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Abstract

This paper presents an angle-based approach for distributed formation shape stabilization of multi-agent systems in the plane.
We develop an angle rigidity theory to study whether a planar framework can be determined by angles between segments
uniquely up to translations, rotations, scalings and reflections. The proposed angle rigidity theory is applied to the formation
stabilization problem, where multiple single-integrator modeled agents cooperatively achieve an angle-constrained formation.
During the formation process, the global coordinate system is unknown for each agent and wireless communications between
agents are not required. Moreover, by utilizing the advantage of high degrees of freedom, we propose a distributed control
law for agents to stabilize a target formation shape with desired orientation and scale. Simulation examples are performed for
illustrating effectiveness of the proposed control strategies.
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1 Introduction

A multi-agent formation stabilization problem is to de-
sign a decentralized control law for a group of mobile
agents to stabilize a prescribed formation shape. An as-
sociated fundamental problem is: how to determine the
geometric shape of a graph embedded in a space, based
on some local constraints such as displacements, dis-
tances and bearings.

A straightforward approach for determining a shape is
constraining the location of each vertex in the graph.
A position-based formation strategy usually takes large
costs and is unnecessary when the position of each agent
is not strictly required. For reduction of information ex-
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change and improvement of robustness of the control
strategy, a displacement-constrained formation method,
which determines the target formation shape by rela-
tive positions between agents, has been extensively stud-
ied [12,25,32,8,15]. This method is also called consensus-
based formation since the formation problem can often
be transformed into a consensus problem, which is a
hot topic being widely studied [24,31,30,15]. The inves-
tigations of displacement-based formation show that the
shape of a graph can be determined by inter-agent dis-
placements uniquely if the graph is connected. A disad-
vantage of displacement-based formation control is the
requirement of the global coordinate system.

During the last decade, distance-based shape con-
trol gained a lot of attention since it has no re-
quirement of the global coordinate system for each
agent [1,16,33,27,22,34,21,28,7]. Different from the
displacement-based approach, for a noncomplete graph
embedded in a space, it is not straightforward to an-
swer that whether its shape can be determined by edge
lengths uniquely. A tool of great utility to deal with this
problem is the traditional graph rigidity theory (we will
refer to this theory as distance rigidity theory in this

Preprint submitted to Automatica 5 March 2019

ar
X

iv
:1

80
3.

04
27

6v
2 

 [
cs

.S
Y

] 
 1

 M
ar

 2
01

9



paper) [3,13,18], which has been studied intensively in
the area of mathematics.

In more recent years, bearing-constrained formation
control attracted many interests due to the low costs of
bearing measurements [11,10,35,34,36,4,39,26,20,40]. In
this issue, the formation shape is constrained by inter-
agent bearings. To distinguish what kind of shapes can
be uniquely determined by inter-agent bearings, the
authors in [10] and [39] proposed the bearing rigidity
theory. Compared to distance-constrained formation
control, an advantage of bearing-constrained formation
strategy is the fact that no restriction on scale of the
target formation is imposed. As a result, it is simple to
control the scale of a bearing-based formation, which
benefits for obstacle avoidance, see [40]. Unfortunately,
similar to the displacement-based approach, a bearing-
constrained formation requires either the global coordi-
nate system for each agent or developing observers based
on inter-agent communications, [39]. In [35,36,26,20],
the authors achieved bearing-based formation control
in the absence of the global coordinate system, but each
agent should have a controllable quantity determining
the relationship between the local body frame and the
global coordinate frame.

Besides the above-mentioned investigations, there are
some other issues associated with formation control and
formation strategies, for more details, we refer the read-
ers to [29,23,19,2,14].

This paper studies the angle-constrained formation
problem in the plane, in which the target formation
shape is the shape of a planar graph (In this paper,
planar graphs refer to graphs in the plane), and will be
encoded by angles between pair of edges joining a com-
mon vertex. Similar issues have been reported in the
literature. In [11], the authors discussed the possibility
of an angle-based formation approach and presented
some initial results. In another relevant reference [37],
the authors solved the cyclic formation problem by
constraining the angle subtended at each vertex by its
two neighbors. In this case, the cyclic formation can
be stretched while preserving invariance of each angle,
thus the target formation cannot be accurately stabi-
lized. In contrast to [37], we study how to stabilize a
formation shape via angle constraints, such that the sta-
bilized formation is congruent to the target formation
up to translations, rotations, scalings and reflections. In
[5], the authors presented infinitesimally shape-similar
motions preserving angles, but they did not give an
approach for determining rigidity by angles only.

Our contributions can be summarized as follows. (i). En-
lightened by distance rigidity theory and bearing rigid-
ity theory, we propose an angle rigidity theory to study
whether the shape of a planar graph can be uniquely de-
termined by angles only; see Section 3. (ii). We prove that
for a framework in the plane, infinitesimal angle rigidity

is equivalent to infinitesimal bearing rigidity; Theorem
3. From [38], infinitesimal angle rigidity is also a generic
property of the graph. (iii). We show that for a frame-
work embedded by a triangulated Laman graph, once it
is strongly nondegenerate, it can always be determined
by angles uniquely up to translations, rotations, scalings
and reflections; see Theorem 7. (iv). We propose a dis-
tributed control law for achieving formation shape sta-
bilization based on the angle rigidity theory. It is shown
that our control strategy can locally exponentially sta-
bilize multiple agents to form an infinitesimally angle
rigid formation in the plane; see Theorem 8. (v). We de-
sign a distributed control law, which can steer all agents
to form a target formation shape with prescribed orien-
tation and scale; see Theorem 9. Note that in the litera-
ture of formation maneuver control [8,28,40], controlling
orientation and scale of a formation usually cannot be
achieved simultaneously.

The advantages of angle-based formation approach are
threefold. (i). Each agent only has to measure rela-
tive displacements from neighbors with respect to its
local coordinate system. (ii). No wireless communica-
tions between agents are required. (iii). Compared to
displacement-, distance- and bearing-based approaches,
an angle-constrained shape has higher degrees of free-
dom. More precisely, angles are invariant to motions
including translations, rotations and scalings, while
inter-agent displacements, distances and bearings are
only invariant to a subset of these motions. As a result,
it is more convenient to achieve formation maneuver
control by using angle constraints. In [35,36,26,20], the
formation constraints are also invariant to translations,
rotations, scalings and reflections. Nevertheless, the
trivial rotation in these papers consists of a rotation of
the framework in the global coordinate frame, and a
rotation of each agent in its local coordinate frame with
the same angular speed as that of the whole framework.

The paper is structured as follows. Section 2 introduces
some preliminaries of distance- and bearing rigidity the-
ory. Section 3 presents the angle rigidity theory. Section
4 firstly proposes a distributed control law for achieving
formation stabilization based on angle rigidity theory,
then proposes a distributed maneuver control law for
stabilizing a formation shape with pre-specified orienta-
tion and scale. Section 5 presents an application exam-
ple to verify validity of the formation strategy. Section
6 concludes the whole paper.

Notations: Throughout this paper, R denotes the set
of real numbers; Rn is the n−dimensional Euclidean
space; || · || stands for the Euclidean norm; XT means
the transpose of matrix X; ⊗ is the Kronecker product.
range(X), null(X) and rank(X) denote the range space,
null space, and the rank of matrix X; In represents the
n× n identity matrix; A \B is the set of those elements
of A not belonging to B; A vector p = (pT1 , · · · , pTs )T

with pi ∈ R2, i = 1, · · · , s is said to be degenerate if
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p1, · · · , ps are collinear; O(2) is the orthogonal group in

R2; Ro(θ) =

(
cos θ − sin θ

sin θ cos θ

)
is the 2-dimensional rota-

tion matrix associated with θ ∈ [0, 2π); Re(θ) = Ro(θ)Ī

with Ī =

(
1 0

0 −1

)
is the 2-dimensional reflection matrix

associated with θ ∈ [0, 2π); x⊥ = Ro(
π
2 )x for x ∈ R2.

For Xi ∈ Ra×b, i = 1, · · · , q, we denote diag(Xi) =
blockdiag{X1, · · · , Xq} ∈ Rqa×qb.

An undirected graph with n vertices and m edges is de-
noted as G = (V, E), where V = {1, · · · , n} and E ⊂
V × V denote the vertex set and the edge set, respec-
tively. Here we do not distinguish (i, j) and (j, i) in E .
The incidence matrix is represented by H = [hij ], which
is a matrix with rows and columns indexed by edges
and vertices of G with an orientation. hij = 1 if the ith
edge sinks at vertex j, hij = −1 if the ith edge leaves
vertex j, and hij = 0 otherwise. It is well-known that
rank(H) = n−1 if and only if graph G is connected. Let
K denote a complete graph with n vertices.

2 Preliminaries of graph rigidity theory

In this section, we introduce some preliminaries of dis-
tance and bearing rigidity theory in the plane, which are
taken from [3,13,39]. Distance rigidity theory is to an-
swer whether p can be uniquely determined up to trans-
lations, rotations, and reflections, by partial length con-
straints on edges of G, while bearing rigidity theory is
to answer whether p can be uniquely determined up to
translations and scalings by partial bearing constraints
on edges of G. In what follows, we will introduce these
two theories in a unified approach.

We refer to a pair (G, p) as a framework, where G is a
graph and p = (pT1 , · · · , pTn )T ∈ R2n is called a configu-
ration, pi is the coordinate of vertex i, i = 1, · · · , n. To
define rigidity of a framework (G, p), a smooth rigidity
function rG(·) : R2n → Rs should be first given, where s
is some positive integer. By the given rigidity function
rG , several definitions associated with rigidity can be in-
duced as follows.

A framework (G, p) is said to be rigid if there exists
a neighborhood Up of p such that r−1

G (rG(p)) ∩ Up =

r−1
K (rK(p)) ∩ Up. (G, p) is globally rigid if r−1

G (rG(p)) =

r−1
K (rK(p)).

An infinitesimal motion is an assignment of velocities
that guarantees the invariance of rG(p), i.e.,

ṙG(p) =
∂rG(p)

∂p
v = 0, (1)

where v = (vT1 , · · · , vTn )T , vi = ṗi is the velocity of ver-
tex i. We say a motion is trivial if it satisfies equation (1)
for any framework with n vertices. A framework is in-
finitesimally rigid if every infinitesimal motion is trivial.

Denote the rigidity matrix ∂rG(p)
∂p by R(p). Then equa-

tion (1) is equivalent to ṙG(p) = R(p)ṗ = 0. Let T be
the dimension of the space formed by all trivial motions,
then a framework (G, p) is infinitesimally rigid if and
only if rank(R(p)) = 2n− T .

