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a b s t r a c t

In this paper, we introduce a compositional scheme for the construction of finite abstractions (a.k.a.
symbolic models) of interconnected discrete-time control systems. The compositional scheme is based
on small-gain type reasoning. In particular, we use a notion of so-called alternating simulation
functions as a relation between each subsystem and its symbolic model. Assuming some small-
gain type conditions, we construct compositionally an overall alternating simulation function as a
relation between an interconnection of symbolic models and that of original control subsystems. In
such compositionality reasoning, the gains associated with the alternating simulation functions of the
subsystems satisfy a certain ‘‘small-gain" condition. In addition, we introduce a technique to construct
symbolic models together with their corresponding alternating simulation functions for discrete-time
control subsystems under some stability property. Finally, we apply our results to the temperature
regulation in a circular building by constructing compositionally a finite abstraction of a network
containing N rooms for any N ≥ 3. We use the constructed symbolic models as substitutes to
synthesize controllers compositionally maintaining room temperatures in a comfort zone. We choose
N = 1000 for the sake of illustrating the results. We also apply our proposed techniques to a nonlinear
example of a fully connected network in which the compositionality condition still holds for any
number of components. In these case studies, we show the effectiveness of the proposed results in
comparison with the existing compositionality technique in the literature using a dissipativity-type
reasoning.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In general, designing complex systems with respect to sophis-
ticated control objectives is a challenging problem. In the past
few years, several techniques have been developed to overcome
those challenges. One particular approach to address complex
systems and control objectives is based on the construction of
finite abstractions (a.k.a. symbolic models) of the original control
systems. Finite abstractions provide abstract descriptions of the
continuous-space control systems in which each discrete state
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and input correspond to an aggregate of continuous states and
inputs of the original system, respectively.

In general, there exist two types of symbolic models: sound
ones whose behaviors (approximately) contain those of the con-
crete systems and complete ones whose behaviors are (approx-
imately) equivalent to those of the concrete systems (Tabuada,
2009). Remark that existence of a complete symbolic model re-
sults in a sufficient and necessary guarantee in the sense that
there exists a controller enforcing the desired specifications on
the symbolic model if and only if there exists a controller enforc-
ing the same specifications on the original control system. On the
other hand, a sound symbolic model provides only a sufficient
guarantee in the sense that failing to find a controller for the
desired specifications on the symbolic model does not prevent
the existence of a controller for the original control system. Since
symbolic models are finite, controller synthesis problems can
be algorithmically solved over them by resorting to automata-
theoretic approaches (Maler, Pnueli, & Sifakis, 1995; Thomas,
1995). Unfortunately, the construction of symbolic models for
large-scale interconnected systems is itself computationally a
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complex and challenging task. An appropriate technique to over-
come this challenge is to first construct symbolic models of the
concrete subsystems individually and then establish a composi-
tional framework using which one can construct abstractions of
the overall network using those individual abstractions.

In the past few years, there have been several results on the
compositional construction of finite abstractions of networks of
control subsystems. The framework introduced by Tazaki and
Imura (2008) based on the notion of interconnection-compatible
approximate bisimulation relation provides networks of finite
abstractions approximating networks of stabilizable linear control
systems. This work was extended by Pola, Pepe, and Benedetto
(2016) to networks of incrementally input-to-state stable nonlin-
ear control systems using the notion of approximate bisimulation
relation. The recent result by Mallik, Schmuck, Soudjani, and
Majumdar (2019) introduces a new system relation, called (ap-
proximate) disturbance bisimulation relation, as the basis for
the compositional construction of symbolic models. Note that
the proposed results by Tazaki and Imura (2008), Pola et al.
(2016), and Mallik et al. (2019) use the small-gain type conditions
and provide complete symbolic models of interconnected systems
compositionally. The recent results by Swikir, Girard, and Zamani
(2018) introduce different conditions to handle the composi-
tional construction of complete finite abstractions by leveraging
techniques from dissipativity theory (Arcak, Meissen, & Packard,
2016). There are also other results in the literature (Hussein,
Ames, & Tabuada, 2017; Kim, Arcak, & Zamani, 2018; Meyer,
Girard, & Witrant, 2018) which provide sound symbolic models of
interconnected systems, compositionally, without requiring any
stability property or condition on the gains of subsystems.

In this work, we introduce a compositional approach for the
construction of complete finite abstractions of interconnected
nonlinear discrete-time control systems using more general
small-gain type conditions. First, we introduce a notion of so-
called alternating simulation functions inspired by Girard and
Pappas (2009, Definition 1) as a system relation. Given alter-
nating simulation functions between subsystems and their finite
abstractions, we derive some small-gain type conditions to con-
struct an overall alternating simulation function as a relation
between the interconnected abstractions and the concrete net-
work. In addition, we provide a framework for the construction of
finite abstractions together with their corresponding alternating
simulation functions for discrete-time control systems satisfying
incremental input-to-state stabilizability property (Angeli, 2002).
Finally, we illustrate our results by compositionally constructing
finite abstractions of two networks of (linear and nonlinear)
discrete-time control subsystems and their corresponding al-
ternating simulation functions. These case studies particularly
elucidate the effectiveness of the proposed results in comparison
with the existing compositional result using dissipativity-type
conditions by Swikir et al. (2018).

One can leverage the compositionally constructed finite ab-
stractions here to synthesize controllers monolithically or also
compositionally to achieve some high-level properties; see the
result by Meyer et al. (2018) and references therein. In partic-
ular, once finite abstractions are constructed for given concrete
subsystems along with the corresponding alternating simulation
functions, one can design local controllers also compositionally
for those abstractions, and then refine them to the concrete
subsystems provided that the given specification for the over-
all network is decomposable (see the first case study). Par-
ticularly, based on the assume-guarantee reasoning approach
(Henzinger, Shaz, & Rajamani, 1998), the local controllers are
synthesized by assuming that the other subsystems meet their
local specifications.

Related work. Results by Mallik et al. (2019), Pola et al.
(2016), and Tazaki and Imura (2008) use the small-gain type

conditions (Mallik et al. (2019, condition (13)), Pola et al. (2016,
condition r(A−1

k Ck) < 1, Theorem 1), and Tazaki and Imura (2008,
condition (17))) to facilitate the compositional construction of
complete finite abstractions. Unfortunately, those small-gain type
conditions are conservative, in the sense that they are all for-
mulated in terms of ‘‘almost" linear gains, which means the
considered subsystems should have a (nearly) linear behavior.
Those conditions may not hold in general for systems with non-
linear gain functions (cf. Remark 3.6 in the paper). Here, we
introduce more general small-gain type compositional conditions
formulated in a general nonlinear form which can be applied to
both linear and nonlinear gain functions without making any pre-
assumptions on them. In addition, assuming a fully connected
network, in the proposed compositionality results by Mallik et al.
(2019), Pola et al. (2016), Swikir et al. (2018), and Tazaki and
Imura (2008) the overall approximation error is either propor-
tional to the summation of the approximation errors of finite
abstractions of subsystems or lower bounded by the summation
of positive and strictly increasing functions of quantization pa-
rameters of all subsystems. On the other hand, in the proposed
results here the overall approximation error is proportional to
the maximum of the approximation errors of finite abstractions of
subsystems which are determined independently of the number
of subsystems. Therefore, the results here can potentially provide
complete finite abstractions for large-scale interconnected sys-
tems with much smaller approximation error in comparison with
those proposed by Mallik et al. (2019), Pola et al. (2016), Swikir
et al. (2018), and Tazaki and Imura (2008) (cf. case studies for a
comparison with Swikir et al. (2018)).

