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Abstract

The constrained linear quadratic regulation problem
is solved by a continuous piecewise affine function
on a set of state space polytopes. It is an obvious
question whether this solution can be built up itera-
tively by increasing the horizon, i.e., by extending the
classical backward dynamic programming solution for
the unconstrained case to the constrained case. Un-
fortunately, however, the piecewise affine solution for
horizon N is in general not contained in the piecewise
affine law for horizon N +1. We show that backward
dynamic programming does, in contrast, result in a
useful structure for the set of the active sets that de-
fines the solution. Essentially, every active set for
the problem with horizon N + 1 results from extend-
ing an active set for horizon N , if the constraints
are ordered stage by stage. Consequently, the set for
horizon N + 1 can be found by only considering the
constraints of the additional stage. Furthermore, it
is easy to detect which polytopes and affine pieces
are invariant to increasing the horizon, and therefore
persist in the limit N → ∞. Several other aspects
of the structure of the set of active sets become evi-
dent if the active sets are represented by bit tuples.
There exists, for example, a subset of special active
sets that generates a positive invariant and persis-
tent (i.e., horizon invariant) set around the origin.
It is very simple to identify these special active sets,
and the positive invariant and persistent region can
be found without solving optimal control or auxiliary

optimization problems. The paper briefly discusses
the use of these results in model predictive control.
Some opportunities for uses in computational meth-
ods are also briefly summarized.

1 Problem statement and in-
troduction

We consider the constrained linear quadratic optimal
control problem with finite and infinite horizons. The
problem for finite horizon N reads V ?(x(0), [0, N ]) :=

min
u(k), k=0,...,N−1
x(k), k=1,...,N

1

2
‖x(N)‖2P +

1

2

N−1∑
k=0

(
‖x(k)‖2Q + ‖u(k)‖2R

)
(1a)

subject to

x(k + 1) = Ax(k) +Bu(k), k = 0, . . . , N − 1 (1b)

u(k) ∈ U , k = 0, . . . , N − 1 (1c)

x(k) ∈ X , k = 0, . . . , N − 1 (1d)

x(N) ∈ T , (1e)

where x(0) is the given initial condition, x(k) ∈ Rn
and u(k) ∈ Rm are the state and input variables, re-
spectively, and the matrices have the obvious dimen-
sions. We assume (A,B) to be controllable, Q � 0,
R � 0 and X , U to be compact convex polytopes that
contain the origin in their interiors. Furthermore, P
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is assumed to be the solution to the discrete-time al-
gebraic Riccati equation, and T ⊂ Rn is assumed
to be the largest set such that the solution to (1)
and the solution to the unconstrained infinite-horizon
problem are equal for all x(0) ∈ T .

The infinite-horizon problem results in the limit
N → ∞ if the first term in (1a) and (1e) are omit-
ted. The unconstrained infinite-horizon problem re-
sults if (1c) and (1d) are also omitted.

We briefly recall that u = K∞x with

K∞ = −
(
B>PB +R

)−1
B>PA

is the state feedback that solves the unconstrained
infinite-horizon problem, (see, e.g., [4, chapter 4]).
Furthermore, we recall that

T = {ξ ∈ X |(A+BK∞)kξ ∈ XU , k ≥ 0} (2)

where XU = {ξ ∈ X |K∞ξ ∈ U} [16]. Some properties
of T are summarized in the notation section.

Let u?N (x(0)) refer to the vector in RmN that re-
sults from stacking the optimal input sequence

u?(0), u?(1), . . . , u?(N − 1) (3)

for (1). Let FN refer to the set of initial states x(0)
for which (1) has a solution, where FN 6= ∅ since
FN ⊇ · · · ⊇ F1 ⊇ T 6= ∅.

The paper addresses the following problem: It is
known that u?N : FN → RmN is a continuous piece-
wise affine function on a partition of FN into a finite
number of polytopes PN,1, PN,2, . . . [3] (see also [12]).
It is an obvious question whether this piecewise struc-
ture can be built up iteratively (i.e., starting from
u?0 : F0 → RmN with F0 = T and finding F1,F2, . . . )
or recursively (i.e., starting from some FN and inves-
tigating FN−1,FN−2, . . . ). Unfortunately, the piece-
wise affine and polytopic geometry of u?N and u?N+1

are not related in any obvious way. For example, a
polytope for horizon N may or may not be a polytope
for horizon N + 1 (see Figure 1). It is the purpose of
the paper to explain that the sought-after structure
does indeed exist for the active sets of (1), and to
relate this algebraic structure of the set of active sets
to the geometric structure of polytopes and the affine
functions defined on them.
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Figure 1: Partitions of the solutions to (1) for Exam-
ple 1 and N = 1, 2. White polytopes exist for both
N = 1 and N = 2, red polytopes exist for N = 1
only, grey polytopes exist for N = 2 only.

Dynamic programming and the principle of opti-
mality, which are instrumental in Section 3, are fun-
damental techniques and have been standard tools for
the derivation of the solution to the unconstrained
infinite-horizon problem for decades (see, e.g., [1]).
Their application to the constrained problem is ham-
pered by the piecewise quadratic structure of the op-
timal cost function. Several publications have ad-
dressed this problem with a focus on model pre-
dictive control (MPC). Muñoz de la Peña et al. [6]
present an algorithm for the explicit construction
of the piecewise affine MPC law by backward dy-
namic programming based on techniques proposed
in [13, 15]. Bakarač et al. [2] show how to approxi-
mate the piecewise optimal cost function by a single
quadratic function, which results in a considerable
simplification of backward dynamic programming for
the constrained case. The inherent complexity of the
problem is also evident from the number of candidate
active sets (the powerset of {1, . . . , q} if q constraints
exist) that need to be analyzed to find the active sets
that actually define the optimal solution. Gupta et
al. [9] show that many candidate active sets can be
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disregarded if the powerset is organized as a tree and
subtrees are pruned whenever they stem from a can-
didate set that is not an active set (see also [7, 11, ?]).