In the traditional graph rigidity theory, the above-
mentioned rigidity function rG(·) is commonly set by
the following distance rigidity function:

DG(p) = (· · · , ||eij(p)||2, · · · )T , (i, j) ∈ E , (2)

where eij(p) = pi − pj .

In [10,39], the authors presented bearing rigidity theory
by using the following bearing rigidity function as the
rigidity function rG(·):

BG(p) = (· · · , gTij(p), · · · )T , (i, j) ∈ E , (3)

where gij(p) =
pi−pj
||pi−pj || .

For a framework in the plane, there are totally 2 inde-
pendent translations, 1 independent rotation, 1 indepen-
dent scaling. The trivial motions for a framework deter-
mined by distances can only be translations and rota-
tions, thus the dimension of trivial motion space should
be TD = 2 + 1 = 3. The trivial motions for a frame-
work determined by bearings are translations and scal-
ings, accordingly, the dimension of trivial motion space
is TB = 2 + 1 = 3.

The following two lemmas will be used in our paper.

Lemma 2.1 [39] A framework in R2 is infinitesimally
bearing rigid if and only if it is infinitesimally distance
rigid.

Lemma 2.2 [28] If a framework in R2 is infinitesimally
distance rigid, then for any vertex i, the relative position
vectors pi − pj, j ∈ Ni cannot be all collinear.

It is worth noting that infinitesimal bearing rigidity im-
plies global bearing rigidity [39], whereas infinitesimal
distance rigidity cannot induce global distance rigidity.

3 Angle rigidity

In this section, we develop an angle rigidity theory to
investigate how to encode geometric shapes of graphs
embedded in the plane through angles only. For a frame-
work (G, p) in R2, we will employ gTijgik as the object

3
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Fig. 1. (a) A globally and infinitesimally angle
rigid framework with T ∗G = {(1, 2, 3), (2, 1, 3)}. (b)
A framework that is not angle rigid. (c) A glob-
ally and infinitesimally angle rigid framework with
T ∗G = {(1, 2, 4), (2, 1, 4), (2, 3, 4), (3, 2, 4), (4, 1, 3)}.
(d) A globally angle rigid framework with
TG = {(1, 2, 3), (2, 1, 3), (2, 1, 3)}.

we will constrain, which is actually the cosine of the an-
gle between edges eij and eik. Let TG = {(i, j, k) ∈ V3 :
(i, j), (i, k) ∈ E , j < k}, then {gTijgik = cijk : cijk ∈
[−1, 1], (i, j, k) ∈ TG} is the set of constraints on all an-
gles in (G, p). We should note that a framework often has
redundant angle information for shape determination.
For example, in Fig. 1 (a), once gT12g13 and gT21g23 are
available, it holds that gT31g32 = cos(π−arccos(gT12g13)−
arccos(gT21g23)). That is, the information of partial an-
gles in the graph is often sufficient to recognize a frame-
work. Therefore, by employing a subset T ∗G ⊂ TG with
|T ∗G | = w, we will try to study whether (G, p) can be

uniquely determined by {gTijgik ∈ [−1, 1] : (i, j, k) ∈ T ∗G }
based on the angle rigidity theory to be developed in this
paper. Note that although T ∗G is only a subset of TG , the
elements in T ∗G should involve all vertices in G, otherwise
the shape of (G, p) can never be determined. Moreover,
we call T ∗G the angle index set.

For a framework (G, p), the angle rigidity function corre-
sponding to a given angle index set T ∗G can be written as

fT ∗G (p) = (· · · , gTij(p)gik(p), · · · )T , (i, j, k) ∈ T ∗G . (4)

For the sake of notational simplicity, we denote fG(p) =
fTG (p).

It is easy to see that whether fT ∗G (p) can determine a

unique shape congruent to p is determined by the choice
of T ∗G . As a result, the definitions of angle rigidity must
be associated with T ∗G . We present the following defini-
tions.

Definition 3.1 A framework (G, p) is angle rigid if there
exist an angle index set T ∗G and a neighborhood Up of p

such that f−1
T ∗G

(fT ∗G (p)) ∩ Up = f−1
K (fK(p)) ∩ Up.

Definition 3.2 A framework (G, p) is globally angle
rigid if there exists an angle index set T ∗G such that

f−1
T ∗G

(fT ∗G (p)) = f−1
K (fK(p)).

Definition 3.3 A framework (G, p) is minimally angle
rigid if (G, p) is angle rigid, and deletion of any edge will
make (G, p) not angle rigid.

By these definitions, the frameworks (a) and (c) in Fig.
1 are both globally angle rigid. For the framework (b),
by moving the vertices along the blue arrows, fG is in-
variant but the shape is deformed, thus (b) is not angle
rigid. For the framework (d), since the graph is com-
plete, it obviously holds f−1

G (fG(p)) = f−1
K (fK(p)), thus

(d) is globally angle rigid. Note that the shape of (d) still
cannot be determined by angles uniquely.

Similar to distance and bearing rigidity theory, we define
the infinitesimal angle motion as a motion preserving the
invariance of fT ∗G (p). The velocity v = ṗ corresponding

to an infinitesimal motion should satisfy ḟT ∗G (p) = 0,

which is equivalent to the following equation

ġTijgik + gTij ġik = 0, (i, j, k) ∈ T ∗G . (5)

From [39],
∂gij
∂eij

= 1
||eij ||Pij , where Pij , P (gij), P (·) :

R2 → R2×2 is a projection matrix defined as P (x) =
I2 − xxT , x ∈ R2 is a unit vector. Then we have ġij =

1
||eij ||Pij ėij . Let g(p) = (· · · , gTij(p), · · · )T , where (i, j) ∈

E , and Rg ,
∂fT ∗G
∂g . It follows from the chain rule that

ḟT ∗G =
∂fT ∗G
∂g

∂g

∂e

∂e

∂p
ṗ = Rg(p) diag(

Pij
||eij ||

)H̄ṗ = RT ∗G (p)ṗ,

where H̄ = H ⊗ I2, RT ∗G (p) , Rg(p) diag(
Pij

||eij || )H̄ =

Rg(p)RB(p) ∈ Rw×2n is termed the angle rigidity ma-

trix, RB = ∂g(p)
∂p is actually the bearing rigidity matrix.

Therefore, equation (5) is equivalent to RT ∗G (p)ṗ = 0.

Next we define infinitesimal angle rigidity, to do this,
we should distinguish all trivial motions for an angle-
constrained geometric shape. By an intuitive observa-
tion, the motions always preserving invariance of an-
gles in the framework are translations, rotations, and
scalings. Therefore, the dimension of the trivial motion
space is 2 + 1 + 1 = 4. Note that the trivial motion
space is always a subspace of null(RT ∗G ), implying that

dim(null(RT ∗G )) ≥ 4. We present the following definition.
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Definition 3.4 A framework (G, p) is infinitesimally
angle rigid if there exists an angle index set T ∗G such
that every possible motion satisfying (5) is trivial, or
equivalently, dim(null(RT ∗G )) = 4.

By this definition, the frameworks in Fig. 1 (a) and (c)
are both infinitesimally angle rigid. The frameworks (b)
and (d) are not infinitesimally angle rigid since they both
have nontrivial infinitesimal angle motions, which are
interpreted by the arrows in blue.

In this paper, we say an angle index set T ∗G supports or is
suitable for (global, minimal, infinitesimal) angle rigidity
of (G, p) if T ∗G makes the condition in the corresponding
definition valid. We say T ∗G is minimally suitable if T ∗G is
suitable and no proper subset of T ∗G can be suitable. It is
easy to see from Definitions 3.1-3.4 that the angle rigidity
property of a framework (G, p) is completely dependent
on G and p. After (G, p) is given, whether a suitable T ∗G
exists becomes certain. However, even for an angle rigid
framework, there may exist T ∗G such that the conditions
in the angle rigidity definitions are invalid. For example,
if we choose T ∗G = TT where T is a spanning tree of G, T ∗G
can never support angle rigidity of (G, p). On the other
hand, there may exist multiple choices of T ∗G supporting
angle rigidity of a rigid framework. In Subsection 3.2,
Algorithm 1 will be given to construct a suitable angle
index set.

The following lemma gives the specific form of trivial
motions preserving invariance of angles.

Lemma 3.1 The trivial motion space for angle rigid-
ity in R2 is S = Sr ∪ Ss ∪ St, where Sr = {(In ⊗
Ro(

π
2 ))p} is the space formed by infinitesimal rotations,

Ss = span{p} is the space formed by infinitesimal scal-
ings, St = null(H̄) = {1n ⊗ (1, 0)T ,1n ⊗ (0, 1)T } is the
space formed by infinitesimal translations.

Proof. In [39], the authors showed that Ss and St are
scaling and translational motion spaces, respectively,
and always belong to null(RB(p)). Since RT ∗G (p) =

Rg(p)RB(p), it is straightforward that Ss ∪ St ⊆
null(RT ∗G (p)). Next we show Sr ⊆ null(RT ∗G (p)).

Let ηT =
∂gTijgik
∂g be an arbitrary row of Rg. It suf-

fices to show ηTRB(p)(In ⊗ Ro(
π
2 ))p = 0. Note that

η = (0, gTik,0, g
T
ij ,0)T , which follows ηT diag(

Pij

||eij || ) =

(0, gTikPij/||eij ||,0, gTijPik/||eik||,0). Note also that

H̄(In ⊗ Ro(
π
2 ))p = (H ⊗ I2)(In ⊗ Ro(

π
2 ))p =

(Im ⊗ Ro(
π
2 ))(H ⊗ I2)p = (Im ⊗ Ro(

π
2 ))e, where

e = (· · · , eTij , · · · )T , the order of eij in the vector e is

the same as the one of gij in the vector g. It follows that

ηTRB(p)(In ⊗Ro(
π

2
))p

= ηT diag(
Pij
||eij ||

)H̄(In ⊗Ro(
π

2
))p

= gTik
Pij
||eij ||

Ro(
π

2
)eij + gTij

Pik
||eik||

Ro(
π

2
)eik

= gTik(I − gijgTij)Ro(
π

2
)gij + gTij(I − gikgTik)Ro(

π

2
)gik

= gTikRo(
π

2
)gij + gTijRo(

π

2
)gik

= gTik(Ro(
π

2
) + RT

o (
π

2
))gij = 0.

This completes the proof. �

Lemma 3.2 A framework (G, p) is infinitesimally angle
rigid if and only if null(RTG (p)) = S.

