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Abstract

We discuss the problem of robust representations of stable and pas-
sive transfer functions in particular coordinate systems, and focus in
particular on the so-called port-Hamiltonian representations. Such rep-
resentations are typically far from unique and the degrees of freedom
are related to the solution set of the so-called Kalman-Yakubovich-
Popov linear matrix inequality (LMI). In this paper we analyze ro-
bustness measures for the different possible representations and relate
it to quality functions defined in terms of the eigenvalues of the matrix
associated with the LMI. In particular, we look at the analytic center
of this LMI. From this, we then derive inequalities for the passivity
radius of the given model representation.

Keywords: port-Hamiltonian system, positive real system, stability radius,
passivity radius, linear matrix inequality, AMS Subject Classification:
93D09,93C05,49M15,37J25

1 Introduction

We consider realizations of linear dynamical systems that are variously char-
acterized as positive real, passive, or port-Hamiltonian. We restrict ourselves
to linear time-invariant systems represented as

ẋ = Ax+Bu with x(0) = 0,
y = Cx+Du,

(1)

∗Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA.

beattie@vt.edu. Supported by Einstein Foundation Berlin, through an Einstein Visiting

Fellowship.
†Institut für Mathematik MA 4-5, TU Berlin, Str. des 17. Juni 136, D-10623 Berlin,

FRG. mehrmann@math.tu-berlin.de. Supported by Einstein Foundation Berlin via the

Einstein Center ECMath and by Deutsche Forschungsgemeinschaft via Project A02 within

CRC 910 ‘Control of self-organized nonlinear systems’
‡Department of Mathematical Engineering, UCL, Louvain-La-Neuve, Belgium.

vandooren.p@gmail.com. and by Deutsche Forschungsgemeinschaft, through CRC 910

‘Control of self-organized nonlinear systems’.

1

http://arxiv.org/abs/1801.05018v2


where u : R → C
m, x : R → C

n, and y : R → C
m are vector-valued

functions denoting, respectively, the input, state, and output of the system.
The coefficient matrices A ∈ C

n×n, B ∈ C
n×m, C ∈ C

m×n, and D ∈ C
m×m

are constant. Real and complex n-vectors (n×m matrices) are denoted by
R
n, Cn (Rn×m, Cn×m), respectively. We refer to (1) concisely in terms of a

four-tuple of matrices describing the realization M := {A,B,C,D}.
Our principal focus is on the structure of passive systems and relation-

ships with positive-real transfer functions and port-Hamiltonian system rep-
resentations. A nice introduction to passive systems can be found in the
seminal papers of Willems ([26], [27], [28]), where a general notion of sys-
tem passivity is introduced and linked to related system-theoretic notions
such as positive realness and stability. Willems refers to the earlier works
of Kalman [14], Popov [22], and Yakubovich [29], where versions of what
are now called Kalman-Yakubovich-Popov (KYP) conditions were derived.
Renewed interest in these ideas came from the study of port-Hamiltonian
(pH) systems, which may be viewed as particular parameterizations of pas-
sive systems that arise from certain energy-based modeling frameworks (see
e.g. [23], [24], [25]). The KYP conditions lead to characterizations of system
passivity through the solution set of an associated linear matrix inequality
(LMI). The convexity of this solution set has led to extensive use of convex
optimization techniques in systems and control theory (see e.g. [4], [19]).

The solution set of the KYP-LMI leads to a natural parametrization of
families of pH realizations for a given passive system. With this observation,
it is not surprising that some pH realizations of a given system reflect well the
underlying robustness of passivity to system perturbations and that some
pH realizations will do this better than others. Our main result shows that
the analytic center of certain barrier functions associated with the KYP-
LMI leads to favorable pH realizations in this sense; we derive computable
bounds for the passivity radii for these realizations.

The paper is organized as follows. In Section 2, we recall the KYP
conditions and link the solution set of the KYP-LMI to different system
realizations that reflect passivity. In Section 3 we review some basic con-
cepts in convex analysis and introduce the concept of an analytic center
associated with a barrier function for the KYP-LMI. In Section 4 we define
the passivity radius for a model realization M, measuring its robustness to
system perturbations that may lead to a loss of passivity. We show that the
analytic center of the KYP-LMI yields a model representation with good
robustness properties. In Section 5 we consider other measures that could
also serve as criteria for robustness of model passivity. In Section 6 we illus-
trate our analytic results with a few numerical examples. We conclude with
Section 7, offering also some points for further research.
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2 Positive-realness, passivity, and

port-Hamiltonian systems

We restrict ourselves to linear time-invariant systems as in (1) which aremin-
imal, that is, the pair (A,B) is controllable (for all s ∈ C, rank [ sI −A B ] =
n ), and the pair (A,C) is observable ((AH, CH) is controllable). Here, the
Hermitian (or conjugate) transpose (transpose) of a vector or matrix V is
denoted by V H (V mathsfT ). We also assume that rankB = rankC = m. We
require input/output port dimensions to be equal (m) and for convenience
we assume that the system is initially in a quiescent state, x(0) = 0. By
applying the Laplace transform to (1) and eliminating the state, we obtain
the transfer function

T (s) := D + C(sIn −A)−1B, (2)

mapping the Laplace transform of u to the Laplace transform of y. In is
the identity matrix in C

n×n (subsequently, the subscript may be omitted if
the dimension is clear from the context). On the imaginary axis ıR, T (ıω)
describes the frequency response of the system.

We denote the set of Hermitian matrices in C
n×n by Hn. Positive defi-

niteness (semidefiniteness) of A ∈ Hn is denoted by A > 0 (A ≥ 0). The set
of all positive definite (positive semidefinite) matrices in Hn is denoted H

>

n

(H
≥

n). The real and imaginary parts of a complex matrix, Z, are written as
Re(Z) and Im(Z), respectively.

We proceed to review briefly some representations of linear systems as-
sociated with the notion of passivity.

2.1 Positive-real systems

Consider a system M as in (1) and its transfer function T as in (2).

Definition 1 A transfer function T (s) is positive real if the matrix-valued
rational function

Φ(s) := T H(−s) + T (s) (3)

is positive semidefinite for s on the imaginary axis:

Φ(ıω) ∈ H
≥

m for all ω ∈ R.

T (s) is strictly positive real if Φ(ıω) ∈ H
>

m for all ω ∈ R.

For any X ∈ Hn, define the matrix function

W (X) :=

[
−X A−AHX CH −X B
C −BHX D +DH

]

= W (0)−

[
X A+AHX X B

BHX 0

]
.
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From (2) and (3), simple manipulations produce

Φ (s) =
[
BH(−s In −AH)−1 Im

]
W (0)

[
(s In −A)−1B

Im

]

=
[
BH(−s In −AH)−1 Im

]
W (X)

[
(s In −A)−1B

Im

]
.

