
Recovering Markov Models from Closed-Loop Data?

Jonathan Epperleinb, Sergiy Zhukb, Robert Shortena

aUniversity College Dublin, Dublin, Ireland
bIBM Research, Dublin, Ireland

Abstract

Situations in which recommender systems are used to augment decision making are be-
coming prevalent in many application domains. Almost always, these prediction tools
(recommenders) are created with a view to affecting behavioural change. Clearly, suc-
cessful applications actuating behavioural change, affect the original model underpinning
the predictor, leading to an inconsistency. This feedback loop is often not considered in
standard machine learning techniques which rely upon machine learning/statistical learn-
ing machinery. The objective of this paper is to develop tools that recover unbiased user
models in the presence of recommenders. More specifically, we assume that we observe
a time series which is a trajectory of a Markov chain R modulated by another Markov
chain S, i.e. the transition matrix of R is unknown and depends on the current state
of S. The transition matrix of the latter is also unknown. In other words, at each time
instant, S selects a transition matrix for R within a given set which consists of known
and unknown matrices. The state of S, in turn, depends on the current state of R thus
introducing a feedback loop. We propose an Expectation-Maximization (EM) type al-
gorithm, which estimates the transition matrices of S and R. Experimental results are
given to demonstrate the efficacy of the approach.

1. Introduction

Our starting point for this paper is a frequently encountered problem that arises in the
Smart Cities domain. Many decision support/recommender systems that are designed to
solve Smart City problems are data-driven: that is data, sometimes in real time, is used to
build models to drive the design of recommender systems. Almost always, these datasets
are treated as if they were obtained in an open-loop setting, i.e. without recommender
influence. However, this is rarely the case and frequently the effects of recommenders are
inherent in datasets used for model building [5, 8, 18, 29]. This creates new challenges

?Published in Automatica, May 2019, 10.1016/j.automatica.2019.01.022 — ©2019. This manuscript
version is made available under the CC-BY-NC-ND 4.0 license (creativecommons.org/licenses/by-nc-
nd/4.0)

Email addresses: jpepperlein(at)ie.ibm.com (Jonathan Epperlein), sergiy.zhuk(at)ie.ibm.com
(Sergiy Zhuk), robert.shorten(at)ucd.ie (Robert Shorten)

ar
X

iv
:1

70
6.

06
35

9v
4

 [
m

at
h.

O
C

]
 1

0
N

ov
 2

02
0

https://doi.org/10.1016/j.automatica.2019.01.022
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

for the design of decision support/recommender systems under feedback. In particular,
as engineers, we must take into account the fact that when we make a prediction, then
this prediction affects the behaviour of operators [6] and this, in turn, changes the data
set upon which the original model was built. Clearly, the aforementioned effect is related
to classical closed-loop identification, which is itself a mature topic in both control and
economics [12, 31, 32].

Notwithstanding this fact, and even though avoiding closed-loop effects in the design
of recommender systems has been the subject of study in several Smart City applications
[26, 27], the development of algorithms to identify models in closed loop remains a chal-
lenging problem in the context of Smart Cities. This is due to the fact that closed-loop
questions that arise in Smart Cities are, for the most part, qualitatively different to those
arising in other areas. For example, in control theory closed-loop questions typically arise
in the context of deterministic and parametric models subject to noise, whereas in Smart
Cities, typical problems are characterised by large-scale data sets that are generated by
largely unknown stochastic processes.

Our objective is to consider one such problem class that arises in Smart City related
research, where we seek to identify a user model, based on observations obtained when
the user is acting under the influence of a recommender. A particular instance of such a
problem arises in the automotive domain where drivers are characterised using Markovian
models [11, 15], but where observations are obtained under the influence of recommenders
acting on the driver. Motivated by such applications, we seek to develop methods to
account for the effect of these recommender systems in data sets. More formally, we
shall consider systems with the following structure: the process, which generates the
data; the model, which represents the behaviour of the process; and the decision support
tool, which intermittently influences the process. In our setup, data from the process is
used to build the model. Typically, the model is used to construct a decision support tool
which itself then influences the process directly. This creates a feedback loop in which
the process, decision support tool and the model are interconnected in a complicated
manner. As a result, the effect of the decision support tool is to bias the data being
generated by the process, and consequently to bias any model that is constructed naively
from the data.

To provide a little more context, and to return to the automotive example, we now
illustrate such effects by means of the following application that we have developed in
the context of our automotive research1. Consider a driver who drives a car regularly.
In order to design a recommender system for this driver we would like to build a model
of his/her behaviour. For example, in order to warn the driver of, say, roadworks, along
a likely route, we might use this model to predict the route of the driver. A schematic
of the proposed in-car architecture is depicted in Figure 1. The recommender uses a
model of driver behaviour to issue intermittent recommendations. Observations of driver
behaviour are then used to build a refined driver model which in turn is used as an
input to the recommender system. Clearly, the effect of the recommender is to bias the
driver model over time, thus eventually rendering the latter ineffective as an input to
the recommender. The problems are exacerbated in many practical systems due to the
presence of several unknown third-party recommender systems (Google Maps, Siri etc.),

1https://www.youtube.com/watch?v=KUKxZZByIUM

2

https://www.youtube.com/watch?v=KUKxZZByIUM

Driver Model

DriverRecommender

External Inputs

Observations

Figure 1: Automotive Recommender Architecture

and by the fact that the driver model may operate from birth-to-death2 in closed loop.
This latter fact makes it difficult, or impossible, to even estimate an initial model of driver
behaviour. Clearly, in such applications it is absolutely necessary to develop techniques
that extract the behaviour of the driver while under the influence of the feedback from a
number of recommender systems. The results presented in this paper represent our first
small step in this direction.

1.1. General Comments on Related Research Directions

Dealing with bias arising from closed-loop behaviour is a problem that has arisen
in several application domains. In fact, in control theory, the related topic of closed-
loop identification is considered to be a very mature area [22, 30]. Roughly speaking,
this topic is concerned with building models of dynamic systems while they are being
regulated by a controller. A related scenario arises in some adaptive systems when the
controller itself is being adjusted on the basis of the dynamical systems model. As in our
example, the controller action will bias the estimation of the model parameters. While
many established techniques in control theory exist for dealing with such effects, these
typically exploit known properties of the process noise and an assumed model structure
to un-bias the estimates. Typically, structures such as ARMAX models are assumed
to capture the nature of the system dynamics. Recent work on intermittent feedback
[20] is also related in spirit to these approaches where control design techniques to deal
with feedback loops that are intermittently broken are developed. Before proceeding it is
worth noting that closed-loop effects have also been explored in the economics literature
[1, 23, 31, 33].

More recently, several authors in the context of Smart Cities and recommender sys-
tems [8, 29], have realised that closed-loop effects represent a fundamental challenge in
the design of recommender systems. In [8] the authors discuss the inherent closed-loop
nature of data-sets in cities, and in [29] explicitly discuss the influence of feedback on
the fidelity of recommender systems. As an example of a specific result, [29] presents
an empirical technique for collaborative filtering to recover user rankings in the presence
of a recommender under an assumed interaction model between user and recommender,
which is similar in spirit to the aforementioned problem of constructing models from data
possibly biased by a recommender, but does not consider sequential models.