In [3], the authors showed that the set D−1
K (DK(p)),

which includes all configurations having inter-distance
congruent to p, is always a manifold of dimension 3. In
fact, since an angle-constrained shape has at least 4 de-
grees of freedom, f−1

K (fK(p)) is a manifold of dimension
4 when (K, p) is infinitesimally angle rigid (i.e., p is a
regular point). See the following theorem.

Theorem 1 Let Sp , {q ∈ R2n : q = c(In ⊗ R)p +
1n ⊗ ξ,R ∈ O(2), c ∈ R \ {0}, ξ ∈ R2}. If (K, p) is
infinitesimally angle rigid, then f−1

K (fK(p)) = Sp, and
Sp is a 4-dimensional manifold.

The proof will be presented in later subsections.

With the aid of Theorem 1, we can derive the relation-
ship between infinitesimal angle rigidity and angle rigid-
ity, which is as follows.

Theorem 2 If (G, p) is infinitesimally angle rigid for
T ∗G , then (G, p) is angle rigid for T ∗G .

Proof. By [3, Proposition 2] and rank
∂fT ∗G
∂p = 2n − 4,

there is a neighborhoodU of p, such that f−1
T ∗G

(fT ∗G (p))∩U
is a manifold of dimension 4. From Theorem 1,
f−1
K (fK(p)) is also a 4-dimensional manifold. As a result,

f−1
T ∗G

(fT ∗G (p)) and f−1
K (fK(p)) coincide in U , implying

that (G, p) is angle rigid. �

The converse of Theorem 2 is not true. A typical counter-
example is the framework (K, p) with p being a degen-
erate configuration. In this case, (K, p) is globally angle
rigid but not infinitesimally angle rigid.
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3.1 The relation to infinitesimal bearing rigidity

In this subsection, we will establish some connections
between angle rigidity and bearing rigidity [39,38]. The
following theorem shows the equivalence of infinitesimal
angle rigidity and infinitesimal bearing rigidity in the
plane, which also implies the feasibility of angle-based
approach for determining a framework in the plane.

Theorem 3 A framework (G, p) is infinitesimally angle
rigid if and only if it is infinitesimally bearing rigid.

Proof. See Appendix. A in Section 7. �

Remark 3.1 In [38], the authors proved that infinites-
imal bearing rigidity is a generic property of the graph.
That is, if (G, p) is infinitesimally bearing rigid, then
(G, q) is infinitesimally bearing rigid for almost all con-
figuration q. The underlying approach is showing that
a framework embedded by a graph is either infinitesi-
mally bearing rigid or not infinitesimally bearing rigid
for all generic configurations 1 . From Theorem 3, in-
finitesimal angle rigidity is also a generic property of
the graph, thus is primarily determined by the graph,
rather than the configuration. In fact, angle rigidity is
also a generic property of the graph. To show this, it suf-
fices to show that an angle rigid framework (G, p∗) with
a generic configuration p∗ is always infinitesimally an-
gle rigid. In [14, Theorem 3.17], we have shown that a
generic configuration p∗ must be a regular point, i.e.,
rank(RTG (p∗)) = maxp∈R2n rank(RTG (p)) , κ. By [3,
Proposition 2], there exists a neighborhood U of p∗, such
that f−1

G (fG(p∗))∩U is a manifold of dimension 2n−κ.
From the definition of angle rigidity and Theorem 1, we
know that there exists a neighborhood U ′ of p∗, such that
f−1
G (fG(p∗))∩U ′ is a manifold of dimension 4. By defini-

tion of the manifold, we have 2n−κ = 4. Then κ = 2n−4.
That is, (G, p∗) is infinitesimally angle rigid. Hence, an-
gle rigidity is also a generic property of the graph. By
a similar approach, it can be easily obtained that global
angle rigidity is also a generic property of the graph.

Remark 3.2 From Definition 3.4, we can conclude that
the minimal number of angle constraints for achieving
infinitesimal angle rigidity is 2n − 4. This fact has also
been shown in [11]. On the other hand, it has been shown
in [39] that the minimal number of edges for a framework
to be infinitesimally bearing rigid is 2n− 3. By Theorem
3, the same is true for infinitesimal angle rigidity.

Consider a framework (G, p) in the plane. For distance
rigidity theory, it is obvious that the shape of (G, p) can
be uniquely determined by DG(p) if G = K. For bearing
rigidity theory, the authors of [39] showed that BG(p)

1 A configuration p = (pT1 , · · · , pTn )T ∈ R2n is generic if its
2n coordinates are algebraically independent [14]. The set of
generic configurations in R2n is dense.

1

2

3 4

(a) (G, p)

1

2

3

4

(b) (G, q)

Fig. 2. Both (G, p) and (G, q) are infinitesimally angle rigid
for T ∗G = {(1, 2, 4), (4, 1, 2), (1, 3, 4), (4, 1, 3)}, globally angle
rigid for T̄ ∗G = {(1, 2, 3)} ∪ T ∗G .

1 2

3
4

5
6

(a) (G, p)

1

4

6

2

3

5

(b) (G, q)

Fig. 3. fG(p) = fG(q), but there does not exist R ∈ O(2)
such that BG(p) = (Im⊗R)BG(q). The angles in red are all
constrained angles determined by TG .

uniquely determines a shape if (G, p) is infinitesimally
bearing rigid. However, for angle rigidity theory, it can-
not be immediately answered that whether the shape can
be uniquely determined by angles between edges. This
is because angles are only constraints on relationships
between those edges joining a common vertex. Even for
a complete graph, if n > 3, there always exist disjoint
edges, the angle between each pair of disjoint edges can-
not be constrained directly.

In the following theorem, the connection between
f−1
K (fK(p)) and B−1

K (BK(p)) is established.

Theorem 4 Given configurations p, q ∈ R2n, q ∈
f−1
K (fK(p)) if and only if (In ⊗ R)−1q ∈ B−1

K (BK(p)),
where R ∈ O(2).

Proof. See Appendix. B in Section 8. �

Remark 3.3 One can realize that the validity of The-
orem 4 will not be lost provided the complete graph K
is replaced with G, where (G, p) is both globally angle
rigid and globally bearing rigid. Note that once K is re-
placed with a general graph G, Theorem 4 may become in-
valid. As shown in Fig. 3, although q ∈ f−1

G (fG(p)), there

does not exist R ∈ O(2) such that q ∈ (In ⊗ R)−1q ∈
B−1
G (BG(p)).

It is important to note that Theorem 4 cannot induce
equivalence of global angle rigidity and global bear-
ing rigidity. Some examples show that this equivalence
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holds, but we still have no idea of how to prove it.
Nonetheless, we are able to establish the following result.

Theorem 5 If a framework (G, p) is (globally) angle
rigid, then it is (globally) bearing rigid.

Proof. Suppose (G, p) is angle rigid. Then there ex-
ists a neighborhood Up of p such that f−1

G (fG(p)) ∩
Up = f−1

K (fK(p)) ∩ Up. For this Up, consider any q ∈
B−1
G (BG(p)) ∩ Up. It follows from BG(p) = BG(q) that

fG(p) = fG(q). Therefore, fK(p) = fK(q). By Theorem
4, BK(p) = (Im ⊗ R)BK(q) for some R ∈ O(2). Re-
call that BG(p) = BG(q), we have R = I2. As a result,
BK(p) = BK(q), i.e., q ∈ B−1

K (BK(p)). That is, (G, p) is
bearing rigid.

From [39], bearing rigidity is equivalent to global bearing
rigidity. Since global angle rigidity obviously leads to
angle rigidity, it can also induce global bearing rigidity.
�

To prove Theorem 1, we introduce the following theorem
in [17].

Theorem 6 ([17] Constant-Rank Level Set Theorem)
LetM andN be smooth manifolds, and let Φ : M → N be
a smooth map, the Jacobian matrix of Φ has constant rank
r. Each level set of Φ is a properly embedded submanifold
of codimension r in M .

Proof of Theorem 1. From Theorem 3, (K, p) is in-
finitesimally bearing rigid. [39] shows thatB−1

K (BK(p)) =
{q ∈ R2n : q = cp+1n⊗ξ, c ∈ R\{0}, ξ ∈ R2}. Together
with Theorem 4, there must hold f−1

K (fK(p)) = Sp.

Next we show Sp is a manifold. For any q ∈ f−1
K (fK(p)),

it is obvious that q = (In ⊗ R)(cp + 1n ⊗ ξ) for some
R ∈ O(2), scalar c and vector ξ ∈ R2. From the chain
rule, we have

rank
∂fK(q)

∂q
= rank

∂fK(p)

∂c(In ⊗R)p

= rank
[∂fK(p)

∂p

1

c
(In ⊗R−1)

]
= 2n− 4.

Note that fK : R2n → R|TK| is a smooth map, accord-
ing to Theorem 6, f−1

K (fK(p)) is a properly embedded
submanifold of dimension 2n− (2n− 4) = 4. �

3.2 Construction of T ∗G for infinitesimal angle rigidity

From Definition 3.4 it is easy to see that TG is always
sufficient to determine whether a framework is infinites-
imally angle rigid or not. However, the set of angles de-
termined by TG is usually redundant. To reduce compu-
tational cost, we give an algorithm to construct a subset

i1j 2j

1k

2k

3k

1j

2j

1k

2k

3k

i

i

(b)(a)

Fig. 4. An example to illustrate the construction of iT ∗G by
Algorithm 1. (a) The subgraph composed of vertex i and its
neighbors j1, j2, k1, k2, k3. Note that i, k2, k3 are collinear,

i, j1, j2 are collinear. (b) N̂i = {j1, j2}, Ňi = {k1, k2, k3}.
If js and kl are connected by a red line, it implies that the
angle between edge (i, js) and edge (i, kl) is selected to be
constrained. This also implies that (i, js, kl) (if js < kl) or
(i, kl, js) (if kl < js) is an element of iT ∗G .

T ∗G ⊂ TG , which is also sufficient to determine infinites-
imal angle rigidity. In the proof for sufficiency of Theo-
rem 3, we have presented an approach for constructing
a set T ∗G , and proved that T ∗G is a suitable angle index
set. Here we give the following algorithm to implement
this procedure.

Algorithm 1 Finding a Suitable Angle Index Set T ∗G
for Infinitesimal Angle Rigidity

Input: An infinitesimally angle rigid framework (G, p)
with p = (pT1 , · · · , pTn )T ∈ R2n.