Define the matrix pencils:

L0(s) = s




0 In 0

−In 0 0

0 0 0


−




0 A B

AH 0 CH

BH C D +DH


 ,

and, for any X ∈ Hn,

LX(s) =




In 0 0
−X In 0

0 0 Im


L0(s)




In −X 0
0 In 0

0 0 Im


 ,

Observe for any X ∈ Hn, LX(s) and L0(s) are equivalent pencils, since
they are related via a congruence transformation. Note also that Φ(s) is the
Schur complement associated with the (3, 3) block of L0(s) (and hence, also
of LX(s) for any X ∈ Hn).

If T (s) is positive real, then it is known [26] that there exists X ∈ Hn

such that the KYP-LMI holds, namely

W (X) ≥ 0, (4)

and so a factorization must exist:

W (X) =

[
LH

MH

] [
L M

]
(5)

for L ∈ C
r×n and M ∈ C

r×m, where r = rankW (X). Introducing G(s) =
L(s In −A)−1B +M, one may then define the spectral factorization of Φ(s)
as

Φ(s) = GH(−s)G(s). (6)

Define the solution set and subsets to the KYP-LMI (4):

X := {X ∈ Hn | W (X) ≥ 0} , (7a)

X
>

:= {X ∈ Hn |W (X) ≥ 0, X > 0} = H
>

n ∩ X, (7b)

X
≫

:= {X ∈ Hn |W (X) > 0, X > 0} , (7c)

For each X ∈ X, there is a factorization of W (X) of the form (5) leading to
a spectral factorization (6) of Φ(s). We are mainly interested in X

>

and X
≫

,
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which are respectively, the set of positive-definite solutions to the KYP-LMI
(4), and the subset of those solutions for which the KYP-LMI (4) holds
strictly.

An important subset of X are those solutions to (4) for which the rank
r of W (X) is minimal (i.e., for which r = rankΦ(s)). Let S := D +DH =
lims→∞Φ(s). If S is nonsingular, then the minimum rank solutions in X

>

are those for which rankW (X) = rankS = m, which in turn is the case if and
only if the Schur complement of S in W (X) is zero. This Schur complement
is associated with the algebraic Riccati equation (ARE):

Ricc(X) := −XA−AHX

− (CH −XB)S−1(C −BHX) = 0. (8)

Solutions to (8) produce directly a spectral factorization of Φ(s), Indeed,
each solution X of (8) corresponds to a Lagrangian invariant subspace

spanned by the columns of U :=
[
In −XT

]T
that remains invariant

under the action of the Hamiltonian matrix

H :=

[
A−BS−1C −BS−1BH

CHS−1C −(A−BS−1C)H

]
. (9)

U satisfies HU = UAF for a closed loop matrix AF = A − BF with F :=
S−1(C−BHX) (see e.g., [6]). Each solution X of (8) could also be associated
with an extended Lagrangian invariant subspace for the pencil L0(s) (see

[3]), spanned by the columns of Û :=
[
−XT In −FT

]T
. In particular,

Û satisfies 


0 A B
AH 0 CH

BH C S


 Û =




0 In 0
−In 0 0
0 0 0


 ÛAF ,

see also e.g. [13, 26]. The condition that S is invertible is equivalent to
the condition that the pencil L0(s) has differentiation index one, i.e., all
eigenvalues at ∞ are semi-simple, [15]. If L0(s) has no purely imaginary
eigenvalues, then there are

(2n
n

)
solutions X ∈ Hn of (8), each associated

with an appropriate choice of a Lagrangian invariant subspace for L0(s).
Every choice leads to different spectra for the closed loop matrix, AF (see
[6, 26] for a parametrization of all possible Lagrangian subspaces). Among
the possible solutions of (8) there are two extremal solutions, X− and X+.
X− leads to a closed loop matrix, AF , with spectra in the (open) left half-
plane; X+ leads to AF with spectra in the (open) right half-plane. All
solutions X of (8) are bracketed by X− and X+:

0 ≤ X− ≤ X ≤ X+ (10)

and so, in this special case the set X is bounded, but it may be empty or
the solution may be unique if X− = X+, see Section 3.
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2.2 Passive systems

Definition 2 A system M := {A,B,C,D} is passive if there exists a state-
dependent storage function, H(x) ≥ 0, such that for any µ, t0 ∈ R with
µ > t0, the dissipation inequality holds:

H(x(µ))−H(x(t0)) ≤

∫ µ

t0

Re(y(t)Hu(t)) dt (11)

If for all µ > t0, the inequality in (11) is strict then the system is strictly
passive.

In the terminology of ([27]), Re(y(t)Hu(t)) is the supply rate of the system. A
general theory of dissipative systems (of which passive systems are a special
case) was developed in the seminal papers [26, 27, 28], where links to earlier
work by Kalman, Popov, and Yakubovich and the KYP-LMI (4) are given.
Note that the original definition of passivity given by Willems was for real
systems; we reformulate it here for complex systems.

Theorem 1 ([26]) Suppose the system M of (1) is minimal. Then the
KYP-LMI (4): W (X) ≥ 0, has a solution X ∈ H

>

n if and only if M is a
passive system. If this is the case, then

• H(x) := 1
2x

HXx defines a storage function associated with the supply
rate Re(yHu) satisfying the dissipation inequality (11);

• there exist maximal and minimal solutions X− ≤ X+ in H
>

n of (4),
such that for all solutions, X, of (4):

0 < X− ≤ X ≤ X+.

Recall that a matrix A ∈ C
n×n is asymptotically stable if all its eigenvalues

are in the open left half plane and (Lyapunov) stable if all eigenvalues are in
the closed left half plane with any eigenvalues occurring on the imaginary
axis being semisimple. Theorem 1 asserts that if X > 0 is a solution of
W (X) ≥ 0, then the system M of (1) is stable and if it satisfies W (X) >
0, then it is asymptotically stable, since H(x) is a Lyapunov function for
M which is strict if W (X) > 0, (see e.g. [16]). Note, however, that for
(asymptotic) stability of A it is sufficient if the (1, 1) block of W (X) is
(positive definite) positive semidefinite.

Corollary 1 Consider a minimal system M as in (1). M is passive if
and only if it is positive real and stable. It is strictly passive if and only
if it is strictly positive real and asymptotically stable. In the latter case,
X+ −X− > 0 ([26]).
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Note that minimality is not necessary for passivity. For example, the system
ẋ = −x, y = u is both stable and passive but not minimal. In this case, the
KYP-LMI (4) is satisfied with any (scalar) X > 0, the Hamiltonian may
be defined as H(x) = X

2 x(t)
2, and the dissipation inequality evidently holds

since for t1 ≥ t0,
H(x(t1))−H(x(t0)) =

X

2
(x(t0)e

−(t1−t0))2 −
X

2
(x(t0))

2

=
X

2
(x(t0))

2(e−2(t1−t0) − 1) ≤ 0 ≤

∫
t1

t0

y(t)u(t) dt

2.3 Port-Hamiltonian systems

Definition 3 A linear time-invariant port-Hamiltonian (pH) system is one
for which the following realization is possible:

ẋ = (J −R)Qx+ (G−K)u,
y = (G+K)HQx+Du,

(12)

where Q = QH > 0, J = −JH, and

[
R K
KH sym(D)

]
≥ 0 with sym(D) =

1

2
(D +DH)

Port-Hamiltonian systems were introduced in [23] as a tool for energy-based
modeling. An energy storage function H(x) = 1

2x
HQx plays a central role

and under the conditions given, the dissipation inequality (11) holds and
so pH systems are always passive. Conversely, any passive system may
be represented as a pH system (12), see e.g., [1]. We briefly describe the
construction of such a representation: Suppose the model M of (1) is min-
imal and passive and let X = Q ∈ X

>

be a solution of the KYP-LMI
(4). For this Q, define J := 1

2(AQ
−1 −Q−1AH), R := −1

2(AQ
−1 +Q−1AH),

K := 1
2

(
Q−1CH −B

)
, and G := 1

2

(
Q−1CH +B

)
. Direct substitution shows

that (1) may be written in the form of (12), with J = −JH, and

[
R K
KH sym(D)

]
=

1

2

[
Q−1 0
0 I

]
W (Q)

[
Q−1 0
0 I

]
≥ 0.