2. Notation and preliminaries

2.1. Notation

We denote by R, Z, and N the set of real numbers, integers, and
non-negative integers, respectively. These symbols are annotated
with subscripts to restrict them in the obvious way, e.g., R>0
denotes the positive real numbers. We denote the closed, open,
and half-open intervals in R by [a, b], (a, b), [a, b), and (a, b],
respectively. For a, b ∈ N and a ≤ b, we use [a; b], (a; b),
[a; b), and (a; b] to denote the corresponding intervals in N. Given
N ∈ N≥1, vectors νi ∈ Rni , ni ∈ N≥1, and i ∈ [1;N], we use
ν = [ν1; . . . ; νN ] to denote the vector in Rn with n =

∑
i ni

consisting of the concatenation of vectors νi. Note that given any
ν ∈ Rn, ν ≥ 0 if νi ≥ 0 for any i ∈ [1; n]. We denote the
identity and zero matrix in Rn×n by In and 0n, respectively. The
individual elements in a matrix A ∈ Rm×n, are denoted by {A}ij,
where i ∈ [1;m] and j ∈ [1; n]. We denote by ∥·∥ and ∥·∥2 the
infinity and Euclidean norm, respectively. Given any a ∈ R, |a|
denotes the absolute value of a. Given sets X and Y , we denote
by f : X → Y an ordinary map of X into Y , whereas f : X ⇒ Y
denotes a set-valued map (Rockafellar & Wets, 2009). Given a
function f : Rn

→ Rm and x ∈ Rm, we use f ≡ x to denote
that f (x) = x for all x ∈ Rn. If x is the zero vector, we simply
write f ≡ 0. We denote by |·| the cardinality of a given set and
by ∅ the empty set. A set S ⊆ Rn is a finite union of boxes if
S =

⋃M
j=1 Sj for some M ∈ N, where Sj =

∏n
i=1[c

j
i , d

j
i] ⊆ Rn with

c ji < dji. For any set S ⊆ Rn of the form of finite union of boxes, we
define [S]η = {a ∈ S | ai = kiη, ki ∈ Z, i = 1, . . . , n}, where 0 <
η ≤ span(S), span(S) = minj=1,...,M ηSj , ηSj = min{|dj1 − c j1|, . . . ,
|djn − c jn|}. With a slight abuse of notation, we use [S]0 := S. The
set [S]η will be used as a finite approximation of the set S with
precision η > 0. Note that [S]η ̸= ∅ for any η ≤ span(S). Given
sets S and [S]η , ϑη : S → [S]η is an approximation map that
assigns for any x ∈ S a representative point x̂ ∈ [S]η such that
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∥x − x̂∥ < η. Given sets U and S ⊂ U , the complement of S with
respect to U is defined as U\S = {x : x ∈ U, x /∈ S}. We use
notations K and K∞ to denote different classes of comparison
functions, as follows: K = {α : R≥0 → R≥0| α is continuous,
strictly increasing, and α(0) = 0}; K∞ = {α ∈ K| limr→∞ α(r) =

∞}. For α, γ ∈ K∞ we write α < γ if α(s) < γ (s) for all s > 0,
and Id ∈ K∞ denotes the identity function.

2.2. Discrete-time control systems

In this paper we study discrete-time control systems of the
following form.

Definition 2.1. A discrete-time control system Σ is defined by
the tuple Σ = (X,U,W,U,W, f ,Y, h), where X,U,W, and Y are
the state set, external input set, internal input set, and output
set, respectively, and are assumed to be subsets of normed vector
spaces with appropriate finite dimensions. Sets U and W denote
the set of all bounded input functions ν : N → U and ω : N → W,
respectively. The set-valued map f : X × U × W ⇒ X is called
the transition function, and h : X → Y is the output map.
The discrete-time control system Σ is described by difference
inclusions of the form

Σ :

{
x(k + 1) ∈ f (x(k), ν(k), ω(k)),

y(k) = h(x(k)), (2.1)

where x : N → X, y : N → Y, ν ∈ U , and ω ∈ W are
the state signal, output signal, external input signal, and internal
input signal, respectively.

System Σ = (X,U,W,U,W, f ,Y, h) is called deterministic if
|f (x, u, w)| ≤ 1 ∀x ∈ X,∀u ∈ U,∀w ∈ W, and non-deterministic
otherwise. System Σ is called blocking if ∃x ∈ X,∀u ∈ U,∀w ∈

W where |f (x, u, w)| = 0 and non-blocking if |f (x, u, w)| ̸= 0
∀x ∈ X, ∃u ∈ U, ∃w ∈ W. System Σ is called finite if X,U,W are
finite sets and infinite otherwise. In this paper, we only deal with
non-blocking systems.

Now, we introduce a notion of so-called alternating simulation
functions, inspired by Girard and Pappas (2009, Definition 1),
which quantifies the error between systems Σ and Σ̂ both with
internal inputs.

Definition 2.2. Let Σ = (X,U,W,U,W, f ,Y, h) and Σ̂ =

(X̂, Û, Ŵ, Û, Ŵ, f̂ , Ŷ, ĥ) where Ŵ ⊆ W and Ŷ ⊆ Y. A function
V : X × X̂ → R≥0 is called an alternating simulation function
from Σ̂ to Σ if ∀x ∈ X and ∀x̂ ∈ X̂, one has

α(∥h(x) − ĥ(x̂)∥) ≤ V (x, x̂), (2.2)

and ∀x ∈ X, ∀x̂ ∈ X̂, ∀û ∈ Û, ∃u ∈ U, ∀w ∈ W, ∀ŵ ∈ Ŵ,
∀xd ∈ f (x, u, w), ∃x̂d ∈ f̂ (x̂, û, ŵ) such that one gets

V (xd, x̂d) (2.3)
≤ max{σ (V (x, x̂)), ρint (∥w − ŵ∥), ρext (∥û∥), ε},

for some α, σ , ρint ∈ K∞, where σ < Id, ρext ∈ K∞ ∪ {0}, and
some ε ∈ R≥0.

Let us point out some differences between our notion of
alternating simulation function and the one introduced by Girard
and Pappas (2009). The notion of simulation function introduced
by Girard and Pappas (2009, Definition 1) is defined between
two continuous-time control systems, whereas in
Definition 2.2, we define the alternating simulation function
between two discrete-time control systems. Moreover, there is
no distinction between internal and external inputs in the def-
inition of simulation function introduced by Girard and Pappas
(2009, Definition 1), whereas their distinctions in our work play

a major role in providing the compositionality results later in the
paper. Additionally, on the right-hand-side of (2.3), we introduce
constant ε ∈ R≥0 to allow the relation to be defined between
two (in)finite systems. The role of this constant will become
clear in Section 4 where we introduce finite systems. Such a
constant does not appear in the definition of simulation function
proposed by Girard and Pappas (2009, Definition 1) which makes
it only suitable for infinite systems. Furthermore, we formulate
the decay condition (2.3) in a max-form, while the decay condi-
tion proposed by Girard and Pappas (2009) is formulated in an
implication-form.

If Σ does not have internal inputs, which is the case for
interconnected systems (cf. Definition 3.1), Definition 2.1 reduces
to the tuple Σ = (X,U,U, f ,Y, h) and the set-valued map f
becomes f : X × U ⇒ X. Correspondingly, (2.1) reduces to:

Σ :

{
x(k + 1) ∈ f (x(k), ν(k)),

y(k) = h(x(k)). (2.4)

Moreover, Definition 2.2 reduces to the following definition.

Definition 2.3. Consider systems Σ = (X,U,U, f ,Y, h) and
Σ̂ = (X̂, Û, Û, f̂ , Ŷ, ĥ), where Ŷ ⊆ Y. A function Ṽ : X×X̂ → R≥0
is called an alternating simulation function from Σ̂ toΣ if ∀x ∈ X
and ∀x̂ ∈ X̂, one has

α̃(∥h(x) − ĥ(x̂)∥) ≤ Ṽ (x, x̂), (2.5)

and ∀x ∈ X, ∀x̂ ∈ X̂, ∀û ∈ Û, ∃u ∈ U, ∀xd ∈ f (x, u), ∃x̂d ∈ f̂ (x̂, û)
such that one gets

Ṽ (xd, x̂d) ≤ max{σ̃ (Ṽ (x, x̂)), ρ̃ext (∥û∥), ε̃}, (2.6)

for some α̃, σ̃ ∈ K∞, where σ̃ < Id, ρ̃ext ∈ K∞ ∪ {0}, and some
ε̃ ∈ R≥0.