Output: T ∗G
1: Initialize T ∗G ← ∅
2: for all i ∈ V do
3: Initialize iT ∗G ← ∅
4: Compute the neighbor set of i in G, i.e., Ni
5: Select ji from Ni randomly, N̂i ← {ji} ∪ {k ∈
Ni : pi−pji is collinear with pi−pk}, Ňi ← Ni \N̂i

6: iT ∗G ← iT ∗G ∪ (i, ji, k) for all k ∈ Ňi. Proceed

only if |N̂i| > 1
7: Select ki from Ňi randomly
8: for all j ∈ N̂i \ {ji} do
9: iT ∗G ← iT ∗G ∪ (i, j, ki) if j < ki,

iT ∗G ← iT ∗G ∪
(i, ki, j) otherwise

10: end for
11: T ∗G ← iT ∗G
12: end for
13: return T ∗G

Since each vertex has at most n−1 neighbors, it is easy to
see that the number of elementary operations performed
by Algorithm 1 is at most n(n − 2). Hence the time
complexity of Algorithm 1 is O(n2).

An example of constructing iT ∗G by Algorithm 1 is shown
in Fig. 4.
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Note that for an infinitesimally angle rigid framework,
the angle index set generated by Algorithm 1 is suit-
able but not minimally suitable for infinitesimal angle
rigidity. For example, let (G, p) be a minimally angle
rigid framework, then |E| = 2n − 3. For a set T ∗G gen-

erated by Algorithm 1, we have |T ∗G | =
∑
i∈V |iT ∗G | =∑

i∈V(|Ni| − 1) = 2(2n− 3)− n = 3n− 6 ≥ 2n− 4 for
n ≥ 2. Currently we do not have an algorithm to con-
struct a minimally suitable angle index set for an arbi-
trary infinitesimally angle rigid framework.

Remark 3.4 Although T ∗G constructed by Algorithm 1
supports infinitesimal angle rigidity, it may not support
global angle rigidity. As shown in Fig. 2 (a), by Algorithm
1, we can obtain T ∗G = {(1, 2, 4), (4, 1, 2), (1, 3, 4), (4, 1, 3)}.
Although (G, p) is infinitesimally angle rigid, fT ∗G (p) may

determine an incorrect shape as shown in Fig. 2 (b).
However, if we let T̄ ∗G = {(1, 2, 3)} ∪ T ∗G , then fT̄ ∗G (p)

can always determine a correct shape. This implies that
(G, p) in Fig 2 (a) is both infinitesimally and globally
angle rigid for T̄ ∗G (p).

In fact, even for a complete graph, it is possible that the
geometric shape cannot be determined by angle-only or
bearing-only information. A typical example is the de-
generate configuration shown in Fig. 1 (d). Generally, we
hope to determine a framework (G, p) by angles uniquely
up to translations, rotations, scalings and reflections in
the plane. That is, f−1

G (fG(p)) = Sp. In the next sub-
section, we will introduce a specific class of frameworks
satisfying this condition.

3.3 A class of frameworks uniquely determined by an-
gles

In [7], the authors introduced a particular class of Laman
graphs termed triangulated Laman graphs, which are
constructed by a modified Henneberg insertion proce-
dure. In what follows, we will show that the shape of
such frameworks can always be determined by angles
uniquely. Let Ln = (Vn, En) be an n−point(n ≥ 3) tri-
angulated Laman graph, its definition is as follows.

Definition 3.5 Let L2 be the graph with vertex set V2 =
{1, 2} and edge set E2 = {(1, 2)}. Ln (n ≥ 3) is a graph
obtained by adding a vertex n and two edges (n, i), (n, j)
into graph Ln−1 for some i and j satisfying (i, j) ∈ En−1.

Note that the triangulated Laman graph considered here
is an undirected graph. Now we give the following re-
sult for frameworks embedded by triangulated Laman
graphs.

Lemma 3.3 A triangulated framework (Ln, p) is in-
finitesimally distance rigid if and only if (Ln, p)
is strongly nondegenerate, i.e., pi, pj and pk are
not collinear for any three vertices i, j, k satisfying
(i, j), (j, k), (i, k) ∈ En.

1
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Fig. 5. (a) A framework embedded by a triangulated
Laman graph L5. (L5, p) is infinitesimally angle rigid for
T ∗L5

= {(1, 2, 3), (1, 3, 4), (1, 4, 5), (2, 1, 3), (3, 1, 4), (4, 1, 5)},
and globally angle rigid for T †L5

= T ∗L5
∪ {(1, 2, 4), (1, 3, 5)}.

The angles in red are constrained angles determined by T †L5
.

(b) A framework embedded by a Laman graph that is not
triangulated. The framework is globally and infinitesimally
angle rigid, but T ∗Ln

is not sufficient for its global and in-
finitesimal angle rigidity. The angles in red are constrained
angles determined by T ∗Ln

.

Proof. The proof for sufficiency has been given in [7].
Next we give the proof for necessity. Suppose that strong
nondegeneracy does not hold, then there exist i, j, k ∈
V, such that (i, j), (j, k), (i, k) ∈ En and pi, pj , pk stay
collinear. Note that (Ln, p) has exactly 2n − 3 edges.

Let RD(p) = ∂DG(p)
∂p ∈ R(2n−3)×2n be the distance rigid-

ity matrix. To guarantee rank(RD(p)) = 2n− 3, RD(p)
should be of full row rank. However, it is easy to see that
∂||eij ||2
∂p , ∂||eik||

2

∂p , and
∂||ejk||2
∂p are always linearly depen-

dent. Hence, RD(p) cannot be of full row rank, which is
a contradiction. �

The following theorem shows that the shape of a strongly
nondegenerate triangulated framework in the plane can
always be uniquely determined by angles.

Theorem 7 A triangulated framework (Ln, p) is
strongly nondegenerate

(i) if and only if (Ln, p) is minimally infinitesimally angle
rigid. A minimally suitable angle index set is

T ∗Ln
= {(i, j, k) ∈ V3

n : (i, j), (j, k), (i, k) ∈ En, i, j < k};
(6)

(ii) only if (Ln, p) is globally angle rigid. A minimally

suitable angle index set is T †Ln
= T ∗Ln

∪ ∆TLn
, where

∆TLn = {(i, k, l) : k = min{Ni ∩ Nj ∩ Vl−1}, i, j ∈
Nl, i < j < l, l = 4, · · · , n} if n ≥ 4, and ∆TLn = ∅
otherwise.

Proof. See Appendix. C in Section 9. �

An example of strongly nondegenerate framework em-
bedded by a triangulated Laman graph is shown in Fig.
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5 (a). The angles in red are constrained angles deter-

mined by T †L5
. The framework in Fig. 5 (b) is both glob-

ally angle rigid and infinitesimally angle rigid, but it is
not embedded by a triangulated Laman graph.

It is important to note that strong nondegeneracy is not
necessary for a triangulated framework to be globally
angle rigid. A simple counterexample is the framework
shown in Fig. 1 (d). The framework is globally angle
rigid, but not strongly nondegenerate. Moreover, the an-
gle index set we give in Theorem 7 is only one suitable
choice, there are also other choices of the angle index set
supporting minimal infinitesimal angle rigidity or global
angle rigidity of (Ln, p).

4 Application to formation control

In this section, we apply angle rigidity theory to dis-
tributed formation control in the plane. The target for-
mation will be characterized by some constraints on an-
gles. In order to form a desired shape, the group of agents
are required to meet these constraints via a distributed
controller.

4.1 The formation stabilization problem

Consider n agents moving in the plane, each agent i has
a simple kinematic point dynamics

ṗi = ui, i ∈ V, (7)

where pi ∈ R2 and ui ∈ R2 are the position and control
input of agent i, respectively, in the global coordinate
frame. We consider that the global coordinate system
is absent for the agents, each agent i has its own local
coordinate system. Let pij be the coordinate of agent
j’s position with respect to agent i’s local coordinate
system. Agent i can measure the relative position state
pii − pik if k ∈ Ni.

In this paper, we employ an infinitesimally angle rigid
framework (G, p∗) to describe the target formation
shape. Each agent is viewed as a vertex of the frame-
work. An interaction link between two agents is regarded
as an edge in graph G. That is, G is also the sensing
graph interpreting the interaction relationship between
agents.

The target formation shape can be defined as the follow-
ing manifold:

E = Sp∗ = {p ∈ R2n : p = c(In ⊗R)p∗ + 1n ⊗ ξ,
R ∈ O(2), c ∈ R \ {0}, ξ ∈ R2}.

For the target formation (G, p∗), we make the following
assumption:

Assumption 4.1 Graph G contains a triangulated
Laman graph Ln as a subgraph, and (Ln, p∗) is strongly
nondegenerate.

The set determining all angle constraints is given by

T FG = {(i, j, k) ∈ V3 : (i, j), (j, k), (i, k) ∈ E , i, j < k},
(8)

Remark 4.1 Assumption 4.1 is a graphical condition
for (G, p∗), and will be the only condition for achieving
stability of the target formation. Once Assumption 4.1
holds, it is easy to see that T ∗Ln

⊂ T FG , where T ∗Ln
is

in form (6). Since we have shown in Theorem 7 that
(Ln, p∗) is infinitesimally angle rigid for T ∗Ln

, together
with En ⊂ E, it follows that (G, p∗) is infinitesimally
angle rigid for T FG . It is also worth noting that strongly

nondegenerate configurations form a dense subset of R2n,
which is shown in [7].

Problem 4.1 Given a set of angle constraints C =
{gTij(p)gik(p) = gTij(p

∗)gik(p∗)} generated by a frame-
work (G, p∗) satisfying Assumption 4.1, design a dis-
tributed control law for each agent i based on the relative
position measurements {pii− pij , j ∈ Ni}, such that E is
asymptotically stable.

4.2 A steepest descent formation controller

According to the set C, we define the following set as our
target equilibrium set of the formation system

EF = {p ∈ R2n : gTij(p)gik(p) = gTij(p
∗)gik(p∗),

(i, j, k) ∈ T FG }. (9)

Note that E is a subset of EF . E = EF if and only if
(G, p∗) is globally angle rigid for T FG . In Fig. 5 (a), the
framework is only infinitesimally angle rigid, even if all
the angle constraints determined by T FG are satisfied, it
is possible that the target formation shape is not formed.
Nevertheless, from the definition of angle rigidity, for
any q ∈ E , there exists a neighborhood U of q, such
that E ∩U = EF ∩U . Hence, stability of EF can still be
sufficient for local stability of E .

Denote gij = gij(p), g
∗
ij = gij(p

∗) for all (i, j) ∈ E ,

δ(i,j,k) = gTijgik − g∗Tij g∗ik, (i, j, k) ∈ T ∗G . To ensure con-
vergence of (9), the multi-agent system should minimize
the following cost function:

VF (p) =
1

2

∑
(i,j,k)∈T ∗G

(gTijgik−g∗Tij g∗ik)2 =
1

2

∑
(i,j,k)∈T ∗G

δ2
(i,j,k).