Another possible representation of a passive system as a standard pH
system can be obtained by using a symmetric factorization of a solution
X of (4): X = THT with T ∈ C

n×n (e.g., the Hermitian square root of
X or the Cholesky factorization of X are two possibilities). One defines a
state-space transformation, xT = Tx, leading to an equivalent realization in
T -coordinates:

{AT , BT , CT ,DT } := {TAT−1, TB,CT−1,D}

7



The associated KYP-LMI (4) with respect to the new coordinate system can
be written as

WT (X̂) :=

[
−X̂ AT −AH

T X̂ CH

T − X̂ BT

CT −BH

T X̂ D +DH

]
≥ 0,

but since X = THT is a solution to the KYP-LMI (4) in the original state-
space coordinates, we have X̂ = I and

WT (I) =

[
T−H 0
0 Im

]
W (X)

[
T−1 0
0 Im

]
≥ 0.

We can then use the Hermitian and skew-Hermitian part of AT to obtain a
pH representation in T -coordinates: JT := 1

2(AT−AH

T ), RT := −1
2(AT+AH

T ),
KT := 1

2

(
CH

T −BT

)
, GT := 1

2

(
CH

T +BT

)
, and QT = I, so that

ẋT = (JT −RT )xT + (GT −KT )u,
y = (GT +KT )

HxT +Du,
(13)

is a valid pH representation in T state-space coordinates.
We have briefly presented three closely related concepts for a minimal

linear time-invariant system of the form (1), positive realness, passivity, and
that the system has pH structure. All three properties can be characterized
algebraically via the solutions of linear matrix inequalities, invariant sub-
spaces of special even pencils, or solutions of Riccati inequalities. However,
there typically is a lot of freedom in the representation of such systems. This
freedom, which results from particular choices of solutions to the KYP-LMI
as well as subsequent state space transformations, may be used to make the
representation more robust to perturbations. In many ways the pH repre-
sentation seems to be the most robust representation [17, 18] and it also
has many other advantages: it encodes the geometric and algebraic proper-
ties directly in the properties of the coefficients [25]; it allows easy ways for
structure preserving model reduction [12, 21]; it easily extends to descriptor
systems [2, 24]; and it greatly simplifies optimization methods for computing
stability and passivity radii [8, 9, 10, 20].

The remainder of this paper will deal with the question of how to make
use of this freedom in the state space transformation to determine a ’good’
or even ‘optimal’ representation as a pH system. To do this we study in the
next section the set of solutions of the KYP-LMI (4) and in particular its
analytic center.

3 The analytic center of the solution set X>

Solutions of the KYP-LMI (4) and of linear matrix inequalities are usually
obtained via optimization algorithms, see e.g. [5]. A common approach
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involves defining a a barrier function b : Cn×n → C that is defined and
finite throughout the interior of the constraint set becoming infinite as the
boundary is approached, and then using this function in the optimization
scheme. The minimum of the barrier function itself is of independent interest
and is called the analytic center of the constraint set [7].

We have seen in Section 2.2 that for a system M that is minimal and
strictly passive there exists a (possibly large) class of state space transfor-
mations that transform the system to pH form. This class is characterized
by the set X

>

of positive definite solutions of (the strict version) of the linear
matrix inequality (4). If the set X

>

is non-empty and bounded, then the
barrier function

b(X) := − log detW (X),

is bounded from below, but becomes infinitely large when W (X) becomes
singular. The analytic center of the domain X

>

is the minimizer of this
barrier function. To characterize the analytic center, we analyze the interior
of the set X

>

given by

IntX
>

:=
{
X ∈ X

>

| there exists δ > 0 such that

X +∆X ∈ X
>

for all ∆X ∈ Hn with ‖∆X‖ ≤ δ
}
.

Here ‖∆X‖ is the spectral norm of ∆X given by the maximal singular value
of ∆X . We compare IntX

>

with the open set

X
≫

=
{
X ∈ X

>

| W (X) > 0
}
.

Since b(X) is finite for all points in X
≫

, there is an open neighborhood where
it stays bounded, and this implies that X

≫

⊆ IntX
>

. The converse inclusion
is not necessarily true. For example, consider a 2 × 2 transfer function
having the form, T (s) = diag(t(s), 0), where t(s) is a scalar-valued, strictly
passive transfer function. The LMI is rank deficient for all X ∈ Hn (hence
X

≫

= ∅) but there is a relative interior, since t(s) is strictly passive. The
characterization when both sets are equal is given by the following theorem.

Theorem 2 Suppose the system M of (1) is passive and rank(B) = m.
Then X

≫

≡ IntX
>

.

Proof: If X
>

= ∅ then X
≫

= ∅ as well. Otherwise, pick an X ∈ IntX
>

and suppose that W (X) is positive semidefinite and singular. Then there
exists a nontrivial 0 6= [zT1 , z

T

2 ]
T ∈ KerW (X) and an ε > 0 sufficiently small

so that if ∆X ∈ Hn with ‖∆X‖F ≤ ε then X + ∆X ∈ X
>

. Observe that
for all such ∆X, we have W (X + ∆X) = W (X) + Γ(∆X) ≥ 0, where

Γ(∆X) = −

[
∆XA+AH∆X ∆XB

BH∆X 0

]
, and so

0 ≤

[
z1
z2

]H
W (X +∆X)

[
z1
z2

]
=

[
z1
z2

]H
Γ(∆X)

[
z1
z2

]
(14)
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If there was a choice for ∆X ∈ Hn with ‖∆X‖F ≤ ε producing strict
inequality in (14), then we would arrive at a contradiction, since the choice
−∆X satisfies the same requirements yet violates the inequality. Thus, we
must have equality in (14) for all ∆X ∈ Hn, which in turn implies

W (X +∆X)

[
z1
z2

]
= Γ(∆X)

[
z1
z2

]
= 0.

