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Abstract

This research considers the ranking and selection (R&S) problem of selecting the optimal subset from a finite set of alternative
designs. Given the total simulation budget constraint, we aim to maximize the probability of correctly selecting the top-m
designs. In order to improve the selection efficiency, we incorporate the information from across the domain into regression
metamodels. In this research, we assume that the mean performance of each design is approximately quadratic. To achieve
a better fit of this model, we divide the solution space into adjacent partitions such that the quadratic assumption can be
satisfied within each partition. Using the large deviation theory, we propose an approximately optimal simulation budget
allocation rule in the presence of partitioned domains. Numerical experiments demonstrate that our approach can enhance
the simulation efficiency significantly.
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1 Introduction

Discrete-event systems (DES) simulation has played an important role in analyzing modern complex systems and
evaluating decision problems, since these systems are usually too difficult to be described using analytical models.
DES simulation has been a common analysis method of choice and widely used in many practical applications,
such as the queueing systems, electric power grids, air and land traffic control systems, manufacturing plants and
supply chains (Xu et al., 2015, 2016; Gao and Chen, 2016). However, running the simulation model is usually time
consuming, and a large number of simulation replications are typically required to achieve an accurate estimate of a
design decision (Lee et al., 2010). In addition, it could be computationally quite expensive to select the best design(s)
when the number of alternatives is relatively large.

In this paper, we consider the problem of selecting the optimal subset of the top-m designs out of t alternatives,
where the performance of each design is estimated based on simulation. In order to improve the selection efficiency,
we aim to intelligently allocate the simulation replications to each design to maximize the probability of correctly
selecting all the top-m designs. This problem setting falls in the well-established statistics branch known as ranking
and selection (R&S) (Xu et al., 2015).

In the literature, several types of efficient R&S procedures have been developed. The indifference-zone (IZ) approach
allocates the simulation budget to provide a guaranteed lower bound for the probability of correct selection (PCS)
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(Kim and Nelson, 2001). Chen et al. (2000) proposed an optimal computing budget allocation (OCBA) approach for
R&S problems. The OCBA approach allocates the simulation replications sequentially in order to maximize PCS
under a simulation budget constraint. He et al. (2007), Gao and Shi (2015) and Gao et al. (2017a) further developed
the OCBA method with the expected opportunity cost (EOC) measure, which focuses more on the consequence of
a wrong selection compared to PCS. Brantley et al. (2013) proposed another approach called optimal simulation
design (OSD) to select the best design with regression metamodels. It assumes that all designs fit a single quadratic
line and the variance of each design is identically distributed. The OSD approach was further extended in Brantley
et al. (2014), Xiao et al. (2015) and Gao et al. (2018) to consider more general problems by dividing the solution
space into adjacent partitions. Although these studies are also based on partitioning or metamodeling, they do not
aim to select the top m designs, and are therefore different in objectives from this research. Other variants of OCBA
include selecting the best design considering resource sharing and allocation (Peng et al., 2013) and input uncertainty
(Gao et al., 2017b).

Most of the existing R&S procedures focus on identifying the best design and return a single choice as the estimated
optimum. However, decision makers may prefer to have several good alternatives instead of one and make the final
selection by considering some qualitative criteria, such as political feasibility and environmental consideration, which
might be neglected by computer models (Gao and Chen, 2016; Zhang et al., 2016). The selection procedure providing
the top-m designs can help the decision makers make their final decision in a more flexible way.

The literature on the optimal subset selection is sparse. Chen et al. (2008) and Zhang et al. (2016) considered the
optimal subset selection problem using the OCBA framework, which maximizes PCS under a simulation budget
constraint. In Gao and Chen (2015), an optimal subset selection procedure was proposed to minimize the measure
of EOC. The optimal subset selection problem was further extended in Gao and Chen (2016) for general underlying
distributions using the large deviations theory.

The aforementioned R&S procedures could smartly allocate the computing budget given the simulation results. They
estimate the performance of each design only by considering the sample information of the considered design itself.
However, the designs nearby could also provide useful information since neighboring designs usually have similar
performance. Based on this idea, we aim to improve the selection efficiency by incorporating the information from
across the domain into some response surfaces. Unlike traditional R&S methods, the regression based approaches
require simulation experiments on only a subset of all the designs under consideration. The performances of the
other designs can be inferred based on the sample information of the simulated designs. This provides us an effective
way to further improve the efficiency for solving the subset selection problem, which is the motivation of this paper.

In this research, we assume the underlying function is quadratic or approximately quadratic. This assumption could
help utilize the structure information of the design space and led to significant improvement of the computational
efficiency. It is commonly used in the literature, such as Brantley et al. (2013, 2014); Xiao et al. (2015); McConnell and
Servaes (1990). Based on this assumption we built a quadratic regression metamodel to incorporate the information
from across the domain. The first contribution of this work is that we propose an asymptotically optimal allocation
rule that determines which designs need to be simulated and the number of simulation budget allocated to them,
such that the PCS of the optimal subset could be maximized. We call this procedure the optimal computing budget
allocation for selecting the top-m designs with regression (OCBA-mr). In order to further extend the OCBA-mr
procedure to more general cases where the underlying function is partially quadratic or non-quadratic, we divide
the solution space into adjacent partitions and build a quadratic regression metamodel within each partition. The
underlying function in each partition could be well approximated by a quadratic function if the solution space is
properly partitioned or each partition is small enough. According to the results in Brantley et al. (2014); Xiao
et al. (2015); Gao et al. (2018), the use of partitioned domains along with regression metamodels could significantly
improve the simulation efficiency. That means interpolating the solution space can be an effective way for us to
have further improvement. For different problems, the solution space could be divided into discrete partitions using
different criteria, such as the size of corporations, the type of industries and the temperature of chemical process
(Xiao et al., 2015). Based on the idea mentioned above, we develop an asymptotically optimal computing budget
allocation procedure for selecting the top-m designs with regression in partitioned domains (OCBA-mrp), which is
an extension of the OCBA-mr procedure for more general cases. In order to maximize the PCS of the optimal subset,
the OCBA-mrp procedure not only determines the optimal simulation budget allocation within each partition but
also determines the optimal budget allocation between partitions.

The rest of the paper is organized as follows. In Section 2, we formulate the optimal subset selection problem
with regression metamodel and derive an asymptotically optimal simulation budget allocation rule, called OCBA-
mr. Section 3 extends the OCBA-mr method for more general cases with partitioned domains and derives another
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asymptotically optimal simulation budget allocation rule, called OCBA-mrp. The performance of the proposed
methods is illustrated with numerical examples in Section 4. Section 5 concludes the paper.

2 Optimal Subset Selection Strategy

In this section, we provide an optimal computing budget allocation rule for the subset selection problem based on
the regression metamodel.

2.1 Problem formulation

Without loss of generality, the best design is defined as the design with the smallest mean performance. We introduce
the following notations:

t: total number of designs;
xi: location of design i;
m: design with the m-th smallest mean value;
f(xi): mean performance value for design i;
Y (xi): simulation output for design i;
β: vector of (β0, β1, β2) , representing the coefficients of the regression model;

f̂(xi): estimate of f(xi) based on the regression model;
So: set of the true top-m designs;
Sn: set of designs not in So (complement of So);
n: total number of simulation replications;
ni: number of simulation replications allocated to design i;
α: vector of (α1, αs, αk), where αr is the proportion of the total simulation budget n allocated to design r,
i.e., αr=nr/n, r=1, s, t.

In the last bulleted item, r takes values only at 1, s and t, where designs 1 and t are the first and last designs in
the solution space, and design s is an intermediate design determined by (5) (the rationale of it will be explained
in more detail in Theorem 2). The problem we considered in this paper is to select the top-m designs out of the t
alternatives by allocating simulation replications to these three designs. The optimal set is

So=

{
i : max

i∈So

f(xi)<min
j∈Sn

f(xj), i, j=1, ..., t and |So|=m

}
,

where |S| is the size of subset S.

