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Abstract

This paper deals with the establishment of Input-to-State Stability (ISS) estimates for infinite dimensional systems with respect
to both boundary and distributed disturbances. First, a new approach is developed for the establishment of ISS estimates for a
class of Riesz-spectral boundary control systems satisfying certain eigenvalue constraints. Second, a concept of weak solutions
is introduced in order to relax the disturbances regularity assumptions required to ensure the existence of classical solutions.
The proposed concept of weak solutions, that applies to a large class of boundary control systems which is not limited to the
Riesz-spectral ones, provides a natural extension of the concept of both classical and mild solutions. Assuming that an ISS
estimate holds true for classical solutions, we show the existence, the uniqueness, and the ISS property of the weak solutions.

Key words: Distributed parameter systems; Boundary control systems; Boundary disturbances; Input-to-state stability;
Weak solutions.

1 Introduction

The concept of Input-to-State Stability (ISS), originally
introduced by Sontag for finite dimensional systems [33],
is one of the main tools for assessing the robustness of a
system with respect to external disturbances. This no-
tion has been extensively investigated for finite dimen-
sional nonlinear systems during the last three decades.
More recently, the possible extension of ISS properties
to both linear [2,18,19,20,34] and nonlinear [36,37] Par-
tial Differential Equations (PDEs), and more generally
to infinite dimensional systems, has attracted much at-
tention [21,29,30].

For infinite dimensional systems, there exist essentially
two distinct types of perturbations. The first type in-
cludes distributed perturbations; namely, perturbations
acting directly in the state equation. The second type
concerns boundary perturbations; namely, perturba-
tions acting on the system state through an algebraic
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constraint by the means of an unbounded operator. In
the case of PDEs, the distributed perturbations are also
called in-domain perturbations as they appear directly
in the PDEs. In contrast, the boundary perturbations
appear in the boundary conditions of the PDEs. This
second type of perturbation naturally appears in nu-
merous boundary control problems such as heat equa-
tions [8], transport equations [19], diffusion or diffusive
equations [2], and vibration of structures [8] with nu-
merous practical applications, e.g., in robotics [12,13]
and aerospace engineering [22].

While many results have been reported regarding
the ISS property with respect to distributed distur-
bances [1,9,10,24,25,26,27,31], the establishment of ISS
properties with respect to boundary disturbances re-
mains challenging [2,18,19,20]. The traditional method
to study abstract boundary control systems consists
of transfering the boundary disturbances into a dis-
tributed one by means of a bounded lifting operator. By
doing so, the original boundary control system is made
equivalent to a standard evolution equation for which ef-
ficient analysis tools exist. The main issue with such an
approach is that the resulting distributed perturbation
involves the time derivative of the boundary perturba-
tion [8]. In particular, this induces two main difficulties.
First, this approach fails, in general, to establish the
ISS property with respect to the boundary disturbance,
but can only show the ISS property with respect to the
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first time derivative of the boundary disturbance. A no-
table exception is the case of monotone control systems
for which the lifting approach can be successfully used
to establish ISS estimates, see [28] for details. Second,
in order to ensure the existence of classical solutions,
one has to assume that the boundary disturbance is
twice continuously differentiable. The relaxation of this
regularity assumption requires the introduction of a
concept of mild or weak solutions extending the one of
classical solutions. However, the explicit occurrence of
the time derivative of the boundary perturbation in the
evolution equation does not allow, in a general setting,
a straightforward introduction of such a concept of mild
or weak solutions for boundary disturbances that are
only assumed, e.g., to be continuous [11].

Inspired by well established finite-dimensional tech-
niques, it has been proposed to resort to Lyapunov func-
tions to establish the ISS properties of PDEs [2,34,36,37].
An other approach, based on functional analysis tools,
has been proposed in [19] for the study of 1-D parabolic
equations. In the problem therein, (the negative of)
the underlying disturbance free operator belongs to the
class of Sturm-Liouville operators. Thus, its eigenvec-
tors can be selected such that they form a Hilbert basis
of the underlying Hilbert space. By projecting the sys-
tem trajectories onto this Hilbert basis and using the
self-adjoint nature of the disturbance free operator, it
was shown that the analysis of the system trajectories
reduces to the study of a countably infinite number of
Ordinary Differential Equations (ODEs). Each of these
ODEs characterizes the time domain evolution of one co-
efficient of the system trajectory when expressed in the
aforementioned Hilbert basis. Then, the ISS property
was obtained by solving these ODEs and by resorting to
Parsevals identity. On one hand, this idea of projecting
the system trajectories over a Hilbert basis was then in-
vestigated in [17] for the study of the asymptotic gains
of a damped wave equation. On the other hand, this
approach was further investigated in [23] for the study
of the ISS properties of a clamped-free damped string.
Speciffically, the system trajectories were projected over
a Riesz basis [5] formed by eigenvectors of the distur-
bance free operator. Then, the property connecting the
norm of a vector and its coefficients in a Riesz basis was
used to obtain the desired ISS estimates.

The contribution of this paper is twofold. First, we de-
velop a new approach for the establishment of ISS esti-
mates with respect to boundary disturbances for a class
of Riesz-spectral boundary control systems satisfying
certain eigenvalue constraints. The ISS property of such
analytic semigroups was investigated first in [14,15,16]
for L∞ boundary inputs. The problem was embedded
into the extrapolation space H−1 while invoking admis-
sibility conditions for returning to the original Hilbert
space H. The approach adopted in this paper differs by
generalizing the ideas developed first in [19] and then
in [23]. Assuming boundary and distributed distur-

bances of class C2 and C1, respectively, the ISS property
is established for classical solutions by taking advantage
of the projection of the system trajectories over a Riesz
basis formed by the eigenvectors of the disturbance free
operator. This new tool can be used either to derive
general (see proof of Theorem 1) or system specific
(see Subsection 5.3) versions of the ISS estimates. The
advantage of this approach is fourfold. First, all the
computations are performed within the original Hilbert
space H while avoiding the embedding of the problem
into the extrapolation space H−1. Second, it provides a
spectral decomposition of the Riesz-spectral boundary
control system under the form of a countable infinite
number of ODEs describing the time domain evolution
of the coefficients of the system trajectory in the Riesz
basis. Such spectral decompositions have been used, e.g.,
for control design; see [6,7] for the feedback stabilization
of heat and wave equations. However, these classical
spectral decompositions involve the time derivative ḋ
of the boundary disturbance d. In sharp contrast, the
one provided in this paper only involves the boundary
perturbation d. Third, we show that the d-term of the
aforementioned spectral decomposition can be related
to stationary solutions of the studied Riesz-spectral
boundary control system. Thus, the obtained constant
related to the boundary perturbation in the ISS esti-
mate is expressed as a function of the energy of station-
ary solutions of the abstract boundary control system.
Finally, it is shown that the approach used for deriving
the ISS estimate also allows the direct establishment of
fading memory estimates without invoking a conversion
lemma [21, Chap. 7]. Such fading memory estimates
are useful for the establishment of small gain conditions
ensuring the stability of interconnected systems [21].