This means that BH∆X u = 0 for all ∆X ∈ Hn. If z1 = 0, then we find
that ∆XB z2 = 0 for all ∆X ∈ Hn which in turn means Bz2 = 0 and
so, in light of the initial hypothesis on B, means that z2 = 0 which is a
contradiction, and thus, we must conclude that W (X) is nonsingular after
all, hence positive definite. To eliminate the last remaining case, suppose
that z1 6= 0. Choosing first ∆X = I, we find that z1 ⊥ Ran(B). Pick
0 6= b ∈ Ran(B) and define ∆X = I − 2wwH with w = 1√

2
( z1
‖z1‖ − b

‖b‖ ).

Then BH∆X z1 = ‖z1‖
‖b‖ B

Hb = 0 which implies that z1 = 0, and so, z = 0,

W (X) > 0, and again the assertion holds. �

To characterize when X
≫

≡ IntX
>

6= ∅ is complicated and there is
some confusion in the literature, because several factors may influence the
solvability of the KYP-LMI. It is clear that S = D +DH must be positive
definite for a solution to be in X

≫

, but clearly this is not sufficient as is
demonstrated by the simple system ẋ = u, y = x+ du (with d > 0) which
is minimal and has X = 1 ∈ X

>

as only solution of the KYP-LMI, so
IntX

>

= ∅. In this case the associated pencil L0 has one eigenvalue ∞
and the purely imaginary eigenvalues ±id. It is passive, but not strictly
passive, and stable (but not asymptotically stable), which is in contradiction
to many statements in the literature, see e. g. [11], where unfortunately no
distinction between passivity and strict passivity is made. The system is,
furthermore, port-Hamiltonian with J = 0, R = 0, B,C = 1, Q = 1, P = 0
and D = 1, and satisfies the dissipation inequality. An analogous example

is obtained with A =

[
0 1
−1 0

]
, BH = C =

[
1 0

]
, and D = 1. Then,

X = I2 is the unique positive definite solution, IntX
>

= ∅, and there are
double eigenvalues of L0 at ±i. The system is not asymptotically stable
and not strictly passive, but stable, passive and pH. If in this example we
choose D = 0, then still X = I is the unique positive definite solution of
the KYP-LMI, but now L0 has the only purely imaginary eigenvalue 0 and
two Kronecker blocks of size 2 for the eigenvalue ∞. In this case the Riccati
equation (8) cannot be be formed and there does not exist a two-dimensional
extended Lagrangian invariant space associated with the stable eigenvalues.

Remark 1 Note that the solutions X+ and X− of the Riccati equation (8)
yield singular W (X+) and W (X−), and are thus on the boundary of X

>

,
even though they are positive definite, as was pointed out in Theorem 1.
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In the sequel, we assume that X
≫

6= ∅, so that the analytic center of
X

>

is well-defined, see also [19], and we can compute it as a candidate for
a ‘good’ solution to the LMI (4) yielding a robust representation. This
requires the solution of an optimization problem. Keep in mind that we
have the following the set inclusions

XW ⊂ IntX
>

= X
≫

⊂ X
>

⊂ H
>

n ⊂ Hn.

For X,Y ∈ Hn we define the Frobenius inner product

〈X,Y 〉 := trace
(
Re(Y )TRe(X) + Im(Y )TIm(X)

)
,

which has the properties 〈X,Y 〉 = 〈Y,X〉, ‖X‖F = 〈X,X〉
1
2 , and Y Z〉 =

〈Y X,Z〉 = 〈XZ,Y 〉.
The gradient of the barrier function b(X) with respect to W is given by

∂b(X)/∂W = −W (X)−1.

Using the chain rule and the Frobenius inner product, it follows from [19]
that X ∈ C

n×n is an extremal point of b(X) if and only if

〈∂b(X)/∂W,∆W (X)[∆X ]〉 = 0 for all ∆X ∈ Hn,

where ∆W (X)[∆X ] is the incremental step in the direction ∆X given by

∆W (X)[∆X ] = −

[
AH∆X +∆XA ∆XB

BH∆X 0

]
.

For an extremal point it is then necessary that

〈W (X)−1,

[
AH∆X +∆XA ∆XB

BH∆X 0

]
〉 = 0 (15)

for all ∆X ∈ Hn. Defining F := S−1(C−BHX), P := −AHX−XA−FHSF ,
and AF := A − BF , it has been shown in [7] that (15) holds if and only if
P is invertible and

AH

FP + PAF = 0. (16)

Note that P is nothing but the evaluation of the Riccati operator (8) at
X, and that AF is the corresponding closed loop matrix. For the solutions
of the Riccati equation we have P = Ricc(X) = 0 (so P is not invertible)
and the corresponding closed loop matrix has all its eigenvalues equal to
an adequate subset of the eigenvalues of the Hamiltonian matrix H in (9).
For an interior point of X

>

we have P = Ricc(X) > 0, and hence P has an

invertible square root P
1
2 ∈ H

>

n. Multiplying (16) on both sides with P− 1
2

we obtain that
P− 1

2AH

FP
1
2 + P

1
2AFP

− 1
2 = 0.

11



Thus, ÂF := P
1
2AFP

− 1
2 is skew-Hermitian and therefore ÂF as well as AF

have all its eigenvalues on the imaginary axis. Hence the closed loop matrix
AF of the analytic center has a spectrum that is also ’central’ in a certain
sense.

It is important to note that

det(W (X)) = det(Ricc(X)) det S,

which implies that we are also finding a stationary point of det(Ricc(X)),
since S is constant and invertible. Since P ∈ H

>

n, we can rewrite the equa-
tions defining the analytic center of X

>

as the solutions X ∈ Hn, P ∈ H
>

n,
F ∈ C

m,n of the system of matrix equations

SF = C −BHX,

P = −AHX −XA− FHSF, (17)

0 = P (A−BF ) + (AH − FHBH)P

= PAF +AH

FP.

System (17) can be used to determine a solution via an iterative method,
that uses a starting value X0 to compute P0, F0 and then consecutively
solutions Xi, i = 1, 2, . . . followed by computing a new Pi and Fi.

Remark 2 For given matrices P,F the solution X of (8) can be obtained
via the invariant subspace




0 In 0
−In 0 0
0 0 0






−X
In

−F


Z =




0 A B
AH −P CH

BH C S






−X
In

−F


 ,

Computing this subspace for P = Ricc(X) = 0 allows to compute the ex-
tremal solutions X+ and X− of (8), which then can be used to compute a
starting point for an optimization scheme, see [?] for details.

4 The passivity radius

Our goal to achieve ‘good’ or even ‘optimal’ pH representations of a passive
system can be realized in different ways. A natural measure for optimality
is a large passivity radius ρM, which is the smallest perturbation (in an
appropriate norm) to the coefficients of a model M that makes the system
non-passive. Computational methods to determine ρM were introduced in
[20], while the converse question, what is the nearest passive system to a
non-passive system has recently been discussed in [8, 10].

Once we have determined a solution X ∈ X
>

to the LMI (4), we can
determine the representation (12) as in Section 2.3 and the system is au-
tomatically passive (but not necessarily strictly passive). For each such

12



representation we can determine the passivity radius and then choose the
most robust solution X ∈ X

>

under perturbations by maximizing the pas-
sivity radius or by minimizing the condition number of X

1
2 , which is the

transformation matrix to pH form, see Section 5.2.