The results presented here are also based on an
analysis of the set of active sets, but we focus on the
structure of the solution of the optimal control prob-
lem (1), specifically on the structure of the set of the
active sets. The statements in Section 2.1 apply to
a larger class of problems than introduced above (a
class that is often analyzed in MPC after pragmati-
cally relaxing requirements for stability). The prop-
erties summarized so far are then exploited in Sec-
tion 2.2 (see the remark at the end of Section 2.1).
Section 3 briefly summarizes some computational as-
pects. Some conclusions and opportunities for future
work are stated in Section 4.

Notation and preliminaries

The terminal set T introduced in (2) can be com-
puted with the procedure proposed in [8]. It does
not depend on N and T ⊆ X by definition [5].

Problem (1) is finite-dimensional and thus solved
by a finite input sequence (3) and a corresponding
finite state sequence that results with (1b). For com-
parisons to the infinite-horizon problems, these se-
quences are extended to

u?(k), x?(k) for all k ≥ 0 (4)

by setting u?(l) = K∞x
?(l), x?(l + 1) = (A +

BK∞)x?(l), l ≥ N . We collect three basic state-
ments about the optimal input sequence (3) for later
use: (i) The sequence u?(1), . . . , u?(N −1) is optimal
for (1) with horizon N−1 and initial condition x?(1).
More generally, u?(l), . . . , u?(N−1) is optimal for (1)
with horizon N − l and initial condition x?(l), where
l ∈ {0, N − 1} is arbitrary. (ii) In general (3) is not
equal to the first elements in the optimal input for (1)
with horizon N and initial condition x?(1). (iii) In
general, (3) is not equal to the first elements in the
optimal input sequence for (1) with horizon N + 1
and initial condition x(0).

We need to state (iii) more precisely and in a more
technical fashion for later use. According to Lemma

2.2 in [5]1

x?(N) ∈ int T implies (4) are equal for N and N + 1,
(5)

and thus for all N + l, l ≥ 0 and in the limit N →∞,
but

(5) does in general not hold for x?(N) ∈ ∂T .

It may seem pedantic to consider the boundary ∂T
separately, since ∂T is a subset of T and X with
measure zero. There often exist, however, full dimen-
sional polytopes PN,i in the piecewise affine solution
such that x?(N) ∈ ∂T for all x(0) ∈ PN,i (see Exam-
ple 2 and Figure 3). Disregarding ∂T may therefore
lead to full-dimensional holes in the affine solution.

For any N , there exist H, Y , F , G, E, w such
that problem (1) can equivalently be stated as the
quadratic program

min
u

1

2
x>(0)Y x(0) +

1

2
u>Hu+ x(0)>Fu (6a)

subject to Gu ≤ w + Ex(0) (6b)

after substituting (1b), where u =
(u>(0), . . . , u>(N − 1))>, and where the state
sequence that results in (1) can be determined
with (1b). H is positive definite under the assump-
tions stated for (1) [3]. Consequently, (6) has a
unique solution for all x(0) ∈ FN , which we denote
u?N (x(0)) in accordance with u?N : FN → RmN intro-
duced above. Let q refer to the number of inequality
constraints in (1) and (6). Let qU , qX and qT refer to
the number of halfspaces (i.e., inequalities) required
to define U , X and T , respectively. Polytopes are
understood to be the intersection of a finite number
of halfspaces and bounded.

A constraint i is called active (resp. inactive) for
an x(0) ∈ FN if Giu

?
N (x(0)) = wi + Eix(0) (resp.

Giu
?
N (x(0)) < wi+Eix(0)), where Gi, wi, Ei etc. re-

fer to the i-th row of the respective matrix or vector.
A constraint i is called weakly active if it is active and
its multiplier σi introduced in (7) below is zero. GA,
GI etc. refer to the submatrix of G with rows indi-
cated in A and I, respectively. For a given x(0) ∈ FN

1The condition x(N) ∈ int T cannot be replaced by x(N) ∈
T as in [5]. See Example 2.
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, let A and I (or A(x(0)) and I(x(0)) where needed)
refer to the set of active respectively inactive con-
straints. We say A (I) is an active (inactive) set
for (6) and later (17) if there exists an x(0) ∈ FN
with this set of active (inactive) constraints.

We assume the reader to be familiar with the
Karush-Kuhn-Tucker (KKT) conditions for problems
with inequality and mixed inequality and equality
constraints (see, e.g., [?, Section 4.2.13]. If the active
set A(x(0)) for (6) is known for an initial condition
x(0), the KKT conditions can equivalently be stated
in the form

Hu+G>σ + F>x(0) = 0

GAu− wA − EAx(0) = 0

GIu− wI − EIx(0) ≤ 0

σI = 0, σA ≥ 0

(7)

with multipliers σ ∈ Rq (see, e.g., [9]). They are
solved by one of the affine functions that constitute
the piecewise affine u?N : FN → RmN for one of the
polytopes PN,i [3]. It is therefore meaningful to say
A defines a polytope P and the optimal u?N (x(0)) for
all x(0) ∈ P and to refer to this polytope by P(A).
More precisely, P(A) is defined as the relative inte-
rior of the set of initial states such that (7) has a
solution for the active set A, which implies P(A) is
relative open. Because the solution to (1) is continu-
ous, the affine law x(0)→ u?N (x(0)) can be extended
from intP(A) to the boundary of P(A). Cumber-
some statements about boundaries can be avoided
with these definitions. For example, the interior of
the central polytope in Figure 1 and the optimal so-
lution on its closure are defined by a single A, while
eight different active sets (for 4 vertices and 4 facets),
which all define the same optimal solution as A, ex-
ist on its boundary. By using the notions ”relative
interior” and ”relative openness” the statements in
the paper carry over to lower-dimensional polytopes.2

Since X , U and T are used in the literature as defined
in Section 1 (and thus closed, full-dimensional, and
their relative interiors are their interiors), we use the
notation ”intX” etc. to refer to their interiors explic-

2Proposition 1, for example, applies to active sets that de-
fine lower than n-dimensional polytopes.

itly, while all other polytopes are understood to be
open.