We study the problem where the expected performance value across the solution space is quadratic or approximately
quadratic in nature. Then, the mean performance of design i can be written as

f(xi)=β0 + β1xi + β2x
2
i , i = 1, ..., t.

The coefficients β=(β0, β1, β2) are unknown beforehand, but can be estimated via simulation samples. Assume that
the noises (ε) of the simulation experiments of design i follow normal distribution N(0, σ2). For each design, the noise
is independent from replication to replication. The simulation output is Y (xi) = f(xi)+ε(xi) with ε(xi) ∼ N(0, σ2).

Given a total of n samples, we define Y as the vector of the n simulation samples Y (xi) and X be an n × 3
matrix with each row (1, xi, x

2
i ) corresponding to each entry Y (xi) of Y . We estimate the coefficients β using

the ordinary least squares (OLS) method (Hayashi, 2000) and denote the estimates as β̂ = (β̂0, β̂1, β̂2). Then, we

have β̂ = (XTX)−1XTY and Cov[β̂] = σ2(XTX)−1, where T denotes transposition and XTX is known as the
information matrix (Kiefer, 1959). The estimate of f(xi) can be written as

f̂(xi) = β̂0 + β̂1xi + β̂2x
2
i , i = 1, ..., t. (1)
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We can use the equation (1) which incorporates the sample information of the simulated designs to estimate the

expected performance for each design across the solution space. As f̂(xi) is a linear combination of β̂, we have

V ar[f̂(xi)]=σ2XT
i (XTX)−1Xi, where XT

i = (1, xi, x
2
i ).

Due to the uncertainty of the estimate of the underlying function, a correct selection of the optimal subset So may
not always occur. Therefore, we introduce a measure, the probability of correct selection (PCS), to formulate the

R&S problem considered in this paper. The PCS is given by PCS = P

{⋂
i∈So

⋂
j∈Sn

f̂(xi) ≤ f̂(xj)

}
.

Given a fixed simulation budget, the optimization problem can be written as follows:

max
ni

PCS = P

{ ⋂
i∈So

⋂
j∈Sn

f̂(xi) ≤ f̂(xj)

}

s.t.

t∑
i=1

ni = n.

(2)

In this section, we aim to solve problem (2) where the mean performance of each design is estimated using the
regression metamodel. Due to the uncertainty in the simulation experiments, multiple simulation replications are

needed to generate the estimates of the underlying function f̂(xi) accurately. The variance of f̂(xi) is a function of
the information matrix (XTX) and can be reduced if additional simulation replications are conducted (Xiao et al.,

2015). We are interested in how to intelligently allocate the simulation budget to proper designs such that f̂(xi) can
be better estimated using regression metamodel, and the PCS in problem (2) can be maximized.

2.2 Optimization model under large deviations framework

A major difficulty in solving problem (2) is that the objective function PCS does not have a closed-form expression.
We seek to solve this optimization problem under an asymptotic framework in which the PCS is maximized or the
probability of false selection (PFS = 1− PCS) is minimized as n goes to infinity.

The PCS used in this paper is defined based on the quadratic regression model (1), which is constructed using the
simulation information of only a fraction of the t designs. We call the designs receiving simulation replications the
support designs. In order to construct the quadratic regression model, we need at least three support designs to
obtain all of the information in XTX (Kiefer, 1959). For simplicity, in this research we let the number of support
designs be three, two of which are at the extreme locations, i.e., x1 and xt (for this setting, see, e.g., Brantley et al.
(2013, 2014); Xiao et al. (2015); Kiefer (1959)). The case with more than three designs can be similarly analyzed.

Lemma 1: Let d̂i,j = f̂(xi) − f̂(xj), i, j = 1, 2, ..., t, i 6= j. d̂i,j follows normal distribution N
(
f(xi) − f(xj), ςij

)
,

where

ςij = σ2(0, xi − xj , x2
i − x2

j )(X
TX)−1


0

xi − xj
x2
i − x2

j


=
σ2

n

(ρ2
ij,1

α1
+
ρ2
ij,s

αs
+
ρ2
ij,t

αt

)
,

and 
ρij,1 =

(xs−xi)(xt−xi)−(xs−xj)(xt−xj)
(x1−xs)(x1−xt)

,

ρij,s =
(x1−xi)(xt−xi)−(x1−xj)(xt−xj)

(xs−x1)(xs−xt)
,

ρij,t =
(x1−xi)(xs−xi)−(x1−xj)(xs−xj)

(xt−x1)(xt−xs) .
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The proof is similar to that is given in Eq.(22) of Brantley et al. (2013) (becomes the same when m = 1), and hence
is omitted for brevity.

For any i, j = 1, 2, ..., t, i 6= j, d̂i,j is a normally distributed random variable. We can use the large deviations theory
to derive the convergence rate function of the false selection probability.

Lemma 2: The convergence rate function of incorrect comparison probability for each design is:

− lim
n→∞

1

n
logP{f̂(xi) > f̂(xm)}, i ∈ So, i 6= m

− lim
n→∞

1

n
logP{f̂(xi) < f̂(xm)}, i ∈ Sn


= Rm,i(α) =

(f(xm)− f(xi))
2/2

σ2
(
ρ2
mi,1

α1
+

ρ2
mi,s

αs
+

ρ2
mi,t

αt

) ,
Based on the results in Lemma 2, we can get an explicit expression of the convergence rate function of PFS.

Lemma 3: The convergence rate function of PFS is:

− lim
n→∞

1

n
logPFS = min

{
min
i∈So
i6=m

Rm,i(α), min
j∈Sn

Rm,j(α)

}
.

The main assertion of Lemma 3 is that the overall convergence rate of PFS is determined by the minimum con-
vergence rate of the incorrect comparison for each design. Minimizing the PFS is asymptotically equivalent to
maximizing the rate at which PFS goes to zero as a function of α, i.e., maximizing − lim

n→∞
1
n logPFS. Based on

Lemma 3, the asymptotical version of (2) becomes

max min

{
min

i∈So,i6=m
Rm,i(α), min

j∈Sn

Rm,j(α)

}
s.t. α1 + αs + αt = 1

α1, αs, αt ≥ 0.

(3)

2.3 Asymptotically optimal solution

In this subsection, we seek to derive the optimality conditions for (3). Since the overall convergence rate of PFS is
determined by the design with the minimum convergence rate. A false selection is most likely to happen at this key
design. Therefore, it is enough for us to investigate the convergence rate of the key design across the solution space.
We define i∗ as the key design. That is

i∗ = arg min
i=1,...,t

{
min

i∈So,i6=m
Rm,i(α), min

i∈Sn

Rm,i(α)

}
.

Theorem 1 The optimization problem (2) can be asymptotically optimized with the following allocation rule:

α∗r =

{
|ρmi∗,r|

|ρmi∗,1|+|ρmi∗,s|+|ρmi∗,t|
, r = 1, s, t,

0, otherwise.
(4)

The ρmi∗,r is also known as the Lagrange interpolating polynomial coefficient (De la Garza et al., 1954; Burden

and Faires, 2001). It represents the relative importance of each support design for estimating d̂mi = f̂(xm)− f̂(xi).
Theorem 1 indicates that the support design r will receive more simulation budget if it has larger ρmi∗,r.

Given the optimal allocation rule (Theorem 1), we next determine the optimal location for the support design s.
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Theorem 2 The rate function of PFS with allocation rule satisfying (4) can be maximized if the support design s
satisfies the following equations.

The support design

xs=


xi∗+xm−x1,

3x1+xt

4 ≤ xi∗+xm

2 < x1+xt

2 ,

xi∗+xm−xt, x1+xt

2 < xi∗+xm

2 ≤ x1+3xt

4 ,

(x1+xt)/2. otherwise.