2by that we mean that the driver always operates under the potential influence of a recommender.
Thus, given any observation, we do not know whether the recommender is acting, or the driver.

3

The work reported here is closely aligned with stochastic models, unlike most of the
approaches outlined in the first paragraph of Section 1.1. Specifically, in this paper we
are interested in reconstructing Markov models that are operating under the influence
of a recommender. To this end we assume that (i) recommenders and users can both be
modelled by Markov chains, and (ii) recommendations are either accepted fully or have
no influence at all, i.e. every decision is made by either the user or the recommender,
never by a combination of the two. We note here that the Markovian assumption of user
and recommender behaviour is convenient for many applications: for example, in the
automotive domains [15, 17].

In this context, the present work is also related to classes of mixture and latent vari-
able models, such as well-known hidden Markov (HMM) and mixture-of-experts (ME)
models [14, 21]. In the latter case, a latent Markov chain selects from a set of parametrisa-
tions of a visible process, however there is no closed-loop modulation (i.e. the modulated
visible process is not allowed to in turn modulate the modulating latent process), and
the visible process is static, subject to noise, not a Markov chain itself. Our work is most
related to [9] but again with the important distinction of closed-loop modulation. A
similar concept of regime switching time series models is used in econometrics [16]: these
models allow parameters of the conditional mean and variance to vary according to some
finite-valued stochastic process with states or regimes. However, the observations are
assumed to be generated by a deterministic process with random noise, and the latent
(switching) process is either a Markov chain independent of the past observations or is a
deterministic function of the past observations. In contrast, we introduce the closed-loop
modulation as discussed above. Yet another related model is Markov jump linear sys-
tems, see e.g. [7], where a (latent, autonomous) Markov chain selects the parameters of
a (visible) dynamical system, whereas in our case, the visible part is a stochastic process
on a discrete state space and it can modulate the latent process.

More specific technical comments to place our work in the context of reconstructing
Markov models from data, and a brief discussion of practical issues including identi-
fiability and convergence speed in terms of the number of samples are given below in
Section 2.3 after the formal description of the proposed closed-loop Markov-modulated
Markov chain models.

1.2. Preliminaries

Notation. To compactly represent discrete state spaces we write [N] := {1, . . . , N}.
For a function M : [N] → Rm×n mapping such a discrete finite set to a set of matrices,
we refer to each value M(k) ∈ Rm×n as a page of M . Matrices will be denoted by capital
letters, their elements by the same letter in lower case, and we denote the set of n×m row-
stochastic matrices, i.e. matrices with non-negative entries such that every row sums up
to 1, byMn×m, andMm :=Mm×m. For compatible matrices, M ⊗N is the Kronecker
product and M◦N denotes the Hadamard (or element-wise) product. A partition Γ of [N]
is a set {Γ1, . . . ,Γp} such that Γi ⊆ [N], ∪iΓ = [N], Γi ∩Γj = {} ∀i 6= j. Each partition
then also defines a membership function γ : [N] → [p] by γ(i) := k such that i ∈ Γk.
We write P (W = w) for the probability of the event that a realisation of the discrete
random variable W equals w, and P (W = w | V = v) the probability of that same event
W = w conditioned on the event V = v. We shall denote random variables by capital
letters and, where appropriate, their realisations by the same letter in lower case. For
convenience we will sometimes write P (w | v) instead of P (W = w | V = v) if there is no

4

risk of ambiguity, and, for a set of parameters µ parametrising a probability distribution,
P (W = w | µ) is taken to denote the probability of the event W = w if the parameters
are set to µ.

Markov chains herein are sequences of random variables {Xt}t indexed by the time
t ∈ N = {0, 1, 2, . . . }. The realisation xt ∈ [N] of Xt is the state of the Markov chain at
time t, and [N] is its state space. The probability distribution of X0 is denoted by π0, and
the probability distribution of each following state is given by P (Xt = j | Xt−1 = i) = aij ;
the matrix A ∈MN with entries aij is the transition probability matrix.

2. Problem Statement and Model

As noted above, we assume that the driver and the recommender are Markovian.
Given a possibly incomplete description of Markov chains modelling the recommender
systems, and no knowledge of when these systems are engaged, our aim is to estimate
the probability transition matrix of the Markov chain representing the driver, and the
levels of engagement of each recommender, using only observed data. In what follows we
formalize this setup, and give an expectation-maximization (EM) algorithm to estimate
the parameters of the unknown driver model.

2.1. “Open-Loop” Markov-Modulated Markov Chains

Consider a Markov chain R with state space [R] and state rt ∈ [R], in which the
transition probabilities

P (Rt = j | Rt−1 = i, St−1 = s) = aRij(s) (1)

depend on a latent random variable St. We can say that the Markov chain is modulated
by the random variable St, and if St is itself the state of another Markov chain S
with transition matrix AS and state space [S], then we are dealing with a Markov-
modulated Markov chain; Markov modulation is an established model in the literature
on inhomogeneous stochastic processes, see e.g. [9].

Formally, the Markov-modulated Markov chain is defined by the tuple µ = (πR, πS ,
AR(·), AS), where AR : [S] → MR and πS , πR denote the distributions of S0 and R0,
respectively. That means for instance that if S only has a single state s, µ is a regular
Markov chain with transition matrix AR(s) and initial probability πR. We assume that
we observe the state of R, but not the state of S.
Because the transition probabilities in the latent Markov chain S do not depend on the
state of the visible chain R, we refer to µ as an open-loop Markov-modulated Markov
chain (ol3MC) to distinguish it from what follows. This models the case when the
switching between the transition matrices AR occurs independently of the current state
rt of R.

The joint process Qt = (St, Rt) has transition probabilities

P (Qt = (s′, r′) | Qt−1 = (s, r)) =

P (Rt = r′ | Rt−1 = r, St−1 = s,����St = s′) ·P (St = s′ |�����Rt−1 = r,St−1 = s) = aRrr′(s) a
S
ss′ ,

where the first cancellation means that the decision at time t − 1 is not influenced by
the state of the modulating random variable at time t, and the second cancellation

5

Algorithm 1 Trajectory generation for a given cl3MC.

1: procedure cl3MC Trajectory(µ = (πR, πS , AR, AS ; Γ), T)
Initialization

2: draw s0 from πS , r0 from πR

3: t← 0
Iteration

4: while t ≤ T − 1 do
Transition in S

5: γ′ ← γ(rt) . active page in S
6: draw st+1 from

[
aSst1(γ′) · · · aSstS(γ′)

]
Transition in R

7: draw rt+1 from
[
aRrt1(st) · · · aRrtR(st)

]
8: return O = (r0 . . . rT)

follows from the open-loop assumption, i.e. that the modulating Markov chain S evolves
independently of R. The estimation of S and R for the case of continuous time ol3MCs
has been discussed in [9].