4.1 The X-passivity radius

Alternatively, for X ∈ IntX
>

we can determine the smallest perturbation
∆M of the system matrices A,B,C,D of the model M that leads to a loss
of positive definiteness of W (X), because then we are on the boundary of
the set of passive systems. This is a very suitable approach for perturbation
analysis, since for fixed X the matrix

W (X) =

[
0 CH

C D +DH

]
−

[
AHX +X A X B

BHX 0

]

is linear in the unknowns A,B,C,D and when we perturb the coefficients,
then we preserve strict passivity as long as

W∆M
(X) :=

[
0 (C +∆C)

H

(C +∆C) (D +∆D) + (D +∆D)
H

]

−

[
(A+∆A)

HX +X (A+∆A) X (B +∆B)
(B +∆B)

HX 0

]
> 0.

Hence, given X ∈ IntX
>

, we can look for the smallest perturbation ∆M to
the model M that makes det(W∆M

(X) = 0. To measure the size of the
perturbation ∆M of a state space model M ,we use the Frobenius norm

‖∆M‖ :=

∥∥∥∥
[

∆A ∆B

∆C ∆D

]∥∥∥∥
F

.

Defining for X ∈ IntX
>

the X-passivity radius as

ρM(X) := inf
∆M∈Cn+m,n+m

{‖∆M‖ | detW∆M
(X) = 0} .

Note that in order to compute ρM(X) for the model M, we must first find
a point X ∈ IntX

>

, since W (X) must be positive definite to start with and
also X should be positive definite to obtain a state-space transformation to
pH form.

We have the following relation between the X-passivity radius and the
usual passivity radius.

Lemma 1 Consider a given model M . Then the passivity radius is given
by

ρM = sup
X∈IntX>

inf
∆M∈Cn+m,n+m

{‖∆M‖|detW∆M
(X) = 0}

= sup
X∈IntX>

ρM(X).

13



Proof: If for any given X ∈ IntX
>

we have that ‖∆M‖ < ρM(X), then
all systems M+∆M with ‖∆M‖ < ρM(X) are strictly passive. Therefore
ρM ≥ supIntX> ρM(X). Equality follows, since there exists a perturbation
∆M of norm ρM for which there does not exist a point X ∈ IntX

>

for which
W∆M

(X) > 0, hence, this system is not strictly passive anymore. �

We derive an explicit formula for the X-passivity radius based on a
one parameter optimization problem. For this, we rewrite the condition
W∆M

(X) > 0 as

[
−X 0
0 Im

] [
A+∆A B +∆B

C +∆C D +∆D

]

+

[
AH +∆H

A CH +∆H

C

BH +∆H

B DH +∆H

D

] [
−X 0
0 Im

]
> 0. (18)

Setting

Ŵ := W (X), X̂ :=

[
X 0
0 Im

]
, ∆T :=

[
−∆A −∆B

∆C ∆D

]
, (19)

inequality (18) can be written as the LMI

W∆M
= Ŵ + X̂∆T +∆H

T X̂ > 0 (20)

as long as the system is still passive. In order to violate this condition, we
need to find the smallest ∆T such that detW∆M

= 0. Factoring out Ŵ− 1
2

on both sides of (20) yields the characterization

det
(
In+m + Ŵ− 1

2 X̂∆T Ŵ
− 1

2 + Ŵ− 1
2∆H

T X̂Ŵ− 1
2

)

det

(
In+m +

[
Ŵ− 1

2 X̂ Ŵ− 1
2

] [ 0 ∆T

∆H

T 0

][
X̂Ŵ− 1

2

Ŵ− 1
2

])

det

(
I2(n+m) +

[
0 ∆T

∆H

T 0

][
X̂Ŵ− 1

2

Ŵ− 1
2

] [
Ŵ− 1

2 X̂ Ŵ− 1
2

])

= 0. (21)

The minimal perturbation ∆T for which this is the case was described in
[20] using the following theorem, which we have slightly modified in order
to take into account the positive semi-definiteness of the considered matrix.

Theorem 3 Consider the matrices X̂, Ŵ in (19) and the pointwise positive
semidefinite matrix function

M(γ) :=

[
γX̂Ŵ− 1

2

Ŵ− 1
2 /γ

] [
γŴ− 1

2 X̂ Ŵ− 1
2/γ

]
(22)

14



in the real parameter γ. Then the largest eigenvalue λmax(M(γ)) is a uni-
modal function of γ (i.e. it is first monotonically decreasing and then mono-
tonically increasing with growing γ). At the minimizing value γ, M(γ) has
an eigenvector z, i.e.

M(γ)z = λmaxz, z :=

[
u
v

]
,

where ‖u‖22 = ‖v‖22 = 1
2 . The minimum norm perturbation ∆T is of rank 1

and is given by ∆T = 2uvH/λmax. It has norm 1/λmax both in the spectral
norm and in the Frobenius norm.

Proof The proof for a slightly different formulation was presented in [20].
Here we therefore just present the basic idea in our formulation. Let Γ :=
diag(γIm+n,

1
γ
Im+n), then M(γ) = ΓH1Γ, while

Γ−1

[
0 ∆T

∆H

T 0

]
Γ−1 =

[
0 ∆T

∆H

T 0

]
.

Setting

K(γ) :=

(
I2(n+m) +

[
0 ∆T

∆H

T 0

]
M(γ)

)
,

then det(K(γ)) is independent of γ. But the vector z is in the kernel of
K(γ), which implies that also K(1) is singular. The value of the norm of
the constructed ∆T follows from the fact that the subvectors u and v must
have equal norm at the minimum. �

A bound for λmax in Theorem 3 is obtained by the following result.

Corollary 2 Consider the matrices X̂, Ŵ in (19) and the pointwise matrix
function M(γ) as in (22). The largest eigenvalue of M(γ) is also the largest
eigenvalue of

γ2Ŵ− 1
2 X̂2Ŵ− 1

2 + Ŵ−1/γ2.

A simple upper bound for λmax is given by λmax ≤ 2
αβ

where α2 := λmin(Ŵ )

and β2 = λmin(X̂
−1Ŵ X̂−1). The corresponding lower bound for ‖∆T ‖F

then becomes
ρM(X) = min

γ
‖∆T ‖F ≥ αβ/2.

