̄(t)|v̌(N)(t)− v̄(t)|dt

∣∣∣∣2
≤E

∫
∞

0
e−ρt |q̄(t)|2dt ·E

∫
∞

0
e−ρt |v̌(N)(t)− v̄(t)|2dt

≤C(
1
N
+ ε

2
N). (45)

Notice that ǧθ (0) is continuous in θ . By the weak conver-
gence of FN to F , we obtain

lim
N→∞

1
N

N

∑
i=1

ǧi(0) =
∫
R

ǧθ (0)dF(θ),

which together with (44) and (45) completes the proof. 2

5 Numerical Simulation

In this section, we provide a numerical example to illustrate
the evolution of firms’ outputs and compare prices, aver-
age outputs and optimal costs under two different solution
frameworks: the mean field game and social optimization.

Take [α, β , µ, bi, σ , ρ r] = [1, 10, 0.15, 1, 0.2, 0.6 1].
Let p(0) = 1, and qi(0)∼ N(2,0.2). By (19), we have a1 =
1.4429+ 7.8552i and a2 = 1.4429− 7.8552i; by (39), we
get ǎ1 = 9, ǎ2 = −3.5906− 6.5046i and ǎ3 = −3.5906+
6.5046i. Thus, we can write the exact expressions of s and š.

It can be verified that A1)-A5) hold. Figs. 1 and 2 show the
curves of output levels of firms within the two frameworks,
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respectively. They remain positive, although random fluctu-
ations appear and there are greater fluctuations in the social
optimum framework. After the transient phase, the output
levels of the firms behave similarly.

0 10 20 30 40 50
t

1

2

3

4

5

6

7

8

q
i,i=

1,
...

N

Fig. 1: Curves of qi, i = 1, · · · ,20 in the game solution

0 10 20 30 40 50
t

1

2

3

4

5

6

q
i, i

=
1,

...
,2

0

Fig. 2: Curves of qi, i = 1, · · · ,20 in the social optimum solution

Fig. 3 depicts the curves of p and p̄ within game and social
frameworks, when the total number of agents is 50. Fig. 4
shows the curves of q(50) and q(∞) within two frameworks,
where q(∞) = q̄ is the average output of firms in the infinite
population case. It can be seen that the curves of p and p̄
as well as q(50) and q(∞) coincide well, which illustrates the
accuracy of the mean field approximation. From the game
framework to the social framework, the price gets a signifi-
cant increase, and the average of outputs becomes lower.

0 5 10 15 20 25 30 35 40 45 50
1

2

3

4

5

6

7

t

 

 

p̄ in social framework

p in social framework

p in game framework

p̄ in game framework

Fig. 3: Curves of p and p̄ in the game and social optimum,
respectively
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q(50) in social framework

q̄ in social framework

q(50) in game framework

q̄ in game framework

Fig. 4: Curves of q(50), q(∞) in the game and social optimum,
respectively

By Theorem 1, we get that the asymptotic Nash cost is given
by

J(∞)
Nash

∆
= lim

N→∞
Ji(ûi, û−i) = 2s(0)q0 +g(0),

where g(0) = −
∫

∞

0 e−ρts2dt. Note that s = z‡ +a1eλ1tξ
‡
1 +

a2eλ2tξ
‡
2 . Then

J(∞)
Nash =2s(0)q0−

b2

r

∫
∞

0
e−ρts2(t)dt

=2q0(z‡ +a1ξ
‡
1 +a2ξ

‡
2 )

− b2

r

∫
∞

0
e−ρt(z‡ +a1eλ1t

ξ
‡
1 +a2eλ2t

ξ
‡
2 )

2dt

=2q0(z‡ +a1ξ
‡
1 +a2ξ

‡
2 )−

b2

r

[ (z‡)2

ρ
+

a2
1(ξ

‡
1 )

2

ρ−2λ1

+
a2

2(ξ
‡
2 )

2

ρ−2λ2
+

2a1z‡ξ
‡
1

ρ−λ1
+

2a2z‡ξ
‡
2

ρ−λ2
+

2a1a2ξ
‡
1 ξ

‡
2

ρ−λ1−λ2

]
.
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α 0.1 0.2 0.5 1 5

J(∞)
Nash -0.31 -2.09 -5.47 -7.95 -11.11

J(∞)
soc -0.78 -3.32 -8.59 -12.72 -18.02

Tab. 1: Optimal costs under game and social solutions

By Theorem 5,

J(∞)
soc

∆
= lim

N→∞
J(N)

soc (ǔ) =2š1(0)q0 + ǧ(0)