Remark: We are dealing with the case when the data consists of a finite time series
of observations of a single trajectory (r0r1 · · · rT) of the Markov chain R and no (estimate
of the) distribution of Rt is available. While if the distributions are available, standard
methods of state-space identification apply, here the estimation of the parameters of µ
requires statistical methods such as maximum likelihood estimation.

2.2. Closed-Loop Markov-Modulated Markov Chains

As a generalisation, we consider the case where S is dependent on the state of R: that
is, the probabilities of transitioning from one state s to another state s′ then do depend
on what the current state rt is. We will be referring to this as a closed-loop Markov-
modulated Markov chain or cl3MC for short. A cl3MC can be used to model that one
transition matrix AR(s) might be more likely to be switched to in some regions of the
visible state space [R], or that switching can only occur when the system is in specific
configurations. This is exactly the situation which arises in our automotive example, see
Section 4.2.

Formally, we now also allow for the latent Markov chain S to be modulated by the
current state of the visible chain R. To keep the developments general, assume that
– instead of one page of AS corresponding to each state of R – there is a partition
Γ = {Γ1, . . . ,Γp} of [R] such that there is a page in AS for each Γi. Hence, we now have
AS : [p]→MS , with

P (St = j | St−1 = i, Rt−1 = r) = aSij(γ(r)) .

The open-loop case then corresponds to Γ = {[R]} (i.e. p = 1 and γ(r) ≡ 1) and the joint
process Qt = (St, Rt) has transition probabilities (compare to the open-loop formula
above):

P (Qt = (s′, r′) | Qt−1 = (s, r)) =

6

P (Rt = r′ | Rt−1 = r, St−1 = s) · P (St = s′ | Rt−1 = r, St−1 = s)

= aRrr′(s) a
S
ss′(γ(r)). (2)

Such a cl3MC is represented by a tuple µ = (πR, πS , AR(·), AS(·); Γ), where now, AS(·)
has pages, too.

To further illustrate the operation of a cl3MC model, Algorithm 1 details how a
realization of the stochastic process described by it, i.e. a trajectory, is generated.

2.3. Relationship with Hidden Markov Models

There is a close relationship between closed-loop Markov modulated Markov chains
and Hidden Markov Models (HMMs). Formally:

Proposition 1. µ = (πR, πS , AR(·), AS(·); Γ) defines the same visible process {Rt} as
the Hidden Markov Model λ = (π,W,B), with

π = πS ⊗ πR, B = 1S ⊗ IR,

wij = aSdi/Re dj/Re
(
γ(jR(i))

)
aRjR(i) jR(j)

(
di/Re

)
,

where i, j = 1, . . . , RS, hence W ∈MRS,RS.

Here, jR(k) := (k − 1)(modR) + 1 and dpe := inf{k ∈ Z | k ≥ p}. The proof of
Proposition 1 is mainly algebraic and can be found in [10].

Remark: While Proposition 1 maps a given cl3MC to an HMM which from the
outside looks the same as, this mapping is not reversible: not every HMM represents
a cl3MC, and most importantly, parameter estimation algorithms such as the standard
Baum-Welch algorithm can not be used to estimate the parameters of a cl3MC, because
they do not “respect the structure” of the matrix W : the HMM λ is defined by (RS)2−
RS+(RS−1) free parameters (the entries of W and the entries of π with the stochasticity
constraints taken into account), whereas the corresponding cl3MC requires only (pS −
1)(S − 1) + (SR − 1)(R − 1) parameters3. Hence, it is not possible to estimate the
parameters of λ and then compute the ones of µ; instead, we develop an EM-algorithm
to estimate the parameters of µ directly in Section 3.3.

Identifiability: Given the close relationship between cl3MCs and HMMs outlined
above, one should expect that identifiability issues for cl3MCs bear close resemblance to
those of HMMs. By identifiability we mean the following: assume that (r1 . . . rT) has
been generated by the “true model” µtrue; under which conditions and in what sense will
the estimate µest converge to µtrue if T → ∞? For HMMs this question was partially
answered in [24], namely it was shown that there is an open, full-measure subset U of all
HMMs, such that the sequence of estimates of the BW algorithm converges to λtrue (or a
trivial permutation of it), provided the starting model is chosen within U , λtrue

i > δ > 0
and T →∞. However, the structure of U and convergence speed in terms of the number
of samples were not described, and, to the best of our knowledge, these questions are
still open.

3Note that (pS − 1)(S − 1) + (SR− 1)(R− 1) < (RS)2 − 1 for R+ S > 2.

7

For cl3MCs, similarly and trivially, any permutation of AS and the corresponding
pages of AR, which amounts to relabelling the hidden states s, yields the same visible
process. However, there are examples of sets of HMMs λ, which are not permutations
of each other, yet generate the same observable process; see [4, 13]. Interestingly, those
examples involve the special case of partially observable Markov chains, a subclass of
HMMs with emissions matrices B having entries that are either 1 or 0. Comparing to
Proposition 1, a cl3MC has close correspondence to an HMM of this class. This suggests
that, in practice, the set of maximisers of the likelihood may be wider than the aforemen-
tioned set of permutations of µtrue; our numerical experiments in Section 4 also suggest
that, in general, we cannot recover the true model µtrue, even up to trivial permuta-
tions, from observing only trajectories of R. However, in the case of partial knowledge
of elements of AR we can recover AS and the unknown portion of AR. Hence, for the
“driver-recommender” problem the proposed method is of practical value. Estimates of
the minimum amount of prior knowledge necessary are the subject of future research.

3. Likelihood and Parameter Estimation

In this section we develop an iterative algorithm to estimate the parameters of a
cl3MC µ = (πR, πS , AS(·), AR(·); Γ) given a sequence of observations (r0r1r2 · · · rT), a
partition Γ = {Γ1, . . . ,Γp} of [R] and the size S of the state space of S. The derivation
is close in spirit to the classical Baum-Welch (BW) algorithm (see e.g. [25] and the
numerous references therein): our algorithm maximises at every iteration a lower bound
on the likelihood improvement, and gives rise to re-estimation formulae (14) that utilise
forward and backward variables which differ in subtle ways from the ones of the BW
algorithm.

3.1. Likelihood of µ, Forward- and Backward Variables

Since the estimate to be obtained is a maximum likelihood (ML) estimate, the efficient
computation of the likelihood of a given cl3MC µ plays a central role in what follows.
For a given µ, the joint probability of sequences (r0r1 · · · rT) and (s0s1 . . . sT) being the
trajectories of the visible Markov chain R and latent Markov chain S is

P (s0, . . . , sT , r0, . . . , rT | µ)

= πRr0π
S
s0

T∏
t=1

P (st, rt | st−1, rt−1, µ) = πRr0π
S
s0

T∏
t=1

aSst−1st(γ(rt−1))aRrt−1rt(st−1)
(3)

where the last equality follows by (2). This allows us to compute the probability of
observing a sequence (r0r1 · · · rT) given µ as follows:

P (r0r1 · · · rT | µ)

=
∑

s0∈[S]···sT∈[S]

P (s0, . . . , sT , r0, . . . , rT | µ)

= πRr0

∑
s0···sT

πSs0

T∏
t=1

aSst−1st(γ(rt−1))aRrt−1rt(st−1) =: `(µ)