(5)

When the xs derived from (5) does not correspond to any design available, we round it to the nearest one. The
expression of Theorem 2 is similar to the results in Brantley et al. (2013). The differences are the selection of the
key design x∗i . We define x∗i as the design with the minimum convergence rate of PFS, where a false selection of the
optimal subset is most likely to happen.

3 Optimal Subset Selection Strategy for Partitioned Domains

The regression based method mentioned above can greatly improve the subset selection efficiency compared to the
traditional methods. However, it is constrained with the typical assumptions such as the assumption of quadratic
underlying function for the means. It is possible that the underlying function is neither quadratic nor approximately
quadratic, so that we will fail to find the top-m designs. In order to extend our method to more general cases, we
divide the solution space into adjacent partitions. The quadratic pattern can be expected when the solution space
is properly partitioned or each partition is small enough.

3.1 Problem formulation

We first add the following notations for partitioned domains:

l: number of partitions of the entire domain;
kh: number of designs in partition h, h = 1, 2, ..., l;
ih: ith design in partition h, i = 1, 2, ..., kh (when i = kh, we denote design khh as design kh for notational
simplicity);
xih : location of design ih;
b: the partition containing the design with the m-th smallest mean value;
mb: design with the m-th smallest mean value;
βh: vector of (βh0, βh1, βh2) , representing the coefficients of the regression model in partition h;
nh•: number of simulation replications allocated to partition h;
nih : number of simulation replications allocated to design ih;
θh: the proportion of simulation budget allocated to partition h, i.e., θh = nh•/n;
αh: vector of (α1h

, αsh , αkh), where αrh is the proportion of the simulation budget nh• allocated to design rh,
i.e., αrh=nrh/nh•, rh=1h, sh, kh.

The notations f(xih), Y (xih) and f̂(xih) defined for partitioned domains are similar to those in Section 2, except
the design i is replaced by ih. The entire domain is divided into l adjacent partitions. Each partition contains kh

designs, i.e., there are
∑l
h=1 k

h = t designs in total.

We assume there exists ε ∈ R such that there are exactly m designs from the total t designs with mean performances
less than ε and the rest t−m designs with mean performances greater than ε. It ensures that the optimal subset is
well defined and can be distinguished. We define the optimal subset So as

So =

{
ih : max

ih∈So

f(xih) < min
jg∈Sn

f(xjg ), ih = 1h, ..., kh,

jg = 1g, ..., kg h, g = 1, ..., l and |So| = m

}
.
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In this section, we assume that the expected performance value in each partition is quadratic or approximately
quadratic when the solution space is properly partitioned and the mean performance within a partition is continuous
and smooth. For this problem setting the PCS is defined as

PCS = P

{ ⋂
ih∈So

⋂
jg∈Sn

f̂(xih) ≤ f̂(xjg )

}
.

Given a fixed simulation budget, the optimization problem can be written as follows:

max PCS

s.t.

l∑
h=1

kh∑
ih=1h

nih = n.
(6)

In this section, we aim to solve problem (6) in the presence of regression metamodels. We are interested in how

to intelligently allocate the simulation budget to proper designs such that f̂(xih) can be better estimated using
regression metamodels, and the PCS in problem (6) can be maximized. Note that this model does not require
all the designs to be on the same axis, and therefore does not hinder it from being applied for multi-dimensional
problems. For multi-dimensional problems, we can treat the range of the underlying function on each dimension as
one or more partitions, and then apply this formulation.

3.2 Optimization model under large deviations framework

In order to solve the optimization problem (6), one challenge is how to derive an explicit expression of the PCS.
We seek to solve (6) under an asymptotic framework in which the probability of false selection (PFS = 1− PCS)
is minimized as n goes to infinity.

Similar to the setting in Section 2, we let the number of support designs in each partition be three, two of which are

at the extreme locations, i.e., x1h
and xkh . We have d̂ijh = f̂(xih) − f̂(xjh) follow normal distribution N

(
f(xih) −

f(xmh
), ςijh

)
and d̂ih,jg = f̂(xih)− f̂(xjg ) follow normal distribution N

(
f(xih)− f(xjg ), ςih,jg

)
where h 6= g.

Similar to the proof of Lemma 1, we have

ςijh = σ2
h(0, xih − xjh , x2

ih
− x2

jh
)(XT

hXh)−1

 0

xih − xjh
x2
ih
− x2

jh


=

σ2
b

θhn

(ρ2
ijh,1

α1h

+
ρ2
ijh,s

αsh
+
ρ2
ijh,k

αkh

)
,


ρijh,1 =

(xsh
−xih

)(xkh
−xih

)−(xsh
−xjh

)(xkh
−xjh

)

(x1h
−xsh

)(x1h
−xkh

) ,

ρijh,s =
(x1h

−xih
)(xkh

−xih
)−(x1h

−xjh
)(xkh

−xjh
)

(xsh
−x1h

)(xsh
−xkh

) ,

ρijh,k =
(x1h

−xih
)(xsh

−xih
)−(x1h

−xjh
)(xsh

−xjh
)

(xkh
−x1h

)(xkh
−xsh

) ,

and

ςih,jg = σ2
h(0, xih − xjg , x2

ih
− x2

jg )(XT
hXh)−1

 0

xih − xjg
x2
ih
− x2

jg


=

σ2
h

θhn

(η2
ih,1

α1b

+
η2
ih,s

αsb
+
η2
ih,k

αkb

)
+
σ2
g

θgn

(η2
jg,1

α1h

+
η2
jg,s

αsh
+
η2
jg,k

αkh

)
,
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
ηih,1 =

(xsh
−xih

)(xkh
−xih

)

(x1h
−xsh

)(x1h
−xkh

) ,

ηih,s =
(x1h

−xih
)(xkh

−xih
)

(xsh
−x1h

)(xsh
−xkh

) ,

ηih,k =
(x1h

−xih
)(xsh

−xih
)

(xkh
−x1h

)(xkh
−xsh

) .

For any h = 1, 2, ..., l and ih = 1h, 2h, ..., kh, f̂(xih) is a normally distributed random variable. We can use the large
deviations theory to derive the convergence rate function of the false selection probability.

Lemma 4: The convergence rate functions of incorrect comparison probability for each design are provided as follows:

− lim
n→∞

1

n
logP{f̂(xih)>f̂(xmb

)}, ih∈So

− lim
n→∞

1

n
logP{f̂(xih)<f̂(xmb

)}, ih∈Sn

=Rmb,ih(θb, θh,αb,αh)

=
(f(xmb

)−f(xih))2/2

σ2
b

θb

(
η2mb,1

α1b
+
η2mb,s

αsb
+
η2
mb,k

αkb

)
+
σ2
h

θh

(
η2
ih,1

α1h
+
η2
ih,s

αsh
+
η2
ih,k

αkh

), h 6=b,

(7)

and

− lim
n→∞

1

n
logP{f̂(xib)>f̂(xmb

)}, ib∈So, ib 6=mb

− lim
n→∞

1

n
logP{f̂(xib)<f̂(xmb

)}, ib∈Sn

=Rmb,ib(θb,αb)

=
(f(xmb

)− f(xib))2/2

σ2
b

θb

(
ρ2
mib,1

α1b
+

ρ2
mib,s

αsb
+

ρ2
mib,k

αkb

) .
(8)