(10)
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On the basis of function (10), a gradient-based control
strategy can be derived as

uFi = −∇piVF (p)

= −
∑

(j,k)∈NTi

y1(eij , eik)−
∑

(j,k)∈NT i

y2(eji, ejk), i ∈ V

(11)

where NTi = {(j, k) ∈ V2 : (i, j, k) ∈ T FG }, NT i =

{(j, k) ∈ V2 : (j, i, k) or (j, k, i) ∈ T FG }, y1(eij , eik) =

(gTijgik − g∗Tij g
∗
ik)(

Pij

||eij ||gik + Pik

||eik||gij), y2(eji, ejk) =

(gTjigjk − g∗Tji g∗jk)
Pij

||eij ||gkj .

Observe that if (j, i, k) ∈ T FG , the control input of agent i
includes a term associated with ejk. This can be obtained
by simple subtraction eik − eij . From the form of T FG
in (8), we have k, j ∈ Ni. Therefore, uFi is a distributed
control strategy.

Let δ(p) = (· · · , δ(i,j,k), · · · )T = fT F
G

(p) − fT F
G

(p∗),

(i, j, k) ∈ T ∗G . By the chain rule, the multi-agent sys-
tem (7) with control input (11) can be written in the
following compact form

ṗ = −∇pVF (p) = −RTT F
G

(p)δ(p). (12)

The formation system (12) has the following easily
checked properties.

Lemma 4.1 Under the control law (11), the following
statements hold:

(i) The global coordinate system is not required for each
agent.

(ii) If p(0) is degenerate, then p(t) = p(0) for t ≥ 0.

(iii) The centroid po(t) = 1
n

∑
i∈V pi(t) and the scale

s(t) =
√

1
n

∑
i∈V ||pi(t)− po(t)||2 are both invariant.

Proof. The proof of (i) is straightforward by a similar
approach to those of [22,28], the validity of (ii) is also
easy to verify. Thus their proofs are omitted here. For
(iii), observe that po(t) = 1

np
T (t)1n, according to (12),

we have

ṗo =
1

n
ṗT1n =

1

n
δTRT F

G
1n = 0.

To show ṡ = 0, we first note that ṗT p = δTRT F
G
p =

δTRg diag(
Pij

||eij || )H̄p = 0. It follows that

ṡ =
2√
n
ṗT (p− 1n ⊗ po)

= − 2√
n
δT diag(

Pij
||eij ||

)H̄(1n ⊗ po) = 0.

�

4.3 Stability analysis

Theorem 8 For a group of n ≥ 3 agents with dynamics
(7) and controller (11) moving in the plane. Under As-
sumption 4.1, for any q ∈ E , there is a neighborhood Uq
of q, such that if p(0) ∈ Uq, then limt→∞ p(t) = p† for
some p† ∈ E .

Proof. For any q ∈ E , let ρ = p − q, f(p) =
−RTT F

G
(p)δ(p), expanding f(p) in Taylor series about

q, we have f(p) = f(q) + ∂f(q)
∂p ρ + g(ρ). Then (12) is

equivalent to

ρ̇ =
∂f(q)

∂p
ρ+ g(ρ) = Jf (q)ρ+ g(ρ), (13)

where Jf (q) = ∂f(q)
∂p = −

∂RT

T F
G

(q)

∂p δ(q) − RTT F
G

(q)∂δ(q)∂p =

−RTT F
G

(q)RT F
G

(q). From Lemma 3.3, the validity of As-

sumption 1 implies that (G, q) is infinitesimally angle
rigid. Therefore, Jf (q) has 4 zero eigenvalues and the rest
are negative real numbers. There must exist an orthonor-
mal transformation Q ∈ R2n×2n such that QJf (q)QT =

diag(04×4, J̃), where J̃ is Hurwitz. Then (13) is equiva-
lent to

ϕ̇ = g1(ϕ,ψ),

ψ̇ = J̃ψ + g2(ϕ,ψ),
(14)

where (ϕT , ψT )T = Qρ, (gT1 , g
T
2 )T = Qg(ρ). Note that

ρ = 0 is an equilibrium point of (13), hence, g1(0, 0) = 0
and g2(0, 0) = 0. Since g(ρ) = f(p) − Jf (q)ρ, we have
Jg|ρ=0 = 0. It follows that Jg1(0, 0) = 0 and Jg2(0, 0) =
0. Observe thatM = {(ϕT , ψT )T : (ϕT , ψT )T = Qρ, ρ+
q ∈ E } is a 4-dimensional manifold. We next show M
is a center manifold. Note that M is invariant since
E ⊂ EF ⊂ {p ∈ R2n : f(p) = 0}. Any equilibria must

satisfy J̃ψ + g2(ϕ,ψ) = 0, by implicit function theo-
rem, there is a neighborhood U of the origin, such that
ψ = h(ϕ) for ψ ∈ U , where h(·) : R4 → R2n−4 is smooth
and h(0) = 0, Jh(0) = 0. Since M is a 4-dimensional
manifold, there must exist an open set in R4 that is dif-
feomorphic to a neighborhood U ′ of origin in M. Be-
causeM can be represented by (ϕT , hT (ϕ))T in U ∩U ′,
we conclude that M is a center manifold. The flow on
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the manifold M is governed by the 4-dimensional sys-
tem ξ̇ = g1(ξ, h(ξ)) for sufficiently small ξ. Recall that

M is a manifold of equilibria, we have ξ̇ = 0. By center
manifold theory [6], for any sufficiently small ϕ(0), ψ(0),
we have ϕ(t) = ξ(0) + O(e−γt), ψ = h(ξ(0)) + O(e−γt)
for some γ > 0. This implies that limt→∞(ϕT , ψT )T =
(ξT (0), hT (ξ(0)))T ∈ M. It follows that limt→∞ p(t) =
limt→∞QT (ϕT , ψT )T +q = QT (ξT (0), hT (ξ(0)))T +q =
p† ∈ E . The proof is completed. �

The difficulties in achieving global stability of the de-
sired formation shape are two folds: (i). Observe that
the equilibrium set of system (12) is E = {p ∈ R2n :

RTT F
G

(p)δ = 0}. If RT F
G
∈ R|T F

G |×2n is of full row rank,

then p ∈ E implies δ = 0, which yields p ∈ EF . However,
RT F
G

(p) varies as the formation system evolves, it is diffi-

cult to determine its rank. Moreover, once |T FG | > 2n−4,
RT F
G

can never be of full row rank. As a result, unde-

sired equilibria often exist for system (12). (ii). Differ-
ent from displacement, distance and bearing constraints
on pairwise agents, each angle constraint involves three
agents. The form of T FG implies that only those angles
in triangles can be used as constraints to determine the
shape. Nevertheless, in some cases these constraints can-
not uniquely determine the desired formation shape. For
example, consider the framework in Fig. 5 (a), although
its shape can be uniquely determined by angles, it can-
not be uniquely determined by angles corresponding to
T FG . Fig. 7 shows a counterexample that under some ini-
tial condition, the agents exponentially form an incor-
rect formation.

Theorem 8 actually means that by implementing the
control law (11), the agents can cooperatively restore the
desired formation shape under a small perturbation from
any q ∈ E , and the convergence rate is as fast as e−γt

for some γ > 0 dependent on q. However, it is uncertain
that whether there exists a uniform exponent γ for all
q ∈ E . This is because E is not compact, there does not
exist a finite subcover containing E .

4.4 Orientation and scaling control

We have shown that the angle-constrained formation
has 4 degrees of freedom, which is higher than that of
displacement-, distance-, and bearing-based formations.
This ensures that one advantage of the angle-based for-
mation approach is the convenience of orientation and
scaling control. In this subsection, we propose an angle-
based control scheme to steer all agents to form a target
formation shape with pre-specified orientation and scale.

Given (G, p∗) as the target formation shape satisfying
Assumption 4.1, a configuration forming the target for-
mation with desired orientation and scale can be written
by p = c∗(In ⊗ Ro(θ

∗))p∗ + 1n ⊗ ξ for some constant
θ∗ ∈ [0, 2π), c∗ ∈ R \ {0} and an arbitrary translational

vector ξ ∈ R2. It is worth noting that p∗i here denotes
the position of agent i in the global coordinate frame.
Let p̃ = c∗(In ⊗Ro(θ

∗))p∗, then the target equilibrium
can be described as

EM = {p ∈ R2n : p = p̃+ 1n ⊗ ξ, ξ ∈ R2}. (15)

To control the orientation of the formation, it is obvi-
ously necessary that some agents should have access to
the global coordinate system. To keep the target shape
in a precise orientation, we will try to constrain the dis-
placement between two adjacent agents, which is similar
to [28]. Since orientation and scale of the ultimate for-
mation are determined by these two agents, we call them
leaders. It is noteworthy that any two adjacent agents
can be selected as leaders, and controlling their relative
position is sufficient to control the orientation and scale
of the formation (this fact will be shown later). More-
over, different from [28], using angle-based approach, the
target displacement between leaders can be artificially
specified and does not have to satisfy a fixed length con-
straint.

Suppose agents l1 and l2 are leaders, l1, l2 ∈ V. Then
p̃l1− p̃l2 is the displacement of l1 and l2 in the formation
with target orientation and scale. Now we summarize
the problem that we will deal with in this subsection as
below.

Problem 4.2 Given a realizable target formation
(G, p∗) satisfying Assumption 4.1, and the target dis-
placement p̃l1 − p̃l2 known by agents l1 and l2, design
a distributed control law for each agent i based on the
relative position measurements {pii − pij , j ∈ Ni}, such
that EM is asymptotically stable.

To solve Problem 4.2, we consider the following set con-
taining the target equilibrium EM

El = {p ∈ EF : pl1 − pl2 = p̃l1 − p̃l2}, (16)

where EF is in the form (9).

The following lemma shows that once (G, p∗) is infinites-
imally angle rigid, El and EM coincide near each point
in EM .

Lemma 4.2 If (G, p∗) is infinitesimally angle rigid, then
for any q ∈ EM , there exists a neighborhood Uq of q, such
that EM ∩ Uq = El ∩ Uq.

Proof. Let fl(p) =

(
f(p)

pl1 − pl2

)
∈ R|T F

G |+2, fM (p) =

(· · · , (pi − pj)
T , · · · )T ∈ R2m, it follows that El =

f−1
l (fl(p̃)), EM = f−1

M (fM (p̃)). Since G must be con-

nected, we have rank(∂fM∂p ) = rank(H̄) = 2n − 2, here

11



H̄ is the incidence matrix, according to Theorem 6, EM
is a 2-dimensional manifold.