(4)

8

where µ 7→ `(µ) is the likelihood of the model µ. Computation using this direct expression
requires on the order of 2 × T × ST operations, and is hence not feasible for large T .
Instead, we define the forward variable αt with S elements

αt(i) := P (St = i, R0 = r0, . . . , Rt = rt | µ) (5)

which can be computed iteratively as follows: α0(j) = πSj π
R
r0 and

αt(j) =

S∑
i=1

αt−1(i)aSij(γ(rt−1))aRrt−1rt(i), j = 1, . . . S,

or, in matrix form: α0 = πSπRr0 and

αt =
(
AS(γ(rt−1))

)ᵀ (
aRrt−1rt(:) ◦ αt−1

)
, (6)

where the notation aRrt−1rt(:) means a column vector of the (rt−1, rt)-elements of the

matrix AR(k) as k runs from 1 to S.4 It follows that

`(µ)=

S∑
i=1

P (ST = i, r0, . . . , rT | µ)=
∑
i

αT (i) = 1ᵀαT

can be computed with on the order of TS2 computations.
An analogous concept that will be required later is the backward variable

βt(i) := P (rt+1, . . . , rT | St = i, rt), (7)

which can also be computed via iteration: βT (j) = 1,

βt−1(j) =
∑
i

βt(i)a
R
rt−1rt(j)aji(γ(rt−1)),

or in matrix form: βT = 1 and

βt−1 =
(
AS(γ(rt−1))βt

)
◦ aRrt−1rt(:). (8)

3.2. Auxiliary Function Q(µ, µ′)

Let Λ denote the set of all cl3MCs. Λ is then bounded and convex if we define convex
combinations of cl3MCs µ = (πR, πS , AR(·), AS(·); Γ) and ν = (ρR, ρS , BR(·), BS(·); Γ)
as

αµ+ (1− α)ν =
(
απR + (1− α)ρR, απS + (1− α)ρS ,

αAR + (1− α)BR, αAS + (1− α)BS ; Γ
)
.

4Very much analogous to Matlab’s colon notation, or slicing in numpy.

9

See [10] for details. Following [2], we define the auxiliary function Q(µ, µ′) of µ, µ′ ∈ Λ
by

Q(µ, µ′) :=
∑
s0···sT

P (s0, . . . , sT , r0, . . . , rT | µ) · logP (s0, . . . , sT , r0, . . . , rT | µ′), (9)

where s0, . . . , sT run through the ST possible sequences of the latent state St. If param-
eters µ′i are zero where µi > 0, then we can have the case P (s0, . . . , rT | µ′) = 0 and
P (s0, . . . , rT | µ) > 0; in this case Q(µ, µ′) := −∞. If P (s0, . . . , rT | µ) = P (s0, . . . , rT |
µ′) = 0, we set Q(µ, µ′) = 0 which amounts to setting 0 log(0) = 0.
The following lemma establishes a representation for Q in terms of the elements of
µ′ = (πR

′
, πS

′
, AS

′
, AR

′
; Γ):

Lemma 2. The function Q(µ, µ′) can be rewritten as

Q(µ, µ′) = log πR
′

r0 `(µ) +

S∑
i=1

log πS
′

i

S∑
j=1

ξ1(i, j) +
S∑

i,j=1

T∑
t=1

Lij(rt−1, rt)ξt(i, j) (10)

where Lij(m,n) := log aS
′

ij (γ(m)) + log aR
′

mn(i) and

ξt(i, j) := P (St−1 = i, St = j, r0, . . . , rT | µ) (11)

can be computed as follows:

ξt(i, j) = αt−1(i)aRrt−1rt(i)a
S
ij(γ(rt−1))βt(j), (12)

and the variables carrying a •′ constitute µ′.

The proof is relegated to Appendix B. Additionally, an application of Jensen’s inequality
yields (see [10]):

Lemma 3. The improvement in log-likelihood satisfies the lower bound

`(µ)
(
log `(µ′)− log `(µ)

)
≥ Q(µ, µ′)−Q(µ, µ) . (13)

3.3. EM-Algorithm for Parameter Estimation

The algorithm proceeds by maximising the lower bound on the log-likelihood im-
provement set forth in (13) at every iteration.

It should be clear from (10) that the best estimate of πR is the r0-th canonical
Euclidian basis vector er0 . The remaining parameters of µ can be iteratively estimated
by repeatedly applying the following theorem:

Theorem 1. The unique maximizer µ′ = M(µ) of Q(µ, ·) is given by

πS
′

i =

∑S
j=1 ξ1(i, j)

1ᵀαT
(14a)

aS
′

ij (l) =

∑
t:γ(rt−1)=l ξt(i, j)∑S

k=1

∑
t:γ(rt−1)=l ξt(i, k)

(14b)

10

aR
′

mn(i) =

∑S
k=1

∑
t:rt−1=m,rt=n

ξt(i, k)∑R
ν=1

∑S
k=1

∑
t:rt−1=m,rt=ν

ξt(i, k)
, (14c)

where i, j = 1, . . . , S, l = 1, . . . , p, and m,n = 1, . . . , R.

The proof is given in Appendix B. Formulae (14) provide the basis for the EM-type
parameter estimation algorithm for cl3MC µ: in its k-th iteration, the E-step consists
of computing ξt(·, ·) from the current estimate µk, and the M-step yields an updated
estimate µk+1 = M(µk) with improved likelihood, see also the pseudocode in Algorithm 2
in the Appendix. Note that M has a unique fixed point, µ∞ = limk µ

k which is, at the
same time, a stationary point (possibly a local maxima) of the likelihood, see [10] for
details.

4. Examples

Here we illustrate the algorithm’s efficacy in two scenarios: first with synthetic data,
i.e. data generated from a cl3MC, denoted µtrue; and second, in a toy example of a
practical application, estimation of driver behaviour. In both cases, we assume that one
decision-maker, specifically the matrix AR(2), and Γ are known. For implementation
details, in particular how to avoid arithmetic underflow by scaling, and a pseudocode,
see Appendix A and Algorithm 2 therein, and [10]; for details on the experimental
procedures, see Appendix C.

4.1. Synthetic Data

To explore the relationship between estimation error and number of samples, repeated
the following for several values T ∈ [500, 75000]: Ne = 100 cl3MCs with R = 20, S = 2
and Γ = {[R]} (i.e. the open-loop case) were generated, and then a trajectory of length
T for each of them. We then ran the algorithm with random initial guesses πS , AS ,
and AR(1). The same was repeated for the same Ne cl3MCs, only that now, Γ was a
randomly selected partition of order 2, so that p = 2, and a second random page AS(2)
was added to AS . In both cases, we assume AR(2) and Γ to be known. The modification
to the algorithm is trivial: AR(2) is simply not re-estimated.