Proof Clearly ‖Ŵ−1‖2 ≤ 1
α2 and ‖Ŵ− 1

2 X̂2Ŵ− 1
2‖2 ≤ 1

β2 . So if we choose

γ2 = β
α
then

min
γ

‖γ2Ŵ− 1
2 X̂2Ŵ− 1

2 + Ŵ−1/γ2‖

≤ ‖(β/α)Ŵ− 1
2 X̂2Ŵ− 1

2 + (α/β)Ŵ−1‖

≤
2

αβ
. �
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We can construct a perturbation ∆T = ǫ(αβ)vuH of norm |ǫ|(αβ) which
makes the matrix W∆M

singular and therefore gives an upper bound for
ρM (X). To compute this perturbation, let u, v and w be vectors of norm

1, satisfying Ŵ− 1
2u = u/α, Ŵ− 1

2 X̂v = w/β, ∆T = ǫ(αβ)vuH, and ǫuHw =
−|ǫuHw|, i.e., u, v and w are the singular vectors associated with the largest

singular values 1/α of Ŵ− 1
2 and 1/β of Ŵ− 1

2 X̂ . Inserting these values in
(21), it follows that

det

(
In+m +

[
Ŵ− 1

2 X̂ Ŵ− 1
2

] [ 0 ∆T

∆H

T 0

][
X̂Ŵ− 1

2

Ŵ− 1
2

])

= det

(
In+m +

[
w u

] [ 0 ǫ
ǫ 0

] [
wH

uH

])

= det

(
I2 +

[
0 ǫ
ǫ 0

] [
wH

uH

] [
w u

])
.

If we now choose the argument of the complex number ǫ such that ǫuHw is
real and negative and the amplitude of ǫ such that 1 = |ǫuHw|+ |ǫ|, then

det

(
I2 +

[
ǫuHw ǫ
ǫ ǫwHu

])
= (1− |ǫuHw|)2 − |ǫ|2 = 0.

Since 0 ≤ |uHw| ≤ 1, we have that 1
2 ≤ |ǫ| ≤ 1 and thus we have the interval

αβ/2 ≤ ρM(X) ≤ |ǫ|αβ, 1
2 ≤ |ǫ| ≤ 1 in which the X-passivity radius is

located. If u and w are linearly dependent, then this interval shrinks to a
point and the estimate is exact. We summarize these observations in the
following theorem.

Theorem 4 Let M = {A,B,C,D} be a given model and let X ∈ IntX
>

.
Then the X-passivity radius ρM(X) at this X is bounded by

αβ/2 ≤ ρM(X) ≤ αβ/(1 + |uHw|),

where α2 := λmin(Ŵ ), β2 = λmin(X̂
−1Ŵ X̂−1), Ŵ− 1

2u = u/α, Ŵ− 1
2 X̂v =

w/β. Moreover, if u and w are linear dependent, then ρM(X) = αβ/2.

If we use these bounds for the passivity radius in a pH system, we have the
following corollary.

Corollary 3 If for a given system M we have that X = In ∈ IntX
>

then
the corresponding representation of the system is port-Hamiltonian, i.e., it
has the representation M := {J − R,G − K,GH + KH, S + N} and the
X-passivity radius is given by

ρM(I) = λminW (I) = λmin

[
R K
KH S

]
.

Moreover, if X = In is the analytic center of IntX
>

, then ρM(I) equals the
passivity radius ρM of M.
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Proof This follows directly from Theorem 4, since then α = β and we can
choose u = w. �

Remark 3 Considering a pH representation, the conditions Ŵ ≥ α2In+m

and X̂−1Ŵ X̂−1 ≥ β2In+m yield the necessary (but not sufficient) condition
for passivity that [

Ŵ αβIn+m

αβIn+m X̂−1Ŵ X̂−1

]
≥ 0,

Using the square root T̂ := X̂
1
2 of X̂ > 0 and a congruence transformation,

one finds that this is equivalent to

[
T̂−1Ŵ T̂−1 αβIn+m

αβIn+m T̂−1Ŵ T̂−1

]
≥ 0,

which implies that T̂−1Ŵ T̂−1 ≥ αβIn+m.
Defining ξ := λmin(T̂

−1Ŵ T̂−1), we then also obtain the inequality ξ ≥
αβ. Because of (13), this is also equal to

ξ = λmin

[
R K
KH S

]

which suggests that pH representations are likely to guarantee a good pas-
sivity margin. In order to compute the optimal product ξ = αβ, we could
maximize ξ under the constraint

Ŵ − ξX̂ =

[
−XA−AHX − ξX CH −XB

C −BHX S − ξIm

]
> 0.

4.2 A port-Hamiltonian barrier function

From our previous discussions it appears that if we want to make sure that a
state-space representation has a large passivity radius, we should not maxi-
mize the determinant of W (X), but maximize instead

det

([
X− 1

2 0
0 Im

]
W (X)

[
X− 1

2 0
0 Im

])
(23)

under the constraint X > 0 so that its square root T = X
1
2 exists. Equiva-

lently, if X > 0, we can maximize the determinant of

W̃ (X) := W (X)

[
X−1 0
0 Im

]

=

[
−XAX−1 −AH CH −XB
CX−1 −BH S

]

17



which has the same eigenvalues and the same determinant, but is expressed
in terms of the variable X.

With this modified barrier function b̃(X) := − log det W̃ (X) we obtain
the following formulas for the gradient of the barrier with respect to W̃ and
the incremental step of W̃ (X) in the direction ∆X .

∂b̃(X/∂W̃ ) = −W̃ (X)−H = −W (X)−1

[
X 0
0 Im

]
,

∆W̃ (X)[∆X ] =

[
XAX−1∆X −∆XA −∆XB

−CX−1∆X 0

] [
X−1 0
0 Im

]
.

Using again the chain rule, the necessary condition for an extremal point is
then that for all ∆X ∈ Hn, < ∂b̃(X)/∂W̃ ,∆W̃ (X)[∆X ] >= 0, or equiva-
lently

< W (X)−1,

[
XAX−1∆X −∆XA −∆XB

−CX−1∆X 0

]
> = 0 . (24)

Defining P and F as before, and using that

W (X)−1 =

[
In 0
−F Im

] [
P−1 0
0 S−1

] [
In −FH

0 Im

]
,

it then follows that (24) holds if and only if P is invertible and for all
∆X ∈ Hn we have

< P−1, (XAX−1 + FHCX−1)∆X −∆X(A−BF ) > = 0,

or equivalently

< ∆X , P−1(XAX−1 + FHCX−1)− (A−BF )P−1 > = 0,

which can be expressed as

P [(X−1AHX +X−1CHF )− (A−BF )]

+[(XAX−1 + FHCX−1)− (A−BF )H]P = 0.

Note that if one performs the coordinate transformation

{AT , BT , CT ,DT } := {TAT−1, TB,CT−1,D}

where T 2 = X, then PT = T−1PT−1 and FT = FT−1, which yields the
equivalent condition

PT [(A
H

T −AT ) + (CH

T +BT )FT ]

+[(AH

T −AT ) + (BT + CH

T )FT ]
HPT = 0.

Moreover, we have that

FT = S−1(CT −BH

T ), PT = −AT −AH

T − FH

T SFT .
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Thus, if we use a pH representation M = {AT , BT , CT ,DT } = {J −R,G−
K, (G+K)H,D}, then at the analytic center of the modified barrier function,
we have

SFT = KH, PT = R− FH

T SFT ,

0 = PT (J −GFT ) + (J −GFT )
HPT ,

and of course XT = I, which implies that the passivity radius is given by

λmin

[
R K
KH S

]
.