Next we show El is also a 2-dimensional manifold
near each q ∈ EM . Without loss of generality, suppose
pl1 − pl2 is consisted of the (2k − 1)-th row and 2k-th
row of H̄p. Let S = [Sij ] ∈ R2×2m be a matrix with
S1,2k−1 = S2,2k = 1, and Sij = 0 for other i, j. Then

SH̄p = pl1 − pl2 and
∂(pl1−pl2 )

∂p = SH̄. For any q ∈ EM ,

denote Rl(q) = ∂fl
∂p |p=q = (RTT F

G
(q), (SH̄)T )T , it is easy

to obtain null(Rl(q)) = null(RT F
G

(q)) ∩ null(SH̄). We

first notice that (G, q) must be infinitesimally angle
rigid, implying null(RT F

G
(q)) = S, where S is the trivial

motion space shown in Lemma 3.1. We also note that
null(SH̄) = (null(S) ∩ range(H̄)) ∪ null(H̄). It can be
verified that null(Rl(q)) = S ∩ null(SH̄) = null(H̄) =

span{1n⊗I2}. Then we obtain rank(∂fl∂p |p=q) = 2n−2 =

max{rank(∂fl∂p ) : p ∈ R2n}, i.e., q is a regular point of

fl. From [3, Proposition 2], there exists a neighborhood
U of q, such that El ∩ U is a 2-dimensional manifold.
Together with EM ⊂ El, we have EM ∩ U ⊂ El ∩ U . It
follows that El ∩ Uq = EM ∩ Uq for some Uq ⊂ U . �

By virtue of Lemma 4.2, when the initial positions of
agents are close to EM , to drive the agents into EM , it
suffices to constrain pl1−pl2 to be p̃l1− p̃l2 while steering
the agents to meet angle constraints determined by T FG .
Therefore, we wish the agents to cooperatively minimize
the following cost function

V = VF + VM , (17)

where VF is in form (10), VM = 1
2 ||p̃l1−p̃l2−(pl1−pl2)||2.

We propose the following gradient-based control law

ui = uFi + uMi = −∇piVF −∇piVM , i ∈ V (18)

where uFi in form (11) is to drive agents to maintain the
target shape, uMi is for controlling formation orientation
and scale.

It is easy to see that the control law (18) is distributed
and uMi = 0 for i ∈ V \ {l1, l2}. Under (18), property
(i) in Lemma 4.1 also holds for the formation system,
while (ii) in Lemma 4.1 becomes invalid. Moreover, dur-
ing the evolution, the centroid is still invariant, but the
formation scale may be changed.

Define the graph Gl = (V, El), where El = {(pl1 , pl2)}
(we do not distinguish (pl1 , pl2) and (pl2 , pl1)). Let Hl ∈
R1×n be the incidence matrix and Ll = HT

l Hl be the
Laplacian matrix, corresponding to graph Gl. Denote
p̄ = p−p̃, by using control law (18), the formation system
can be written in the following compact form

ṗ = hM (p) = −RTT F
G

(p)δ(p)− (Ll ⊗ I2)p̄(p). (19)

The Jacobian matrix of hM at the desired equilibrium
p̃ ∈ El is

JhM
(p)|p=p̃ = −

∂RTT F
G

(p)

∂p
δ(p)|p=p̃

−RT F
G

(p)
∂δ(p)

∂p
|p=p̃ − (Ll ⊗ I2)|p=p̃

= −(RTT F
G

(p̃)RT F
G

(p̃) + Ll ⊗ I2) , JM .

The following theorem shows the effectiveness of our con-
trol strategy.

Theorem 9 For a group of n ≥ 3 agents with dynam-
ics (7) and controller (18) moving in the plane. Under
Assumption 4.1, EM is locally exponentially stable.

Proof. By Lemma 4.2, we only have to show local expo-
nential stability of El. Note that system (19) has a sim-
ilar form to [28, Equation (9)]. Moreover, null(JM ) =
null(Rl(p̃)) = span{1n⊗ I2}, where Rl is the matrix de-
fined in the proof of Lemma 4.2. Through a process sim-
ilar to the proof of [28, Theorem 3], it can be shown that
El is locally exponentially stable. By Lemma 4.2, EM is
also locally exponentially stable. �

5 Simulations

In this section, by considering 5 autonomous agents mov-
ing in the plane, we present three numerical examples to
illustrate the effectiveness of the theoretical findings.

Example 5.1 Consider regular pentagon described
by the framework in Fig. 5 (a) as the target for-
mation shape (G, p∗). The set of desired angle in-
formation should be {g∗T12 g

∗
13 = 0.8090, g∗T13 g

∗
14 =

0.8090, g∗T14 g
∗
15 = 0.8090, g∗T21 g

∗
23 = −0.3090, g∗T31 g

∗
34 =

0.3090, g∗T41 g
∗
45 = 0.8090}. Note that G is a triangulated

Laman graph, and (G, p∗) is strongly nondegenerate.
That is, Assumption 4.1 holds. Without loss of gener-
ality, choose qi = (cos( 2π

5 i), sin( 2π
5 i))

T , i = 1, · · · , 5.

Then q = (qT1 , · · · , qTn )T ∈ E . Set the initial position
vector of the agents as p(0) = q + r, where r ∈ R10

is a perturbation, each component of r is a pseudo-
random value drawn from the uniform distribution on
(−0.5, 0.5). By implementing the control law (11), Fig.
6 (a) is obtained, which shows that the desired formation
shape can be formed by our formation strategy. Fig. 6
(b) describes the evolution of VF (t), where VF (t) is in
form (10). It can be observed that VF (t) ≤ e−0.1tVF (0)
for all t ≥ 0, implying exponential convergence of the
formation system. In conclusion, the simulation result
illustrates Theorem 8.

In fact, when we repeat the simulation by choosing other
values of r in the same way as above, it can always be

12
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Fig. 6. (a) Under control law (11), the agents asymptotically
form a regular pentagon. (b) VF (t) vanishes to zero in an
exponential speed.

(a) (b)

-1 -0.5 0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

1.5

2

x-axis

y
-a

x
is

 

 

Initial positions

Final positions

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

 

 

V
F
(t)

e-0.1tV
F
(0)

(a) (b)

-0.5 0 0.5 1 1.5 2 2.5 3
-1

-0.5

0

0.5

1

1.5

2

x-axis

y
-a

x
is

 

 

Initial positions of followers

Final positions of followers

Initial positions of leaders

Final positions of leaders

0 20 40 60 80 100 120 140 160 180 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

 

 

V(t)

e-0.03tV(0)

(b)(a)

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time

 

 

V
f
(t)

e-0.1tV
f
(0)

-1 -0.5 0 0.5 1 1.5 2 2.5
-1

-0.5

0

0.5

1

1.5

2

x-axis

y
-a

x
is

 

 

Initial positions

Final positions

(b)(a)

Fig. 7. (a) Under control law (11), the agents with a set of
random initial positions asymptotically form a shape dis-
tinct to regular pentagon. (b) VF (t) vanishes to zero in an
exponential speed.

obtained that VF vanishes to zero exponentially and the
target formation shape is eventually formed. Moreover,
when we select each component of r from the uniform dis-
tribution on (−1, 1), the target formation shape can still
be formed in most cases. In other cases, the angle con-
straints can usually be satisfied with an exponentially fast
speed, i.e., VF vanishes to zero exponentially, whereas the
target formation shape is not eventually formed. This is
because that T FG is not sufficient for (G, p∗) to be glob-
ally angle rigid. Note that the edge length of the pentagon
formed by q is 1.176, therefore, the attraction region is
sizable. In Fig. 7, the initial positions of agents are ran-
domly set, it is shown that all the angle constraints are
exponentially satisfied, but the agents form an incorrect
shape.

Example 5.2 Consider the framework in Fig. 5 (b) as
the target formation. According to (8), the set of desired
angle information should be {g∗T13 g

∗
14 = 0.8090, g∗T14 g

∗
15 =

0.8090, g∗T31 g
∗
34 = 0.3090, g∗T41 g

∗
45 = 0.8090}. Under the

same initial condition as in Example 5.1, although VF
vanishes to zero exponentially, the control law (11) can-
not stabilize the target formation, as shown in Fig. 8. This
is because the angle constraints determined by T FG are not
sufficient to determine angle rigidity of the framework.

Example 5.3 In this example, we control orientation
and scale of the formation formed in Example 5.1 by
implementing the control input (18). Let agents 3 and 4 be
the two leaders. Now we aim to drive the direction of p3−
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Fig. 8. (a) Under control law (11), the agents asymptotically
form a shape distinct to a regular pentagon. (b) VF (t) van-
ishes to zero in an exponential speed.
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Fig. 9. (a) Under control law (18), the regular pentagon
formed by all agents is asymptotically transformed into an-
other regular pentagon with desired orientation and scale.
(b) V (t) vanishes to zero exponentially.

p4 to be horizontal with respect to the global coordinate
system, while setting the length of each edge as 0.5. It
suffices to set the target displacement between two leaders
as p̃3 − p̃4 = (−0.5, 0)T . Fig. 9 shows the trajectories of
agents and the evolution of V (t) in (17), in which we can
observe the validity of Theorem 9.

6 Conclusion

In this paper, we have developed an angle rigidity the-
ory to study when a framework in the plane can be de-
termined by angles uniquely up to translations, rota-
tions, scalings and reflections. We have also proved that
the shape of a triangulated framework can always be
uniquely determined by angles. On the basis of the pro-
posed angle rigidity theory, a distributed formation con-
troller has been designed for formation shape stabiliza-
tion. We have proved that by implementing our control
strategy, a formation containing a strongly nondegener-
ate triangulated framework is locally exponentially sta-
ble. Taking the advantage of high degrees of freedom, we
have proposed a distributed control strategy, which can
drive agents to stabilize a target formation shape with
prescribed orientation and scale.

The angle rigidity theory proposed in this paper is only
for graphs in the plane, similar definitions can be easily
extended to higher dimensional spaces, but many prop-
erties of angle rigidity may become invalid. This is be-
cause many theoretical tools we have used cannot be di-
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rectly applied to the higher dimensional case. We leave
the angle rigidity theory in higher dimensional spaces as
the future work. Moreover, the controller we presented
requires agents to sense relative position states. We will
try to design a bearing-only control law in future.
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Zavlanos. Distributed formation stabilization using relative
position measurements in local coordinates. IEEE
Transactions on Automatic Control, 61(12):3925–3935, 2016.

[3] L. Asimow and B. Roth. The rigidity of graphs. Transactions
of the American Mathematical Society, 245:279–289, 1978.