As illustrated in Figures 2 and 3, we recover AS and AR(1) to high accuracy for
large enough T . “Accuracy” is hereby measured through statistical distances: since the
transition matrices of Markov chains consist of probability distributions – row i being
the distribution of the state following i – absolute or relative matrix norms are not a
good measure of distance between Markov chains. Instead, we consider a statistical
distance between the estimated and true probability distributions. One of the simplest
such distances is the total variation (TV) distance (see e.g. [19, Ch. 4]), which is given
by the maximal difference in probability for any event between two distributions. For
probability distributions f and g over a discrete space Ω, this is simply

‖f − g‖TV = max
A⊆Ω

f(A)− g(A) =
1

2

∑
ω∈Ω

|f(ω)− g(ω)|.

We consider here two applications of TV distance to Markov chains. The first is to
take the TV distance between the stationary distributions, which concretely amounts to

11

considering the subset ρ of the state space [R] such that P (Xt ∈ ρ | AR,est(1))−P (Xt ∈
ρ | AR,true(1)) is maximised (for large enough times t such that the stationary distribution
is reached). If we let ψtrue and ψest denote the stationary distributions, then

‖AR,est(1)−AR,true(1)‖stat := ‖ψest − ψtrue‖TV . (15)

However, this is a coarse measure: different Markov chains can have equal stationary
distributions. Hence, the second metric incorporates the distance between the individual
rows by considering the expectation (under the true stationary distribution ψtrue) of the
TV distance between the estimated and the true row; this equals the sum of the distances
between the true and estimated transition probabilities from all states i, weighted by the
probability of being in state i:

‖AR,est(1) − AR,true(1)‖exp :=
∑
i

ψtrue
i ‖AR,est

i: (1) − AR,true
i: (1)‖TV , (16)

where Mi: denotes the i-th row of matrix M .

10
3

10
4

10
-2

10
-1

Figure 2: Length of training sequences T vs ‖A•,est(1)−A•,true(1)‖exp, defined in (16). Shown are the
medians and whiskers for the quartiles.

The effect of T on the accuracy is explored in Figure 2. The error appears to decay as
a power of T , however this is simply an observation; a theoretical analysis of the sample
complexity and decay rates is part of future work to be done.

For a representative value of T = 5 · 104, Figure 3 drills down further into the experi-
mental results; the distance for both introduced metrics is often below 10%, but we also
observe severe outliers. Note that we show AR(1) only, the analysis and results for AS(·)
are analogous and are hence omitted.

4.2. A Model of Driver Behaviour

Recent research, e.g. [11, 15, 17, 28], suggests that Markov-based models are good
approximations of driver behaviour and can be used e.g. for route prediction. Here, we

12

0.1 0.2

0

0.1

0.2

0.3

0 0.05 0.1

0

0.2

0.4

0 0.1 0.2

0

0.1

0.2

0.3

0 0.1 0.2

0

0.1

0.2

0.3

0.1 0.3 0.5

0

0.1

0.2

0 0.5

0

0.1

0.2

0.3

Figure 3: The upper row shows the distribution of ‖AR,est(1) − AR,true(1)‖stat, see (15), first for all
2Ne = 200 pairs of µtrue and µest, and then for the Ne open-loop and Ne closed-loop cases. In the
bottom row, the same is shown for the metric ‖AR,est(1)−AR,true(1)‖exp, defined in (16).

illustrate how cl3MCs can be used to identify a driver’s preferences when some trips are
planned by a recommender system, whose preferences are known, while the other trips
are planned by the driver.

Specifically, consider the map in the left panel of Figure 4, which depicts a (very small
toy) model of a driver’s possible routes from origin “O” to destination “D.” The houses,
as an example, correspond to schools, that should be avoided in the hour before classes
start and after classes end for the day, so there is a route past them and one around
them. We assume that if a trip falls into that time frame, the recommender takes over
and, with known probabilities, routes the driver either past or around each school; these
probabilities make up AR(2). Otherwise, the driver follows his/her preferences, which
constitute AR(1); this is the matrix we would like to estimate. We generated Ne = 50
sets of data by simulating Nt = 200 trips on the graph shown in the right panel of
Figure 4; this is the line graph of the map, where each road segment corresponds to a
node, and an edge goes from node i to node j iff it is possible to turn into road segment
j from i. Each trip has a probability of pr = 0.3 to be planned by the recommender.
If a trip was planned by the recommender (resp. driver), a trajectory was generated by
a Markov chain with transition matrix AR(2) (resp. AR(1)) originating in node 1 and
terminating when returning to node 1.

For estimation in the cl3MC framework, all trips are then concatenated to form
one long trajectory and AS and AR(1) are estimated for an ol3MC, i.e. for Γ = [9].
AR,est(1) is then an estimate of the driver preferences. The results are shown in the first

13

O

2

3
4

7

6

5

8

9

D

0
.2

 /
 0

.8

0
.3

 / 0
.7

0
.1

 / 0
.9

0
.9

 /
 0

.1
0
.9

 /
 0

.1

0
.8

 / 0
.2

1

2

3

4

5

6

7

8 9

Figure 4: The map of our small toy model and its abstraction as the line graph of the road model. The
direction of traffic is from left to right only. The origin and destination are merged into node 1. The
weights denote the transition probabilities for the driver and the recommender system. When there is
no weight, then the transition probability is 1 for both.

column of Figure 5 and are satisfactory already; however, we can leverage the closed -
loop framework to include the additional knowledge that the the decision maker (i.e. the
page of AR used) can only change after a trip is finished. Because the decision which
page of AR to use at time t is made at t − 1, see (1), this means we have to allow for
the state of S to change on the road segments prior to reaching the destination. We
hence let Γ =

{
{8, 9}, {1, . . . , 7}

}
and AS(2) = I2. AS(1) needs to be identified. The

results are shown in Figure 5. Additionally, we can interpret ψS,est
2 , the second element0 0.02 0.04 0.06 0.08

0

0.1

0.2

0.3

0 0.02 0.04 0.06 0.08
0

0.1

0.2

0.3

0 0.02 0.04 0.06 0.08
0

0.1

0.2

0.3

0 0.02 0.04 0.06 0.08
0

0.1

0.2

0.3

Figure 5: Results from estimating the driver preferences in Section 4.2. Assuming open loop yields ac-
ceptable results; adding the information that only full trips are planned by either driver or recommender
improves accuracy considerably. Mean and standard deviation are given.

of the stationary distribution of AS,est(1) as an estimate of pr. For the open-loop case,
we obtain 0.352(±0.0583), whereas the cl3MC estimation yields 0.295(±0.044).

14

5. Concluding Remarks

We consider the identification of user models acting under the influence of one or more
recommender systems. As we have already discussed, actuating behavioural change af-
fects the original model underpinning the predictor, leading to an biased user models.
Given this background, the specific contribution of this paper is to develop techniques
in which unbiased estimates of user behaviour can be recovered in the case where rec-
ommenders, users, and switching between them can be parameterised in a Markovian
manner, and where users and recommenders form part of a feedback system. Examples
are given to present the efficacy of our approach.

Acknowledgements: The authors would like to thank Ming-Ming Liu and Yingqi Gu

(University College Dublin) for help with the numerical experiments, and Giovanni Russo and

Jakub Mareček (IBM Research Ireland) for valuable discussions.