Active sets of constraints are stated as tuples of
bits. This proves to be convenient when consider-
ing the constraints stage by stage in (1) and the
infinite-horizon problem. For example, a tuple of q
bits α = (α1, . . . , αq) uniquely represents a set of ac-
tive constraints A ⊆ {1, . . . , q}, where

αi =

{
1 if i ∈ A
0 otherwise

(8)

The concatenation of two or more tuples, say, α =
(α1, . . . , αq) and α′ = (α′1, . . . , α

′
q′) is denoted and

understood as αα′ = (α1, . . . , αq, α
′
1, . . . , α

′
q′). We

use α and A, Gα and GA, P(A) and P(α) etc. inter-
changeably.

2 The structure of the set of ac-
tive sets

2.1 Stagewise active set construction

We illustrated with Figure 1 that the optimal feed-
back law and its polytopes for (1) with horizon N
are not contained in the law and polytopes for N +1.
Such a property does hold for the active sets, how-
ever. This is stated more precisely in Proposition 1.
As a preparation, the order of the constraints has to
be agreed on. We stress that we can fix the order of
the constraints without restriction, since the optimal
solutions to (1) and (6) are invariant to changing this
order. Apart from the order stated in (1c)–(1e), it is
natural to order the constraints stage by stage, i.e.,

x(0) ∈ X , u(0) ∈ U
x(1) ∈ X , u(1) ∈ U

...

x(N − 1) ∈ X , u(N − 1) ∈ U
x(N) ∈ T

(9)

where all but the last line correspond to qX + qU
halfspace constraints, and the last line corresponds
to qT such constraints.
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Proposition 1. Consider the optimal control prob-
lem (1) for horizons N and N + 1. Assume without
restriction the constraints are ordered as in (9). Then
for every active set αN+1 of the problem with horizon
N + 1 there exists an active set αN for the problem
with horizon N such that

αN+1 = ααN (10)

for some α of length qX + qU .

Proof. We introduce the abbreviations `T (ξ) =
1
2‖ξ‖

2
P , `(ξ, µ) = 1

2 (‖ξ‖2Q + ‖µ‖2R) and generalize (1)
to V ?(ξ, [N1, N2])) :=

min
x(N1+1),...,x(N2),
u(N1),...,u(N2−1)

`T (x(N2)) +

N2−1∑
k=N1

`(x(k), u(k))

(11a)

subject to

x(N1) = ξ (11b)

x(k + 1) = Ax(k) +Bu(k), k = N1, . . . , N2 − 1
(11c)

u(k) ∈ U , k = N1, . . . , N2 − 1
(11d)

x(k) ∈ X , k = N1, . . . , N2 − 1
(11e)

x(N2) ∈ T (11f)

for N2 > N1. Since A, B, P , Q, R, U , X and T
are time-invariant, V ?(ξ, [N1, N2]) only depends on
N2 −N1, i.e.,

V ?(ξ, [N1, N2]) = V ?(ξ, [l, N2 −N1 + l]) (12)

for all l ∈ N ∪ {0} and all ξ ∈ FN2−N1 . Now
consider the case N1 = 0, N2 = N + 1, i.e.,
V ?(ξ, [0, N+1]). Expressing V ?(ξ, [0, N+1]) in terms
of V ?(ζ, [1, N + 1]) in a fashion similar to backward
dynamic programming yields V ?(ξ, [0, N + 1]) =

min
x(1),u(0)

(
`(x(0), u(0)) + V ?(ζ, [1, N + 1])

)
(13a)

subject to

x(1) = Ax(0) +Bu(0), x(0) = ξ, ζ = x(1)

x(0) ∈ X , u(0) ∈ U
(13b)

Since V ?(ζ, [1, N + 1]) = V ?(ζ, [0, N ]) according
to (12), and with the notation (6) for V ?(ζ, [0, N+1]),
(13a) can be replaced by

min
x(1),u(0)

(
`(x(0), u(0))+

min
u

(1

2
ζ>Y ζ +

1

2
u>Hu+ ζ>Fu s.t. Gu ≤ w + Eζ

))
,

(14)

where u = (u>(1), . . . , u>(N))> here. Just as there
exist matrices H, Y etc. that transform V ?(ζ, [0, N+
1]) into (6), there exist Y , H, G, E and w such that

`(x(0), u(0)) =
1

2
ξ>Y ξ +

1

2
u(0)>Hu(0) (15)

and (13b) can be stated as

Gu(0) ≤ w + Eξ

ζ = Aξ +Bu(0)
(16)

where (13b) comprises qX + qU constraints if qX and
qU halfspaces define X and U , respectively. Com-
bining (13)–(16) yields V ?(ξ, [0, N + 1]) =

min
ζ,u(0),u

(
1

2
ξ>Y ξ +

1

2
u(0)>Hu(0)

+
1

2
ζ>Y ζ +

1

2
u>Hu+ ζ>Fu

) (17a)

subject to

Gu(0) ≤ w + Eξ (17b)

ζ = Aξ +Bu(0) (17c)

Gu ≤ w + Eζ, (17d)

where the minimization with respect to u can be ap-
plied to all terms of the cost function without restric-
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tion. The KKT conditions for (17) read