On the other hand, since we have optimized the determinant of W̃ (X) which
has the same determinant as (23), it follows that

det W̃ (X) = det

[
R K
KH S

]

and we can expect to have obtained a nearly optimal passivity margin as
well.

5 Other Radii

Even though in this paper we are focusing on the passivity, we point out
that pH representations also have other properties that are important to
consider. In this section, we consider two such properties.

5.1 The Stability Radius

If a positive definite solution of the LMI (4) exists, then it follows from the
positive definiteness of the (1, 1) block that the system is asymptotically
stable. Hence we can employ the same technique that we have used for the
characterization of the passivity radius to bound the stability radius, i.e.,
the smallest perturbation ∆A that makes the system loose its asymptotic
stability. Introducing the positive definite matrices

V (X) := −XA−AHX,

V∆A
(X) := V (X)−X∆A −∆H

AX, (25)

we define the X-stability radius as the smallest ∆A, for which V∆A
(X) looses

its positive definiteness, i.e. for X ∈ X>0 with V (X) > 0, the X-stability
radius is defined as

ρA(X) := inf
∆A∈Cn×n

{‖∆A‖ | detV∆A
(X) = 0} .
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Note that (25) is defined similar to (20), except for a sign change and there-
fore as for the passivity radius we obtain the bound

αβ/2 ≤ ρA(X) ≤ αβ/(1 + |uHw|),

where α2 = λmin(V ), β2 = λmin(X
−1V X−1), and where u, v and w are

normalized vectors satisfying

V − 1
2u = u/α, V − 1

2Xv = w/β.

Corollary 4 If for a given system M we have that X = In ∈ IntX
>

then at this point the corresponding representation of the system is port-
Hamiltonian, i.e., it has the representation M := {J−R,G−K,GH+KH,D}
and the X-stability radius of this model is given by

ρA(I) = λminV (I) = λmin(R).

Proof This follows directly from Theorem 4, since then α = β and we can
choose u = w. �

Remark 4 It follows from the conditions V ≥ α2In+m and X−1V X−1 ≥
β2In+m that a necessary (but not sufficient) condition for stability is given

by T−1V T−1 ≥ αβIn, where T = X
1
2 .

Another robustness measure for the transformation T is to require that the
field of values {xHATx|x ∈ C

n} of the transformed matrix AT is as far left
as possible into the left half plane. In other words, we want to minimize the
real part of the right most Rayleigh quotient of AT given by

min
Ts.t.T 2∈X>

{ max
x 6=0,x∈Cn

Re(
xHATx

xHx
)}.

Writing AT = JT −RT with JT = −JH

T and RT = RH

T we clearly only need
to xHRTx, since Re(xHJTx) = 0. In other words, we want to determine

min
T∈X>

{ max
x 6=0,x∈Cn

(
xHRTx

xHx
)},

which amounts to maximizing the smallest eigenvalue of the (1, 1) block of
the LMI (4). It therefore is an alternative to maximize the determinant
of WT (X), since this will tend to maximize all of its eigenvalues, including
those of the principal submatrices.

We are not advocating here to use either of these two approaches to
compute the stability radius of our system, since we know that it is given
explicitly by the formula

ρA = min
ω∈R

σmin(A− ıωIn).

We just want to stress here that using a pH realization based on the analytic
center will also yield a robust stability margin.
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5.2 Well conditioned state-space transformations

Since for any solution X ∈ X
>

, T = X
1
2 yields a state space transformation

to pH form, we can also try to optimize the condition number of T or
directly the condition number of X = T 2 ∈ X

>

within the set described by
X− ≤ X ≤ X+.

Let us first consider the special case that X+ and X− commute. In this
case there exists a unitary transformation U that simultaneously diagonal-

izes both X− and X+, i.e., U
HX−U = diag{λ

(−)
1 , . . . , λ

(−)
n } and UHX+U =

diag{λ
(+)
1 , . . . , λ

(+)
n }. Since X− ≤ X ≤ X+, it follows that each eigenvalue

λi of X, i = 1, . . . , n must lie in the closed interval λi ∈ [λ
(−)
i , λ

(+)
i ], and that

these intervals are nonempty. If there exists a point λ in the intersection of
all these intervals, then X = λIn is an optimal choice and it has condition
number κ(X) = 1. If not, then there are at least two non-intersecting in-

tervals, which implies that λ
(+)
min < λ

(−)
max and hence that the closed interval

[λ
(+)
min, λ

(−)
max] must then be non-empty. Moreover, it must also intersect each

of the intervals [λ
(−)
i , λ

(+)
i ] in at least one point. Thus, if we choose for any

i = 1, . . . , n

λi ∈ [λ
(−)
i , λ

(+)
i ] ∩ [λ

(+)
min, λ

(−)
max],

then the resulting matrix will have optimal condition number κ(X) = λ
(−)
max

λ
(+)
min

,

and hence κ(T ) =

√
λ
(−)
max

λ
(+)
min

. The proof that this is optimal follows from the

Loewner ordering of positive semidefinite matrices. The largest eigenvalue

of X must be larger or equal to λ
(−)
max and the smallest eigenvalue of X must

be smaller or equal to λ
(+)
min.

If X+ and X− do not commute, then there still exists a (non-unitary)
congruence transformation L which simultaneously diagonalizes bothD(−) :=

LHX−L and D(+) := LHX+L but the resulting diagonal elements d
(−)
i and

d
(+)
i are not the eigenvalues anymore. Nevertheless, the same construction

holds for any matrix X, but we cannot prove optimality anymore. On the
other hand, we can guarantee the bound

κ(T ) ≤ max


κ(L), κ(L)

√√√√d
(−)
max

d
(+)
min


 .

6 Numerical examples

In this section we present a few numerical examples for realizations that are
construct on the basis of the analytic center.

We first look at a real scalar transfer function of first degree (m=n=1)
because in this case both analytic centers that we proposed earlier, are easy
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to compute analytically. The transfer functions of interest are given by

T (s) = d+
cb

s− a
,

Φ(s) =
[
b/(−s− a) 1

] [ 0 c
c 2d

]
.

[
b/(s − a)

1

]
.

If we assume that it the system is strictly passive, then

W (x) =

[
−2ax c− bx
c− bx 2d

]

must be positive definite for some value of x. This implies that d > 0 and
that detW (x) = −4adx− (c− bx)2 = −b2x2 − 2(2ad− cb)x− c2 is positive
for some value of x. This implies that the discriminant (2ad− cb)2 − b2c2 =
4a2d2 − 4abcd = 4ad(ad − bc) must be positive. Since the system is also
stable, we finally have the following necessary and sufficient conditions for
strict passivity of a real first degree scalar function:

a < 0, d > 0, det

[
a b
c d

]
< 0.

It is interesting to point out that the transfer function Φ(ω) is a non-
negative and unimodal function of ω with extrema at 0 and ∞. We thus
can check strict passivity by verifying the positivity of Φ(ω) at these two
values, and the stability of a :

Φ(∞) = d > 0, Φ(0) =
2(ad − cb)

a
> 0, a < 0.