[4] A. N. Bishop, I. Shames, and B. D. O. Anderson. Stabilization
of rigid formations with direction-only constraints. In in
Proceedings of the 50th IEEE Conference on Decision and
Control and European Control Conference, Orlando, FL,
pages 746–752, 2011.

[5] I. Buckley and M. Egerstedt. Infinitesimally shape-similar
motions using relative angle measurements. In in Proceedings
of IEEE/RSJ International Conference on Intelligent Robots
and Systems, Vancouver, BC, Canada, pages 1077–1082,
2017.

[6] J. Carr. Applications of centre manifold theory. Springer-
Verlag, New York, 1981.

[7] X. Chen, M. A. Belabbas, and T. Başar. Global stabilization
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7 Appendix. A: Proof of Theorem 3

Necessity. Since null(RT ∗G ) = (null(Rg) ∩ range(RB)) ∪
null(RB), dim(null(RT ∗G )) reaches its minimum only if

dim(null(RB)) is minimal. Recall that it always holds
that null(RB) ⊇ Ss ∪ St, once (G, p) is infinitesimally
angle rigid, it must hold that null(RB(p)) = Ss ∪ St.
That is, (G, p) is infinitesimally bearing rigid.

Sufficiency. Note that RT ∗G = RgRB , and infinitesimal

bearing rigidity implies null(RB) = St ∪ Ss. To show
null(RT ∗G ) = S, it suffices to show that for any η ∈
null(Rg)∩range(RB), we have η = RBq for some q ∈ Sr.

Suppose η = RBv and Rgη = RgRBv = 0 for some
v = (vT1 , · · · , vTn )T ∈ R2n. Let gTijgik be a component of
fG such that gij and gik are not collinear. ThenRT ∗G v = 0

implies that
∂gTijgik
∂g diag(

Pij

||eij || )H̄v = 0, which is equiva-

lent to

eTikPij(vi − vj) + eTijPik(vi − vk) = 0. (20)

Note that for any nonzero vectors x, y ∈ R2, P (x)y
is perpendicular to x. Therefore, there always exist
cij , cik ∈ R such that

Pij(vi−vj) = cijRo(
π

2
)gij , Pik(vi−vk) = cikRo(

π

2
)gik.

(21)
It follows that

vi−vj = cijRo(
π

2
)gij+c

′
ijgij , vi−vk = cikRo(

π

2
)gik+c′ikgik

(22)
for some c′ij , c

′
ik ∈ R. Substituting (21) into (20), we have

cije
T
ikRo(

π

2
)gij + cike

T
ijRo(

π

2
)gik = 0.

Note also that RT
o (π2 ) = −Ro(

π
2 ), then we have

(cij ||eik|| − cik||eij ||)gTijRo(
π

2
)gik = 0.

Since gij and gik are not collinear, gTijRo(
π
2 )gik 6= 0. It

follows that cij ||eik|| = cik||eij ||. That is, cij = cijk||eij ||,
cik = cijk||eik|| for some cijk ∈ R. Together with (22),
we have

vi − vj = cijkRo(
π

2
)eij + c̄ijeij ,

vi − vk = cijkRo(
π

2
)eik + c̄ikeik,

(23)

where c̄ij = c′ij/||eij ||, c̄ik = c′ik/||eik||.

So far we have proved that if (i, j, k) ∈ T ∗G and gij is
not collinear with gik, then (23) holds for some cijk ∈ R.
In the following, by constructing a T ∗G , we will show
that there exists a common constant c ∈ R such that
vi − vj = cRo(

π
2 )eij + c̄ijeij for all (i, j) ∈ E .

Now we construct a set T ∗G ⊆ TG such that gij and gik
are not collinear for all (i, j, k) ∈ T ∗G . Since (G, p) is in-
finitesimally bearing rigid, from Lemma 2.1 and Lemma
2.2, for any vertex i, there exist at least two neighbors
j, k ∈ Ni such that gij and gik are not collinear. As a re-

sult, we can divideNi into two sets N̂i and Ňi, such that
for any j ∈ N̂i and k ∈ Ňi, gij and gik are not collinear.
We construct a set iT ∗G by the following two steps:

Step 1. Select a vertex j1 ∈ N̂i randomly, let (i, j1, k)(if
j1 < k) or (i, k, j1)(if j1 > k) for all k ∈ Ňi be an element
of iT ∗G .

Step 2. Select a vertex k1 ∈ Ňi randomly, let (i, j, k1)(if

j < k1) or (i, k1, j)(if j > k1) for all j ∈ N̂i \ {j1} be an
element of iT ∗G .

Let T ∗G = ∪i∈V iT ∗G . It is obvious that for any i, j, k ∈ T ∗G ,
gij and gik are not collinear. Now we regard each edge
(i, j) of G as a vertex of G′, (i, j) and (i, k) are adjacent
if (i, j, k) or (i, k, j) belongs to T ∗G . By our approach for

construction of iT ∗G , it is easy to see that for any i ∈ V
and j, k ∈ Ni, (i, j) and (i, k) are either adjacent or both
neighbors of (i, j1) or (i, k1). Therefore, the graph G′
corresponding to T ∗G is connected. We regard cij as the
state corresponding to (i, j) if vi − vj = cijRo(

π
2 )eij +

c̄ijeij . Note that (23) implies that if (i, j) and (i, k) are
adjacent, they share a common state cijk ∈ R. Since G′ is
connected, all edges in G′ have a consensus state c ∈ R.
That is, vi − vj = cRo(

π
2 )eij + c̄ijeij for all (i, j) ∈ E .

This implies that H̄v = c(Im⊗Ro(
π
2 ))H̄p+C̄H̄p, where
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C̄ = diag(c̄ij)⊗ I2. Then

η = RBv = diag(
Pij
||eij ||

)H̄v

= diag(
Pij
||eij ||

)c(Im ⊗Ro(
π

2
))(H ⊗ I2)p+ diag(

Pij
||eij ||

)C̄H̄p

= diag(
Pij
||eij ||

)(H ⊗ I2)c(In ⊗Ro(
π

2
))p

= RBc(In ⊗Ro(
π

2
))p.

Since c(In ⊗Ro(
π
2 ))p ∈ Sr, the proof is completed.

8 Appendix. B: Proof of Theorem 4

We first present some lemmas that are required to prove
Theorem 4.

In [9], the authors showed that for a positive semi-
definite matrix A ∈ Rn×n with rank(A) = r, if
ΠTAΠ = RTR for a specified permutation matrix
Π ∈ Rn×n, where R ∈ Rr×n, then this Cholesky de-
composition is unique. Here the uniqueness of Cholesky
decomposition implies that if R̄T R̄ = ΠTAΠ for some
R̄ ∈ Rr×n, then R = RR̄ for some R ∈ O(2). It is
straightforward to obtain the following lemma.

Lemma 8.1 For a matrix R ∈ Rr×n with rank(R) = r,
if RTR = R̄T R̄ for some R̄ ∈ Rr×n, then R = RR̄ for
some R ∈ O(r).

Let Hx = H (x) , I2 − 2xxT be a Householder trans-
formation, here x ∈ R2 is a unit vector. Geometrically,
Hxy with y ∈ R2 is a reflection of y about the vector
which is perpendicular to x. We list some properties of
Hx in the following lemma.

Lemma 8.2 For any given unit vectors x, y ∈ R2, Hx

has the following properties:

(i) H T
x = H , H 2

x = I2;

(ii) Hx = Re(θ) for some θ ∈ [0, 2π);

(iii) For any θ ∈ [0, 2π), there exists a unit vector z ∈ R2

such that Hz = Re(θ);

(iv) The eigenspace of Hx associated with the eigenvalue
1 is span{x⊥}.

Proof. The statements in (i) and (ii) are easy to verify,
thus the proofs are omitted here. Now we prove the rest
of statements.

(iii) Let x = (x1, x2)T , then Hx = I − 2xxT =(
1− 2x2

1 −2x1x2

−2x1x2 1− 2x2
2

)
. It suffices to show that 1− 2x2

1 =

−(1 − 2x2
2) and (1 − 2x2

1)2 + (−2x1x2)2 = 1. Since
x2

1 + x2
2 = 1, the first equality obviously holds. For the

second equality, we have

(1− 2x2
1)2 + (−2x1x2)2 = 1− 4x2

1 + 4x4
1 + 4x2

1x
2
2

= 1− 4x2
1 + 4x2

1(x2
1 + x2

2) = 1.

(iv) From the proof for (iii), it suffices to find suitable
x such that 1 − 2x2

1 = cos θ, 1 − 2x2
2 = − cos θ, and

−2x1x2 = sin θ. If θ ∈ [0, π), we can obtain a solution

as x1 =
√

1−cos θ
2 , x2 = −

√
1−cos θ

2 . If θ ∈ [π, 2π), a

solution is x1 =
√

1−cos θ
2 , x2 =

√
1−cos θ

2 .

(v) Let y ∈ R2 be a vector such that Hxy = y, then
y − 2xT yx = y, which holds if and only if xT y = 0, i.e.,
y = cx⊥ for some constant c ∈ R. �

With the aid of Lemma 8.2, we can establish the follow-
ing result.

Lemma 8.3 If Aη = Bη, where A,B ∈ O(2), and η ∈
R2 is a unit vector, then A = B or A = BHη⊥ .

Proof. Note that a 2-dimensional orthogonal matrix is
either a rotation matrix or a reflection matrix. Without
loss of generality, we discuss the problem in three cases:

Case 1. A = Ro(α), B = Ro(β) for some α, β ∈ [0, 2π).
Then Ro(α)η = Ro(β)η, implying Ro(α − β)η = η.
Hence α− β = 0. That is, A = B.

Case 2. A = Re(α), B = Re(β) for some α, β ∈ [0, 2π).
Following the same procedure in Case 1, one can also
obtain A = B.

Case 3. A = Ro(α), B = Re(β) = Ro(β)Ī for some
α, β ∈ [0, 2π). Then Ro(α)η = Ro(β)Īη. It follows that
η = Ro(β − α)Īη = Re(β − α)η. From Lemma 8.2 (iii),
there exists some x ∈ R2 such that Hx = Re(β − α).
That is, η = Hxη. Using (iv) in Lemma 8.2, we have
η ∈ span{x⊥}. Then x = ±η⊥, Hx = Hη⊥ . As a re-

sult, Hη⊥ = Re(β − α) = Ro(β − α)Ī, implying that
Ro(α)Hη⊥ = Re(β). By (i) in Lemma 8.2, we have
A = Ro(α) = Re(β)Hη⊥ = BHη⊥ . �

Let F denote a graph with 4 vertices and 5 edges, then
the following lemma holds.

Lemma 8.4 (F , p) is infinitesimally bearing rigid if and
only if p is nondegenerate.