We say that a system Σ̂ is approximately alternatingly simu-
lated by a system Σ or a system Σ approximately alternatingly
simulates a system Σ̂ , denoted by Σ̂ ⪯AS Σ , if there exists an
alternating simulation function from Σ̂ to Σ as in Definition 2.3.

We refer the interested readers to Pola and Tabuada (2009,
Section 3.2) justifying in details the role of different quantifiers
appeared before condition (2.6) in Definition 2.3 (condition (2.3)
in Definition 2.2). In brief, those quantifiers capture the different
role played by control inputs as well as nondeterminism in the
system.

The next result shows that the existence of an alternating
simulation function for systems without internal inputs implies
the existence of an approximate alternating simulation relation
between them as defined by Tabuada (2009).

Proposition 2.4. Consider systems Σ = (X,U,U, f ,Y, h) and
Σ̂ = (X̂, Û, Û, f̂ , Ŷ, ĥ), where Ŷ ⊆ Y. Assume Ṽ is an alternating
simulation function from Σ̂ to Σ as in Definition 2.3 and that there
exists v ∈ R>0 such that ∥û∥ ≤ v ∀û ∈ Û. Then, relation R ⊆ X× X̂
defined by

R =

{
(x, x̂) ∈ X × X̂|Ṽ (x, x̂) ≤ max {ρ̃ext (v), ε̃}

}
is an ε̂-approximate alternating simulation relation, defined by
Tabuada (2009), from Σ̂ to Σ with

ε̂ = α̃−1(max{ρ̃ext (v), ε̃}). (2.7)

Proof. The proof consists of showing that (i) ∀(x, x̂) ∈ R we have
∥h(x) − ĥ(x̂)∥ ≤ ε̂; (ii) ∀(x, x̂) ∈ R and ∀û ∈ Û, ∃u ∈ U, such that
∀xd ∈ f (x, u), ∃x̂d ∈ f̂ (x̂, û) satisfying (xd, x̂d) ∈ R. The first item
is a simple consequence of the definition of R and condition (2.5)
(i.e. α̃(∥h(x)−ĥ(x̂)∥) ≤ Ṽ (x, x̂) ≤ max{ρ̃ext (v), ε̃}), which results in
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∥h(x)−ĥ(x̂)∥ ≤ α̃−1(max{ρ̃ext (v), ε̃}) = ε̂. The second item follows
immediately from the definition of R, condition (2.6), and the fact
that σ̃ < Id. In particular, we have Ṽ (xd, x̂d) ≤ max{ρ̃ext (v), ε̃}
which implies (xd, x̂d) ∈ R.

3. Compositionality result

In this section, we analyze networks of discrete-time control
subsystems and drive a general small-gain type condition under
which we can construct an alternating simulation function from
a network of abstractions to the concrete network by using alter-
nating simulation functions of the subsystems. The definition of
the network of discrete-time control subsystems is based on the
notion of interconnected systems described by Tazaki and Imura
(2008).

3.1. Interconnected control systems

We consider N ∈ N≥1 original control subsystems Σi =

(Xi,Ui,Wi,Ui,Wi, fi,Yi, hi), i ∈ [1;N], with partitioned internal
inputs as

wi = [wi1; . . . ;wi(i−1);wi(i+1); . . . ;wiN ], (3.1)

Wi =

N−1∏
j=1

Wij, (3.2)

with output map and set partitioned as

hi(xi) =[hi1(xi); . . . ; hiN (xi)], (3.3)

Yi =

N∏
j=1

Yij. (3.4)

We interpret the outputs yii as external ones, whereas yij with i ̸=

j are internal ones which are used to define the interconnected
systems. In particular, we assume that the dimension of vector
wij is equal to that of vector yji. If there is no connection from
subsystem Σi to Σj, we set hij ≡ 0. Now, we define the notions
of interconnections for control subsystems.

Definition 3.1. Consider N ∈ N≥1 control subsystems Σi =

(Xi,Ui,Wi,Ui,Wi, fi,Yi, hi), i ∈ [1;N], with the input–output
structure given by (3.1)–(3.4). The interconnected control system
Σ = (X,U,U, f ,Y, h), denoted by IM(Σ1, . . . ,ΣN ), where M ∈

RN×N is a matrix with elements {M}ii = 0, {M}ij = ϖij, ∀i, j ∈

[1;N], i ̸= j, 0 ≤ ϖij ≤ span(Yji), is defined by X =
∏N

i=1 Xi,
U =

∏N
i=1 Ui, U =

∏N
i=1 Ui, Y =

∏N
i=1 Yii, and maps

f (x, u) := {[xd1; . . . ; xdN ] | xdi ∈ fi(xi, ui, wi) ∀i ∈ [1;N]},

h(x) := [h11(x1); . . . ; hNN (xN )],

where u = [u1; . . . ; uN ], x = [x1; . . . ; xN ], and subject to the
constraint:

wij = ϑϖij (yji), [Yji]ϖij ⊆ Wij,∀i, j ∈ [1;N], i ̸= j.

In the above definition, whenever ϖij ̸= 0, the sets Yji, ∀i, j ∈

[1;N], i ̸= j, are assumed to be finite unions of boxes.
An example of an interconnection of three control subsystems

Σ1, Σ2, and Σ3 is illustrated in Fig. 1.
The following technical lemmas are used to prove some of the

results in the next subsections.

Lemma 3.2. For any a, b ∈ R>0, the following holds

a + b ≤ max{(Id + λ)(a), (Id + λ−1)(b)}, (3.5)

for any λ ∈ K∞.

Fig. 1. Interconnection of three control subsystems Σ1 , Σ2 , and Σ2 with h13 =

h31 = 0.

Proof. Define c = λ−1(b). Now, one has

a + b =

{
a + λ(c) ≤ c + λ(c) = (Id + λ−1)(b) if a ≤ c,
a + λ(c) < a + λ(a) = (Id + λ)(a) if a > c,

which implies (3.5).

The next lemma is borrowed from Kellett (2014).

Lemma 3.3. Consider α ∈ K and χ ∈ K∞, where (χ − Id) ∈ K∞.
Then for any a, b ∈ R≥0

α(a + b) ≤ α ◦ χ (a) + α ◦ χ ◦ (χ − Id)−1(b).

Next subsection provides one of the main results of the paper
on the compositional construction of abstractions for networks of
systems.

3.2. Compositional construction of abstractions

In this subsection, we assume that we are given N original con-
trol subsystems Σ = (Xi,Ui,Wi,Ui,Wi, fi,Yi, hi) together with
their corresponding abstractions Σ̂i = (X̂i, Ûi, Ŵi, Ûi, Ŵi, f̂i, Ŷi,

ĥi) and alternating simulation functions Vi from Σ̂i to Σi. More-
over, for functions σi, αi, and ρiint associated with Vi, ∀ i ∈ [1;N],
appeared in Definition 2.2, we define

γii := σi, γij := (Id + λ) ◦ ρiint ◦ χ ◦ α−1
j , (3.6)

∀j ∈ [1;N], j ̸= i, with arbitrarily chosen λ, χ ∈ K∞ with
(χ − Id) ∈ K∞. Additionally, Let M̂ ∈ RN×N be a matrix with
elements {M̂}ii = 0, {M̂}ij = ϖ̂ij, ∀i, j ∈ [1;N], i ̸= j, 0 ≤ ϖ̂ij ≤

span(Ŷji).
The next theorem provides a compositional approach on the

construction of abstractions of networks of control subsystems
and that of the corresponding alternating simulation functions.