 Y F
H

F> H

 ζ
u(0)
u

+

 −E> I
G> −B>

G>

λσ
τ

 = 0

(18a)[
G

G

] [
u(0)
u

]
−
[
E

E

] [
ξ
ζ

]
−
[
w
w

]
≤ 0 (18b)

ζ −Aξ −Bu(0) = 0 (18c)

λi (Gu(0)− w − Eξ)i = 0 for all i (18d)

σj (Gu− w − Eζ)j = 0 for all j (18e)

λ ≥ 0 (18f)

σ ≥ 0, (18g)

where λ, τ and σ are the multipliers for the condi-
tions (17b), (17c) and (17d), respectively, I denotes
the unit matrix, and zero block matrices are omit-
ted. Note that the inequality constraints (18b) are
ordered as in (9). Now let αN+1 be an arbitrary
active set for (17) and let ξ ∈ FN+1 be an arbitrary
initial condition such that αN+1 is the active set. We
partition αN+1 according to

αN+1 = α−α, (19)

where α− corresponds to the qX + qU rows of G, E
and w in (18b) and α corresponds to the remaining
rows in (18b). Let ι− and ι be the corresponding
inactive sets. Using these active and inactive sets,
the optimality conditions (18) can equivalently be
stated with separated active and inactive constraints
as in (7). More precisely, there exist σ?, τ? and λ?

such that (18) holds for ξ, u(0)?, ζ?, u?, σ?, τ? and

λ? if and only if

Y ζ? + Fu? − E>σ? + τ? = 0 (20a)

Hu(0)? +G>α−λα− −B
>τ? = 0 (20b)

Hu? + F>ζ? +G>ασ
?
α = 0 (20c)

(Gu(0)? − w − Eξ)α− = 0 (20d)

(Gu? − w − Eζ)α = 0 (20e)

(Gu(0)? − w − Eξ)ι− ≤ 0 (20f)

(Gu? − w − Eξ?)ι ≤ 0 (20g)

ζ? = Aξ +Bu(0)? (20h)

λ?α− ≥ 0, λ?ι− = 0 (20i)

σ?α ≥ 0, σ?ι = 0 (20j)

Since (20c), (20e), (20g), (20j) are the optimality
conditions of (6), i.e., of V ?(ζ, [0, N ]), we have ζ =
x(1) ∈ FN and α is an active set of V ?(ζ, [0, N ]).
Since αN+1 was an arbitrary active set of (17) and
since α can be partitioned as in (19), claim (10) holds
with α = α−, α = αN .

A shorter proof of Proposition 1 can be stated
based on (11), (12) and by referring to the the princi-
ple of optimality in dynamic programming (see, e.g.,
[4, chapter 1.3]). In particular, the optimality con-
ditions (7) and (18) would not be required in this
case. We state the more detailed proof, because it
shows that constraint qualifications and weakly ac-
tive constraints play no role for Proposition 1, while
they often result in special cases elsewhere (see, e.g.,
[9, section 3.4.1], [17, section 5], [3, section 4.1.1]). A
case where the linear independence constraint quali-
fication ([?, Section 5.2.1], [3, section 4.1.1]) fails but
Proposition 1 still applies is given in Example 1, part
(ii).

It is easy to see that truncating an active set by
removing stages ”on the left” as in (10) results in
active sets that define the optimal solution to (1) on
a shrinking horizon:

Corollary 2. Consider (1) for horizon N and as-
sume the constraints to be ordered as in (9) without
restriction. Let αN be an arbitrary active set and
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partition αN according to

αN = αN,0︸︷︷︸
qX+qU

· · · αN,N−1︸ ︷︷ ︸
qX+qU

αN,N︸ ︷︷ ︸
qT

.

Let x(0) be an arbitrary initial condition that results
in the active set αN and let x?(k), k ≥ 0 introduced
in (4) refer to the optimal solution for x(0). Then,
for all l ∈ {0, . . . , N − 1}, the active set

αN−l = αN,l . . . αN,N

defines the optimal solution for (1) with horizon N−l
and initial condition x?(l).

Proof. It suffices to prove the claim for l = 1 and to
apply this case repeatedly. We showed in the proof of
Proposition 1 that αN is the active set for the optimal
successor state ζ = x?(1) and (1) with horizon N , if
αN+1 is the active set for x(0) and horizon N + 1.
With the substitutions N + 1→ N and N → N − 1,
the claim for l = 1 results.

Corollary 2 essentially extends remark (i) made in
the notation section from the optimal sequences of
inputs and states (4) to active sets. The correspond-
ing extension to polytopes appears in part (i) of Re-
mark 9.

Proposition 1 and Corollary 2 are illustrated with
Example 1. All active sets and their properties stated
in Example 1 can be checked with simple calcuations,
which are not stated here.

Example 1. Consider (1) for

A =

[
− 1

2
1
2

− 1
2 − 1

2

]
, B =

[
1
1

]
,

X = {x ∈ R2;−10 ≤ xi ≤ 10, i = 1, 2}, U = {u ∈
R;−1 ≤ u ≤ 1}, Q is the identity matrix, R = 0.1
and P and T are as in Section 1. Note that qX+qU =
6, and qT = 4 results for this example. Figure 2
shows the polytopes for N = 1 and N = 2, which
illustrate the following cases of Proposition 1:

(i) Active sets for horizon N may be extended to
exactly one, more than one, or no active set at all.