The second contribution of this paper deals with the in-
troduction of a concept of weak solutions for abstract
boundary control systems that allows the relaxation of
the perturbations regularity assumptions from C2 and C1

to C0. This approach applies to a general class of bound-
ary control systems that is not limited to Riesz-spectral
ones. The first concept of weak solutions for infinite di-
mensional nonhomogeneous Cauchy problems was ori-
gally introduced in [3]. In the case of Hilbert spaces,
an alternative version of such a concept was proposed
under a variational form, see, e.g., [8, Def. 3.1.6]. The
advantage of such a formulation is that it bridges the
gap with the concept of solutions from distribution the-
ory [8, A.5.29]. The purpose of this paper is to extend
such a concept to the case of abstract boundary control
systems. The proposed approach is an extension of the
concept of classical solutions that presents three main
advantages. First, the concept of weak solution is intro-
duced direclty within the original Hilbert spaceH under
a variational formulation. In particular, it provides an
alternative framework that avoids either the traditional
embedding of the original problem into the extrapola-
tion space H−1 [11,35] or the abstract extension of the
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mild solutions by density arguments [32]. Second, the
proposed definition of weak solutions only depends on
the operators of the abstract boundary control system;
in particular, it does not make explicitly appear the C0-
semigroup generated by the disturbance free operator.
Third, by its variational formulation and the introduc-
tion of test functions, the concept of weak solution is in-
spired by distribution theory. Assuming that an ISS es-
timate holds true with respect to the classical solutions
of the abstract boundary control system, we show the
existence and the uniqueness of the weak solutions, as
well as their compatibility with the concept of mild so-
lutions. It is also shown that the ISS estimate satisfied
by classical solutions also holds true for weak solutions.

The remainder of this paper is organized as follows. No-
tations and definitions are introduced in Section 2. The
establishment of an ISS estimate for a class of Riesz-
spectral boundary control systems with respect to clas-
sical solutions is presented in Section 3. Then, a concept
of weak solutions and its properties are presented in Sec-
tion 4 for a large class of boundary control systems. The
obtained results are applied on an illustrative example in
Section 5. Concluding remarks are provided in Section 6.

2 Notations and Definitions

2.1 Notations

The sets of non-negative integers, positive integers, inte-
gers, real, non-negative real, positive real, negative real,
and complex numbers are denoted by N, N∗, Z, R, R+,
R

∗
+, R

∗
−, and C, respectively. For any z ∈ C, Re z de-

notes the real part of z. Throughout the paper, the field
K is either R or C. We consider the following classical
classes of comparison function:

K =
{

γ ∈ C0(R+;R+) : γ strictly increasing, γ(0) = 0
}

,

L =
{

γ ∈ C0(R+;R+) : γ strictly decreasing,

lim
t→+∞

γ(t) = 0

}

,

KL =
{

β ∈ C0(R+ × R+;R+) : β(·, t) ∈ K for t ≥ 0,

β(x, ·) ∈ L for x > 0} .

For an interval I ⊂ R and a K-normed linear space
(E, ‖·‖E), Cn(I;E) denotes the set of functions f : I →
E that are n times continuously differentiable. For any
a < b, we endow C0([a, b];E) with the norm ‖·‖C0([a,b];E)

defined for any f ∈ C0([a, b];E) by

‖f‖C0([a,b];E) , sup
t∈[a,b]

‖f(t)‖E.

For a given linear operator L, R(L), ker(L), and ρ(L)
denote its range, its kernel, and its resolvent set, respec-
tively. L(E,F ) denotes the set of bounded linear opera-
tors from E to F . Let (Km, ‖ · ‖Km) be a normed space

with m ∈ N∗. For a given basis E = (e1, e2, . . . , em) of
Km, we denote by ‖ · ‖∞,E the infinity norm 1 in E . By
virtue of the equivalence of the norms in finite dimen-
sion, we denote by c(E) ∈ R∗

+ the smallest constant such
that ‖ · ‖∞,E ≤ c(E)‖ · ‖Km .

Finally, we introduce the Kronecker notation: δa,b = 1 if
a = b, 0 otherwise. The time derivative of a real-valued
differentiable function f : I → R is denoted by ḟ . If H
is a Hilbert space, the time derivative of an H-valued
differentiable function f : I → H is denoted by df/dt.

2.2 Definitions and related properties

In this paper, we consider the following definition of
boundary control systems [8, Def. 3.3.2].

Definition 1 (Boundary control system) Let (H, 〈·, ·〉H)
be a separable Hilbert space over K and (Km, ‖ · ‖Km) be
a K-normed space with m ∈ N∗. Consider the abstract
system taking the form:















dX

dt
(t) = AX(t) + U(t), t > 0

BX(t) = d(t), t > 0

X(0) = X0

(1)

with

• A : D(A) ⊂ H → H a linear (unbounded) operator;
• B : D(B) ⊂ H → Km with D(A) ⊂ D(B) a linear
boundary operator;

• U : R+ → H the distributed disturbance;
• d : R+ → Km the lumped disturbance.

We say that (A,B) is a boundary control system, with
associated abstract system (1), if

(1) the disturbance free operator A0, defined over the

domain D(A0) , D(A)∩ ker(B) by A0 , A|D(A0)
,

is the generator of a C0-semigroup S on H;
(2) there exists a bounded operator B ∈ L(Km,H),

called a lifting operator, such that R(B) ⊂ D(A),
AB ∈ L(Km,H), and BB = IKm .

Remark 1 As the boundary input space Km is finite di-
mensional, the bounded nature of B and AB is immedi-
ate. Thus, the existence of the lifting operator B reduces
to the surjectivity of B|D(A).

We then introduce the concept of Riesz-spectral opera-
tors [8, Def. 2.3.4].

1 Defined as the maximum of the absolute values of the
vector components when written in the basis E .
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Definition 2 (Riesz spectral operator) Let A0 :
D(A0) ⊂ H → H be a linear and closed operator with
simple eigenvalues λn and corresponding eigenvectors
φn ∈ D(A0), n ∈ N. A0 is a Riesz-spectral operator if

(1) {φn, n ∈ N} is a Riesz basis [5]:
(a) {φn, n ∈ N} is maximal, i.e., span

K

n∈N

φn = H;

(b) there exist constants mR,MR ∈ R∗
+ such that

for all N ∈ N and all α0, . . . , αN ∈ K,

mR

N
∑

n=0

|αn|2 ≤
∥

∥

∥

∥

∥

N
∑

n=0

αnφn

∥

∥

∥

∥

∥

2

H

≤MR

N
∑

n=0

|αn|2;

(2)
(2) the closure of {λn, n ∈ N} is totally disconnected,

i.e. for any distinct a, b ∈ {λn, n ∈ N}, [a, b] 6⊂
{λn, n ∈ N}.

A subset of the properties satisfied by Riesz-spectral op-
erators are gathered in the following lemma [8, Lemmas
2.3.2 and 2.3.3].

Lemma 1 LetA0 : D(A0) ⊂ H → H be a Riesz-spectral
operator.With the notations of Definition 2, the following
are true.