Theorem 3.4. Consider the interconnected control system Σ =

I0N (Σ1, . . . ,ΣN ) induced by N ∈ N≥1 control subsystems Σi.
Assume that each Σi and its abstraction Σ̂i admit an alternating
simulation function Vi. Let the following holds:

γi1i2 ◦ γi2i3 ◦ · · · ◦ γir−1ir ◦ γir i1 < Id, (3.7)

∀(i1, . . . , ir ) ∈ {1, . . . ,N}
r
\{{1}r , . . . , {N}

r}, where r ∈ {2, . . . ,N}.
Then, there exist δi ∈ K∞ such that

Ṽ (x, x̂) := max
i

{δ−1
i ◦ Vi(xi, x̂i)}

is an alternating simulation function from Σ̂ = IM̂(Σ̂1, . . . , Σ̂N )
to Σ .
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Proof. Note that by using Theorem 5.2 introduced by
Dashkovskiy, Rüffer, and Wirth (2010), condition (3.7) implies
that ∃ δi ∈ K∞ ∀i ∈ [1;N], satisfying

max
j∈[1;N]

{δ−1
i ◦ γij ◦ δj} < Id. (3.8)

Now, we show that (2.5) holds for some K∞ function α̃. Consider
any xi ∈ Xi, x̂i ∈ X̂i, ∀i ∈ [1;N]. Then, one gets

∥h(x) − ĥ(x̂)∥ = max
i

{∥hii(xi) − ĥii(x̂i)∥}

≤ max
i

{∥hi(xi) − ĥi(x̂i)∥}

≤ max
i

{α−1
i ◦ Vi(xi, x̂i)}

≤ α̂ ◦ max
i

{δ−1
i ◦ Vi(xi, x̂i)},

where α̂(s) = maxi{α−1
i ◦ δi(s)} for all s ∈ R≥0. By defining

α̃ = α̂−1, one obtains

α̃(∥h(x) − ĥ(x̂)∥) ≤ Ṽ (x, x̂),

satisfying (2.5). Now, we show that (2.6) holds. Consider any
x = [x1; . . . ; xN ] ∈ X, x̂ =

[
x̂1; . . . ; x̂N

]
∈ X̂, and any û =[

û1; . . . ; ûN
]

∈ Û. For any i ∈ [1;N], there exists ui ∈ Ui,
consequently, a vector u = [u1; . . . ; uN ] ∈ U such that for any
xd ∈ f (x, u) there exists x̂d ∈ f̂ (x̂, û) satisfying (2.3) for each
pair of subsystems Σi and Σ̂i with the internal inputs given by
ŵij = ϑϖ̂ij (ŷji) ∀i, j ∈ [1;N], j ̸= i. One gets the chain of
inequalities in (3.9) for some arbitrarily chosen λ, χ ∈ K∞ with
(χ − Id) ∈ K∞. Observe that, in inequalities (3.9) (given in Box I
), we used Lemma 3.3 to go from line 7 to 8, and Lemma 3.2 to
go from line 9 to 10. Define σ̃ , ε̃, and ρ̃ext as follows:

σ̃ := max
i,j

{δ−1
i ◦ γij ◦ δj}, ε̃ := max

i
{δ−1

i (φi)},

ρ̃ext (s) :=

{
max

i
{δ−1

i ◦ ρiext (si)}

s.t. s = ∥[s1, . . . , sn]∥, si ≥ 0,

where, ∀i, j ∈ [1;N],

φi = (Id + λ−1) ◦ (ρiint ◦ χ ◦ (χ − Id)−1(max
j,j̸=i

{ϖ̂ij}) + εi) (3.10)

Observe that it follows from (3.8) that σ̃ < Id. Then, one has

Ṽ (xd, x̂d) ≤ max{σ̃ ◦ Ṽ (x, x̂), ρ̃ext (∥û∥), ε̃}, (3.11)

which satisfies (2.6), and implies that Ṽ is indeed an alternating
simulation function from Σ̂ to Σ .

Note that, similar technique was proposed by Rungger and
Zamani (2018) using nonlinear small-gain type condition to con-
struct compositionally an approximate infinite abstraction of an
interconnected continuous-time control system. Since in Rungger
and Zamani (2018, Definition 2) a simulation function between
each subsystem and its abstraction is formulated in a dissipative-
form (Noroozi, Geiselhart, Grüne, Rüffer, & Wirth, 2018), an extra
operator (the operator D in Rungger and Zamani (2018, equation
(12))) is required to formulate the small-gain condition and to
construct what is called an Ω-path (Dashkovskiy et al., 2010,
Definition 5.1), which is exactly the K∞ functions δi, i ∈ N ,
that satisfy condition (3.8) in our work. However, the definition
of the simulation function in our work is formulated in a max-
form (Noroozi et al., 2018) which results in not only simpler
formulation of the small-gain condition but also the Ω-path con-
struction can be achieved without the need of the extra operator;
see Dashkovskiy et al. (2010, Section 8.4).

Remark 3.5. Note that if, ∀i ∈ [1;N], ρiint are linear functions,
i.e., ρiint (a + b) = ρiint (a) + ρiint (b), ∀a, b ∈ R≥0, we omit

the K∞ function χ in (3.6) and (3.10); hence, γij and φi in the
previous theorem reduce to γij = (Id + λ) ◦ ρiint ◦ α−1

j and
φi = (Id + λ−1) ◦ (ρiint ◦ (maxj,j̸=i{ϖ̂ij}) + εi), ∀i, j ∈ [1;N], j ̸= i,
respectively. Moreover, if ϖ̂ij = 0, we omit the K∞ function λ in
(3.6) and (3.10). Therefore, γij and φi reduce to γij = ρiint ◦ α−1

j
and φi = εi, ∀i, j ∈ [1;N], j ̸= i, respectively.

Remark 3.6. We emphasize that the proposed small-gain type
condition in (3.7) is much more general than the ones proposed
by Mallik et al. (2019) and Pola et al. (2016). To be more specific,
consider the following system:

Σ :

{
x1(k + 1) = a1x1(k) + b1

√
|x2(k)|,

x2(k + 1) = a2x2(k) + b2g(x1(k)),

where 0 < a1 < 1, 0 < a2 < 1, and function g satisfies the
following quadratic Lipschitz assumption: there exists an L ∈ R>0
such that: |g(x) − g(x′)| ≤ L|x − x′

|
2 for all x, x′

∈ R. One can
easily verify that functions V1(x1, x̂1) = |x1 − x̂1| and V2(x2, x̂2) =

|x2 − x̂2| are alternating simulation functions from x1-subsystem
to itself and x2-subsystem to itself, respectively. Here, one cannot
come up with gain functions satisfying Assumption (A2) in Pola
et al. (2016) globally (assumptions (1) and (2) in Mallik et al.
(2019, Theorem 3) are continuous-time counterpart of Assump-
tion (A2) in Pola et al. (2016)). In particular, those assumptions
require existence of K∞ functions being upper bounded by linear
ones and lower bounded by quadratic ones which is impossible.
On the other hand, the proposed small-gain condition (3.7) is still
applicable here showing that Ṽ (x, x̂) := max{δ−1

1 ◦V1(x1, x̂1), δ−1
2 ◦

V2(x2, x̂2)} is an alternating simulation function from Σ to itself,
for some appropriate δ1, δ2 ∈ K∞ satisfying (3.8) which is
guaranteed to exist if |b1|

√
|b2|L < 1 and |b2|(b1L)2 < 1.

Remark 3.7. Here, we provide a general guideline on the com-
putation of K∞ functions δi, i ∈ [1;N] as the following: (i) In a
general case of having N ≥ 1 subsystems, functions δi, i ∈ [1;N],
can be constructed numerically using the algorithm proposed
by Eaves (1972) and the technique provided by Dashkovskiy et al.
(2010, Proposition 8.8), see Ruffer (2007, Chapter 4); (ii) Simple
construction techniques are provided by Dashkovskiy et al. (2010,
Section 9) and Jiang, Mareels, and Wang (1996) for the case of
two and three subsystems, respectively; (iii) the K∞ functions
δi, i ∈ [1;N], can be always chosen as identity functions provided
that γij < Id, ∀ i, j ∈ [1;N], for functions γij appeared in (3.6).