For example, the following active set for N = 1 is
extended to exactly one active set for N = 2:

000000.0001 (N = 1)
100000.000000.0001 (N = 2)

(green polytopes in Figure 2; dots are introduced every
qX+qU = 6 positions for convenience). The following
active set for N = 1 is extended to three active sets
for N = 2:

100000.0000 (N = 1)
000000.100000.0000 (N = 2)
100000.100000.0000 (N = 2)
010000.100000.0000 (N = 2)

(21)

(yellow polytopes). The active set

100000.000000.0001 (N = 2)

is not extended to any set for N = 3 (green polytope
for N = 2 in Figure 2b; N = 3 not shown).

(ii) Active sets that respect the linear independence
constraint qualification (licq) for N + 1 may result
from extending an active set that does not (or vice
versa). For example, the following active sets appear
in the example

010000.0001 (N = 1)
000000.010000.0001 (N = 2)

and simple calculations show that the latter does and
the former does not respect licq (blue polytopes).

We state the active sets in set notation for com-
pleteness. They read {10}, {1, 16}, {1}, {7}, {1, 7},
{2, 7}, {1, 16}, {2, 10}, {8, 16} in the order they ap-
pear in above.

Proposition 1 and Corollary 2 do not require the
assumptions on P , K∞ and T stated in Section 1 to
hold and therefore apply to a larger problem class.
All statements in Section 2.2, in contrast, do require
the assumptions on P , K∞ and T stated in Section 1
to hold. Example 1 respects the assumptions on P ,
K∞ and T just so the same example can be used
throughout the paper.
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(b) N = 2

Figure 2: Partitions of the solutions to (1) for Exam-
ple 1.

2.2 Persistency of active sets, poly-
topes and optimal solutions

Whenever a polytope and the optimal solution on it
are defined by an active set for which all terminal con-
straints are inactive, this polytope and the optimal
solution do not change when the horizon is extended.
The following lemma and proposition state this more
precisely.

Lemma 3. Consider the optimal control problem (1)
and assume without restriction the forward constraint
order (9) is used. Let α̃ be an arbitrary index set with
length N(qX + qU ) and let l ≥ 0 be arbitrary. The
index set

α̃ 0 . . . 0︸ ︷︷ ︸
qT

. (22)

is an active set for horizon N if and only if the active
set

α̃ 0 · · · 0︸ ︷︷ ︸
qX+qU

· · · 0 · · · 0︸ ︷︷ ︸
qX+qU︸ ︷︷ ︸

l

0 . . . 0︸ ︷︷ ︸
qT

(23)

is an active set for horizon N + l.

Proof. It suffices to prove the claim for l = 1, since
the cases l > 1 follow by induction. To show an active
set (22) implies the existence of (23), let x(0) ∈ FN
be an arbitrary initial condition that results in (22).
Since (22) implies inactivity of the terminal con-
straints, we have

x?(N) ∈ int T . (24)

Consequently, (5) applies and the infinite-horizon
problem and the finite-horizon problem for horizons
N , N + 1 have the same optimal solution, which we
denote

u?(k), x?(k), k ≥ 0. (25)

It remains to prove the active set for x(0) and horizon
N + 1 has the form (23) for this solution, which can
be done by showing x?(N) ∈ intX , u?(N) ∈ intU
and x?(N + 1) ∈ int T . It is easy to show that (24)
implies

x?(N + l) ∈ int T for all l ≥ 0 (26)
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due to the positive invariance of T (see Lemma 10 in
the appendix). This in particular implies

x?(N + 1) ∈ int T . (27)

Since x?(N) ∈ int T , and since int T ⊆ intX follows
from T ⊆ X , we also have

x?(N) ∈ intX . (28)

The proof for u?(N) ∈ intU is somewhat technical. It
is easy to show that there exists a λ ∈ [0, 1) such that
x?(N) ∈ λT := {λξ|ξ ∈ T } and λT ⊂ int T , because
x?(N) ∈ int T , 0 ∈ int T [16] and T is convex [10].
Now x?(N) ∈ λT implies there exists a ξ ∈ T such
that x?(N) = λξ. By definition of T , ξ ∈ T implies
ξ ∈ XU and by definition of XU we have K∞ξ ∈ U .
From

1

λ
K∞x = K∞

1

λ
λξ = K∞ξ ∈ U

we infer K∞x
?(N) ∈ λU . Together with 0 ∈ intU

and the convexity of U this implies K∞x
?(N) ∈ intU .

Therefore

u?(N) = K∞x
?(N) ∈ intU . (29)

To show an active set (23) implies the existence
of (22), let l = 1, let x(0) be an arbitrary initial
condition that results in (23), and let (25) denote the
optimal solution for horizon N + 1, which now needs
to be shown to be optimal for N . The trailing zeros
in (23) imply the constraints in stages N and N + 1
are inactive, i.e.,

x?(N) ∈ intX , u?(N) ∈ intU ,
x?(N + 1) ∈ int T ⊆ intX .

(30)

By the same arguments as for (26) we have

x?(N + l) ∈ int T ⊆ intX for all l ≥ 0. (31)

Together (30) and (31) imply that (1) for horizon
N = 1 and initial condition x?(N) has the same
solution as the unconstrained infinite-horizon prob-
lem. Consequently, x?(N) ∈ T , since T is the largest
set of initial conditions such that (1) and the uncon-
strained problem result in the same solution. Since
x?(N) ∈ T , the input sequence and trajectory (25)

with initial condition x(0) are feasible for horizon N
and u?(N) = K∞x

?(N).