Since the determinant is quadratic in x, it is easy to determine the analytic
center x∗ of the linear matrix inequality W (x) > 0 and the corresponding
feedback and Riccati operator:

x∗ =
c

b
− 2d

a

b2
, f =

a

b
, p = 2d

a2

b2
− 2c

a

b
,

W (x) =

[
4da2

b2
− 2ca

b
2da

b

2da
b

2d

]
=

[
1 a

b

0 1

]
.

[
p 0
0 2d

] [
1 0
a
b

1

]
,

which implies detH(x) = 2d · p and the strict passivity condition

a < 0, r > 0 and p =
2a

b2
(ad− bc) > 0.

The strict passivity is lost when either one of the following happens

d+ δd = 0, a+ δa = 0, det

[
a+ δa b+ δb
c+ δc d+ δd

]
= 0.
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Therefore, it follows that

ρ = min(d, a, σ2

[
a b
c d

]
) = σ2

[
a b
c d

]
.

But at the analytic center x∗ = (2da − cb)/b2, we have

det 2d

[
2a2

b2
− ac

bd
a
b

a
b

1

]
= 2

da

b2
(
a

b
−

c

d
)

which shows that the positivity at the analytic center yields the correct
condition for strict passivity of the model.

If we use the port-Hamiltonian barrier function, we have to consider only
x > 0 since det W̃ (x) = detW (x)/x. One easily checks that the derivative of
det W̃ (x) has a positive zero at x∗ = | c

b
|, which eventually yields a balanced

realization MT = {a,
√

|bc|, bc/
√

|bc|, d}, and an improved passivity radius

σ2

[
a bc/

√
|bc|√

|bc| d

]
.

As second test case we look at a random numerical model {A,B,C,D}
in pH form of state dimension n = 6 and input/output dimension m = 3 via

[
R K
KH S

]
:= MMH,

where M is a random (n + m) × (n + m) matrix generated in MATLAB.
From this we then identified the model A := −R/2, B := −CH := −K/2
and D := S/2. This construction guarantees us that X0 = In satisfies the
LMI positivity constraint for the model M := {A,B,C,D}. We then used
the Newton iteration developed in [?] to compute the analytic center Xc of
the LMI

W (X) :=

[
−X A−AHX CH −X B
C −BHX S

]
> 0,

using the barrier function b(X) := − ln detW (X). We then deter-
mined the quantities α2 := λmin()Ŵ ), β2 := λmin(X̂

−1Ŵ X̂−1), and ξ :=

λmin(X̂
− 1

2 Ŵ X̂− 1
2 ), where W̃ := W (Xc) and X̃ := diag{Xc, Im}. The con-

structed matrix

X̂− 1
2 Ŵ X̂− 1

2 =

[
Rc Kc

KH
c Sc

]

also contains the parameters of the port-Hamiltonian realization at the an-
alytic center Xc. The results are given in the table below

α2 β2 ξ αβ λmin(Rc) ρstab
0.002366 0.001065 0.002381 0.001587 0.1254 0.1035

They indicate that λmin(Rc) at the analytic center is a good approximation

of the true stability radius, and that λmin(X̂
− 1

2 Ŵ X̂− 1
2 ) at the analytic center

is a good approximation of the Xc-passivity radius estimate αβ.
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7 Conclusion

In this paper we have introduced the concept of the analytic center for a
barrier function derived from the KYP LMI W (X) > 0 for passive sys-
tems. We have shown that the analytic center yields very promising results
for choosing the coordinate transformation to pH form for a given passive
system.

Several important issues have not been addressed yet. Can we also apply
these ideas to the limiting situations where W (X) is singular and/or X is
singular, or when the given system is not minimal. More importantly, one
should also analyze if these ideas can also be adapted to models represented
in descriptor form.

Another interesting issue is that of finding the nearest passive system to
a given system that is not passive. This has an important application in
identification, where may loose the property of passivity, due to computa-
tional and round-off errors incurred during the identification.
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land, 2006.

[16] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic
Press, Orlando, 2nd edition, 1985.

[17] C. Mehl, V. Mehrmann, and P. Sharma. Stability radii for linear hamil-
tonian systems with dissipation under structure-preserving perturba-
tions. SIAM J. Matrix Anal. Appl., 37(4):1625–1654, 2016.

[18] C. Mehl, V. Mehrmann, and P. Sharma. Stability radii for linear
hamiltonian systems with dissipation under structure-preserving per-
turbations. Bit Numerical Mathematics, doi:10.1007/s10543-017-0654-
0, 2017.

25

http://arxiv.org/abs/1611.00595
http://arxiv.org/abs/1707.00530


[19] Yu. Nesterov and A. Nemirovski. Interior Point Polynomial Methods
in Convex Programming. SIAM, Phildadelphia, 1994.

[20] M. Overton and P. Van Dooren. On computing the complex passivity
radius. In Proceedings CDC-ECC 2005, pages 7960–7964, 2005.

[21] R. V. Polyuga and A. J. van der Schaft. Structure preserving model
reduction of port-Hamiltonian systems by moment matching at infinity.
Automatica, 46:665–672, 2010.

[22] V. M. Popov. Hyperstability of Control Systems. Springer Verlag,
Berlin, 1973. Romanian version in 1966.

[23] A. J. van der Schaft. Port-Hamiltonian systems: network modeling
and control of nonlinear physical systems. In Advanced Dynamics and
Control of Structures and Machines, CISM Courses and Lectures, Vol.
444. Springer Verlag, New York, N.Y., 2004.

[24] A. J. van der Schaft. Port-Hamiltonian differential-algebraic systems. In
Surveys in Differential-Algebraic Equations I, pages 173–226. Springer-
Verlag, 2013.

[25] A. J. van der Schaft and D. Jeltsema. Port-Hamiltonian systems theory:
An introductory overview. Foundations and Trends in Systems and
Control, 1(2-3):173–378, 2014.

[26] J. C. Willems. Least squares stationary optimal control and the alge-
braic Riccati equation. IEEE Trans. Automat. Control, AC-16(6):621–
634, 1971.

[27] J. C. Willems. Dissipative dynamical systems – Part I: General theory.
Arch. Ration. Mech. Anal., 45:321–351, 1972.

[28] J. C. Willems. Dissipative dynamical systems – Part II: Linear systems
with quadratic supply rates. Arch. Ration. Mech. Anal., 45:352–393,
1972.

[29] V. A. Yakubovich. Solution of certain matrix inequalities in the sta-
bility theory of nonlinear control systems. Dokl. Akad. Nauk. SSSR,
143:1304–1307, 1962.

26


	1 Introduction
	2 Positive-realness, passivity, and port-Hamiltonian systems 
	2.1 Positive-real systems
	2.2 Passive systems
	2.3 Port-Hamiltonian systems

	3 The analytic center of the solution set X>
	4 The passivity radius
	4.1 The X-passivity radius
	4.2 A port-Hamiltonian barrier function

	5 Other Radii
	5.1 The Stability Radius
	5.2 Well conditioned state-space transformations

	6 Numerical examples
	7 Conclusion