4. Construction of symbolic models

In this section, we consider Σ = (X,U,W,U,W, f ,Y, h) as
an infinite, deterministic control system and assume its output
map h satisfies the following general Lipschitz assumption: there
exists an ℓ ∈ K∞ such that: ∥h(x) − h(x′)∥ ≤ ℓ(∥x − x′

∥) for
all x, x′

∈ X. Note that this assumption on h is not restrictive
at all provided that one is interested to work on a compact
subset of X. In addition, the existence of an alternating simulation
function betweenΣ and its finite abstraction is established under
the assumption that Σ is so-called incrementally input-to-state
stabilizable as defined next.

Definition 4.1. System Σ = (X,U,W,U,W, f ,Y, h) is called
incrementally input-to-state stabilizable if there exist functions
H : X → U and G : X×X → R≥0 such that ∀x, x′

∈ X, ∀u, u′
∈ U,

∀w,w′
∈ W, the inequalities:

α(∥x − x′
∥) ≤ G(x, x′) ≤ α(∥x − x′

∥), (4.1)



556 A. Swikir and M. Zamani / Automatica 107 (2019) 551–561

Ṽ (xd, x̂d) =max
i

{δ−1
i ◦ Vi(xdi , x̂di )}

≤max
i

{
δ−1
i

(
max{σi ◦ Vi(xi, x̂i), ρiint (∥wi − ŵi∥), ρiext (∥ûi∥), εi}

)}
=max

i

{
δ−1
i

(
max{σi ◦ Vi(xi, x̂i), ρiint (max

j,j̸=i
{∥wij − ŵij∥}), ρiext (∥ûi∥), εi}

)}
=max

i

{
δ−1
i

(
max{σi ◦ Vi(xi, x̂i), ρiint (max

j,j̸=i
{∥yji − ϑϖ̂ij(ŷji)∥}), ρiext (∥ûi∥), εi}

)}
=max

i

{
δ−1
i

(
max{σi ◦ Vi(xi, x̂i), ρiint (max

j,j̸=i
{∥yji − ŷji + ŷji − ϑϖ̂ij(ŷji)∥}), ρiext (∥ûi∥), εi}

)}
≤max

i

{
δ−1
i

(
max{σi ◦ Vi(xi, x̂i), ρiint (max

j,j̸=i
{∥hj(xj) − ĥj(x̂j)∥ + ϖ̂ij}), ρiext (∥ûi∥), εi}

)}
≤max

i

{
δ−1
i

(
max{σi ◦ Vi(xi, x̂i), ρiint (max

j,j̸=i
{α−1

j ◦ Vj(xj, x̂j) + ϖ̂ij}), ρiext (∥ûi∥), εi}
)}

≤max
i

{
δ−1
i

(
max{σi ◦ Vi(xi, x̂i), ρiint ◦ χ (max

j,j̸=i
{α−1

j ◦ Vj(xj, x̂j)})

+ ρiint ◦ χ ◦ (χ − Id)−1(max
j,j̸=i

{ϖ̂ij}), ρiext (∥ûi∥), εi}
)}

≤max
i

{
δ−1
i

(
max{σi ◦ Vi(xi, x̂i), ρiint ◦ χ (max

j,j̸=i
{α−1

j ◦ Vj(xj, x̂j)})

+ ρiint ◦ χ ◦ (χ − Id)−1(max
j,j̸=i

{µw ij}) + εi, ρiext (∥ûi∥)}
)}

≤max
i

{
δ−1
i

(
max{σi ◦ Vi(xi, x̂i), (Id + λ) ◦ ρiint ◦ χ (max

j,j̸=i
{α−1

j ◦ Vj(xj, x̂j)}),

ρiext (∥ûi∥), (Id + λ−1) ◦ (ρiint ◦ χ ◦ (χ − Id)−1(max
j,j̸=i

{ϖ̂ij}) + εi)}
)}

≤max
i,j

{
δ−1
i

(
max{γij ◦ Vj(xj, x̂j), ρiext (∥ûi∥), φi}

)}
=max

i,j

{
δ−1
i

(
max{γij ◦ δj ◦ δ−1

j ◦ Vj(xj, x̂j), ρiext (∥ûi∥), φi}
)}

≤max
i,j,l

{
δ−1
i

(
max{γij ◦ δj ◦ δ−1

l ◦ Vl(xl, x̂l), ρiext (∥ûi∥), φi}
)}

=max
i,j

{
δ−1
i

(
max{γij ◦ δj ◦ Ṽ (x, x̂), ρiext (∥ûi∥), φi}

)}
=max

{
σ̃ ◦ Ṽ (x, x̂),max

i

{
δ−1
i ◦ ρiext (∥ûi∥), δ−1

i

(
φi

)}}
, (3.9)

Box I.

and

G(f (x,H(x) + u, w), f (x′,H(x′) + u′, w′)) − G(x, x′)

≤ −κ(G(x, x′)) + γint (∥w − w′
∥) + γext (∥u − u′

∥) (4.2)

hold for some α, α, κ, γint , γext ∈ K∞.

Remark that in Definition 4.1, we implicitly assume thatH(x)+
u ∈ U for any x ∈ X and any u ∈ U. Note that any clas-
sically stabilizable linear control system is also incrementally
stabilizable as in Definition 4.1. For nonlinear control systems,
the notion of incremental stabilizability as in Definition 4.1 is
stronger than conventional stabilizability. We refer the interested
readers to Tran, Rüffer, and Kellett (2016) for detailed information
on incremental input-to-state stability of discrete-time control
systems.

Now, we construct a finite abstraction Σ̂ of an incrementally
input-to-state stabilizable control system Σ as the following.

Definition 4.2. Let Σ = (X,U,W,U,W, f ,Y, h) be incre-
mentally input-to-state stabilizable as in Definition 4.1, where

X,U,W are assumed to be finite unions of boxes. One can con-
struct a finite system

Σ̂ = (X̂, Û, Ŵ, Û, Ŵ, f̂ , Ŷ, ĥ), (4.3)

where:

• X̂ = [X]η , where 0 < η ≤ span(X) is the state set quantiza-
tion parameter;

• Û = [U]µ, where 0 < µ ≤ span(U) is the external input set
quantization parameter;

• Ŵ = [W]ϖ̂ , where 0 ≤ ϖ̂ ≤ span(W) is the internal input
set quantization parameter;

• x̂d ∈ f̂ (x̂, û, ŵ) iff ∥x̂d − f (x̂,H(x̂) + û, ŵ)∥ ≤ η;
• Ŷ = {h(x̂) | x̂ ∈ X̂};
• ĥ = h.

Next, we establish the relation between Σ and Σ̂ , intro-
duced above, via the notion of alternating simulation function in
Definition 2.2. In particulate, we show that Σ̂ is a complete finite
abstraction of Σ by proving that function G in Definition 4.1 is an
alternating simulation function from Σ̂ to Σ and from Σ to Σ̂ .
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Theorem 4.3. LetΣ be an incrementally input-to-state stabilizable
control system as in Definition 4.1 and Σ̂ be a finite system as
constructed in Definition 4.2. Assume that there exists a function
γ̂ ∈ K∞ such that for any x, x′, x′′

∈ X one has

G(x, x′) ≤ G(x, x′′) + γ̂ (∥x′
− x′′

∥) (4.4)

for G as in Definition 4.1. Then G is actually an alternating simulation
function from Σ̂ to Σ and from Σ to Σ̂ .