• The eigenvalues of the adjoint operatorA∗
0 are provided

for n ∈ N by µn , λn and the associated eigenvectors
ψn ∈ D(A∗

0) can be selected such that {φn, n ∈ N} and
{ψn, n ∈ N} are biorthogonal, i.e., for all n,m ∈ N,
〈φn, ψm〉H = δn,m.

• The sequence of vectors {ψn, n ∈ N} is a Riesz basis.
• For all (αn)n∈N ∈ KN,

∑

n∈N

|αn|2 <∞ ⇔
∑

n∈N

αnφn ∈ H. (3)

• For all z ∈ H,

z =
∑

n∈N

〈z, ψn〉H φn =
∑

n∈N

〈z, φn〉H ψn. (4)

• A0 is the generator of a C0-semigroup S if and only if
sup
n∈N

Reλn <∞. In this case,

∀t ∈ R+, ∀z ∈ H, S(t)z =
∑

n∈N

eλnt 〈z, ψn〉H φn,

(5)
and its growth-bound satisfies ω0 = sup

n∈N

Reλn.

Finally, we introduce the following definition.

Definition 3 (Riesz-spectral boundary control system)
We say that (A,B) is a Riesz-spectral boundary control
system, with associated abstract system (1), if

(1) (A,B) is a boundary control system with associated
abstract system (1);

(2) the underlying disturbance free operator A0 is a
Riesz-spectral operator.

In particular, we consider the class of Riesz-spectral
boundary control systems such that:

ω0 = sup
n∈N

Reλn < 0, ζ , sup
n∈N

|λn|
|Reλn|

<∞. (6)

The constraint ω0 < 0 guarantees the exponential sta-
bility of the C0-semigroup S while ζ < +∞ ensures that
the system is of parabolic type. The slight relaxion of
the latter constraint is discussed in Remark 3.

3 ISS Estimate for Classical Solutions

We investigate in this section the case of classical solu-
tions [8, Def. 3.1.1] for (1).

Definition 4 (Classical solutions) Let (A,B) be
a boundary control system. Let X0 ∈ D(A), d ∈
C0(R+;K

m) such that BX0 = d(0), and U ∈ C0(R+;H)
be given. We say thatX is a classical solution of (1) asso-
ciated with (X0, d, U) ifX ∈ C0(R+;D(A))∩C1(R+;H),
X(0) = X0, and for all t ≥ 0, (dX/dt)(t) = AX(t)+U(t)
and BX(t) = d(t).

3.1 ISS for classical solutions

The ISS property of the studied class of Riesz-spectral
boundary control systems was established in [14,15,16]
for L∞ boundary inputs by using the usual concept of
mild solutions within the extrapolation space. In this
Subsection 3.1, we develop a different approach for as-
sessing such a result for classical solutions. The proposed
approach generalizes the ideas developed in [19,23] con-
sisting in the projection of the system trajectories over
adequate Riesz bases. This approach relies on a novel
spectral decomposition (see (9) and Remark 2) and can
be used either to derive general (see proof of Theorem 1)
or system specific (see Subsection 5.3) versions of the ISS
estimates. Such an approach is further investigated in
Subsection 3.2 for the derivation of a novel energy-based
ISS estimate (see Theorem 2), as well as the derivation
of fading memory estimates (see Remark 6).

Theorem 1 Let (A,B) be a Riesz-spectral boundary
control system such that the eigenvalue constraints (6)
hold. For every initial condition X0 ∈ D(A), and every
disturbance d ∈ C2(R+;K

m) and U ∈ C1(R+;H) such
that BX0 = d(0), the abstract system (1) has a unique
classical solutionX ∈ C0(R+;D(A))∩C1(R+;H) associ-
ated with (X0, d, U). Furthermore, the system is exponen-
tially ISS in the sense that there exist C0, C1, C2 ∈ R∗

+,
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independent of X0, d, and U , such that for all t ≥ 0,

‖X(t)‖H ≤C0e
−κ0t ‖X0‖H + C1‖d‖C0([0,t],Km)

+ C2‖U‖C0([0,t];H) (7)

with κ0 = −ω0 > 0, where ω0 is the growth bound of the
C0-semigroup S generated by the disturbance free opera-
tor A0.

Proof of Theorem 1. The existence and uniqueness
of the classical solutions under the assumed regular-
ity assumptions directly follows from classical results
for abstract boundary control systems (see, e.g., [8,
Thm 3.1.3 and Thm 3.3.3]). Thus, the proof is de-
voted to the derivation of the ISS estimate (7). Let
B be a lifting operator associated with the boundary
control system (A,B) as provided by Definition 1. Let
X0 ∈ D(A), d ∈ C2(R+;K

m), and U ∈ C1(R+;H) such
that BX0 = d(0) be given. Let X be the classical so-
lution of (1) associated with (X0, d, u). Adopting the
notations of Definition 2 and Lemma 1, we have from
(4) that for all t ≥ 0,

X(t) =
∑

n∈N

〈X(t), ψn〉H φn. (8)

Introducing for all n ∈ N and all t ≥ 0, cn(t) ,

〈X(t), ψn〉H, then cn ∈ C1(R+;K) and its time deriva-
tive is given by

ċn(t) =

〈

dX

dt
(t), ψn

〉

H

= 〈AX(t) + U(t), ψn〉H
= 〈A {X(t)−Bd(t)} , ψn〉H + 〈ABd(t), ψn〉H
+ 〈U(t), ψn〉H ,

where the last equality holds true because X(t) ∈ D(A)
and R(B) ⊂ D(A), providing X(t) − Bd(t) ∈ D(A).
Furthermore, B{X(t)−Bd(t)} = d(t)− d(t) = 0. Thus
X(t)−Bd(t) ∈ D(A0), yielding

〈A {X(t)−Bd(t)} , ψn〉H = 〈A0 {X(t)−Bd(t)} , ψn〉H
= 〈X(t)−Bd(t),A∗

0ψn〉H
=
〈

X(t)−Bd(t), λnψn

〉

H

= λn 〈X(t)−Bd(t), ψn〉H .

We get for all t ≥ 0,

ċn(t) = λncn(t)− λn 〈Bd(t), ψn〉H
+ 〈ABd(t), ψn〉H + 〈U(t), ψn〉H . (9)

As all the terms involved in (9) are continuous over R+,
a straightforward integration gives for all t ≥ 0,

cn(t) = eλntcn(0)− λn

∫ t

0

eλn(t−τ) 〈Bd(τ), ψn〉H dτ

+

∫ t

0

eλn(t−τ) 〈ABd(τ), ψn〉H dτ (10)

+

∫ t

0

eλn(t−τ) 〈U(τ), ψn〉H dτ.

Note that

X(t) =
∑

n∈N

cn(t)φn, S(t)X0 =
∑

n∈N

eλntcn(0)φn,

∫ t

0

S(t− τ)ABd(τ) dτ

=
∑

n∈N

〈
∫ t

0

S(t− τ)ABd(τ) dτ, ψn

〉

H

φn

=
∑

n∈N

∫ t

0

〈S(t− τ)ABd(τ), ψn〉H dτ φn

=
∑

n∈N

∫ t

0

eλn(t−τ) 〈ABd(τ), ψn〉H dτ φn,

and, similarly,

∫ t

0

S(t−τ)U(τ) dτ =
∑

n∈N

∫ t

0

eλn(t−τ) 〈U(τ), ψn〉H dτ φn.