We need to show x?(N) ∈ int T to complete the
proof, which can be done by showing the existence of
an open ball centered at x?(N) in T . This requires
three preparations. First note that x?(N+1) ∈ int T
implies there exists an ε1 > 0 such that

Bε1(x?(N + 1)) ⊂ T . (32)

By the definition of T in (2) we have

(A+BK∞)kξ ∈ XU ∀ k ≥ 0, ξ ∈ Bε1(x?(N + 1))
(33)

Secondly, u?(N) ∈ intU and x?(N) ∈ intX imply
there exist ε2 > 0, ε3 > 0 such that Bε2(u?(N)) ⊂ U
and Bε3(x?(N)) ⊂ X . Moreover, ε3 can be cho-
sen sufficiently small to ensure K∞Bε3(x?(N)) ⊂
Bε2(u?(N)) ⊂ U , because x → K∞x is linear. To-
gether Bε3(x?(N)) ⊂ X and K∞Bε3(u?(N)) ⊂ U
yield

Bε3(x?(N)) ⊂ XU (34)

by definition of XU (see (2)). As a third preparation,
note that ε3 can be chosen sufficiently small to ensure

(A+BK∞)Bε3(x?(N)) ⊂ Bε1(x?(N + 1)), (35)

because x → (A + BK∞)x is linear. By collecting
intermediate results we find, for all ξ ∈ Bε3(x?(N)),

(A+BK∞)0ξ = ξ ∈ XU (acc. to (34))

(A+BK∞)1ξ ∈ XU (acc. to (35), (33))

(A+BK∞)l(A+BK∞)ξ ∈ XU ∀l ≥ 0 (acc. to (35), (33))

Together these three statements imply Bε3(x?(N)) ⊂
T by definition of T in (2), or equivalently, x?(N) ∈
int T . This proves x(0) results in the active set (22)
for horizon N . Furthermore, x?(N) ∈ int T implies
that (5) applies. Consequently, (25) is also the opti-
mal solution for horizon N .

It remains to show that the active sets (22)
and (23) define the same polytope and the same opti-
mal solution on it. We call polytopes with this prop-
erty persistent.
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Definition 4. A Polytope P and the optimal solution
on it are called persistent from horizon N on, if the
polytope exists for all horizons N + l, l ≥ 0 and the
optimal solution for the optimal control problem (1)
remains the same for all initial conditions x(0) ∈ P
and all l ≥ 0.

We omit ”from horizon N on” when N is obvious.
Note that N is not necessarily the smallest possible
one in the definition. The term ”persistent active
set” refers to any active set that defines a persistent
polytope.

Proposition 5. Assume the conditions stated in
Lemma 3 to hold. Then the polytope P and solution
on it defined by the active set (22) are persistent from
horizon N on. Furthermore, for any horizon N + l,
l ≥ 0 and the optimal solution on it are defined by
the active set (23).

Proof. Let l ≥ 0 be arbitrary and let PN and PN+l

refer to the polytopes defined by the active sets (22)
and (23), respectively. Any x(0) with active set (22)
for horizon N results in the active set (23) for hori-
zon N + l according to the first part of the proof of
Lemma 3. This implies PN ⊆ PN+l. Analogously,
the second part of the proof implies PN+l ⊆ PN .
The proof of Lemma 3 also established the equality
of the input sequences and optimal trajectories (25)
for all x(0) ∈ PN = PN+l.

The following example illustrates Lemma 3 and
Proposition 5.

Example 2. Consider the same problem as in Ex-
ample 1. The white polytopes in Figure 3 are defined
by the active sets

N = 1 N = 2
000000.0000 000000.000000.0000
100000.0000 100000.000000.0000
010000.0000 010000.000000.0000

which are persistent polytopes from N = 1 and N = 2
on, respectively, according to Proposition 5.

The two red polytopes for N = 1 shown in Figure 3
result for the active sets

000000.0001
000000.0010

-10 -8 -6 -4 -2 0 2 4 6 8 10
x1

-10

-8

-6
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-2

0

2

4

6

8

10

y
1

Figure 3: Illustrations for Example 2. The one-
dimensional yellow polytope (width increased for bet-
ter visibility only) marks x?(1) for N = 1 and all x(0)
in the upper red polytope.

which do not respect the conditions of Proposition 1.
Figure 3 shows that they are not persistent but disap-
pear for N = 2.

The light grey polytopes in Figure 3 are defined by
the active sets

000000.100000.0000
100000.100000.0000
010000.100000.0000
000000.010000.0000
100000.010000.0000
010000.010000.0000

(36)

for N = 2. These polytopes are persistent from N = 2
on according to Proposition 5.

The dark grey polytopes in Figure 3 are defined by
the active sets

100000.000000.0001
010000.000000.0010
000000.010000.0010
000000.100000.0001

(37)

for N = 2. An analysis of the example for N = 3
(not detailed here) shows that the polytopes defined
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by (36) and (37) are indeed persistent from N = 2
on and not persistent, respectively.

Finally, Figure 3 shows the solution to (1) for a
sample initial condition for N = 1 and N = 2.
The two trajectories illustrate that optimal trajec-
tories change if the horizon is increased for initial
conditions from non-persistent polytopes (cp. remark
(iii) and the subsequent discussion in the notation
section). Moreover, x?(N) ∈ ∂T results for N = 1,
and since the trajectories for N = 1 and N = 2 dif-
fer, this shows x?(N) ∈ T is not sufficient in (5) and
Lemma 3.

Lemma 3 and Proposition 5 essentially result from
inserting zeroes, i.e., stages with inactive constraints,
”on the right” of an active set of the form (22). Just
as in Corollary 2, we can also remove stages ”on the
left” to obtain new active sets. In general this results
in active sets for a shrinking horizon as in Corollary 2.
For persistent active sets (22), new active sets for the
same horizon result, and they are persistent them-
selves:

Corollary 6. Assume P is a polytope that is persis-
tent from horizon N on with an active set αN of the
form (22). Let αN,i be tuples of length qX + qU such
that

αN = αN,0 · · ·αN,N−1 0 · · · 0︸ ︷︷ ︸
qT

. (38)

Then the polytope defined by

αN−l = αN,l · · ·αN,N−1 0 · · · 0︸ ︷︷ ︸
qT

(39)

is persistent from N− l on for any l ∈ {0, . . . , N−1}.
Moreover, for any such l, the polytope defined by (39)
for horizon N − l is defined by

α̃N = αN,l · · ·αN,N−1 0 . . . 0︸ ︷︷ ︸
l·(qX+qU )

0 · · · 0︸ ︷︷ ︸
qT

(40)

for horizon N and persistent from horizon N on.