Proof. Given the Lipschitz assumption on h and since Σ is
incrementally input-to-state stabilizable, from (4.1), ∀x ∈ X and
∀x̂ ∈ X̂, we have

∥h(x) − ĥ(x̂)∥ ≤ ℓ(∥x − x̂∥) ≤ α̂(G(x, x̂)),

where α̂ = ℓ ◦ α−1. By defining α = α̂−1, one obtains

α(∥h(x) − ĥ(x̂)∥) ≤ G(x, x̂),

satisfying (2.2). Now from (4.4), ∀x ∈ X,∀x̂ ∈ X̂,∀û ∈ Û,∀w ∈

W,∀ŵ ∈ Ŵ, we have

G(f (x,H(x) + û, w), x̂d)
≤ G(f (x,H(x) + û, w), f (x̂,H(x̂) + û, ŵ))

+ γ̂ (∥x̂d − f (x̂,H(x̂) + û, ŵ)∥)

for any x̂d ∈ f̂ (x̂, û, ŵ). Now, from Definition 4.2, the above
inequality reduces to

G(f (x,H(x) + û, w), x̂d)
≤ G(f (x,H(x) + û, w), f (x̂,H(x̂) + û, ŵ)) + γ̂ (η).

Note that by (4.2), we get

G(f (x,H(x) + û, w), f (x̂,H(x̂) + û, ŵ)) − G(x, x̂)
≤ −κ(G(x, x̂)) + γint (∥w − ŵ∥).

Hence, ∀x ∈ X,∀x̂ ∈ X̂,∀û ∈ Û, and ∀w ∈ W,∀ŵ ∈ Ŵ, one
obtains

G(f (x,H(x) + û, w), x̂d) − G(x, x̂)
≤ −κ(G(x, x̂)) + γint (∥w − ŵ∥) + γ̂ (η)

for any x̂d ∈ f̂ (x̂, û, ŵ). Using the previous inequality and by
following a similar argument as the one in the proof of Theorem
1 in Swikir et al. (2018), one obtains

G(f (x,H(x) + û, w), x̂d)
≤ max{κ̃(G(x, x̂)), γ̃int (∥w − ŵ∥), γ̃ (η)},

where κ̃ = Id − (Id − ψ) ◦ κ̂ , γ̃int = (Id + λ) ◦ κ̂−1
◦ ψ−1

◦

χ ◦ γint , γ̃ = (Id + λ−1) ◦ κ̂−1
◦ ψ−1

◦ χ ◦ (χ − Id)−1
◦ γ̂ ,

where λ, χ,ψ, κ̂ are some arbitrarily chosen K∞ functions with
Id − ψ ∈ K∞, χ − Id ∈ K∞, Id − κ̂ ∈ K∞ and κ̂ ≤ κ . Hence,
inequality (2.3) is satisfied with u = H(x) + û, σ = κ̃ , ρint = γ̃int ,
ρext (s) = 0 ∀s ∈ R≥0, ε = γ̃ (η), and, hence, G is an alternating
simulation function from Σ̂ toΣ . Similarly, we can also show that
G is an alternating simulation function fromΣ to Σ̂ . In particular,
by the definition of Û, for any u = H(x) + ũ ∈ U there always
exists û ∈ Û such that γext (∥ũ − û∥) ≤ γext (µ) which results in
ε = (Id +λ−1)◦ κ̂−1

◦ψ−1
◦χ ◦ (χ−Id)−1

(
γext (µ) + γ̂ (η)

)
. Other

terms in the alternating simulation function G are the same as the
first part of the proof.

Remark 4.4. Observe that if γint and γ̂ are linear functions in the
previous theorem, γ̃int and γ̃ reduce to γ̃int = (Id + λ) ◦ κ̂−1

◦

ψ−1
◦ γint and γ̃ = (Id + λ−1) ◦ κ̂−1

◦ ψ−1
◦ γ̂ , respectively.

Remark 4.5. Although the choices of K∞ functions λ, χ,ψ , and
κ̂ in the previous theorem mainly depend on the dynamic of
the given control systems, we provide a general guideline on
choosing those functions as follows: (i) In order to reduce the
undesirable effect of the inverse of κ̂ and ψ in satisfying the
small-gain condition in (3.7), or in computing the value of the
overall approximation error in (2.7), one should choose those
functions to behave very close to the identity function; (ii) Re-
garding λ and χ , one should choose those functions such that
the small gain condition in (3.7) is possibly satisfied, and then
compute the overall approximation error in (2.7). If the computed
error is acceptable by the user, no further action is required;
otherwise one should start slightly modifying those functions
until a smaller error is achieved while ensuring that the small
gain condition is not violated. For example, one can scale the K∞

function λ by a linear function β(s) = cs ∈ K∞, ∀s ∈ R≥0, c > 1,
and then, using β ◦ λ instead of λ, start increasing the value
of c until a smaller error is obtained. Same procedure can be
simultaneously applied to the K∞ function χ . It may be the case
that the desired error is not achievable with the chosen λ and χ ,
then one should start over and choose different λ and χ and go
through similar procedure again.

Remark that condition (4.4) is not restrictive at all provided
that one is interested to work on a compact subset of X. We
refer the interested readers to the explanation provided after
equation (V.2) in Zamani, Mohajerin Esfahani, Majumdar, Abate,
and Lygeros (2014) on how to compute such function γ̂ .

Now we provide similar results as in the first part of this
section but tailored to linear control systems which are compu-
tationally much more efficient.

4.1. Discrete-time linear control systems

The class of discrete-time linear control systems, considered
in this subsection, is given by

Σ :

{
x(k + 1) = Ax(k) + Bu(k) + Dw(k),

y(k) = Cx(k), (4.5)

where A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×p, C ∈ Rq×n. We
use the tuple Σ = (A, B, C,D) to refer to the class of control
systems of the form (4.5). Remark that the incremental input-to-
state stabilizability assumption in Definition 4.2 boils down in the
linear case to the following assumption.

Assumption 4.6. Let Σ = (A, B, C,D). Assume that there exist
matrices Z ≻ 0 and K of appropriate dimensions such that the
matrix inequality

(1 + 2θ )(A + BK )TZ(A + BK ) ⪯ κcZ (4.6)

holds for some constants 0 < κc < 1, and θ ∈ R>0.

Note that condition (4.6) is nothing more than pair (A, B) being
stabilizable (Antsaklis & Michel, 2007).

Remark 4.7. Given constants κc and θ , one can easily see that
inequality (4.6) is not jointly convex on decision variables Z and K
and, hence, not amenable to existing semidefinite tools for linear
matrix inequalities (LMI). However, using Schur complement, one
can easily transform inequality (4.6) to the following LMI over
decision variables Q and M:[

−κcQ QAT
+ MTBT

AQ + BM −(1 + 2θ )Q

]
⪯ 0, Q ≻ 0,

where Q = Z−1 and M = KQ .
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Now, Theorem 4.3 reduces to the following one for linear
systems.

Theorem 4.8. Consider Σ = (A, B, C,D) and the finite abstraction
Σ̂ constructed as in Definition 4.2. Suppose Assumption 4.6 holds.
Then, function

V (x, x̂) =

√
(x − x̂)TZ(x − x̂), (4.7)

is an alternating simulation function from Σ̂ to Σ and from Σ

to Σ̂ .

Proof. First, we show that condition (2.2) holds. Since C = Ĉ , we
have

∥Cx − Ĉ x̂∥ ≤

√
nλmax(CTC)∥x − x̂∥,

and similarity√
λmin(Z)∥x − x̂∥ ≤

√
(x − x̂)TZ(x − x̂).