According to the Bonferroni inequality, we have PFS≤
∑

ih∈So,

ih 6=mb

P{f̂(xih)≥ f̂(xmb
)}+
∑
jg∈Sn

P{f̂(xjg )≤ f̂(xmb
)}. The

PFS is bounded below by

max

{
max
1≤h≤l
h 6=b

{
max
ih∈So

P{f̂(xih)≥ f̂(xmb
)},

max
jh∈Sn

P{f̂(xjh)≤ f̂(xmb
)}
}
,

max

{
max
ib∈So
ib 6=mb

P{f̂(xib) ≥ f̂(xmb
)},

max
jb∈Sn

P{f̂(xjb) ≤ f̂(xmb
)}
}}

and bounded above by

|So|×|Sn|×max

{
max
1≤h≤l
h6=b

{
max
ih∈So

P{f̂(xih) ≥ f̂(xmb
)},

max
jh∈Sn

P{f̂(xjh) ≤ f̂(xmb
)}
}
,

max

{
max
ib∈So
ib 6=mb

P{f̂(xib) ≥ f̂(xmb
)},

max
jb∈Sn

P{f̂(xjb) ≤ f̂(xmb
)}
}}

.
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Therefore, according to the results in Lemma 4, the convergence rate functions of PFS is given by

− lim
n→∞

1

n
logPFS = min

{
min
1≤h≤l
h 6=b

{
min
ih∈So

Rmb,ih(θb, θh,αb,αh),

min
jh∈Sn

Rmb,jh(θb, θh,αb,αh)

}
,

min

{
min
ib∈So
ib 6=mb

Rmb,ib(θb,αb), min
jb∈Sn

Rmb,jb(θb,αb)

}}
,

Minimizing the PFS is asymptotically equivalent to maximizing the rate at which PFS goes to zero as a function
of θh and αh, h = 1, 2, ..., l. Similarly, the asymptotical version of (6) becomes

max min

{
min
1≤h≤l
h 6=b

{
min
ih∈So

Rmb,ih(θb, θh,αb,αh),

min
jh∈Sn

Rmb,jh(θb, θh,αb,αh)

}
,

min

{
min
ib∈So
ib 6=mb

Rmb,ib(θb,αb), min
jb∈Sn

Rmb,jb(θb,αb)

}}
s.t. α1h

+ αsh + αkh = 1, h = 1, ..., l,
l∑

h=1

θh = 1,

θh, α1h
, αsh , αkh ≥ 0, h = 1, ..., l.

(9)

3.3 Asymptotically optimal solution

In this section, we seek to derive the optimality conditions for (9). We want to determine (i) the number of simulation
replication allocated to each partition, (ii) the locations of the designs should be simulated in each partition and
(iii) the number of simulation replications allocated to those selected designs.

According to Xiao et al. (2015), we have θh/θb → 0 as the number of partitions l goes to infinity. That means the
fraction of the simulation budget allocated to the partition b containing the m-th smallest mean value far exceeds
the fraction given to any other partition when l goes to infinity. Given that, the rate function Rmb,ih(θb, θh,αb,αh)

converges to R̃mb,ih(θh,αh) where

R̃mb,ih(θh,αh) = lim
l→∞

Rmb,ih(θb, θh,αb,αh)

=
(f(xmb

)− f(xih))2/2

σ2
h

θh

(
η2
ih,1

α1h
+

η2
ih,s

αsh
+

η2
ih,k

αkh

) .

9



The problem (9) can be asymptotically rewritten as

max min

{
min
1≤h≤l
h6=b

{
min
ih∈So

R̃mb,ih(θh,αh), min
jh∈Sn

R̃mb,jh(θh,αh)

}
,

min

{
min
ib∈So
ib 6=mb

Rmb,ib(θb,αb), min
jb∈Sn

Rmb,jb(θb,αb)

}}
s.t. α1h

+ αsh + αkh = 1, h = 1, ..., l
l∑

h=1

θh = 1

θh, α1h
, αsh , αkh ≥ 0, h = 1, ..., l.

(10)

In order to better analyze problem (10) above, we decompose it as follows:

max min
1≤h≤l
h6=b

{
min
ih∈So

R̃mb,ih(θh,αh), min
jh∈Sn

R̃mb,jh(θh,αh)

}
s.t. α1h

+ αsh + αkh = 1, α1h
, αsh , αkh ≥ 0,

(11)

for h = 1, 2, ..., l, h 6= b, and

max min

{
min
ib∈So
ib 6=mb

Rmb,ib(θb,αb), min
jb∈Sn

Rmb,jb(θb,αb)

}
s.t. α1b

+ αsb + αkb = 1, α1b
, αsb , αkb ≥ 0,

(12)

for h = b.

Lemma 5: Let θ∗h and α∗
h be the optimal solution to (10). The θ∗h and α∗

h are independent and can be solved separately.
In addition, the l α∗

h’s (h = 1, 2, ..., l) corresponding to the l partitions are also mutually independent and can be
solved separately using (11) and (12).

Similar to Section 2, we define a key design of each partition h, denoted as i∗h. A false selection is most likely to
happen at these key designs. That is

i∗h =



arg min
1h≤ih≤kh

{
min
ih∈So

Rmb,ih(θb, θh,αb,αh),

min
ih∈Sn

Rmb,ih(θb, θh,αb,αh)

}
, h 6=b,

arg min
1b≤ib≤kb

{
min
ib∈So
ib 6=mb

Rmb,ib(θb,αb),

min
ib∈Sn

Rmb,ib(θb,αb)

}
, h=b.

3.3.1 Determine α∗
h and locations of support designs

Given Lemma 5, we can determine α∗
h separately for each partition by solving the optimization problems (11) and

(12).

Theorem 3 The optimization problem (6) can be asymptotically optimized with the following allocation rule:

α∗rh =

{ |zrh |
|z1h |+|zsh |+|zkh

| , rh = 1h, sh, kh,

0, otherwise,
(13)
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where

z2
rh

=

{
ρ2
mi∗

b
,r, h=b,

η2
i∗
h
,r, otherwise,

for rh = 1h, sh, kh.

Given the optimal allocation rule (Theorem 3), we next determine the optimal location for the support design sh
within each partition.

Theorem 4 The rate function of PFS with allocation rule satisfying (13) can be asymptotically maximized if the
support design sh satisfies the following equations.

(a) For all h 6= b, support design

xsh =

{
xi∗

h
, i∗h 6= 1h, kh,

(x1h
+ xkh)/2, i∗h = 1h, kh,

(14)

and the optimal allocation rule (13) becomes

α∗rh =

{
1, rh = i∗h,

0, otherwise.
(15)

(b) For h = b, support design

xsb =


xi∗

b
+xmb

−x1b
,

3x1b
+xkb

4 ≤
xi∗

b
+xmb

2 <
x1b

+xkb

2 ,

xi∗
b
+xmb

−xkb ,
x1b

+xkb

2 <
xi∗

b
+xmb

2 ≤ x1b
+3xkb

4 ,

(x1b
+xkb)/2, otherwise,

(16)

and the approximate optimal allocation rule (13) is

α∗rb =


|ρmi∗

b
,r|

|ρmi∗
b
,1|+|ρmi∗

b
,s|+|ρmi∗

b
,k|
, rb = 1b, sb, kb,

0, otherwise.
(17)

When the xsh derived from (14) and (16) does not correspond to any design available, we round it to the nearest
one.

3.3.2 Determine θ∗h

In this subsection, we aim to determine the optimal budget allocation rules between the l partitions. Since α∗
h and

θ∗h, can be solved separately for each partition, Rmb,ih(θb, θh,α
∗
b ,α

∗
h) is a function of θb and θh only. Similarly,

Rmb,ih(θb,α
∗
b) is a function of θb only. Optimization problem (9) can be rewritten as

max min

{
min
1≤h≤l
h 6=b

{
min
ih∈So

Rmb,ih(θb, θh,α
∗
b ,α

∗
h),

min
jh∈Sn

Rmb,jh(θb, θh,α
∗
b ,α

∗
h)

}
,

min

{
min
ib∈So
ib 6=mb

Rmb,ib(θb,α
∗
b), min

jb∈Sn

Rmb,jb(θb,α
∗
b)

}}

s.t.

l∑
h=1

θh = 1, θh ≥ 0, h = 1, ..., l.

(18)

11



By solving the optimization model (18), we can get the optimal θ∗h for all h = 1, ..., l.