(11)
Thus, introducing

αn(t) , λn

∫ t

0

eλn(t−τ) 〈Bd(τ), ψn〉H dτ, (12)

we deduce from (3) and (10) that (αn(t))n∈N is a square
summable sequence for all t ≥ 0 and that

α(t) ,
∑

n∈N

αn(t)φn ∈ H.

Therefore, multiplying both sides of (10) by φn and sum-
ming over n ∈ N yields

X(t) = S(t)X0 − α(t)

+

∫ t

0

S(t− τ) {ABd(τ) + U(τ)} dτ.

Thus, for all t ≥ 0, we have

‖X(t)‖H ≤ ‖S(t)X0‖H + ‖α(t)‖H (13)

+

∥

∥

∥

∥

∫ t

0

S(t− τ) {ABd(τ) + U(τ)} dτ
∥

∥

∥

∥

H

.

Let mr,MR ∈ R∗
+ be the constants associated with the

inequality (2) for the Riesz basis formed by the eigen-
vectors φn of A0. Introducing κ0 = −ω0 > 0 where ω0
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is the growth bound of S, it is easy to see based on (2)
and (5) that

‖S(t)X0‖H ≤
√

MR

mR

e−κ0t‖X0‖H. (14)

Similarly,

∥

∥

∥

∥

∫ t

0

S(t− τ) {ABd(τ) + U(τ)} dτ
∥

∥

∥

∥

H

≤
√

MR

mR

∫ t

0

e−κ0(t−τ)‖ABd(τ) + U(τ)‖H dτ

≤ 1

κ0

√

MR

mR

{

‖AB‖L(Km,H)‖d‖C0([0,t],Km) + ‖U‖C0([0,t];H)

}

.

(15)

It remains to evaluate ‖α(t)‖H. To do so, consider
a basis E = (e1, e2, . . . , em) of Km. We introduce
d1, d2, . . . , dm ∈ C2(R+;K) such that

d =

m
∑

k=1

dkek.

Based on this projection, one can get for all τ ∈ [0, t],

| 〈Bd(τ), ψn〉H | =
∣

∣

∣

∣

∣

m
∑

k=1

dk(τ) 〈Bek, ψn〉H

∣

∣

∣

∣

∣

≤ ‖d(τ)‖∞,E

m
∑

k=1

| 〈Bek, ψn〉H |

≤ c(E)‖d(τ)‖Km

m
∑

k=1

| 〈Bek, ψn〉H |

≤ c(E)‖d‖C0([0,t];Km)

m
∑

k=1

| 〈Bek, ψn〉H |.

Thus, for all t ≥ 0, we have

|αn(t)| ≤|λn|
∫ t

0

eReλn(t−τ)| 〈Bd(τ), ψn〉H | dτ (16)

≤
∣

∣

∣

∣

λn
Reλn

∣

∣

∣

∣

c(E)‖d‖C0([0,t];Km)

m
∑

k=1

| 〈Bek, ψn〉H |

×
∫ t

0

−Reλn · eReλn(t−τ) dτ

≤ζ c(E)‖d‖C0([0,t];Km)

m
∑

k=1

| 〈Bek, ψn〉H |,

where the eigenvalue constraints (6) have been used. We
deduce that, for all t ≥ 0,

|αn(t)|2 ≤ mζ2 c(E)2‖d‖2C0([0,t];Km)

m
∑

k=1

| 〈Bek, ψn〉H |2.

From (2), we deduce first that

∑

n∈N

|αn(t)|2 ≤ m

mR

ζ2 c(E)2‖d‖2C0([0,t];Km)

m
∑

k=1

‖Bek‖2H,

and then, for all t ≥ 0,

‖α(t)‖H ≤ ζ c(E)

√

√

√

√m
MR

mR

m
∑

k=1

‖Bek‖2H‖d‖C0([0,t];Km).

(17)
Substituting inequalities (14-15) and (17) into (13), we
obtain the desired result (7) with

C0 =

√

MR

mR

, C2 =
1

κ0

√

MR

mR

,

C1 =

√

MR

mR







1

κ0
‖AB‖L(Km,H) + ζ c(E)

√

√

√

√m

m
∑

k=1

‖Bek‖2H







.

(18)
This concludes the proof. ✷

Remark 2 Equations (8-9) actually hold true for the
classical solutions associated with any Riesz-spectral
boundary control system. Thus, the original Riesz-
spectral boundary control system is equivalent to a
countably infinite number of uncoupled ODEs describing
the time domain evolution of the coefficients cn corre-
sponding to the projection of the system trajectories onto
the Riesz basis {φn, n ∈ N}. The notable feature of the
obtained ODEs (9) is that they provide a spectral de-
composition that involves the boundary disturbance d but
avoids the occurrence of its time derivative ḋ. This im-
portant feature offers opportunities for feedback control
design. We refer, e.g., to [6,7] for the global stabiliza-
tion of heat and wave equations based on such a spectral
decomposition but in the presence of a ḋ term.

Remark 3 In the proof of Theorem 1, the eigenvalue
constraint ζ <∞ can be weakened to

∀k ∈ {1, . . . ,m},
∑

n≥0

∣

∣

∣

∣

λn
Reλn

∣

∣

∣

∣

2

|〈Bek, ψn〉H|2 <∞.

(19)
It is easy to see that the condition above does not depend
on a specific selection of either the lifting operator B
(when ω0 < 0) or the basis E = (e1, e2, . . . , em) of Km.
In this case, the constant C1 is given by

C1 =
1

κ0

√

MR

mR

‖AB‖L(Km,H) (20)

+ c(E)

√

√

√

√mMR

m
∑

k=1

∑

n≥0

∣

∣

∣

∣

λn
Reλn

∣

∣

∣

∣

2

|〈Bek, ψn〉H|2.

6



3.2 An energy-based interpretation for the constant re-
lated to the boundary perturbation in the ISS esti-
mate

The obtained expression (18) of the constantC1 depends
on the selected lifting operator B. However, the lifting
operator provided by Definition 1 is not unique. The
objective of this subsection is to provide a constructive
definition of a constant C1, independent of a specific
selection of the lifting operator B, such that the ISS
estimate (7) holds true.

Lemma 2 Let (A,B) be a boundary control system such
that 0 ∈ ρ(A0). For any e ∈ Km, there exists a unique
Xe ∈ D(A) such that AXe = 0 and BXe = e. Further-
more, if B is a lifting operator associated with (A,B),
then

Xe = Be−A−1
0 ABe.