+
∫

∞

0
e−ρt q̄(t)v̄(t)dt,

where š1 = [1,0]š and ǧ(0) = −
∫

∞

0 e−ρt š2
1dt. Let zs =

[z(1)s ,z(2)s ,z(3)s ,z(4)s ,z(5)s ]T and

ζi = [ζ
(1)
i ,ζ

(2)
i ,ζ

(3)
i ,ζ

(4)
i ,ζ

(5)
i ]T , i = 1,2,3.

From (37), we obtain λ̌1 =−α and ζ1 = [0,0,0,0,1]T , which
implies ζ

(2)
1 = 0, ζ

(4)
1 = 0, ζ

(5)
1 = 1. Thus,

J(∞)
soc

=2q0(z
(2)
s + ǎ2ζ

(2)
2 + ǎ3ζ

(2)
3 )− b2

r

[ (z(2)s )2

ρ
+

ǎ2
2(ζ

(2)
2 )2

ρ−2λ̌2

+
ǎ2

3(ζ
(2)
3 )2

ρ−2λ̌3
+

2ǎ2z(2)s ζ
(2)
2

ρ− λ̌2
+

2ǎ3z(2)s ζ
(2)
3

ρ− λ̌3
+

2ǎ2ǎ3ζ
(2)
2 ζ

(2)
3

ρ− λ̌2− λ̌3

]
+
[ z(4)s z(5)s

ρ
+

3

∑
i=1

ǎiz
(4)
s ζ

(5)
i

ρ− λ̌i
+

ǎ2ζ
(4)
2 z(5)s

ρ− λ̌2
+

3

∑
i=1

ǎ2ǎiζ
(4)
2 ζ

(5)
i

ρ− λ̌2− λ̌i

+
ǎ3ζ

(4)
3 z(5)s

ρ− λ̌3
+

3

∑
i=1

ǎ3ǎiζ
(4)
3 ζ

(5)
i

ρ− λ̌3− λ̌i

]
.

The comparison of the two costs is shown in Tab. 1 and
Fig. 5. It can be seen that the asymptotic Nash cost J(∞)

Nash is

greater than the optimal social cost J(∞)
soc , and more so when

α increases. This illustrates that the collusion of firms leads
to rise in the price and drop in outputs and costs [48, p. 467].

0 1 2 3 4 5
−20

−15

−10

−5

0

α

 

 
Nash cost JNash

(∞)

Social cost Jsoc
(∞)

Fig. 5: Curves of J(∞)
Nash and J(∞)

soc with respect to α

6 Concluding Remarks

This paper studies dynamic production output optimization
with sticky prices and adjustment costs based on the mean
field control methodology. By consistent mean field approx-
imations, we first present the Nash solution for noncooper-
ative firms, and then give the social solution, where agents
cooperate to optimize the social cost. The two sets of decen-
tralized strategies are shown to approximate Nash equilib-
ria and social optima, respectively. For future work, it is of
interest to consider dynamic production output competition
with noisy sticky prices.
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Appendix A: Proof of Theorem 3

Proposition A.1 Under A1)-A3), J̄i(ui) is coercive in ui,
i.e., there exists a constant C depending on p0, q0 and a
constant ε0 > 0 such that

J̄i(ui)≥ ε0‖ui‖2
ρ −C, (A.1)

where ‖ui‖2
ρ = E

∫
∞

0 e−ρt |ui(t)|2dt.

Proof. From (2),

qi(t) =qi(0)e−µt +
∫ t

0
e−µ(t−τ)

[
biui(τ)dτ +σdwi(τ)

]
.
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Thus, by Cauchys inequality and A3),

E
∫

∞

0
e−ρt |qi(t)|dt

≤C+E
∫

∞

0
e−(ρ+µ)t

∫ t

0
eµτ |biui(τ)|dτdt

=C+E
∫

∞

0
eµτ |biui(τ)|

∫
∞

τ

e−(ρ+µ)tdtdτ

=C+
1

ρ +µ
E
∫

∞

0
e−ρτ |biui(τ)|dτ

≤C+δ1E
∫

∞

0
e−ρτ |ui(τ)|2dτ, (A.2)

where δ1 is a sufficiently small positive number. Note
q̄ ∈Cb([0,∞),R). By (5), it follows that p̄ ∈Cb([0,∞),R).
From this together with (A.2) and (6), we obtain that
there exists a constant ε0 > 0 such that (A.1) holds.