Theorem 5 The optimal allocation that asymptotically minimizes the PFS for the problem (6) is that θ∗h =
γ∗h
l∑

i=1

γ∗
i

,

where γ∗b = σb

√(
η2mb,1

α∗1b
+
η2mb,s

α∗sb
+
η2
mb,k

α∗
kb

) ∑
h6=b

γ∗
h
2

σ2
h

and γ∗h = σ2
h/(f(xmb

)− f(xi∗
h
))2, h 6= b.

The results of Theorem 5 indicate the optimal simulation budget allocation between the l partitions. The results
of Theorem 4 determine which designs should be selected for simulation and the number of simulation replications
allocated to these selected designs. Since the solution space is divided into adjacent partitions, this optimal budget
allocation procedure can be used for more general cases where the underlying function is non-quadratic. By con-
ducting simulation replications on fewer designs, the simulation efficiency is dramatically enhanced compared to the
existing methods.

4 Sequential Budget Allocation Algorithm

Based on the discussion above, we propose two sequential budget allocation algorithm to implement the optimality
conditions. They are Optimal Optimal Computing Budget Allocation for selecting the top-m designs with regression
(OCBA-mr) based on Theorems 1 and 2 and Optimal Optimal Computing Budget Allocation for selecting the top-m
designs with regression in partitioned domains (OCBA-mrp) based on Theorems 4 and 5.

(1) OCBA-mr Algorithm

INITIALIZE: κ← 0; Perform n0 simulation replications for three design locations in each partition; by convention
we use the D-optimal support designs, i.e., nκ1 = nκ((1+t)/2) = nκt = n0 (round as needed). The incremental simulation

budget is ∆.

LOOP: WHILE
∑t
i=1 n

κ
i < n DO

UPDATE: Estimate a quadratic regression equation f̂(xi) using the least squares method based on the information
from all prior simulation runs.

Calculate the mean and variance of each design using f̂(xi) = β̂0 + β̂1xi + β̂2x
2
i .

Determine the observed subset Ŝo and Ŝn; the design with the m-th smallest sample mean value; the observed key
design î∗.

Calculate α̂∗ and determine the support designs using Theorems 1 and 2.

ALLOCATE: Increase the simulation budget by ∆ and calculate the new budget allocation rule using α̂∗.

SIMULATE: Perform max(0, nκi − n
κ−1
i ) simulation replications for design i and i = 1, s, t. κ← κ+ 1.

END OF LOOP.

(2) OCBA-mrp Algorithm

INITIALIZE: κ← 0; Perform n0 simulation replications for three design locations in each partition; by convention
we use the D-optimal support designs, i.e., nκ1h

= nκ
((1+k(h))/2)h

= nκkh = n0 (round as needed). The incremental

simulation budget is ∆.

LOOP: WHILE
∑l
h=1

∑kh
ih=1h

nκih < n DO

12



UPDATE: Estimate the quadratic regression equations f̂(xih) for each partition using the least squares method
based on the information from all prior simulation runs.

Calculate the means and variances of each design using f̂(xih) = β̂h0 + β̂h1xih + β̂h2x
2
ih
, ih = 1h, 2h, ..., kh, h =

1, 2, ..., l.

Determine the observed subset Ŝo and Ŝn; the design with the m-th smallest sample mean value; the observed key

design îh
∗

of each partition.

Calculate α̂∗
h and determine the support designs in each partition using Theorem 4. Calculate θ̂∗h using Theorem 5.

ALLOCATE: Increase the simulation budget by ∆ and calculate the new budget allocation rule using α̂∗
h and θ̂∗h.

SIMULATE: Perform max(0, nκih − n
κ−1
ih

) simulation replications for design ih in each partition h = 1, 2, ..., l and
ih = 1h, sh, kh. κ← κ+ 1.

END OF LOOP.

5 Numerical Experiments

In this section, we test our proposed simulation budget allocation rules, OCBA-mr and OCBA-mrp, with some
existing methods on several typical optimal subset selection problems. We use the following three budget allocation
approaches for comparison. The top-m designs are selected based on their mean values.

• Equal Allocation (EA): The EA is the most commonly used and simplest method, which allocates the simulation
budget equally to each of the design.
• OCBAm+ Allocation: The OCBAm+ is an efficient simulation budget allocation procedure for selecting the top
m designs. It was developed based on the OCBA framework. For detail see Zhang et al. (2016).
• OCBA-ss Allocation: The OCAB-ss procedure was proposed in Gao and Chen (2016) and seek to solve the optimal

subset R&S problems for general underlying distributions using the large deviations theory.
• OSD Allocation: The OSD procedure was proposed in Brantley et al. (2013) and seek to solve the single best R&S

problems using regression metamodel.

The OCBA-mrp, OCBA-mr and OSD estimate the performance of each design based on some regression metamodels.
The EA, OCBAm+ and OCBA-ss use the mean value of each design for comparison, and the mean performance
value is computed directly from the simulation output. Unlike our proposed methods and OSD, they do not rely
on any response surface to estimate the performance value for any design. In order to compare the performance of
these allocation approaches, we test them empirically on the following experiments.

• Experiment 1: Consider the optimization problem

min f(x) = (x− 5)2.

The experiment assumes that the noise for simulation has normal distribution N(0, 22) for the objective value. We
discretize the domain of the function into 100 evenly spaced points from 0 to 10. Since the underlying function is
quadratic, we can use the OCBA-mr method directly for this problem. In order to utilize the OCBA-mrp method,
we divide the 100 points into 5 adjacent partitions and there are 20 points in each partition. We want to select
the top m = 5 designs.
• Experiment 2: Consider the Griewank function

min f(x) = 10× (1 + (1/4000)× x2 − cos(x)).

We discretize the domain of the function into 100 evenly spaced points from 0 to 20. The nature of this underlying
function does not allow us to apply the OCBA-mr method directly. To test the performance of the OCBA-mr
method for the non-quadratic problem, we make a slight modification by dividing the solution space into 5 adjacent
partitions. Then, we allocate the simulation budget equally to each partition and use the OCBA-mr method within
each partition. In this experiment, the OCBA-mrp is also tested under this partition pattern. The experiment
assumes that the noise for simulation has normal distribution N(0, 0.22) We want to select the top m = 3 designs.
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• Experiment 3: Consider the optimization problem

min f(x)=sin(x)+sin(10x/3)+log(x)−0.84x+3.

The entire domain consists of 200 discrete points for x ∈ [0, 8]. The 200 points are further divided into 10 adjacent
partitions so that there are 20 points in each partition. This experiment assumes that the simulation noise is a
standard normal random variable. Similar to the setting in experiment 2, the OCBA-rm method is modified to
handle this non-quadratic problem. We want to select the top m = 5 designs.
• Experiment 4: Consider the optimization problem

min f(x) = 2(x− 0.75)2 + sin(8πx− π/2).

The experiment assumes that the noise for simulation has standard normal distribution for the objective measure.
We discretize the domain of the function into 200 evenly spaced points from 0 to 2. The 200 points are further
divided into 20 adjacent partitions so that there are 10 points in each partition. Similar to the setting in experiment
2, the OCBA-rm method is modified to handle this non-quadratic problem. We want to select the top m = 3
designs.
• Experiment 5: Consider the optimization problem

min f(x1, x2) =
1

40
(x2

1 + x2
2)− cos(x1) cos(

x2√
2

) + 1.