Proof of Lemma 2. For the uniqueness part, by lin-
earity, it is sufficient to check that AX = 0 and BX = 0
implies X = 0. But BX = 0 implies X ∈ D(A0) whence
A0X = 0. As A0 is injective, this yields X = 0. For the
existence part, letB be a lifting operator associated with
the boundary control system (A,B) as provided by Def-

inition 1. Consider X̃e = Xe−Be. Then forXe ∈ D(A),

AXe = 0 and BXe = e

⇔ AX̃e = −ABe and BX̃e = 0

⇔ A0X̃e = −ABe and X̃e ∈ D(A0)

⇔ X̃e = −A−1
0 ABe.

Thus, Xe = Be−A−1
0 ABe is the unique solution. ✷

Remark 4 The stationary trajectory X(t) = Xe pro-
vided by Lemma 2 is the classical solution of the abstract
boundary control system (1) associated with the initial
condition X0 = Xe, the constant boundary disturbance
d(t) = e, and the zero distributed disturbance U = 0.

We can now introduce the main result of this section.

Theorem 2 Let E = (e1, e2, . . . , em) be a basis of Km.
Under the assumptions of Theorem 1, the conclusion of
the theorem holds true with constants C0, C1, C2 > 0
involved in the ISS estimate (7) given by

C0 =

√

MR

mR

, C2 =
1

κ0

√

MR

mR

,

C1 = ζ c(E)

√

√

√

√m
MR

mR

m
∑

k=1

‖Xe,k‖2H,

where Xe,k ∈ D(A) is, for all k ∈ {1, . . . ,m}, the unique
solution of AXe,k = 0 and BXe,k = ek.

Proof of Theorem 2. Consider the proof of Theo-
rem 1 up to Equation (9) included. For the basis E =
(e1, e2, . . . , em) of Km, let d1, d2, . . . , dm ∈ C2(R+;K) be
such that

d =
m
∑

k=1

dkek.

As A0 is a Riesz-spectral operator with ω0 < 0, we
have 0 ∈ ρ(A0). Based on Lemma 2, let, for any
k ∈ {1, . . . ,m}, Xe,k ∈ D(A) be the unique solution of
AXe,k = 0 and BXe,k = ek. In particular, an explicit

expression is given by Xe,k = Bek − A−1
0 ABek. Intro-

ducing X̃e,k , Xe,k − Bek = −A−1
0 ABek, this yields

X̃e,k ∈ D(A0). Thus we have,

λn 〈Xe,k, ψn〉H =
〈

Xe,k, λnψn

〉

H

= 〈Xe,k,A∗
0ψn〉H

=
〈

X̃e,k,A∗
0ψn

〉

H
+ 〈Bek,A∗

0ψn〉H
=
〈

A0X̃e,k, ψn

〉

H
+ λn 〈Bek, ψn〉H

= −〈ABek, ψn〉H + λn 〈Bek, ψn〉H .

Introducing that

D =

m
∑

k=1

dkXe,k ∈ C0(R+;D(A)) ∩C2(R+;H), (21)

it follows that

− λn 〈Bd(t), ψn〉H + 〈ABd(t), ψn〉H

=

m
∑

k=1

dk(t) {−λn 〈Bek, ψn〉H + 〈ABek, ψn〉H}

= −λn
m
∑

k=1

dk(t) 〈Xe,k, ψn〉H

= −λn 〈D(t), ψn〉H .

Thus, we get from (9) that for all t ≥ 0,

ċn(t) = λncn(t)− λn 〈D(t), ψn〉H + 〈U(t), ψn〉H ,

and that for all t ≥ 0,

cn(t) = eλntcn(0)− λn

∫ t

0

eλn(t−τ) 〈D(τ), ψn〉H dτ

+

∫ t

0

eλn(t−τ) 〈U(τ), ψn〉H dτ.

The first and third terms on the right hand side of the
equation above have been estimated in the proof of The-
orem 1. This procedure yields the constants C0 and C2.
The second term can be treated with the same proce-
dure that one employed for (12) via the projection (21).
This also provides the estimate of C1. ✷
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Remark 5 The constantC1 given byTheorem 2 depends
on the energy ‖Xe,k‖H of m linearly independent 2 sta-
tionary solutions Xe,k of the abstract boundary control
system that are associated with the constant boundary
perturbations d(t) = ek and the zero distributed distur-
bance U = 0.

Remark 6 One of the main applications of ISS esti-
mates relies in the establishment of small gain conditions
for assessing the stability of interconnected systems [21,
Sec. 8.1]. This requires the conversion of the ISS esti-
mates into fading memory estimates, e.g., by means of a
conversion lemma [21, Chap. 7]. Nevertheless, in the con-
text of Theorems 1 and 2, it is actually not necessary to
resort to such a conversion lemma because a slight adap-
tation of the associated proofs (specifically, estimates (15-
16)) directly shows that the following fading memory es-
timate holds true for all ǫ ∈ [0, 1) and all t ≥ 0,

‖X(t)‖H ≤C0e
−κ0t ‖X0‖H +

C1

1− ǫ
‖e−ǫκ0(t−(·))d‖C0([0,t],Km)

+
C2

1− ǫ
‖e−ǫκ0(t−(·))U‖C0([0,t];H).

4 Concept of Weak Solutions and ISS Property

Assume that a given boundary control system 3 (A,B)
satisfies an ISS estimate 4 with respect to classical solu-
tions. The objective of this section is to extend such an
ISS estimate to every initial condition X0 ∈ H and ev-
ery disturbance d ∈ C0(R+;K

m) and U ∈ C0(R+;H). To
do so, we introduce a concept of weak solutions that ex-
tends to abstract boundary control systems the concept
of weak solutions originally introduced for infinite di-
mensional nonhomogeneous Cauchy problems in [3] and
further investigated in [8, Def. 3.1.6, A.5.29]. This rep-
resents an alternative to the traditional concept of mild
solutions defined within the extrapolation space [11].

4.1 Definition of weak solutions

To motivate the definition of weak solutions, let
us consider first X a classical solution associated
with (X0, d, U). Let T > 0 and a function z ∈
C0([0, T ];D(A∗

0)) be arbitrarily given. AsX(t)−Bd(t) ∈
D(A0), we obtain for all t ∈ [0, T ],

〈

dX

dt
(t), z(t)

〉

H

= 〈AX(t) + U(t), z(t)〉H
= 〈A0 {X(t)−Bd(t)} , z(t)〉H
+ 〈ABd(t), z(t)〉H + 〈U(t), z(t)〉H

2 Directly follows from the definition of Xe,k and the fact
that E is a basis.
3 Not necessarily a Riesz-spectral one.
4 In the sense provided later in Theorem 3.

= 〈X(t),A∗
0z(t)〉H − 〈Bd(t),A∗

0z(t)〉H
+ 〈ABd(t), z(t)〉H + 〈U(t), z(t)〉H .

Assuming now that z ∈ C0([0, T ];D(A∗
0))∩C1([0, T ];H),

integration by parts gives

∫ T

0

〈

dX

dt
(t), z(t)

〉

H

dt = 〈X(T ), z(T )〉H − 〈X0, z(0)〉H

−
∫ T

0

〈

X(t),
dz

dt
(t)

〉

H

dt.

Based on the two identities above, we introduce the fol-
lowing definition.