It can be readily verified that (2.2) holds for V defined in (4.7)
with α(s) =

√
λmin(Z)

nλmax(CT C)
s for any s ∈ R≥0. We continue to show

that (2.3) holds as well. Let x, x̂, û, and ŵ be given, and choose
u as u := K (x − x̂) + û. Let xd = Ax + Bu + Dw, and x̂d be
defined as in Definition 4.2. Define F := Ax̂ + Bû + Dŵ − x̂d,
and κ̂c := 1 −

√
κc . Now, one obtains the chain of inequalities

(4.8) (given in Box II). By following a similar argument as the one
in the proof of Theorem 1 in Swikir et al. (2018), one gets (4.9)
(given in Box II) where κ̃ = (1 − κ̂c(1 − ψc)), satisfying (2.3)

with σ (s) = κ̃s, ρext (s) = 0, ρint (s) =
(1+δc )
κ̂cψc

√
p (1+θ+θ2)

θ
∥
√
ZD∥2s,

∀s ∈ R≥0, ε =
(1+1/δc )
κ̂cψc

√
n(2+θ )λmax(Z)

θ
η, where ψc and δc can be

chosen arbitrarily such that 0 < ψc < 1 and δc > 0. Hence, the
proposed V in (4.7) is an alternating simulation function from Σ̂

toΣ . The rest of the proof follows similar argument. In particular,
by the definition of Û, for any u = K (x− x̂)+ ũ ∈ U there always
exists û ∈ Û such that ∥B∥∥ũ − û∥ ≤ ∥B∥µ which results in
ε =

(1+1/δc )
κ̂cψc

√
n(2+θ )λmax(Z)

θ
(∥B∥µ + η). Other terms are the same

as before.

5. Case study

In this section we provide two case studies to illustrate our
results and show their effectiveness in comparison with the ex-
isting compositional results by Swikir et al. (2018). We first apply
our results to the temperature regulation in a circular building
by constructing compositionally a finite abstraction of a network
containing n ≥ 3 rooms, each equipped with a heater. Then we
apply the proposed techniques to a fully connected network to
show its applicability to strongly connected networks as well. The
construction of symbolic models and controllers are performed
using tool SCOTS (Rungger & Zamani, 2016) on a PC with Intel
i7@3.4 GHz CPU and 16 GB of RAM.

5.1. Room temperature control

The evolution of the temperature T of all rooms is described
by the interconnected discrete-time model:

Σ :

{
T(k + 1) = AT(k) + βTE + πThν(k),

y(k) = T(k),

adapted from Meyer et al. (2018), where A ∈ Rn×n is a matrix
with elements {A}ii = (1 − 2α − β − πνi(k)), {A}i(i+1) =

{A}(i+1)i = {A}1n = {A}n1 = α, ∀i ∈ [1; n − 1], and all other
elements are identically zero, T(k) = [T1(k); . . . ; Tn(k)], ν(k) =

[ν1(k); . . . ; νn(k)], TE = [Te1; . . . ; Ten], where νi(k), ∀i ∈ [1; n],

Fig. 2. Temperature control: Comparison of errors in (2.7) resulted from our
approach based on small-gain condition with those resulted from the approach
proposed by Swikir et al. (2018) based on dissipativity-type condition for
different values of n ≥ 3 and ηi .

are taking values in [0, 0.6]. The other parameters are as follows:
∀i ∈ [1; n], Tei = −1 ◦C is the outside temperature, Th = 50 ◦C is
the heater temperature, and the conduction factors are given by
α = 0.45, β = 0.045, and π = 0.09.

Now, by introducing Σi described by

Σi :

{
Ti(k + 1) = aTi(k) + dωi(k) + βTei + πThνi(k),

yi(k) = Ti(k),

one can readily verify that Σ = I0n (Σ1, . . . ,Σn), where a =

1−2α−β−πνi(k), d = [α;α]
T , and ωi(k) = [yi−1(k); yi+1(k)] (with

y0 = yn and yn+1 = y1). Note that for any i ∈ [1; n], conditions
(4.1) and (4.2) are satisfied with Gi(Ti, T̂i) = ∥Ti − T̂i∥, Hi ≡ 0,
αi(s) = αi(s) = s, κi(s) = (1 − a)s, γiint (s) = αs, and γiext ≡

0. Furthermore, (4.4) is satisfied with γ̂ = Id. Consequently,
Gi(Ti, T̂i) = ∥Ti − T̂i∥ is an alternating simulation function from
Σ̂i, constructed as in Definition 4.2, to Σi.

Let, ∀i ∈ [1; n], the K∞ functions λi, ψi, and κ̂i in the proof
of Theorem 4.3 be as follows: λi = Id, ψi(s) = 0.99s, κ̂i =

κi. Since we have γij(s) < Id, ∀i, j ∈ [1; n], i ̸= j and for
any n ≥ 3, the small-gain condition (3.7) is satisfied without
any restriction on the number of rooms. Using the results in
Theorem 3.4 with δ−1

i = Id, ∀i ∈ [1; n], one can verify that
V (T , T̂ ) = maxi{∥Ti − T̂i∥} is an alternating simulation function
from Σ̂ = I0n (Σ̂1, . . . , Σ̂n) to Σ satisfying conditions (2.5) and
(2.6) with σ̃ (s) = max

{
(1 − (1 − a)10−2)s, 2.02α

1−a s
}
, α̃(s) = s,

ρ̃ext (s) = 0 ∀s ∈ R≥0, ε̃ = maxi
{

2.02ηi
1−a

}
, ∀i ∈ [1;N], where ηi

is the state set quantization parameter of abstraction Σ̂i.
Remark that, to have a fair comparison with the compositional

technique proposed by Swikir et al. (2018), we have assumed
that Ŷji = Ŵij, i.e. ϖ̂ij = 0, ∀i, j ∈ [1; n], i ̸= j. For the fair
comparison, we compute error ε̂ in the ε̂-approximate alternating
simulation relation as in (2.7) based on the dissipativity approach
introduced by Swikir et al. (2018) and the small-gain approach
introduced here. This error represents the mismatch between the
output behavior of the concrete interconnected system Σ and
that of its finite abstraction Σ̂ . We evaluate ε̂ for different number
of subsystems n and different values of the state set quantization
parameters ηi for abstractions Σ̂i ∀i ∈ [1; n] as in Fig. 2. As shown,
the small-gain approach results in less mismatch errors than
those obtained using the dissipativity based approach proposed
by Swikir et al. (2018). The reason is that the error in (2.7) is
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V (xd, x̂d) = ((Ax + Bu + Dw − (Ax̂ + Bû + Dŵ) + (Ax̂ + Bû + Dŵ) − x̂d)TZ

(Ax + Bu + Dw − (Ax̂ + Bû + Dŵ) + (Ax̂ + Bû + Dŵ) − x̂d))
1
2

=
(
(x − x̂)T (A + BK )TZ(A + BK )(x − x̂) + (w − ŵ)TDTZD(w − ŵ) + 2(w − ŵ)TDTZF

+ 2(x − x̂)T (A + BK )TZD(w − ŵ) + 2(x − x̂)T (A + BK )TZF + F TZF
) 1

2

≤
(
(x − x̂)T (A + BK )TZ(A + BK )(x − x̂) + (w − ŵ)TDTZD(w − ŵ) + 2∥(w − ŵ)TDT

√
Z∥2∥

√
ZF∥2

+ 2∥(x − x̂)T (A + BK )T
√
Z∥2∥

√
ZF∥2 + 2∥(x − x̂)T (A + BK )T

√
Z∥2∥

√
ZD(w − ŵ)∥2

+ nλmax(Z)η2
) 1

2

≤
(
(x − x̂)T (A + BK )TZ(A + BK )(x − x̂) + 2θ∥(x − x̂)T (A + BK )T

√
Z∥

2
2 + (w − ŵ)TDTZD(w − ŵ)