The experiment assumes that the noise for simulation has normal distribution N(0, 22) for the objective measure.
x1 and x2 are continuous variables with −5 ≤ x1 ≤ 5 and −5 ≤ x2 ≤ 5. We discretize the solution space into
11×11 discrete points x1 = {−5,−4, ..., 5} and x2 = {−5,−4, ..., 5}. We divide the 11×11 designs into 11 adjacent
partitions with 11 designs in each partition. For each i = 1, 2, ..., 11, partition i consists of design points (−5, i−6),
(−4, i− 6), ..., (5, i− 6). We want to select the top m = 3 designs, which are (0,−1), (0, 0) and (0, 1).
• Experiment 6: Consider the (s, S) inventory problem in the Simulation Optimization Library (http://simopt.
org/wiki/index.php?title=SS_Inventory). The decision variable (s, S) is the inventory strategy. When the
inventory of design (s, S) on hand below s, an order is incurred to supplement the inventory to S. The optimization
problem is to minimize the the E[Total cost per period]. The domain is discretized into 20 × 20 discrete points
with s = {810, 820, ..., 1000} and S = {1510, 1520, ..., 1700}. The discrete points are divided into 20 partitions
with 20 points in each partition. For each i = 1, 2, ..., 20, partition i consists of points (800 + 10i, 1510), (800 +
10i, 1520), ..., (800 + 10i, 1700). In each partition, we assume the performances of the E[Total cost per period] of
each point can be modeled as quadratic functions, where the independent variable is S and s is kept as a constant.
We want to select the top m = 3 designs, which are (810, 1510), (810, 1520) and (820, 1510).

For the budget allocation procedures mentioned above, we let the initial number of replication n0 be 10 and the
incremental budget ∆ be 100 for all the five experiments. Figures 1 reports the comparison results in terms of PCS.
The estimate of PCS is based on the average of 2000 independent replications of each procedure for experiments
1-6.

It is observed that all the procedures obtain higher PCS as the available simulation budget increases. Our proposed
procedures OCBA-mr and OCBA-mrp perform the best on the tested examples. It shows that our proposed pro-
cedures have dramatically improved the selection quality of the top-m designs compared to the existing methods.
When the considered problem is quadratic or approximately quadratic, such as example 1, the OCBA-mr method
has the best performance. That is because the OCBA-mr method is developed for the quadratic or approximately
quadratic problem setting. It can make full use of its advantages by simulating fewer designs once the quadratic
assumption is satisfied. When the considered problem is partially quadratic or non-quadratic, such as examples
2-6, the OCBA-mrp method performs better than the modified OCBA-mr method. Because the OCBA-mrp can
intelligently allocate the simulation budget both between and within each partition.

Compared to the existing approaches, our proposed approaches incorporate the information from the simulated
designs into regression metamodel(s). We only need to simulate a subset of the alternative designs to build up the
regression metamodel(s). The performances of the designs that have not been simulated can be inferred based on
the metamodel(s). It dramatically improves the selection efficiency.
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Fig. 1. Comparison results for different test examples.

6 Conclusions

In this study, we further enhanced the simulation efficiency of finding the top-m designs by incorporating quadratic
regression equation(s). Using the large deviations theory, we formulate the problem of selecting the top-m designs as
that of maximizing the minimum convergence rate of the false selection probability. We derived two asymptotically
optimal budget allocation rules, OCBA-mr and OCBA-mrp, for one partition and multi-partition problem setting,
respectively. Numerical results suggest that the proposed approaches can dramatically improve the selection efficiency
compared to the existing R&S approaches. When the underlying function can be approximated by a quadratic
function across the solution space, the OCBA-mr is more efficient. For the non-quadratic problem setting, the
OCBA-mrp demonstrates the best performance.
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Online Supplement

Proof of Lemma 2

Let Λ
(d)
i (θ) = lnE(eθd̂i,m) denote the log-moment generating function of d̂i,m and I

(d)
i (·) denote the Fenchel-Legendre

transform of Λ
(d)
i , that is

I
(d)
i (x) = sup

θ∈R
(θx− Λ

(d)
i (θ)).

For any set A, let A◦ denotes its interior and for any function f(·), let f ′(x) denote the derivative of f at x. The
effective domain of Λi is DΛi

= {θ ∈ R : Λi(θ) < ∞} and Fi = {Λ′i(θ) : θ ∈ D◦Λi
}. Let fmin = mini∈{1,2,...,t} f(xi)

and fmax = maxi∈{1,2,...,t} f(xi). We assume that the interval [fmin, fmax] ⊂
⋂t
i=1 F

◦
i . This assumption can be

satisfied by some common families of distributions such Normal, Bernoulli, Poisson and Gamma family (Glynn and

Juneja, 2004). It ensures that the range of f̂(xi) include [fmin, fmax] and P (f̂(xi) > f̂(xm)) and P (f̂(xj) < f̂(xm))
are positive for i ∈ So and j ∈ Sn.

Then, d̂i,m = f̂(xi)− f̂(xm) satisfies the large deviation principle with good rate functions

− lim
n→∞

1

n
logP{d̂i,m>0}, i∈So, i 6=m

− lim
n→∞

1

n
logP{d̂i,m<0}, i∈Sn

=Rm,i(α)=I
(d)
i (0),

Since d̂i,m = f̂(xi) − f̂(xm) are all normally distributed random variables, the rate function can be expressed as
follow according to the results in Glynn and Juneja (2004).

Rm,i(α) =
(f(xm)− f(xi))

2/2

σ2
(
ρ2
mi,1

α1
+

ρ2
mi,s

αs
+

ρ2
mi,t

αt

) .

Proof of Lemma 3

According to the definition of PCS, we have

PCS = P

{ ⋂
i∈So

⋂
j∈Sn

f̂(xi) ≤ f̂(xj)

}
≥ P

{( ⋂
i∈So
i6=m

f̂(xi) ≤ f̂(xm)
)⋂( ⋂

j∈Sn

f̂(xj) ≥ f̂(xm)
)}

≥ 1−
∑
i∈So,
i6=m

P{f̂(xi) ≥ f̂(xm)} −
∑
j∈Sn

P{f̂(xj) ≤ f̂(xm)}.

The last inequality follows from the Bonferroni inequality. Since PFS = 1− PCS, we can get that

PFS ≤
∑
i∈So
i6=m

P{f̂(xi) ≥ f̂(xm)}+
∑
j∈Sn

P{f̂(xj) ≤ f̂(xm)}.

Therefore, a lower bound on PFS can be derived as

max

{
max
i∈So
i6=m

P{f̂(xi)≥ f̂(xm)},max
j∈Sn

P{f̂(xj)≤ f̂(xm)}
}
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and a upper bound on PFS can be derived as

|So|×|Sn|×max

{
max
i∈So
i6=m

P{f̂(xi)≥ f̂(xm)},max
j∈Sn

P{f̂(xj)≤ f̂(xm)}
}
.

According to Lemma 2, as n goes to infinity we can get the convergence rate function shown in Lemma 3.

Proof of Theorem 1

Given the definition of the key design i∗, we rewrite (3) as

max Rm,i∗(α)

s.t. α1 + αs + αt = 1, α1, αs, αt > 0.
(.1)

Since Rm,i∗(α) is concave and strictly increasing functions of α (Xiao et al., 2015; Glynn and Juneja, 2004), the
optimization problem is a convex programming problem. We define a Lagrangian function L = −Rm,i∗(α) +λ(α1 +
αs + αt − 1) and determine the optimal allocation based on its Karush-Kuhn-Tucker (KKT) conditions.

∂L

∂αr
= − (f(xm)− f(xi∗))

2/2

σ2
(
ρ2
mi∗,1
α1

+
ρ2
mi∗,s
αs

+
ρ2
mi∗,t
αt

)2

ρ2
mi∗,r

α∗r
2 +λ=0,

r = 1, s, t.

(.2)

Plug (.2) into α∗1 + α∗s + α∗t = 1, we can establish

α∗r =
|ρmi∗,r|

|ρmi∗,1|+ |ρmi∗,s|+ |ρmi∗,t|
, r = 1, s, t. (.3)

Then, we can get the conclusions in Theorem 1.

Proof of Theorem 2

Plugging (4) into Rm,i∗(α), we have

Rm,i∗(α) =
(f(xm)− f(xi∗))

2/2

σ2 (|ρmi∗,1|+ |ρmi∗,s|+ |ρmi∗,t|)2 .