The necessity of Lemma 8.4 is obvious. For sufficiency,
it is easy to see that F must be a triangulated Laman
graph. Since (L4, p) is strongly nondegenerate if and
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only if p is nondegenerate, from Lemma 3.3, (L4, p) is
infinitesimally distance rigid.

With Lemmas 8.1, 8.2, 8.3 and 8.4 at hand, we now give
the proof for Theorem 4.

Proof of Theorem 4. We first note that (In ⊗
R)−1q ∈ B−1

K (BK(p)) is equivalent to BK((In ⊗
R)−1q) = BK(p), which is also equivalent to BK(q) =
(Im ⊗ R)BK(p). Therefore, it suffices to show that
fK(q) = fK(p) if and only if BK(q) = (Im ⊗R)BK(p).

Sufficiency. For any i, j, k ∈ V, it is straightforward that

gTij(q)gik(q) = gTij(p)R
TRgik(p) = gTij(p)gik(p).

To prove necessity, we consider the following two cases.

Case 1. The configuration p is degenerate. Let g̃ be
a unit vector such that g̃ is collinear with gij(p) for
all i, j ∈ V, then gij(q) = Rgij(p) if and only if
gij(q) = RHg̃⊥(p)gij(p). For any i, j ∈ V, let Rij ∈ O(2)
such that gij(q) = Rijgij(p). To prove necessity, it suf-
fices to show that for any distinct vertices i, j, k ∈ V,
if gij(q) = Rijgij(p) and gik(q) = Rikgik(p), there
always holds Rij = Rik or Rij = RikHg̃⊥(p). With-
out loss of generality, suppose gij(p) = gik(p). Then
gTij(q)gik(q) = gTij(p)gik(p) = 1, which holds if and only if
gij(q) = gik(q), i.e., Rijgij(p) = Rikgik(p) = Rikgij(p).
By Lemma 8.3, Rij = Rik or Rij = RikHg⊥

ij
(p). Since

Hg⊥
ij

(p) = Hg̃⊥(p), the proof is completed.

Case 2. The configuration p is nondegenerate. Note that
K is complete, hence each vertex i has at least two neigh-
bors j and k such that gij(p) and gik(p) are not collinear.

Then we can divide Ni into two sets N̂i and Ňi, such
that for any j ∈ N̂i and k ∈ Ňi, gij(p) and gik(p) are
not collinear. We first show that given i ∈ V, for any
j ∈ N̂i, k ∈ Ňi, l ∈ V \ {i, j, k}, it always holds that
Gijkl(q) = RijklGijkl(p) for some Rijkl ∈ O(2), where
Gijkl = (gij , gik, gil, gjk, gjl, gkl) ∈ R2×6.

Since K is complete, we have l ∈ Ni. Without loss
of generality, we consider l ∈ Ňi. For the triangle
composed of i, j, k, let Gijk = (gij , gik, gjk) ∈ R2×3.
Since fK(q) = fK(p), we have GTijk(q)Gijk(q) =

GTijk(p)Gijk(p). Note that gij(p) and gik(p) are

not collinear, thus we have rank(Gijk(p)) = 2. By
virtue of Lemma 8.1, the Cholesky decomposition of
GTijk(p)Gijk(p) determines Gijk(p) up to a 2 × 2 or-

thogonal matrix Rijk. That is, Gijk(q) = RijkGijk(p).
Similarly, we have Gijl(q) = RijlGijl(p) for Rijl ∈
O(2). For vertices j, k, l, it follows from Case 1 that
Gjkl(q) = RjklGjkl(p) for Rjkl ∈ O(2) no matter j, k, l
are collinear or not. Since Rijkgij(p) = Rijlgij(p) =

gij(q), according to Lemma 8.3, Rijk = Rijl or
Rijk = RijlHg⊥

ij
(p).

Suppose that Rijk 6= Rijl, then

gTjk(p)gjl(p) = gTjk(q)gjl(q)

= gTjk(p)RT
ijkRijlgjl(p)

= gTjk(p)Hg⊥
ij

(p)gjl(p)

= gTjk(p)gjl(p)− 2gTjk(p)g⊥ij(p)g
⊥T
ij (p)gjl(p).

This implies gTjk(p)g⊥ij(p)g
⊥T
ij (p)gjl(p) = 0. Since gij(p)

and gik(p) are not collinear, gij(p) and gjk(p) are also not
collinear. Similarly, gij(p) and gjl(p) are not collinear.

Thus a contradiction arises. We then have Rijk = Rijl ,
Rijkl, which implies that Ḡijkl(q) = RijklḠijkl(p),
where Ḡijkl = (gij , gik, gil, gjk, gjl) ∈ R2×5. Consider
the framework (F , q), where F is a graph with vertex set
{i, j, k, l} and edge set {(i, j), (i, k), (i, l), (j, k), (k, l)}.
Since these four vertices are not collinear, according
to Lemma 8.4, (F , q) is infinitesimally bearing rigid,
thus is globally bearing rigid. This implies that gkl(q)
can be uniquely determined by Ḡijkl(q). As a result,
Gijkl(q) = RijklGijkl(p).

The above proof implies that given i ∈ V, we have

R , Rijk = Rijl = Rikl = Rjkl

for any j ∈ N̂i, k ∈ Ňi, l ∈ V \ {i, j, k}. Note that any
edge in graph K is involved in a triangle including vertex
i. Therefore, gij(q) = Rgij(p) for any (i, j) ∈ E . �

9 Appendix. C: Proof of Theorem 7

(i) From Lemma 3.3 and the fact that |En| = 2n − 3,
strong nondegeneracy and minimal infinitesimal angle
rigidity are equivalent for (Ln, p). Next we show T ∗Ln

in (6) is minimally suitable for (Ln, p) to be minimally
infinitesimally angle rigid.

By virtues of Theorem 3 and Lemma 3.3, (Ln, p) is in-
finitesimally bearing rigid. Then null(RB) = Ss ∪ St. It
suffices to show that for any η ∈ null(Rg) ∩ range(RB),
there always exists q ∈ Sr such that η = RBq. Sup-
pose that RT ∗Ln

v = RgRBv = 0 and RBv 6= 0, where

v = (vT1 , · · · , vTn ) ∈ R2n. In the proof of Theorem 3,
we have shown that for any (i, j, k) ∈ T ∗Ln

, if gij is not
collinear with gik, then (23) holds for some cijk. Re-
call that (Ln, p) is strongly nondegenerate, then for any
(i, j, k) ∈ T ∗Ln

, (23) holds for some cijk. Without loss of
generality, suppose i < j < k. Due to the definition in
(6), for each triangle in Ln formed by vertices i, j and
k, we have (i, j, k), (j, i, k) ∈ T ∗Ln

. Now we regard (i, j)
as a vertex of G′ for all (i, j) ∈ En, two vertices in G′ are
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adjacent if they belong to a same triangle in Ln. Let cij
be the state of (i, j) if vi − vj = cijRo(

π
2 )eij + c̄ijeij for

some c̄ij ∈ R. It is easy to see that (i, j), (i, k) and (k, j)
have a common state, implying that adjacent vertices in
G′ must have a common state. Note that in every step
during the generation of graph Ln, a new triangle is gen-
erated based on an existing edge. Therefore, G′ must be
connected. As a result, there exists a constant c ∈ R such
that vi − vj = cRo(

π
2 )eij + c̄ijeij for all (i, j) ∈ En. By

similar analysis to the proof of Theorem 3, we can obtain
v ∈ Sr, which implies that (Ln, p) is infinitesimally an-
gle rigid for T ∗Ln

. Moreover, observe that |T ∗Ln
| = 2n−4,

we conclude that T ∗Ln
is also minimal.

(ii). We prove the statement by induction.

For n = 3, it is obvious that (L3, p) with T †L3
= T ∗L3

=
{(1, 2, 3), (2, 1, 3)} is globally angle rigid.

For n ≥ 4, suppose that (Ln−1, p) with T †Ln−1
is globally

angle rigid. Next we show that (Ln, p) is globally angle

rigid with T †Ln
. Without loss of generality, let i and j be

the neighbors of n and i < j. Note that (i, j) ∈ En−1, and
i, j must have at least one common neighbor vertex in
Ln−1, let k be the minimum index among them, it is easy

to see T †Ln
= {(i, j, n), (j, i, n), (i, k, n)} ∪ T †Ln−1

. It suf-

fices to show that for any q such that fT †Ln
(p) = fT †Ln

(q),

it always holds fKn(p) = fKn(q). Since Ln−1 is glob-
ally angle rigid, by Theorem 4, there exists a matrix
Rn−1 ∈ O(2) such that gi′j′(p) = Rn−1gi′j′(q) for all
i′, j′ ∈ Vn−1. From gTij(p)gin(p) = gTij(q)gin(q), and

gTji(p)gjn(p) = gTji(q)gjn(q), we have GTijn(p)Gijn(p) =

GTijn(q)Gijn(q), where Gijn = (gij , gnj , gni) ∈ R2×3.
Using strong nondegeneracy of (Ln, p), we have
rank(Gijn(p)) = 2. By Lemma 8.1, Gijn(p) =
RijnGijn(q) for some Rijn ∈ O(2). It follows that
gij(p) = Rn−1gij(q) = Rijngij(q). According to Lemma
8.3, Rn−1 = Rijn or Rn−1 = RijnHg⊥

ij
(q).

Suppose that Rn−1 6= Rijn, then gik(p) = Rn−1gik(q) =
RijnHg⊥

ij
(q)gik(q), and gin(p) = Rijngin(q). It follows

that

gTik(p)gin(p) = gTik(q)Hg⊥
ij

(q)R
T
ijnRijngin(q)

= gTik(q)Hg⊥
ij

(q)gin(q).
(24)

Recall that (i, k, n) ∈ T †Ln
, we have gTik(p)gin(p) =

gTik(q)gin(q). Together with (24), it follows that
gTik(q)Hg⊥

ij
(q)gin(q) = gTik(q)gin(q), which holds if and

only if gij(q) is collinear with either gik(q) or gin(q),
i.e., either (qTi , q

T
j , q

T
k )T or (qTi , q

T
j , q

T
n )T is degenerate,

implying that either (pTi , p
T
j , p

T
k )T or (pTi , p

T
j , p

T
n )T is

degenerate. This conflicts with strong nondegeneracy

of (Ln, p). Therefore, Rn−1 = Rijn , Rn. That is,
gi′j′(p) = Rngi′j′(q) for any (i′, j′) ∈ En. It follows that
fK(p) = fK(q). Hence, (Ln, p) with T ∗Ln

is globally
angle rigid.
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