+
∥(w − ŵ)TDT

√
Z∥

2
2

θ
+ 2

∥
√
ZF∥

2
2

θ
+ θ∥(w − ŵ)TDT

√
Z∥

2
2 + nλmax(Z)η2

) 1
2

≤

(
(1 + 2θ )(x − x̂)T (A + BK )TZ(A + BK )(x − x̂) +

(1 + θ + θ2)(w − ŵ)TDTZD(w − ŵ)
θ

+
n(2 + θ )λmax(Z)η2

θ

) 1
2

≤
√
κcV (x, x̂) +

√
1 + θ + θ2

θ
∥
√
ZD∥2∥w − ŵ∥2 +

√
n(2 + θ )λmax(Z)

θ
η

≤
√
κcV (x, x̂) +

√
p
1 + θ + θ2

θ
∥
√
ZD∥2∥w − ŵ∥ +

√
n(2 + θ )λmax(Z)

θ
η

≤ (1 − κ̂c)V (x, x̂) +

√
p
1 + θ + θ2

θ
∥
√
ZD∥2∥w − ŵ∥ +

√
n(2 + θ )λmax(Z)

θ
η. (4.8)

V (xd, x̂d) ≤ max

{
κ̃
(
(x − x̂)TZ(x − x̂)

) 1
2 ,

(1 + δc)
κ̂cψc

√
p
(1 + θ + θ2)

θ
∥
√
ZD∥2∥w − ŵ∥,

(1 + 1/δc)
κ̂cψc

√
n(2 + θ )λmax(Z)

θ
η

}
, (4.9)

Box II.

computed based on the maximum of the errors between concrete
subsystems and their finite abstractions instead of being a linear
combination of them which is the case in Swikir et al. (2018).
Hence, by increasing the number of subsystems, our error does
not change here whereas the error computed by the dissipativity
based approach proposed by Swikir et al. (2018) will increase as
shown in Fig. 2.

Now, we synthesize a controller forΣ via abstractions Σ̂i such
that the temperature of each room is maintained in the comfort
zone S = [19, 21]. The idea here is to design local controllers
for abstractions Σ̂i, and then refine them to concrete subsystems
Σi. To do so, the local controllers are synthesized while assum-
ing that the other subsystems meet their safety specifications.
This approach, called assume-guarantee reasoning, allows for the
compositional synthesis of controllers as well. The computation
times for constructing abstractions and synthesizing controllers
for Σi are 0.048 s and 0.001 s, respectively. Fig. 3 shows the
state trajectories of the closed-loop system Σ , consisting of 1000
rooms, under control inputs ui with the state and input quan-
tization parameters ηi = 0.01 and µi = 0.01, ∀i ∈ [1; 1000],
respectively.

5.2. Fully connected network

In order to show the applicability of our approach to strongly
connected networks, we consider a nonlinear control system Σ

Fig. 3. State trajectories of the closed-loop system Σ consisting of 1000 rooms.

described by

Σ :

{
x(k + 1) = Ax(k) + ϕ(x) + ν(k),

y(k) = x(k),

where A = In − τL for some Laplacian matrix L ∈ Rn×n of
an undirected graph (Godsil & Royle, 2001), and constant 0 <

τ < 1/∆, where ∆ is the maximum degree of the graph (Godsil
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& Royle, 2001). Moreover x(k) = [x1(k); . . . ; xn(k)], ν(k) =

[ν1(k); . . . ; νn(k)], and ϕ(x) = [ϕ1(x1); . . . ;ϕn(xn)], where ϕi(xi) =

sin(xi),∀i ∈ [1; n]. Assume L is the Laplacian matrix of a complete
graph:

L =

⎡⎢⎢⎢⎢⎣
n − 1 −1 · · · · · · −1
−1 n − 1 −1 · · · −1
−1 −1 n − 1 · · · −1
...

. . .
. . .

...

−1 · · · · · · −1 n − 1

⎤⎥⎥⎥⎥⎦ .
Now, by introducing Σi described by

Σi :

{
xi(k + 1) = aixi(k) + ϕi(xi) + diωi(k) + νi(k),

yi(k) = xi(k),

where ai = {A}ii, ωi(k) = [yi1; . . . ; yi(i−1); yi(i+1); . . . ; yin], di =

[{A}i1; . . . ; {A}i(i−1); {A}i(i+1); . . . ; {A}in]
T , one can readily verify

that Σ = I0n (Σ1, . . . ,Σn). Clearly, for any i ∈ [1; n], conditions
(4.1) and (4.2) are satisfied with Gi(xi, x̂i) = ∥xi − x̂i∥, Hi(xi) =

−cixi, where ai+1
2 < ci < ai + 1, αi(s) = αi(s) = s, κi(s) =

(1 − (1 + ai − ci)) s, γiint (s) = ∥di∥s, and γiext (s) = 0, ∀s ∈ R≥0.
Note that (4.4) is satisfied with γ̂ = Id. Consequently, Gi(xi, x̂i) =

∥xi−x̂i∥ is an alternating simulation function from Σ̂i, constructed
as in Definition 4.2, to Σi.

Fix τ =
0.1
∆

=
0.1
n−1 , and let, ∀i ∈ [1; n], the K∞ functions λi,

ψi, and κ̂i in the proof of Theorem 4.3 be as follows: λi = Id,
ψi(s) = 0.99s, κ̂i = κi. Since we have γij(s) < Id, ∀i, j ∈

[1; n], i ̸= j, the small-gain condition (3.7) is satisfied without
any restriction on the number of subsystems. Using the results
in Theorem 3.4 with δ−1

i = Id, ∀i ∈ [1; n], one can verify that
V (x, x̂) = maxi{∥xi − x̂i∥} is an alternating simulation function
from Σ̂ = I0n (Σ̂1, . . . , Σ̂n) to Σ satisfying conditions (2.5) and
(2.6) with α̃(s) = s, ρ̃ext (s) = 0, ∀s ∈ R≥0, ε̃ = maxi

{
2.02ηi

1−(1+ai−ci)

}
,

σ̃ (s) = max
{
maxi

{(
1 −

(1−(1+ai−ci))
102

)
s
}
,maxi

{
2.02∥di∥

1−(1+ai−ci)
s
}}

,

where ηi is the state set quantization parameter of abstraction Σ̂i.
Similar to the previous case study, in order to compare our

compositional technique to the one proposed by Swikir et al.
(2018), we have assumed that Ŷji = Ŵij, i.e. ϖ̂ij = 0, ∀i, j ∈

[1; n], i ̸= j. A comparison of the error ε̂ in (2.7) resulted from
the dissipativity approach proposed by Swikir et al. (2018) and
the small-gain approach introduced here is shown in Fig. 4. We
compute ε̂ for different number of subsystems n and different
values of the state set quantization parameters ηi for abstractions
Σ̂i, ∀i ∈ [1; n]. Clearly, the small-gain approach results in less
mismatch errors than those obtained using the dissipativity based
approach introduced by Swikir et al. (2018). The computation
time for constructing abstractions for Σi is 0.9 s after fixing
n = 1000, ηi = 0.01, µi = 0.01, xi ∈ [0, 10], νi ∈ [0, 1],
∀i ∈ [1; n].

6. Conclusion

In this paper, we proposed a compositional framework for the
construction of finite abstractions of interconnected discrete-time
control systems. First, we used a notion of so-called alternating
simulation functions in order to construct compositionally an
overall alternating simulation function that is used to quantify
the error between the output behavior of the overall intercon-
nected concrete system and the one of its finite abstraction.
Furthermore, we provided a technique to construct finite abstrac-
tions together with their corresponding alternating simulation
functions for discrete-time control systems under incremental
input-to-state stabilizability property. Finally, we illustrated the

Fig. 4. Fully connected network: Comparison of errors in (2.7) resulted from
our approach based on small-gain condition with those resulted from the
approach proposed by Swikir et al. (2018) based on dissipativity-type condition
for different values of n ≥ 1 and ηi .

proposed results by constructing finite abstractions of two net-
works of (linear and nonlinear) discrete-time control systems
and their corresponding alternating simulation functions in a
compositional fashion. We elucidated the effectiveness of our
compositionality results in comparison with the existing ones
using dissipativity-type reasoning.
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