Definition 5 (Weak solutions) Let (A,B) be a
boundary control system. For X0 ∈ H and disturbances
d ∈ C0(R+;K

m) and U ∈ C0(R+;H), we say that
X ∈ C0(R+;H) is a weak solution of the abstract bound-
ary control system (1) associated with (X0, d, U) if for
all T > 0 and for all z ∈ C0([0, T ];D(A∗

0))∩C1([0, T ];H)
such thatA∗

0z ∈ C0([0, T ];H) and z(T ) = 0 (such a func-
tion z is called a test function over [0, T ]), the following
equality holds true:

∫ T

0

〈

X(t),A∗
0z(t) +

dz

dt
(t)

〉

H

dt

= −〈X0, z(0)〉H +

∫ T

0

〈Bd(t),A∗
0z(t)〉H dt (22)

−
∫ T

0

〈ABd(t), z(t)〉H dt−
∫ T

0

〈U(t), z(t)〉H dt,

where B is an arbitrary lifting operator associated with
(A,B).

Remark 7 Definition 5 is relevant because for any T >
0, the set of test functions over [0, T ] is not reduced to
only the zero function. Indeed, the function z defined for
all t ∈ [0, T ] by z(t) = (t− T )z0 with z0 ∈ D(A∗

0)\{0} is
obviously a non zero test function over [0, T ].

Remark 8 The definition of a weak solution for the ab-
stract system (1) is compatible with the notion of classi-
cal solution. Indeed, the developments preliminary to the
introduction of Definition 5 show that a classical solution
is also a weak solution.

Remark 9 At first sight, the right hand side of (22) de-
pends on the selected lifting operator B, making it neces-
sary to specify the selected lifting operator B when say-
ing that a trajectory X is a weak solution associated with
(X0, d, U). However, Definition 5 implicitly claims that a
weak solution is actually independent of the selected lift-
ing operator B. This directly follows from the fact that if

8



B and B̃ are two lifting operators associated with (A,B),
then B̂ , B − B̃ satisfies R(B̂) ⊂ D(A) and BB̂ =

BB − BB̃ = IKm − IKm = 0, i.e., R(B̂) ⊂ D(A0). Thus

we obtain,
〈

B̂d(t),A∗
0z(t)

〉

H
=
〈

A0B̂d(t), z(t)
〉

H
=

〈

AB̂d(t), z(t)
〉

H
, from which we deduce that

〈Bd(t),A∗
0z(t)〉H − 〈ABd(t), z(t)〉H
=
〈

B̃d(t),A∗
0z(t)

〉

H
−
〈

AB̃d(t), z(t)
〉

H
.

This equality shows that the right hand side of (22) re-
mains unchanged when switching between different lifting
operators B associated with (A,B). So, it indeed makes
sense to discuss about weak solutions without mentioning
a particular lifting operator B associated with (A,B).

Remark 10 Note that the concept of weak solution does
not require that the initial condition satisfies the boundary
condition BX0 = d(0). Such an algebraic condition is not
even well defined when X0 /∈ D(B).

4.2 Properties of weak solutions

When defining a notion of a weak solution, it is generally
desirable to preserve the uniqueness of the solution.

Lemma 3 Let (A,B) be a boundary control system such
that the disturbance-free operator A0 is injective. Then,
for any given X0 ∈ H and disturbances d ∈ C0(R+;K

m)
and u ∈ C0(R+;H), there exists at most one weak solu-
tion associated with (X0, d, U) of the abstract system (1).

The proof of Lemma 3 is in Annex A. We deduce from
Remark 8 and Lemma 3 the following result.

Corollary 1 Let (A,B) be a boundary control system
such that the disturbance-free operator A0 is injective.
For any initial condition X0 ∈ D(A) and disturbances
d ∈ C2(R+;K

m) and U ∈ C1(R+;H) such that BX0 =
d(0), the concepts of classical and weak solutions coin-
cide. More specifically, the two following statements are
equivalent:

(1) X is a classical solution associated with (X0, d, U);
(2) X is a weak solution associated with (X0, d, U).

When X is a classical solution of the abstract boundary
control system (1) associated with (X0, d, U), we have by
Definition 4 that X(0) = X0. Such an initial condition
is not explicitly imposed in the Definition 5 of a weak
solution. However, it is a consequence of (22) as shown
by the following lemma.

Lemma 4 Let (A,B) be a boundary control system. Un-
der the terms of Definition 5, assume that X is a weak
solution associated with (X0, d, U). Then X(0) = X0.

Proof of Lemma 4. Let z ∈ C0(R+;D(A∗
0)) ∩

C1(R+;H) such that A∗
0z ∈ C0(R+;H). Then for all

T > 0, z̃T , z − z(T ) is a test function over [0, T ]. As
dz(T )/dt = 0, (22) gives for all T > 0,

1

T

∫ T

0

〈X(t),A∗
0z(t)−A∗

0z(T )〉H dt

+
1

T

∫ T

0

〈

X(t),
dz

dt
(t)

〉

H

dt

=

〈

X0,
z(T )− z(0)

T

〉

H

(23)

+
1

T

∫ T

0

〈Bd(t), {A∗
0z(t)−A∗

0z(T )}〉H dt

− 1

T

∫ T

0

〈ABd(t), z(t)− z(T )〉H dt

− 1

T

∫ T

0

〈U(t), z(t)− z(T )〉H dt.

It is straightforward to show that for any f, g ∈
C0(R+;H),

lim
T→0+

1

T

∫ T

0

〈f(t), g(t)− g(T )〉H dt = 0.

Thus, based on the regularity assumptions given in Def-
inition 5, we deduce, by letting T → 0+ in (23),

〈

X(0),
dz

dt
(0)

〉

H

=

〈

X0,
dz

dt
(0)

〉

H

.

Taking in particular z(t) = tz0 with z0 ∈ D(A∗
0), we get

that 〈X(0)−X0, z0〉H = 0 holds true for all z0 ∈ D(A∗
0).

As D(A∗
0) = H, we deduce that X(0) = X0. ✷

Thus, for a weak solution X associated with (X0, d, u),
it makes sense to say that X0 is the initial condition of
the system trajectory.

4.3 Existence of weak solutions and extension of ISS
estimates

The proof of the following theorem is in Annex B.

Theorem 3 Let (A,B) be a boundary control system.
Assume that there exist β ∈ KL and γ1, γ2 ∈ K such
that for any initial condition X0 ∈ D(A) and any dis-
turbances d ∈ C2(R+;K

m) and U ∈ C1(R+;H) such
that BX0 = d(0), the classical solution X of the abstract
boundary control system (1) associated with (X0, d, U)
satisfies for all t ≥ 0,

‖X(t)‖H ≤β(‖X0‖H , t) + γ1
(

‖d‖C0([0,t],Km)

)

+ γ2
(

‖U‖C0([0,t];H)

)

. (24)
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Then, for any initial condition X0 ∈ H, and any distur-
bances d ∈ C0(R+;K

m) and U ∈ C0(R+;H):

(1) the abstract boundary control system (1) has a
unique weak solution X ∈ C0(R+;H) associated
with (X0, d, U);

(2) this weak solution satisfies the ISS estimate (24) for
all t ≥ 0.