2

Lemma A.1 For any i = 1, · · · ,N, there exists a constant
C such that

‖qi‖2
ρ ≤C‖ui‖2

ρ +C. (A.3)

Proof. Denote qi,ρ = e−
ρ

2 qi and ui,ρ = e−
ρ

2 ui. By Ito’s for-
mula, we have

dqi,ρ =−(µ +
ρ

2
)qi,ρ dt +ui,ρ dt + e−

ρ

2 dwi.

From this it follows that

E
∫

∞

0
|qi,ρ(t)|2dt ≤C+E

∫
∞

0

∣∣∣∣∫ t

0
e−(µ+

ρ

2 )(t−τ)ui,ρ(τ)dτ

∣∣∣∣2 dt.

By the argument in the proof of Lemma A.1 in [17], we get
(A.3). 2

Lemma A.2 For the problem (1)-(2), assume that A1)-A4)
hold. For ui ∈ Uc, if J(ui, û−i) ≤ C1, then there exist an
integer N0 and a constant C2 such that for all N ≥ N0,
‖ui‖2

ρ ≤C2.

Proof. For ui ∈Uc, we have

Ji(ui, û−i) = J̄i(ui)−E
∫

∞

0
e−ρt [p(t)− p̄(t)]qi(t)dt

≥ J̄i(ui)−
[
E
∫

∞

0
e−ρt |p(t)− p̄(t)|2dt

·E
∫

∞

0
e−ρt |qi(t)|2dt

]1/2

∆
= J̄i(ui)− I1. (A.4)

By Proposition A.1, J̄i(ui) is coercive, i.e.,

J̄i(ui)≥ ε0‖ui‖2
ρ −C. (A.5)

We now estimate I1. Notice p(t)− p̄(t) = p(t)− p̂(t) +
p̂(t)− p̄(t). We have

d

[
p− p̂

q(N)− q̂(N)

]
= G

[
p− p̂

q(N)− q̂(N)

]
dt +

[
0

bi
N (ui− bis

r )dt

]
,

where G is defined in (26). Noticing that G is Hurwitz, by
basic estimates as in the proof of in Lemma A.1, we obtain∫

∞

0
e−ρt |p(t)− p̂(t)|2dt ≤ C

N2 +
C
N2 ‖ui‖2

ρ . (A.6)

From this together with Theorem 2, it follows that

E
∫

∞

0
e−ρt |p(t)− p̄(t)|2dt ≤C+

C
N2 ‖ui‖2

ρ ,

which with Lemma A.1 implies

|I1| ≤C+
C
N
‖ui‖2

ρ .

Combining this together with (A.4) and (A.5) yields

C1 ≥ Ji(ui, û−i)≥ (ε0−
C
N
)‖ui‖2

ρ −2C.

Let N0 = inf{m ∈ Z|m > C/ε0}. From this inequality, we
obtain that there exists a constant C2 such that for all N ≥N0,

‖ui‖2
ρ ≤

N(C1 +2C)

Nε0−C
≤C2.

2

Lemma A.3 Under A1)-A4),

|J̄i(ûi)− Ji(ûi, û−i)|= O(εN +
1√
N
).

Proof. By Schwarz’s inequality,

|J̄i(ûi)− Ji(ûi, û−i)|

=
∫

∞

0
e−ρt [p̂(t)q̂i(t)− p̄(t)q̂i(t)]dt

≤
[∫ ∞

0
e−ρt |q̂i(t)|2dt ·

∫
∞

0
e−ρt |p̂(t)− p̄(t))|2dt

] 1
2

≤O(εN +
1√
N
),

where the last inequality follows from Theorem 2. 2

Proof of Theorem 3. It suffices to show the first inequality in
(27) under Ji(ui, û−i)≤C1. By Lemma A.2, Ji(ui, û−i)≤C1
implies

‖ui‖2
ρ ≤C2. (A.7)
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It follows from (A.4) that

Ji(ui, û−i) = J̄i(ui)− I1, (A.8)

where

I1 =
[
E
∫

∞

0
e−ρt |p(t)− p̄(t)|2dt ·E

∫
∞

0
e−ρt |qi(t)|2dt

]1/2
.