∂Rm,i∗(α)

∂xs
=

−(f(xm)− f(xi∗)
2

σ2
(
|ρmi∗,1|+ |ρmi∗,s|+ |ρmi∗,t|

)3

×
(∂|ρmi∗,1|

∂xs
+
∂|ρmi∗,s|
∂xs

+
∂|ρmi∗,t|
∂xs

)
.

where
∂ρmi∗,1
∂xs

=
(xi∗ − xm)(xi∗ + xm − x1 − xt)

(x1 − xs)2(x1 − xt)
,

∂ρmi∗,s
∂xs

= − (xi∗−xm)(xi∗+xm−x1−xt)(2xs−x1−xt)
(xs − x1)2(xs − xt)2

,

∂ρmi∗,t
∂xs

=
(xi∗ − xm)(xi∗ + xm − x1 − xt)

(xt − x1)(xt − xs)2
.
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In order to analyze the optimal location for xs, we consider the following five cases.

Case I: xi∗+xm

2 < 3x1+xt

4

We have ∂Rm,i∗(α)/∂xs > 0 when xs < (x1 + xt)/2; ∂Rm,i∗(α)/∂xs < 0 when xs > (x1 + xt)/2. Therefore, when
(xi∗ + xm)/2 < (3x1 + xt)/4, we choose xs = (x1 + xt)/2.

Case II: 3x1+xt

4 ≤ xi∗+xm

2 < x1+xt

2

We have ∂Rm,i∗(α)/∂xs > 0 when xs < xi∗ + xm − x1; ∂Rm,i∗(α)/∂xs < 0 when xs > xi∗ + xm − x1. Therefore,
when (3x1 + xt)/4 ≤ (xi∗ + xm)/2 < (x1 + xt)/2, we choose xs = xi∗ + xm − x1.

Case III: xi∗+xm

2 > x1+3xt

4

We have ∂Rm,i∗(α)/∂xs > 0 when xs < (x1 + xt)/2; ∂Rm,i∗(α)/∂xs < 0 when xs > (x1 + xt)/2. Therefore, when
(xi∗ + xm)/2 > (x1 + 3xt)/4, we choose xs = (x1 + xt)/2.

Case IV: x1+xt

2 < xi∗+xm

2 ≤ x1+3xt

4

We have ∂Rm,i∗(α)/∂xs > 0 when xs < xi∗ + xm − xt; ∂Rm,i∗(α)/∂xs < 0 when xs > xi∗ + xm − xt. Therefore,
when (3x1 + xt)/4 ≤ (xi∗ + xm)/2 < (x1 + xt)/2, we choose xs = xi∗ + xm −xt.

Case V: xi∗+xm

2 = x1+xt

2

The location of xs has no influence on the results. Therefore, we choose xs = (x1 + xt)/2 for consistency with Case
II and Case III.

Analyzing the above the results, we can get the conclusions in Theorem 2.

Proof of Lemma 4

Let Λih(θ) = lnE(eθf̂(xih
)) denote the log-moment generating function of f̂(xih) and Iih(·) denote the Fenchel-

Legendre transform of Λih , that is

Iih(x) = sup
θ∈R

(θx− Λih(θ)).

Let the scaled cumulant generating function of (f̂(xmb
), f̂(xih)) be denoted as follows:

lim
n→∞

1

n
Λ(f̂(xmb

),f̂(xih
))(nθb, nθh)

= lim
n→∞

1

n
lnE(enθbf̂(xmb

)+nθhf̂(xih
)),

By the Gärtner-Ellis theorem, (f̂(xmb
), f̂(xih)) satisfy the large deviation principle with good rate functions

− lim
n→∞

1

n
logP{f̂(xih) > f̂(xmb

)}, ih ∈ So

− lim
n→∞

1

n
logP{f̂(xih) < f̂(xmb

)}, ih ∈ Sn


= Rmb,ih(θb, θh,αb,αh) = inf

v
(θbImb

(v) + θhIih(v)), h 6=b.
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Since (f̂(xmb
), f̂(xih)) are all normally distributed random variables, the rate function can be expressed as follows

according to the results in Glynn and Juneja (2004). Then, we can get

Rmb,ih(θb, θh,αb,αh)

=
(f(xmb

)−f(xih))2/2

σ2
b

θb

(
η2mb,1

α1b
+
η2mb,s

αsb
+
η2
mb,k

αkb

)
+
σ2
h

θh

(
η2
ih,1

α1h
+
η2
ih,s

αsh
+
η2
ih,k

αkh

), h 6=b,

The proof of (8) is similar to that is given for Lemma 2, and hence is omitted for brevity.

Proof of Lemma 5

We first rewrite optimization model (10) as

max z

s.t. R̃ih(θh,αh)− z ≥ 0, h = 1, ...,m, h 6= b, ih = 1h, ..., kh
Rib(θb,αb)− z ≥ 0, ib = 1b, ..., kb
α1h

+ αsh + αkh = 1, h = 1, ...,m
l∑

h=1

θh = 1, θh, α1h
, αsh , αkh ≥ 0, h = 1, ...,m.

(.4)

Similarly, the optimization models (11) and (12) can be rewritten as follows:

max z

s.t. R̃ih(θh,αh)−z ≥ 0, ih=1h, ..., kh
α1h

+ αsh + αkh = 1, α1h
, αsh , αkh ≥ 0,

(.5)

for h = 1, 2, ...,m, h 6= b, and

max z

s.t. Rib(θb,αb)− z ≥ 0, ib = 1b, ..., kb
α1b

+ αsb + αkb = 1, α1b
, αsb , αkb ≥ 0.

(.6)

Let α̃∗
h and α̃∗

b be the optimal solutions to (.5) and (.6). The optimization model (.4), (.5) and (.6) have the same
objective function, and the domain of (.4) is a subset of (.5) and (.6). Therefore, if α̃∗

h and α̃∗
b are feasible to (.4),

they are the optimal solutions of (.4). According to the formula of Rib(θb,αb) and R̃ih(θh,αh), we can conclude
that α̃∗

h and α̃∗
b do not depend on the value of θh. Therefore, we can conclude that α̃∗

h and α̃∗
b are feasible to (.4),

and they are optimal to (10). Then we get the conclusions in Lemma 5.

Proof of Theorem 3

In order to determine the optimal α∗
h for each partition, we consider two cases (h 6= b and h = b).

For h 6= b, we solve the optimization model (11). Given the definition of the key design i∗h, we rewrite (11) as

max R̃mb,i∗h
(θh,αh)

s.t. α1h
+ αsh + αkh = 1, α1h

, αsh , αkh > 0,
(.7)

for h = 1, 2, ...,m and h 6= b.
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Since R̃i∗
h
(θh,αh) is concave and strictly increasing functions of αh (Xiao et al., 2015; Glynn and Juneja, 2004), the

optimization problem is a convex programming problem. We define a Lagrangian function L=−R̃mb,i∗h
(θh,αh) +

λh(α1h
+αsh +αkh − 1) and determine the optimal allocation based on its Karush-Kuhn-Tucker (KKT) conditions.

R̃mb,i∗h
(θh,αh)=

(f(xmb
)− f(xi∗

h
))2/2

σ2
h

θh

(η2
i∗
h
,1

α1h
+

η2
i∗
h
,s

αsh
+

η2
i∗
h
,k

αkh

) .

∂L

∂αrh
=−

(f(xmb
)− f(xi∗

h
))2/2

σ2
h

θh

(η2
i∗
h
,1

α1h
+

η2
i∗
h
,s

αsh
+

η2
i∗
h
,k

αkh

)2

η2
i∗
h
,r

α∗rh
2 +λh=0,

rh = 1h, sh, kh.