Remark 11 Theorem 3 ensures that the ISS property
holds for weak solutions if and only if it holds for classical
solutions. Thus, in the study of a given abstract bound-
ary control system, it is actually sufficient to study the
ISS property for classical solutions associated with suffi-
ciently smooth disturbances (from the density argument
used in the proof of Theorem 3, the study can even be re-
stricted to the only disturbances of class C∞) to conclude
that the ISS property holds for weak solutions.

We directly deduce from Theorem 3 the following exten-
sion of Theorems 1 and 2 for Riesz-spectral operators.

Corollary 2 Let (A,B) be a Riesz-spectral boundary
control system such that the eigenvalue constraints (6)
hold true 5 . For every initial condition X0 ∈ H, and
every disturbance d ∈ C0(R+;K

m) and U ∈ C0(R+;H),
the abstract system (1) has a unique weak solution
X ∈ C0(R+;H) associated with (X0, d, U). Further-
more, X satisfies the ISS estimate (7) with constants
κ0, C0, C1, C2 given by either Theorem 1 or 2.

Based on the existence and uniqueness of weak solutions,
and by linearity of (22), we can state the following result.

Corollary 3 Assume that the assumptions of Theorem 3
hold true. For i ∈ {1, 2}, let Xi be the weak solution
associated with (Xi,0, di, Ui). Then, for all α, β ∈ K,
αX1 + βX2 is the unique weak solution associated with
(αX1,0 + βX2,0, αd1 + βd2, αU1 + βU2).

4.4 Mild solutions and semigroup property

4.4.1 Compatibility with the concept of mild solutions

When the boundary disturbance satisfies the additional
regularity assumption d ∈ C1(R+;K

m), a classical ap-
proach for extending the concept of classical solutions is
to define X provided by

X(t) = S(t)(X0 −Bd(0)) +Bd(t) (25)

+

∫ t

0

S(t− τ)
{

−Bḋ(τ) +ABd(τ) + U(τ)
}

dτ

as the mild solution associatedwith (X0, d, U). In partic-
ular, any classical solution X satisfies the identity (25).

5 The constraint ζ < ∞ can be relaxed to (19). In that case,
the constant C1 is given by (20).

The following result shows that such an approach is com-
patible with the concept of weak solutions.

Theorem 4 Let (A,B) be a boundary control system
such that the assumptions of Theorem 3 hold true. Un-
der the terms of Definition 5, let X be the weak solu-
tion associated with (X0, d, U). Assume that the bound-
ary disturbance satisfies the extra regularity assumption
d ∈ C1(R+;K

m). Then X is also a mild solution in the
sense that (25) holds true for all t ≥ 0.

Proof of Theorem 4. Let X0 ∈ H, d ∈ C1(R+;K
m),

U ∈ C0(R+;H), and T > 0 be arbitrarily given.
We denote by X the weak solution associated with
(X0, d, U). As C2([0, T ];Km) is dense in C1([0, T ];Km)
endowed with the usual norm ‖f‖C1([0,T ];Km) =

‖f‖C0([0,T ];Km) + ‖ḟ‖C0([0,T ];Km), we can select, simi-
larly to the proof of Theorem 3, approximating se-
quences (X0,n)n ∈ D(A)N, (dn)n ∈ C2([0, T ];Km)N,
and (Un)n ∈ C1([0, T ];H)N such that BX0,n = dn(0),
X0,n −→

n→+∞
X0,

‖dn − d‖C0([0,T ];Km) −→
n→+∞

0,

‖ḋn − ḋ‖C0([0,T ];Km) −→
n→+∞

0,

‖Un − U‖C0([0,T ];H) −→
n→+∞

0.

We denote by Xn the unique classical solution of
the abstract system (1) over [0, T ] associated with
(X0,n, dn, Un). From (25), we obtain for all t ∈ [0, T ]
and all n ∈ N,

Xn(t) = S(t)(X0,n −Bdn(0)) +Bdn(t) (26)

+

∫ t

0

S(t− τ)
{

−Bḋn(τ) +ABdn(τ) + Un(τ)
}

dτ.

Furthermore, from the proof of Theorem 3, we know that
‖Xn −X‖C0([0,T ];H) −→

n→+∞
0. Thus, by letting n→ +∞

in (26), we obtain that (25) holds true for all t ∈ [0, T ].
As T > 0 has been arbitrarily chosen, this concludes the
proof. ✷

4.4.2 Semigroup property

It is well known that the classical/mild solutions of the
abstract system (1) satisfy the semigroup property in the
sense that if X is the classical/mild solution associated
with (X0, d, U), then X(·+ t0) is the classical/mild solu-
tion associated with (X(t0), d(·+ t0), U(·+ t0)) for any
t0 > 0. The following result shows that this semigroup
property extends to the concept of weak solutions.

Theorem 5 Let (A,B) be a boundary control system
such that the assumptions of Theorem 3 hold true. Let
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X be the weak solution associated with an initial condi-
tion X0 ∈ H, a boundary disturbance d ∈ C0(R+;K

m),
and a distributed disturbance U ∈ C0(R+;H). Then, for
any t0 > 0,X(·+ t0) is the weak solution associated with
(X(t0), d(·+ t0), U(·+ t0)).

Proof ofTheorem5Note first that, based on the devel-
opments preliminary to the introduction of Definition 5,
we have for any classical solution X associated with
(X0, d, U), any T > 0, and any z ∈ C0([0, T ];D(A∗

0)) ∩
C1([0, T ];H) such that 6 A∗

0z ∈ C0([0, T ];H),

∫ T

0

〈

X(t),A∗
0z(t) +

dz

dt
(t)

〉

H

dt

= 〈X(T ), z(T )〉H − 〈X0, z(0)〉H (27)

+

∫ T

0

〈Bd(t),A∗
0z(t)〉H dt

−
∫ T

0

〈ABd(t), z(t)〉H dt−
∫ T

0

〈U(t), z(t)〉H dt.

By resorting to the same density argument as the one
employed in Step 4 of the proof of Theorem 3, this yields
that any weak solutionX associated with (X0, d, U) also
satisfies (27) for all T > 0 and all z ∈ C0([0, T ];D(A∗

0))∩
C1([0, T ];H) such that A∗

0z ∈ C0([0, T ];H).