By (A.6), (A.7) and Theorem 2,

E
∫

∞

0
e−ρt |p(t)− p̄(t)|2dt ≤ O(ε2

N +
1
N
),

which with Lemma A.1 further implies |I1| ≤ O(εN + 1√
N
).

Thus, by (A.8) it follows that

Ji(ui, û−i) = J̄i(ui)−O(εN +
1√
N
)

≥ J̄i(ûi)−O(εN +
1√
N
). (A.9)

On the other hand, by Lemma A.3 we have

J̄i(ûi)≥ Ji(ûi, û−i)−O(εN +
1√
N
). (A.10)

Thus, the first inequality in (27) follows from (A.9) and
(A.10). 2

Appendix B: Proof of Theorem 4

Lemma B.1 Assume that A1)-A3) and A5) hold. For the
set of strategies {ǔi, i = 1, · · · ,N}, we have

sup
t≥0,N≥1

E
{
|p̌(t)|2 + |q̌i(t)|2 + |q̌(N)(t)|2 + |v̌i(t)|2

}
≤C0, (B.1)

sup
t≥0

E
{
|p̌(t)− p̄(t)|2 + |q̌(N)(t)− q̄(t)|2 + |v̌(N)(t)− v̄(t)|2

}
= O(ε2

N +1/N), (B.2)

where [q̄, v̄]T =
∫

Θ
yθ dF(θ) is given by (30)-(33), and v̌(N) =

1
N ∑

N
i=1 v̌i.

Proof. It follows from (42) and (43) that[
dq̌i

dv̌i

]
= A

[
q̌i

v̌i

]
dt− 1

r
BiBT

i šdt +

[
dwi

0

]
.

Notice that A is Hurwitz and š ∈Cb([0,∞),R2). By elemen-
tary linear estimates and A3) we can show that there exists
a constant C0 independent of (i,N) such that

sup
t≥0

E
{
|q̌i(t)|2 + |v̌i(t)|2

}
≤C0,

which further gives supt≥0 E
{
|q̌(N)(t)|2

}
≤C0. This together

with (41) leads to (B.1). By (42) and (43), we have[
dq̌(N)

dv̌(N)

]
=A

[
q̌(N)

v̌(N)

]
dt− 1

Nr

N

∑
i=1

BiBT
i šdt

+

[
σ

N ∑
N
i=1 dwi

0

]
. (B.3)

Denote ξ = [q̌(N)− q̄, v̌(N)− v̄]T . It follows from (30) and
(B.3) that

dξ =Aξ dt +

[
1
r

∫
Θ

Bθ BT
θ šdF(θ)− 1

Nr

N

∑
i=1

BiBT
i š

]
dt

+

[
σ

N ∑
N
i=1 dwi

0

]
,

where ξ (0) = [q̌(N)(0)−q0,0]T . Since A is Hurwitz,

E|q̌(N)(t)− q̄(t)|2 +E|v̌(N)(t)− v̄(t)|2

=O(ε2
N +1/N). (B.4)

By (30) and (41) we have

d(p̌− p̄)
dt

=−α(p̌− p̄)−α(q̌(N)− q̄),

p̌(0) = p̄(0),

which leads to

p̌(t)− p̄(t) =−α

∫ t

0
e−α(t−τ)[q̌(N)(τ)− q̄(τ)]dτ.

This together with (B.4) gives (B.2). 2

Lemma B.2 There exist constants C1 > 0,C2 > 0 and C3 >
0 such that

J(N)
soc (u)≥C1

∫
∞

0
e−ρt p2dt +

C2

N

∫
∞

0
e−ρt

N

∑
i=1

u2
i dt−C3.