This work has been conducted within the ENABLE-S3 project that has received funding from

the ECSEL joint undertaking under grant agreement NO 692455. This joint undertaking receives

support from the European Union’s HORIZON 2020 Research and Innovation programme and

Austria, Denmark, Germany, Finland, Czech Republic, Italy, Spain, Portugal, Poland, Ireland,

Belgium, France, Netherlands, United Kingdom, Slovakia, Norway.

Robert Shorten was also partially supported by SFI grant 16/IA/4610.

References

[1] Angrist, J., Pischke, J., 2008. Mostly harmless econometrics: An empiricist’s companion. Princeton
University Press.

[2] Baum, Y., Petri, T., Soules, G., Weiss, N., 1970. A maximization technique occuring in the statis-
tical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics
41, 164–171.

[3] Bertsekas, D.P., 1999. Nonlinear Programming. Athena Scientific Belmont.
[4] Blackwell, D., Koopmans, L., 1957. On the identifiability problem for functions of finite Markov

chains. The Annals of Mathematical Statistics , 1011–1015.
[5] Bottou, L., Peters, J., Quiñonero Candela, J., Charles, D.X., Chickering, D.M., Portugaly, E., Ray,

D., Simard, P., Snelson, E., 2013. Counterfactual reasoning and learning systems: The example
of computational advertising. J. Mach. Learn. Res. 14, 3207–3260. URL: http://dl.acm.org/

citation.cfm?id=2567709.2567766.
[6] Cosley, D., Lam, S.K., Albert, I., Konstan, J.A., Riedl, J., 2003. Is seeing believing?: How rec-

ommender system interfaces affect users’ opinions, in: Proceedings of the SIGCHI conference on
Human factors in computing systems, ACM. pp. 585–592.

[7] Costa, O.L.V., Fragoso, M.D., Marques, R.P., 2006. Discrete-time Markov jump linear systems.
Springer Science & Business Media.

[8] Crisostomi, E., Shorten, R., Wirth, F., 2016. Smart cities: A golden age for control theory?
[industry perspective]. IEEE Technology and Society Magazine 35, 23–24.

[9] Ephraim, Y., Roberts, W.J.J., 2009. An EM algorithm for Markov modulated Markov processes.
IEEE Transactions on Signal Processing 57, 463–470. doi:10.1109/TSP.2008.2007919.

[10] Epperlein, J., Shorten, R., Zhuk, S., 2017. Learning Markov models from closed loop data-sets.
ArXiv e-prints arXiv:1706.06359v2 (an older version of the article you are currently reading).

[11] Epperlein, J.P., Monteil, J., Liu, M., Gu, Y., Zhuk, S., Shorten, R., 2018. Bayesian classifier for
route prediction with Markov chains. IEEE International Conference on Intelligent Transportation
Systems Preprint available arXiv:1808.10705.

[12] Forssell, U., Ljung, L., 1999. Closed-loop identification revisited. Automatica 35, 1215 – 1241.
URL: http://www.sciencedirect.com/science/article/pii/S0005109899000229, doi:https://
doi.org/10.1016/S0005-1098(99)00022-9.

[13] Gilbert, E., 1959. On the identifiability problem for functions of finite Markov chains.
Ann. Math. Stat. 30, 688–697.

15

http://dl.acm.org/citation.cfm?id=2567709.2567766
http://dl.acm.org/citation.cfm?id=2567709.2567766
http://dx.doi.org/10.1109/TSP.2008.2007919
http://arxiv.org/abs/1706.06359v2
http://www.sciencedirect.com/science/article/pii/S0005109899000229
http://dx.doi.org/https://doi.org/10.1016/S0005-1098(99)00022-9
http://dx.doi.org/https://doi.org/10.1016/S0005-1098(99)00022-9

[14] Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E., 1991. Adaptive mixtures of local experts.
Neural computation 3, 79–87.

[15] Krumm, J., 2008. A Markov model for driver turn prediction. Technical Report. SAE Technical
Paper.

[16] Lange, T., Rahbek, A., 2009. An introduction to regime switching time series models, in: Handbook
of Financial Time Series. Springer.

[17] Lassoued, Y., Monteil, J., Gu, Y., Russo, G., Shorten, R., Mevissen, M., 2017. Hidden Markov
model for route and destination prediction, in: IEEE International Conference on Intelligent Trans-
portation Systems.

[18] Lazer, D., Kennedy, R., King, G., Vespignani, A., 2014. The parable of Google Flu: Traps in big
data analysis. Science 343, 1203–5.

[19] Levin, D.A., Peres, Y., Wilmer, E.L., 2009. Markov chains and mixing times. 2 ed., American
Mathematical Soc.

[20] Gollee, H., Lakie, M., Gawthrop, P.J., 2011. Human control of an inverted pendulum: Is continuous
control necessary? Is intermittent control effective? Is intermittent control physiological? The
Journal of Physiology 589, 307–324. URL: http://dx.doi.org/10.1113/jphysiol.2010.194712,
doi:10.1113/jphysiol.2010.194712.

[21] Meila, M., Jordan, M.I., 1996. Markov mixtures of experts, in: Murray-Smith, R., Johanssen, T.A.
(Eds.), Multiple Model Approaches to Nonlinear Modelling and Control. Taylor and Francis.

[22] Norton, J., 2009. An Introduction to Identification. Dover Books on Electrical Engineering Series,
Dover Publications. URL: https://books.google.ie/books?id=eyHC7751n_cC.

[23] Pearl, J., 2000. Causality: Models, Reasoning, and Inference. New York: Cambridge University
Press.

[24] Petrie, T., 1969. Probabilistic functions of finite state Markov chains. Ann. Math. Stat. 40, 97–115.
[25] Rabiner, L.R., 1989. A tutorial on hidden Markov models and selected applications in speech

recognition. Proceedings of the IEEE 77, 257–286. doi:10.1109/5.18626.
[26] Schlote, A., Chen, B., Shorten, R., 2015. On closed loop bicycle availability prediction. IEEE

Transactions on Intelligent Transportation Systems 16, 1449–1555.
[27] Schlote, A., King, C., Crisostomi, E., Shorten, R., 2014. Delay-tolerant stochastic algorithms for

parking space assignment. IEEE Transactions on Intelligent Transportation Systems 15, 1922–1935.
[28] Simmons, R., Browning, B., Zhang, Y., Sadekar, V., 2006. Learning to predict driver route and

destination intent, in: 2006 IEEE Intelligent Transportation Systems Conference, pp. 127–132.
doi:10.1109/ITSC.2006.1706730.

[29] Sinha, A., Gleich, D., Ramani, K., 2016. Deconvolving feedback loops in recommender systems, in:
Proceedings of NIPS, Barcelona, Spain. ArXiv:1703.01049.

[30] Söderström, T., Stoica, P., 1989. System Identification. Prentice Hall International Series In Systems
And Control Engineering, Prentice Hall. URL: https://books.google.ie/books?id=X_xQAAAAMAAJ.

[31] Stock, James H.; Trebbi, F., 2003. Retrospectives: Who invented instrumental variable regression?
Journal of Economic Perspectives 17, 177–194.

[32] Van Den Hof, P.M., Schrama, R.J., 1995. Identification and control – closed-loop issues. Automatica
31, 1751–1770.