Proof. Let x(0) ∈ P be arbitrary and let u?(k),
x?(k), k ≥ 0 be as in (4). According to Corollary 2,
the active set (39) defines the optimal solution and

polytope for x?(l). According to Proposition 5, the
active set (39) defines a polytope that is persistent
from horizon N − l on, therefore it is persistent from
N on. The claim about (40) follows by applying
Lemma 3 to (39).

It is evident from Figure 2 that the set of persis-
tent polytopes (white and yellow polytopes in the
top figure) is in general not convex. The following
two corollaries summarize some other properties of
the set of persistent polytopes with active sets (22).

Corollary 7. Let PN refer to the union of all persis-
tent polytopes with active sets of the form (22). PN is
positive invariant under the open-loop optimally con-
trolled system, i.e., x(k + 1) = Ax(k) + Bu?(k) with
u?(k) as in (4). Furthermore, PN is in general not
convex, but its convex hull is a subset of FN .

Proof. Let x(0) ∈ PN be arbitrary and let αN be the
active set for x(0). Since αN has the form (22), it can
be partitioned as in (38). According to Corollary 2
the active set (39) defines the optimal solution and
polytope for x?(l), where x?(l) is as in (4). Since
αN−l defines a polytope that is persistent from N on
according to Corollary 6 we have x?(l) ∈ PN for all
l ≥ 0, which proves the first claim. The second claim
holds, because FN is convex [3] and for every convex
set S and every subset S′ ⊆ S thereof, the convex
hull of S′ is contained in S.

All statements made so far apply to the open-loop
optimal input sequences and trajectories. Corollary 8
also makes a statement about their use on a receding
horizon, i.e., about model predictive control (MPC).
Let x → uMPC(x), uMPC : FN → Rm refer to the
feedback law that results from applying the first m
elements of u?N : FN → RmN . We stress (41) does
not hold on FN in general (see remark (iii) in the no-
tation section), but multiple problems (1) have to be
solved to determine the MPC input signal sequence
in general.

Corollary 8. Let PN be defined as in Corollary 7.
For every x(0) ∈ PN , the open-loop optimal input
sequence that solves (1) is equal to the one that results
in MPC, i.e.,

u?(k) = uMPC(x?(k)), k ≥ 0, (41)
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for u?(k) and x?(k) as introduced in (4). Further-
more, PN is positive invariant under MPC.

Proof. Let x(0) ∈ PN be arbitrary, let αN be the ac-
tive set for x(0) and let u?(k), x?(k), k ≥ 0 be as
in (4). By the same arguments as in the proof of
Corollary 7, αN has the form (38), αN−l as in (39)
defines the optimal solution and polytope for x?(l)
for all l ∈ {0, . . . , N}, and this polytope is per-
sistent from N on. This implies u?(l) is the first
optimal input signal for (1) with horizon N and
initial x?(l), which yields uMPC(l) = u?(l) for all
l ∈ {0, . . . , N}. The claim also holds for all l > N ,
because uMPC(x) = K∞x for all x ∈ T and all
open-loop optimal input signals are equal to the un-
constrained solution on T , i.e., u?(k) = K∞x

?(k),
x?(k + 1) = (A + BK∞)x?(k) for all k ≥ 0 and all
x(0) ∈ T . Combining (41) and Corollary 7 obviously
yields the positive invariance of PN under MPC.

The statements made so far focused on active sets.
Some implied statements on the polytopes are col-
lected in Remark 9 below. Two types of relations
are interesting in particular: Active sets for different
horizons that define geometrically equal polytopes
(the persistent polytopes, see part (ii) of Remark 9).
Secondly, we are interested in sequences of active sets
and polytopes that result for the optimally steered
system (part (iii) of Remark 9). The latter essen-
tially extend statements on state trajectories to tra-
jectories of polytopes. For clarity, let x?(k;x(0), N)
refer to x?(k) for initial condition x(0) and horizon
N in Remark 9, where x?(k) is as defined in (4).

Remark 9. (i) Proposition 1 and Corollary 2 relate
active sets for shrinking horizons N , N − 1, . . . , that
result from removing stages at the beginning of the
horizon. The corresponding polytopes are in general
not related geometrically, but dynamically. Specifi-
cally, applying the optimal input signals maps P(αN )
into P(αN−1), P(αN−1) into P(αN−2) etc., i.e.,

{x?(l;x(0), N)|x(0) ∈ P(αN−l+1)} ⊆ P(αN−l) (42)

for all l ∈ {1, . . . , N − 1}. The resulting ac-
tive sets αN−1, αN−2, . . . and polytopes P(αN−1),
P(αN−2), . . . are not defined for horizon N , but for
the shrinking horizon.

(ii) Lemma 3 and Proposition 5 discuss a subset of
active sets for growing horizons N , N + 1, . . . that
result from inserting inactive stages from the end of
the horizon. The resulting active sets all define the
geometrically same polytope. Specifically,

P(αN ) = P(αN+l)

for all l ≥ 0, where αN and αN+1 refer to the sets
in (22) and (23), respectively.

(iii) Corollary 6 combines the operations from (i)
and (ii). The resulting sequence of polytopes is the
optimal sequence from (i) that obeys the inclusion
property (42). In contrast to (i), however, the new
active sets ãN (see (40)) are persistent and thus de-
fined for horizon N under the conditions of Corol-
lary 6.