Proof. By A3), assume |bi| ≤ b̂, i = 1, · · · ,N. From (2), we
compute

∣∣∣q(N)(t)
∣∣∣≤∣∣∣q(N)(0)e−µt

∣∣∣+∫ t

0
e−µ(t−τ)

∣∣∣ 1
N

N

∑
i=1

biui(τ)
∣∣∣dτ

+

∣∣∣∣∣σN N

∑
i=1

∫ t

0
e−µ(t−τ)dwi(τ)

∣∣∣∣∣ .
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Thus, by Cauchy’s inequality,

E
∫

∞

0
e−ρt |q(N)|dt

≤C+E
∫

∞

0
e−(ρ+µ)t

∫ t

0
eµτ

∣∣∣ 1
N

N

∑
i=1

biui(τ)
∣∣∣dτdt

=C+E
∫

∞

0
eµτ

∣∣∣ 1
N

N

∑
i=1

biui(τ)
∣∣∣∫ ∞

τ

e−(ρ+µ)tdtdτ

=C+
1

ρ +µ
E
∫

∞

0
e−ρτ

∣∣∣ 1
N

N

∑
i=1

biui(τ)
∣∣∣dτ

≤C+δ1E
∫

∞

0
e−ρτ

∣∣∣ 1
N

N

∑
i=1

biui(τ)
∣∣∣2dτ

≤C+
δ1b̂2

N
E
∫

∞

0
e−ρτ

N

∑
i=1

u2
i (τ)dτ, (B.5)

where δ1 is a sufficiently small positive number. Note

p(t) = e−αt p(0)+
∫ t

0
e−α(t−τ)(−αq(N)+αβ )dτ.

From (B.5) we have

E
∫

∞

0
e−ρt |p(t)|dt

≤E
∫

∞

0
e−ρt

∣∣∣∣e−αt p(0)+
∫ t

0
e−α(t−τ)(−αq(N)+αβ )dτ

∣∣∣∣dt

≤C+αE
∫

∞

0
e−(ρ+α)t

∫ t

0
eατ |q(N)(τ)|dτdt

=C+
α

ρ +α
E
∫

∞

0
e−ρτ |q(N)(τ)|dτ

≤C+
αδ1b̂2

N(ρ +α)
E
∫

∞

0
e−ρτ

N

∑
i=1

u2
i (τ)dτ, (B.6)

where the fourth line is obtained by an exchange of order of
the integration.

Consider the system

d p
dt

=−α p−α ú, p(0) = p0

y =− p

ú =q(N)−β . (B.7)

By verifying the conditions in the positive real lemma (see
e.g., [25, Lemma 6.2]), we obtain that the transfer function of
the system (B.7) is positive real, which leads to the passivity
of (B.7). This implies that there exists a constant l > 0 such
that úy≥ V̇ (p) where V (p) ∆

= l p2, which further gives

E
∫

∞

0
e−ρt(−p)(q(N)−β )dt ≥ E

∫
∞

0
e−ρtd(l p2)

=lE
[
ρ

∫
∞

0
p2e−ρtdt− p2(0)

]
. (B.8)

From this together with (B.5) and (B.6), we have

J(N)
soc (u)

=E
∫

∞

0
e−ρt

[
(c− p)q(N)+

r
N

N

∑
i=1

u2
i (t)
]
dt

=E
∫

∞

0
e−ρt

[
(−p)(q(N)−β )−β p+ cq(N)+

r
N

N

∑
i=1

u2
i (t)
]
dt

≥lE
[
ρ

∫
∞

0
p2(t)e−ρtdt− p2(0)

]
+

1
N
(r− βαδ1b̂2

ρ +α
− cδ1b̂2)E

∫
∞

0
e−ρt

N

∑
i=1

u2
i (t)dt−C.

This completes the proof of the lemma. 2

Proof of Theorem 4. Notice infui∈Uc J(N)
soc (u)≤ J(N)(ǔ)≤C.

It suffices to consider all ui ∈Uc satisfying

J(N)
soc (u)≤ J(N)(ǔ)≤C.

By Lemma B.2,

E
∫

∞

0
e−ρt

(
|p|2 + 1

N

N

∑
i=1
|ui|2

)
dt < ∞. (B.9)

Let q̃i = qi− q̌i, p̃ = p− p̌, ṽi = vi− v̌i and

ũi = ui− ǔi = ui +
1
r
[bi,0]š.