[33] Varian, H.R., 2016. Causal inference in economics and marketing. Proc. of the National Academy
of Sciences of the United States of America , 7310–7315.

Appendix

Appendix A. Scaling Issues

Since the computations of αt and βT−t according to (6) and (8) involve multiplications
of on the order of 2t numbers less than 1, for large T , they will be close to, or below,
machine precision. The re-estimation (14) then requires division of very small numbers,
which of course should be avoided. To mitigate these issues, scale αt to sum up to 1:

ct := 1ᵀαt α̂t := αt/ct.

16

http://dx.doi.org/10.1113/jphysiol.2010.194712
http://dx.doi.org/10.1113/jphysiol.2010.194712
https://books.google.ie/books?id=eyHC7751n_cC
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1109/ITSC.2006.1706730
https://books.google.ie/books?id=X_xQAAAAMAAJ

The update can be done in two compact steps:

α̂′t =
(
AS(γ(rt−1))

)ᵀ (
aRrt−1rt(:) ◦ α̂t−1

)
α̂t =

α̂′t
1ᵀα̂′t

.
(A.1)

Also note that log ct = log ct−1 + log 1ᵀα̂′t and log `(µ) = log(1ᵀαT) = log(cT); the
likelihood `(µ) is not computed anymore, only the log-likelihood. Since the backwards
variables βT−t can be expected to be of similar order as αt they are scaled using the
same scaling factors ct:

β̂T−t := βT−t/ct. (A.2)

We then compute the scaled versions of ξt(i, j) in similar fashion

ξ̂′t(i, j) = α̂t−1(i)aRrt−1rt(i)a
S
ij(γ(rt−1))β̂t(j)

ξ̂t =
ξ̂′t

1ᵀξ̂′t1
=

ξt
1ᵀαT

(A.3)

and note that upon substituting ξt = (1ᵀαT)ξ̂t in (14), 1ᵀαT cancels everywhere, and
we arrive at the rescaled re-estimation equations

πS
′

i =

S∑
j=1

ξ̂1(i, j) (A.4a)

aS
′

ij (l) =

∑
t:γ(rt−1)=l ξ̂t(i, j)∑S

k=1

∑
t:γ(rt−1)=l ξ̂t(i, k)

(A.4b)

aR
′

mn(i) =

∑S
k=1

∑
t:rt−1=m,rt=n

ξ̂t(i, k)∑S
k=1

∑
t:rt−1=m ξ̂t(i, k)

. (A.4c)

For a more detailed derivation, see again [10].

Appendix B. Proofs

Proof (Lemma 2). Formula (12) follows directly from the definitions of αt−1, aRmn, aSij
and βt. Now let summation indices sτ always run from 1 to S. First, we rewrite the
second line of (9): given the definition of Lij(k, `) and (3) we get

logP (s0, . . . , sT , r0, . . . , rT | µ′) = log πR
′

r0 + log πS
′

s0 +

T∑
t=1

Lst−1st(rt−1, rt).

We substitute this back into (9) to get Q(µ, µ′) = Q1 +Q2 +Q3, with

Q1 =
∑
s0···sT

P (s0, . . . , sT , r0, . . . , rT | µ) · log πR
′

r0 = `(µ) log πR
′

r0 ;

17

Algorithm 2 EM parameter estimation for cl3MCs

1: procedure EM-Estimation(O = (r0 . . . rT), µ = (πR, πS , AR, AS ; Γ); ε >
0, Nmax > 0)
Initialization

2: Niter := 0 δ :=∞
3: πR ← er0 . See remark before Lemma 1

Iteration
4: while Niter ≤ Nmax and δ > ε do

Forward-backward variables from µ

5:
α← (6) β ← (8) ξ ← (12)

or α̂← (A.1) β̂ ← (A.2) ξ̂ ← (A.3)
Reestimation

6: (πS
′
, AR

′
, AS

′
)← (14) or (A.4)

7: µ′ ← (πR, πS
′
, AR

′
, AS

′
; Γ)

Check relative changes
8: for ν ∈ {πS , AR, AS} do
9: δν ← (‖ν − ν′‖F) /‖ν‖F

10: δ` ← |`(µ′)− `(µ)|/|`(µ)|
11: δ ← max{δν}

Update
12: Niter ← Niter + 1
13: (πS , AR, AS)← (πS

′
, AR

′
, AS

′
) µ← µ′

14: return µ

for Q2 and Q3, note the “marginalisation”

ξt(i, j) =
∑

s0...st−2,st+1...sT

P
(
s0, . . . , st−2, St−1 = i, St = j, . . . sT , r0, . . . , rT | µ

)
,

where the sum runs over the states of the latent chain S before time instant t− 1 and
after time instant t. Then

Q2 =
∑
s0···sT

P (s0, . . . , sT , r0, . . . , rT | µ) log πS
′

s0 =

S∑
i,j=1

log πS
′

i

∑
s2···sT

P (S0 = i, S1 = j, s2, . . . , rT | µ) =
S∑
i=1

log πS
′

i

S∑
j=1

ξ1(i, j)

and

Q3 =
∑
s0···sT

P (s0, . . . , rT | µ)

T∑
t=1

Lst−1st(rt−1, rt) =

T∑
t=1

∑
st−1,st

Lst−1st(rt−1, rt) · P
(
St−1 = st−1, St = st, r0, . . . , rT | µ

)
=

18

T∑
t=1

S∑
i=1

S∑
j=1

Lij(rt−1, rt)ξt(i, j).

This completes the proof.

Proof (Theorem 1). From the remark before the theorem, it should be clear that we
can ignore the first term in (10) in the maximisation. Consider µ ∈ Λ as fixed, and define
µ̃ 7→ W (µ̃) := Q(µ, µ̃). We claim that W has the unique global maximum point µ′ ∈ Λ.
Note that if µ ∈ Λ then it may have zero components, say µi1 = · · · = µid = 0. Then the
logarithms of the corresponding components µ̃i1 . . . µ̃id of µ̃ in W are multiplied by 0 so
that these components do not change W . However, if we fix all the components of µ̃ but
µ̃i1 and any other component µ̃k such that k 6∈ {i1 . . . id}, and k is such that µ̃i1 and µ̃k are
in πR, or are in the same row of AR or AS , then increasing µ̃i1 will decrease µ̃k (to meet
the stochasticity constraints). As a result, the log µ̃k will decrease causing W to decrease.

Hence, the maximum of W is attained in the set Λ̃ := {µ̃ ∈ Λ : µ̃i1 = · · · = µ̃id = 0}.
Let W̃ be the restriction of W to Λ̃. Now W̃ is a conical sum of logarithms of all
R+S+SR2 + pS2− d independent components of µ̃, hence strictly concave function on
a convex compact set Λ̃. Hence, W̃ has a unique maximum point in Λ̃ which coincides
with the unique global maximum point µ′ of W in Λ.