Using the fact that α∗1h
+ α∗sh + α∗kh = 1, we can establish

α∗rh =
|ηi∗

h
,r|

|ηi∗
h
,1|+ |ηi∗

h
,s|+ |ηi∗

h
,k|
, rh = 1h, sh, kh. (.8)

For h = b, we solve the optimization model (12), which could be rewritten as

max Rmb,i∗b
(θb,αb)

s.t. α1b
+ αsb + αkb = 1, α1b

, αsb , αkb > 0.
(.9)

The process of solving the (.9) is similar to that is given for Theorem 1, and hence is omitted for brevity. Then, we
can get the conclusions in Theorem 3.

Proof of Theorem 4

In order to determine the location of the support design sh for each partition, we consider two cases (h 6= b and
h = b).

For h 6= b, we plug (13) into R̃mb,i∗h
(θh,αh), we have

R̃mb,i∗h
(θh,αh) =

(f(xmb
)− f(xi∗

h
))2/2

σ2
h

θh

(
|ηi∗

h
,1|+ |ηi∗

h
,s|+ |ηi∗

h
,k|
)2 .

∂R̃mb,i∗h
(θh,αh)

∂xsh
=

−(f(xmb
)− f(xi∗

h
)2

σ2
0h

θh

(
|ηi∗

h
,1|+ |ηi∗

h
,s|+ |ηi∗

h
,k|
)3

×
(∂|ηi∗

h
,1|

∂xsh
+
∂|ηi∗

h
,s|

∂xsh
+
∂|ηi∗

h
,k|

∂xsh

)
.

where
∂ηi∗

h
,1

∂xsh
=

(xkh − xi∗h)(x1h
− xi∗

h
)

(x1h
− xsh)2(x1h

− xkh)
,
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∂ηi∗
h
,s

∂xsh
= −

(x1h
− xi∗

h
)(xkh − xi∗h)(2xsh − x1h

− xkh)

(xsh − x1h
)2(xsh − xkh)2

,

∂ηi∗
h
,k

∂xsh
=

(x1h
− xi∗

h
)(xkh − xi∗h)

(xkh − x1h
)(xkh − xsh)2

.

When xsh > xi∗
h
,

∂R̃mb,i∗h
(θh,αh)

∂xsh
< 0.

When xsh < xi∗
h
,

∂R̃mb,i∗h
(θh,αh)

∂xsh
> 0.

Therefore, R̃mb,i∗h
(θh,αh) is maximized when

xsh = xi∗
h
.

According to equation (13), we can get

α∗ih =

{
1, ih = i∗h,

0, otherwise.

When i∗h is at the extreme locations (1h and kh),

R̃mb,i∗h
(θh,αh)=

(f(xmb
)− f(xi∗

h
))2/2

σ2
hη

2
i∗
h
,r/θh

αrh , rh = i∗h.

In this setting, the location of the support design sh has no effect on R̃mb,i∗h
(θh,αh). For simplicity, we use the

D-optimal support design and let xsh = (x1h
+ xkh)/2 (round to the nearest design as needed) (Kiefer, 1959).

For h = b, the proof is similar to that is given for Theorem 2, and hence is omitted for brevity. Then, we can get
the conclusions in Theorem 4.

Proof of Theorem 5

Given the definition of key design i∗h, we rewrite the optimization model (18) as

max min
{
Rmb,i∗b

(θb,α
∗
b), min

1≤h≤m
h6=b

(
Rmb,i∗h

(θb, θh,α
∗
b ,α

∗
h)
)}
,

s.t.

l∑
h=1

θh = 1, θh ≥ 0, h = 1, ..., l.

The Rmb,i∗b
(θb,α

∗
b) and Rmb,i∗h

(θb, θh,α
∗
b ,α

∗
h) are concave and strictly increasing functions of θh and θb (Glynn and

Juneja, 2004). Therefore, the optimization problem is a convex programming problem, and the first order condition
is also the optimality condition.

Rewrite the optimization model above as

max z

s.t. Rmb,i∗h
(θb, θh,α

∗
b ,α

∗
h)− z ≥ 0, h = 1, ..., l, h 6= b

Rmb,i∗b
(θb,α

∗
b)− z ≥ 0

l∑
h=1

θh = 1, θh ≥ 0, h = 1, ..., l.

(.10)
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From the KKT conditions, there exist λh ≥ 0, h = 1, 2, ..., l and µ > 0 such that

1−
m∑
h=1

λh = 0 (.11)

µ− λh
∂Rmb,i∗h

(θ∗b , θ
∗
h,α

∗
b ,α

∗
h)

∂θh
= 0, h = 1, 2, .., l, h 6= b (.12)

µ−
l∑

h=1
h6=b

λh
∂Rmb,i∗h

(θ∗b , θ
∗
h,α

∗
b ,α

∗
h)

∂θb
− λb

∂Rmb,i∗b
(θ∗b ,α

∗
b)

∂θb
= 0 (.13)

λh(z −Rmb,i∗h
(θ∗b , θ

∗
h,α

∗
b ,α

∗
h)) = 0, h = 1, 2, .., l, h 6= b (.14)

λb(z −Rmb,i∗b
(θ∗b ,α

∗
b)) = 0 (.15)

From (.11), it can be concluded that there must exist some λh > 0, h = 1, 2, ..., l. If there is one λh = 0, h =
1, 2, ..., l, h 6= b, it results µ = 0 based on (.12). That means all the λh = 0, as ∂Rmb,i∗h

(θb, θh,α
∗
b ,α

∗
h)/∂θh is strictly

positive. Therefore, we can conclude that λh 6= 0, h = 1, 2, ..., l, h 6= b. According to (.14),

z∗ = Rmb,i∗h
(θ∗b , θ

∗
h,α

∗
b ,α

∗
h), h = 1, 2, ..., l, h 6= b. (.16)

In addition, since θh/θb → 0 as l goes to infinity and Rmb,i∗b
(θ∗b ,α

∗
b) > Rmb,i∗h

(θ∗b , θ
∗
h,α

∗
b ,α

∗
h), h = 1, 2, ..., l, h 6= b,

it can be concluded that λb = 0 according to (.15). Therefore, we have

l∑
h=1
h6=b

∂Rmb,i∗h
(θ∗b ,θ

∗
h,α

∗
b ,α

∗
h)/∂θb

∂Rmb,i∗h
(θ∗b ,θ

∗
h,α

∗
b ,α

∗
h)/∂θh

= 1. (.17)

According to Theorem 4, we have

Rmb,i∗h
(θ∗b , θ

∗
h,α

∗
b ,α

∗
h) =

(f(xmb
)− f(xi∗

h
))2/2

σ2
b

θ∗
b

(
η2mb,1

α∗1b
+

η2mb,s

α∗sb
+

η2
mb,k

α∗
kb

)
+

σ2
h

θ∗
h

. (.18)

Then, we can get

∂Rmb,i∗h
(θ∗b , θ

∗
h,α

∗
b ,α

∗
h)

∂θ∗b

=
σ2
b (f(xmb

)− f(xi∗
h
))2
(
η2mb,1

α∗1b
+

η2mb,s

α∗sb
+

η2mb,k

α∗
kb

)
/θ∗b

2

2

(
σ2
b

θ∗
b

(
η2mb,1

α∗1b
+

η2mb,s

α∗sb
+

η2
mb,k

α∗
kb

)
+

σ2
h

θ∗
h

)2 ,
(.19)

and

∂Rbm,i∗h(θ∗b , θ
∗
h,α

∗
b ,α

∗
h)

∂θ∗h
=

σ2
h(f(xmb

)− f(xi∗
h
))2/θ∗h

2

2

(
σ2
b

θ∗
b

(
η2mb,1

α∗1b
+

η2mb,s

α∗sb
+

η2
mb,k

α∗
kb

)
+

σ2
h

θ∗
h

)2 , (.20)

As l goes to infinity, plug the results above into (.16) and (.17), we can get the equations in Theorem 5.
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