By (1), (2) and (41)-(43) we have

dq̃i

dt
=−µ q̃i +biũi, (B.10)

d p̃
dt

=−α p̃−α q̃(N), (B.11)

dṽi

dt
=−α ṽi−α q̃i, (B.12)

where q̃(N) = 1
N ∑

N
i=1 q̃i, and q̃i(0) = p̃(0) = ṽi(0) = 0. De-

note ṽ(N) = 1
N ∑

N
i=1 ṽi. It follows from (B.12) that

dṽ(N)

dt
=−α ṽ(N)−α q̃(N), ṽ(N)(0) = 0.
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From this together with (B.11) we get ṽ(N) = p̃. We have

J(N)
soc (u)

=E
∫

∞

0
e−ρt

[
(c− p)q(N)+

1
N

N

∑
i=1

ru2
i

]
dt

=J(N)
soc (ǔ)+E

∫
∞

0
e−ρt

[
1
N

N

∑
i=1

rũ2
i − p̃q̃(N)

]
dt

+E
∫

∞

0
e−ρt

[
(c− p̌)q̃(N)− p̃q̌(N)− 1

N

N

∑
i=1

2ũiBT
i s

]
dt

∆
=J(N)

soc (ǔ)+ J̃(N)
soc (ũ)+ I(N). (B.13)

To complete the proof of the theorem, we will show
J(N)

soc (ũ)≥ 0 and |I(N)|= O( 1√
N
+ εN). For the system

d p̃
dt

=−α p̃−αu, p̃(0) = 0

y =−p̃

u = q̃(N),

by verifying conditions in the positive real lemma (see e.g.,
[25]), we get that the system is passive. This implies there
exists a constant l̃ > 0 such that

E
∫

∞

0
e−ρt(−p̃)q̃(N)dt ≥ l̃ρE

[∫ ∞

0
e−ρt p̃2dt

]
≥ 0, (B.14)

which with (B.13) leads to J̃(N)
soc (ũ)≥ 0. We have

I(N) =
∫

∞

0
e−ρt

[
(c− p̄)q̃(N)− p̃q̄− 1

N

N

∑
i=1

2ũiBT
i s

]
dt

+
∫

∞

0
e−ρt

[
(p̄− p̌)q̃(N)+ p̃(q̄− q̌(N))

]
dt

∆
=ζ1 +ζ2.

(B.15)
Applying Itô’s formula to e−ρt [q̃i, ṽi]š and using (31) and
(32), we obtain

− e−ρT E
{
[q̃i(T ), ṽi(T )]š(T )

}
=E

∫ T

0
e−ρt [(c− p̄)q̃i− ṽiq̄−2ũiBT

i š
]

dt.

Noting ṽ(N) = p̃, we get

ζ1 =− lim
T→∞

N

∑
i=1

e−ρT E
{
[q̃i(T ), ṽi(T )]š(T )

}
.

By (40) and (B.9), it follows that E|ũi(t)|2 =O(eρt). This to-
gether with (B.10) and (B.12) leads to E|q̃i(t)|2 =O(eρt) and
further gives E|ṽi(t)|2 =O(eρt). Noticing š∈Cb([0,∞),R2),

we have ζ1 = 0. As in the proof of Lemma A.1 in [17], we
use Jenson’s inequality to get that

E
∫

∞

0
e−ρt |q(N)|2dt

≤C+CE
∫

∞

1
e−ρt

[∫ t

0
e−µ(t−τ)

∣∣ 1
N

N

∑
i=1

biui(τ)
∣∣dτ

]2
dt

≤C+
C

µN(ρ +µ)
E
∫

∞

1
e−ρt

N

∑
i=1
|ui(t)|2dt. (B.16)

This together with (B.9) and (B.1) implies

E
∫

∞

0
e−ρt |q̃(N)|2dt < ∞.

By Schwarz’s inequality and Lemma B.1, we have∫
∞

0
e−ρt(p̄− p̌)q̃(N)dt = O(

1√
N
+ εN). (B.17)

Furthermore, it follows from Schwarz’s inequality, (B.9) and
Lemma B.1 that∫

∞

0
e−ρt p̃(q̄− q̌(N))dt = O(

1√
N
+ εN).

Thus, by (B.15) and (B.17) we have

|I(N)|= |ζ2|= O(
1√
N
+ εN).

This completes the proof. 2
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