Let us prove that µ′ = M(µ). As noted above, µi1 = · · · = µid = 0 implies that
µ′i1 = · · · = µ′id = 0, and we stress that the same property holds true for M(µ): If πSi is

0 it follows from (6) that α0(i) = 0 and from (12) we get ξ1(i, j) = 0. By (14a), πS
′

i = 0
as well. If we have aSij(l) = 0, then again from (12), we see that ξt(i, j) = 0 for all t with

rt−1 = l, and (14b) yields aS
′

ij (l) = 0. Similarly, aRmn(i) = 0 leads to ξt(i, j) = 0 whenever

rt−1 = m and rt = n, independently of j, so aR
′

mn(i) = 0, too. Hence M(Λ̃) = Λ̃, and
πS
′

i , aS
′

ij (l) and aR
′

mn(i) defined by (14) are positive if the corresponding components of µ
are. On the other hand, µ′k > 0 if µk > 0 as otherwise W (µ′) = −∞, and so the gradient

of W̃ is well-defined at µ′. In fact, for positive π̃Si , ãSij(l) and ãRmn(i):

∂W̃

∂π̃Si
=

∑S
j=1 ξ1(i, j)

π̃Si

∂W̃

∂ãSij(l)
=

∑
t:γ(rt−1)=l ξt(i, j)

ãSij(l)

∂W̃

∂ãRmn(i)
=

∑S
k=1

∑
t:rt−1=m,rt=n

ξt(i, k)

ãRmn(i)

By e.g. [3, p.113, Prop. 2.1.2], it is necessary and sufficient for µ′ to satisfy the inequality

(∇W̃ (µ̃)
∣∣∣
µ̃=µ′

)ᵀµ̃ ≤ (∇W̃ (µ̃)
∣∣∣
µ̃=µ′

)ᵀµ′ ∀µ̃ ∈ Λ̃. (B.1)

We stress that the r.h.s. of (B.1) is independent of µ′ as

(∇W̃ (µ̃)
∣∣∣
µ̃=µ′

)ᵀµ′ = (2T + 1)`(µ).

19

Since πS
′

i , aS
′

ij (l) and aR
′

mn(i) defined by (14) are positive if the corresponding components

of µ are so, the gradient of W̃ is well-defined at M(µ). Take any µ̃ ∈ Λ̃ and compute:

π̃Si
∂W̃

∂π̃Si
(µ′) = π̃Si

S∑
i=1

S∑
j=1

ξ1(i, j)

ãSij(l)
∂W̃

∂ãSij(l)
(µ′) = ãSij(l)

S∑
k=1

∑
t:γ(rt−1)=l

ξt(i, k)

ãRmn(i)
∂W̃

∂ãRmn(i)
(µ′) = ãRmn(i)

R∑
n=1

S∑
k=1

∑
t:rt−1=m,rt=n

ξt(i, k)

so that, by stochasticity constraint, we get [10]:

(∇W̃ (µ̃)
∣∣∣
µ̃=µ′

)ᵀµ̃ = (2T + 1)`(µ)

Hence, M(µ) defined by (14) satisfies (B.1) with equality for any µ̃ ∈ Λ̃. This completes
the proof.

Appendix C. Experimental details

The detailed steps in generating the data in Section 4.1 are as follows. We consider
T ∈ {500, 1000, 3000, 5000, 7500, 10000, 12500, 15000, 20000, 25000, 30000, 50000, 75000}
and begin at i = 0. Then, for each of the NT = 13 values of T , the following is re-
peated Ne times: 1. generate a pair of R×R row-stochastic matrices

(
AR(1), AR(2)

)
by

selecting one “dominant element” per row and setting it to a random number uniformly
distributed in [0.5, 1] (this is done to ensure that the two matrices in a pair are sufficiently
different) and filling the remaining elements with uniformly random numbers; 2. generate
a S × S row-stochastic matrix AS(1) with uniformly random entries; 3. generate initial
probability vectors πS ∈ [0, 1]S and πR ∈ [0, 1]R with uniformly random entries; 4. gen-
erate a trajectory of length T from the cl3MC µo = (πS , πR, AS(1), AR; [R]) (this is the
open-loop case); 5. estimate parameters of µo by running Algorithm 2 (initialized with
uniformly random guesses for unknown parameters) until convergence and record the
distance measures defined in Section 4.1; 6. generate an additional S × S row-stochastic
matrix AS(2) with uniformly random entries; 7. generate a random partition Γ of [R] by
first randomly permuting [R] and then splitting it after a random index between 1 and
R−2; 8. generate a trajectory of length T from the cl3MC µc = (πS , πR, AS , AR; Γ) (this
is the open-loop case); 9. estimate parameters of µc by running Algorithm 2 (initialized
with uniformly random guesses for unknown parameters) until convergence and record
the distance measures defined in Section 4.1. Note that we assume AR(2) to be known
and it is not estimated. Concretely that means that the initial guess of AR(2) is set to the
true value of AR(2) and AR(2) is excluded from the reestimation steps in Algorithm 2.
The parameters used in Algorithm 2 are ε = 10−5, a typical, empirical choice for relative
tolerances, and Nmax = 2000, at which point the algorithm has typically long converged
(in our experiments, Nmax was never reached). Once the experiment terminates, we have

20

2NeNT = 2600 (resp. 3NeNT = 3900) different values for each of the distance metrics
for AR (resp. AS), which are visualized in Figures 2 and 3.

For Section 4.2, the matrices
(
AR(1), AR(2)

)
are fixed to the ones indicated in Fig-

ure 4. One run then consisted of repeating Nt times the following: 1. draw a number
from the uniform distribution on [0, 1] and if it is less than p, set s = 1, else s = 2;
2. using the transition probabilities in AR(s), generate a trajectory from initial state
O until state D is reached. We then concatenated all of those trajectories, identifying
states O and D as state 1, e.g. if there were only two trajectories, (O, 2, 6, 5, 9, D) and
(O, 7, 4, 5, 8, D) they are concatenated to (1, 2, 6, 5, 9, 1, 7, 4, 5, 8, 1). Algorithm 2 is then
run on that single trajectory with the same parameters as above, again assuming AR(2)
as known, two times: once assuming open-loop, i.e. Γ = [9], and once assuming closed-
loop with Γ =

{
{8, 9}, {1, . . . , 7}

}
and AS(2) = I2. Then the distance metrics between

estimates and true values are computed. This concluded one run; we collected Ne runs,
yielding 2Ne = 100 numbers for each AR(1) and AS(1). The numbers for AR(1) are
shown in Figure 5.

21

	1 Introduction
	1.1 General Comments on Related Research Directions
	1.2 Preliminaries

	2 Problem Statement and Model
	2.1 ``Open-Loop'' Markov-Modulated Markov Chains
	2.2 Closed-Loop Markov-Modulated Markov Chains
	2.3 Relationship with Hidden Markov Models

	3 Likelihood and Parameter Estimation
	3.1 Likelihood of , Forward- and Backward Variables
	3.2 Auxiliary Function Q(,')
	3.3 EM-Algorithm for Parameter Estimation

	4 Examples
	4.1 Synthetic Data
	4.2 A Model of Driver Behaviour

	5 Concluding Remarks
	Appendix A Scaling Issues
	Appendix B Proofs
	Appendix C Experimental details