3 Some computational aspects

A simple criterion for the persistency of polytopes
is of obvious interest, since it enables us to detect
that the infinite-horizon solution has been found for
a polytope by solving the simpler finite-horizon prob-
lem. If all polytopes are persistent for some N ,
PN = FN and the solution to the infinite-horizon
problem has been found, since FN = FN+l for all
l ≥ 0. A finite N such that PN = FN does not al-
ways exist (see, e.g., [14]), however. In this case PN
characterizes the largest region for which the solution
to the infinite-horizon problem has been found. PN
is defined by the active sets (22) in a lean fashion. By
exploiting its positive invariance, the number of ac-
tive sets required to characterize PN can be reduced
further (see (44) below).

The forward constraint order (9) arises in back-
ward dynamic programming and therefore is an obvi-
ous choice. The backward order, i.e., the order that
results from reversing the sequence of lines in (9),
may be more useful in computations. For example,
the bit tuples (21) in Example 1 correspond to the
index sets {1}, {7}, {1, 7} and {2, 7} according to
rule (8). While the relation of the active sets is im-
mediately evident from the bit tuples (21), this is not
the case for the set notation, since the introduction
of the additional stage for N = 2 shifts all indices
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by qX + qU = 6. If the backward constraint order is
used, the bit tuples and index sets that correspond
to (21) read

0000.100000 {5}
0000.100000.000000 {5}
0000.100000.100000 {5, 11}
0000.100000.010000 {5, 12}

(43)

and their relation is obvious in both notations. The
statements of the paper carry over to the backward
order in an obvious fashion. For example, the qT
trailing zeros in all statements in Section 2.2 and (21)
become qT leading zeros in the corresponding state-
ments and (43) for the backward order. Note that
the order of constraints within each stage must be
fixed but is irrelevant.

Corollary 6 suggests to determine and store the
outmost persistent polytopes and to determine the
remaining persistent polytopes with simple bit shift-
ing operations. More precisely, assume all active sets
of the form

αN = αN,0 · · ·αN,N−1︸ ︷︷ ︸
6=0···0

0 · · · 0︸ ︷︷ ︸
qT

. (44)

where the αN,i, i = 0, . . . , N − 2 are arbitrary tuples
(possibly 0 · · · 0) of length qX + qU . According to
Corollary 6 the active sets

αN,l · · ·αN,N−1 0 . . . 0︸ ︷︷ ︸
l·(qX+qU )

0 · · · 0︸ ︷︷ ︸
qT

, l = 1, . . . , N − 1

(45)

can be generated for each (44) and define persistent
polytopes. They define a trajectory of polytopes for
the initial polytope (44) according to part (iii) of
Remark 9 that leads to T . Combining T and all
polytopes defined by (44) and (45) yields the subset
of persistent polytopes PN ⊆ FN . Since the active
sets (45) are constructed by simple bit shifting oper-
ations, this is a computationally attractive approach
to constructing PN from the sets (44). The active
sets (44) can be determined by solving linear pro-
grams [9].

We claim without giving details that the proposed
approach results in a particular depth-first analysis

of the active set tree first proposed in [9]. It is an
obvious question whether the computational effort
of the method proposed in [9] and refined versions
thereof [7, 11, ?] can be reduced with the results pre-
sented here. The active set tree grows exponentially
in q, thus it grows exponentially in N , m and n in
typical cases (for example, q = 2(N + 1)n+ 2Nm for
bound constraints), and consequently any method for
discarding candidate active sets is of great interest.
Such an analysis would also have to include a com-
parison to other well established methods and im-
plementations [?, ?] for solving (1). The focus of the
present paper is not on computational methods, how-
ever, and a comparison is beyond the present paper.

4 Conclusions and future work

We uncovered a certain structure of the set of active
sets that define the solution to the constrained lin-
ear quadratic regulator. While the set of active sets
and the set of affine pieces and polytopes are equally
useful in that both define the solution of the same
optimal control problem, the structure of the former
revealed here is not immediately evident in the lat-
ter. We therefore claim the structure of the set of ac-
tive sets is interesting and important per se. This is
corroborated by the fact that very simple operations
(such as deleting bit tuples that represent a stage, or
inserting zeroes for another stage) suffice to generate
the active sets that define the persistent part of the
geometric solution, i.e., the persistent affine pieces
and polytopes. More practically, the structure of the
set of active sets is useful, for example, for an analysis
and a lean characterization of those parts of the so-
lution that are independent of the horizon N , which
after all is a nuisance parameter in optimal control
problem (where ”independence” is understood as in
Definition 4).

Future work will address the extension to nonlinear
optimal control problems and investigate the compu-
tational aspects summarized in Section 3.
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Appendix

Lemma 10 is used in the proof of Lemma 3 for S = T
and Ā = A+BK∞.

Lemma 10. Let S ⊂ Rn be a compact set. If S is
positive invariant for the n-dimensional system x(k+
1) = Āx(k), then the following statements hold:

1. For any λ ∈ (0, 1), the set λS = {λξ|ξ ∈ S} is
positive invariant.

2. The interior of S is positive invariant.

Proof. Let λ ∈ (0, 1) be arbitrary. Let ζ ∈ λS be
arbitrary, then there exists an ξ ∈ S such that ζ = λξ
by definition of λS. Since S is positive invariant,
ξ ∈ S implies Āξ ∈ S, which implies λĀξ ∈ λS.
Combining this with λĀξ = Āλξ = Āζ yields Āζ ∈
λS. Since λ ∈ (0, 1) and ζ ∈ λS were arbitrary, the
first claim holds. The second claim follows, since,
for any ξ ∈ intS there exists a λ ∈ (0, 1) such that
ξ ∈ λS and λS ⊂ intS.
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