Now, let X be the weak solution associated with
(X0, d, U). Let t0, T > 0 and a test function ẑ ∈
C0([0, T ];D(A∗

0)) ∩ C1([0, T ];H) over [0, T ] be arbitrar-
ily given. We define the test function z̃ ∈ C0([0, t0 +
T ];D(A∗

0)) ∩ C1([0, t0 + T ];H) over [0, t0 + T ] as z̃ =
ϕ(· − t0)|[0,t0+T ] where ϕ ∈ C0(R;D(A∗

0)) ∩ C1(R;H) is

given for all t ∈ [0, T ] and all k ∈ Z by ϕ(t + 2kT ) =
ẑ(t)−2kẑ(0) and ϕ(t+(2k+1)T ) = −ẑ(T − t)−2kẑ(0).
In particular we have z̃(t0 + T ) = ϕ(T ) = ẑ(T ) = 0 and
for all t ∈ [0, T ], z̃(t + t0) = ϕ(t) = ẑ(t). By using (27)
once with z = z̃|[0,t0] over [0, t0] and once with z = z̃

over [0, t0 + T ], we obtain after a change of variable:

∫ T

0

〈

X(t+ t0),A∗
0 ẑ(t) +

dẑ

dt
(t)

〉

H

dt

= −〈X(t0), ẑ(0)〉H +

∫ T

0

〈Bd(t+ t0),A∗
0ẑ(t)〉H dt

−
∫ T

0

〈ABd(t+ t0), ẑ(t)〉H dt

−
∫ T

0

〈U(t+ t0), ẑ(t)〉H dt.

As T , ẑ and t0 have been arbitrarily selected, it follows
from Definition 5 that for all t0 > 0,X(·+t0) is the weak
solution associated with (X(t0), d(·+ t0), U(·+ t0)). ✷

6 We do not impose here the condition z(T ) = 0 as in the
case of the test functions.

5 Application

Among the examples of applications, one can find 1D
parabolic PDEs [19] and a flexible damped string [23].
In this section, we detail another example of structural
vibrations, namely a damped Euler-Bernoulli beam.

We denote by L2(0, 1) and Hm(0, 1) the set of square
(Lebesgue) integrable functions over (0, 1) and the usual
Sobolev space of order m over (0, 1), respectively. We

also introduce H1
0 (0, 1) , {f ∈ H1(0, 1) : f(0) =

f(1) = 0}.

For a function f : R+ → L2(0, 1), we denote, with a

slight abuse of notation, f(t, ξ) , [f(t)] (ξ). When f ∈
C1(R+;H), we denote

df

dt
(t, ξ) ,

[

df

dt
(t)

]

(ξ). Finally,

when f : R+ → H1(0, 1), we denote f ′(t, ξ) , [f(t)]
′
(ξ).

5.1 Damped Euler-Bernoulli beam

We consider a damped Euler-Bernoulli beam with point
torque boundary conditions described by [8]:

∂2y

∂t2
+
∂4y

∂x4
− 2α

∂3y

∂t∂x2
= u, in R

∗
+ × (0, 1)

y(t, 0) = 0, t ∈ R
∗
+

y(t, 1) = 0, t ∈ R
∗
+

∂2y

∂x2
(t, 0) = d1(t), t ∈ R

∗
+

∂2y

∂x2
(t, 1) = d2(t), t ∈ R

∗
+

y(0, x) = y0(x), x ∈ (0, 1)

∂y

∂t
(0, x) = yt0(x), x ∈ (0, 1)

where α ∈ R∗
+ is a constant parameter. The functions

u ∈ C0(R+;L
2(0, 1)) and d1, d2 ∈ C0(R+;K) are dis-

tributed and boundary perturbations, respectively. The
functions y0 ∈ H2(0, 1)∩H1

0 (0, 1) and yt0 ∈ L2(0, 1) are
the initial conditions.

Introducing the Hilbert space

H =
(

H2(0, 1) ∩H1
0 (0, 1)

)

× L2(0, 1)

with the inner product defined for all (x1, x2), (x̂1, x̂2) ∈
H by

〈(x1, x2), (x̂1, x̂2)〉H =

∫ 1

0

x′′1 (ξ)x̂
′′
1 (ξ) + x2(ξ)x̂2(ξ) dξ,

the distributed parameter system can be written as the
abstract system (1) with A(x1, x2) = (x2,−x′′′′1 +2αx′′2 )
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defined over the domain

D(A) =
(

H4(0, 1) ∩H1
0 (0, 1)

)

×
(

H2(0, 1) ∩H1
0 (0, 1)

)

,

the boundary operator B(x1, x2) = (x′′1 (0), x
′′
1 (1)) de-

fined over the domain D(B) = D(A), the state vec-
tor X(t) = (y(t, ·), yt(t, ·)) ∈ H, the initial condition
X0 = (y0, yt0) ∈ H, d = (d1, d2) ∈ C0(R+;K

2), and
U = (0, u) ∈ C0(R+;H).

The linear operator B defined such that for all d =
(d1, d2) ∈ K2 and for all x ∈ [0, 1],

(Bd)(x) =

(

d2 − d1
6

x3 +
d1
2
x2 − 2d1 + d2

6
x, 0

)

,

is a lifting operator associated with (A,B). Following [8,
Exercise 2.23], it can be shown for α ∈ R

∗
+\{1} that

the disturbance-free operator A0 is a Riesz-spectral op-
erator generating a C0-semigroup of contractions. Thus,
(A,B) is a Riesz spectral boundary control system. Fur-
thermore, the eigenvalues ofA0 are given by {−n2π2(α±
i
√
1− α2), n ∈ N∗} when α ∈ (0, 1) while given by

{−n2π2(α ±
√
α2 − 1), n ∈ N

∗} when α > 1. In both
cases, the eigenvalue constraints (6) are satisfied with
ω0 = −απ2 and ζ = α−1 when α ∈ (0, 1) while ω0 =

−(α−
√
α2 − 1)π2 and ζ = 1 when α > 1.

5.2 Application of the main results

The adjoint operator A∗
0 is defined over the domain

D(A∗
0) = D(A0) by

A∗
0(x1, x2) = (−x2, x′′′′1 + 2αx′′2 ) .

Thus, for initial conditions y0 ∈ H2(0, 1) ∩ H1
0 (0, 1)

and yt0 ∈ L2(0, 1), and disturbances d = (d1, d2) ∈
C0(R+;K

2) and u ∈ C0(R+;L
2(0, 1)), X = (x1, x2) ∈

C0(R+;H) is the weak solution of the abstract boundary
control system (1) associated with ((y0, yt0), d, (0, u))
if for all T > 0 and for all test function z =
(z1, z2) ∈ C0([0, T ];D(A∗

0)) ∩ C1([0, T ];H) such that
A∗

0z ∈ C0([0, T ];H) and z(T ) = 0, the following equality
is satisfied:

∫ T

0

∫ 1

0

x′′1 (t, ξ)

{

−z′′2 +

[

dz1
dt

]′′
}

(t, ξ) dξ dt

+

∫ T

0

∫ 1

0

x2(t, ξ)

{

z′′′′1 + 2αz′′2 +
dz2
dt

}

(t, ξ) dξ dt

= −
∫ 1

0

y′′0 (ξ)z
′′
1 (0, ξ) dξ −

∫ 1

0

yt0(ξ)z2(0, ξ) dξ

+

∫ T

0

d1(t)z′2(t, 0) dt−
∫ T

0

d2(t)z′2(t, 1) dt

−
∫ T

0

∫ 1

0

u(t, ξ)z2(t, ξ) dξ dt.

As the chosen lifting operator satisfies AB = 0, the con-
stants Ci provided by both Theorems 1 and 2 are identi-
cal. Following [8, Exercise 2.23] and using the same ap-
proach that the one used in [23] for establishing the con-
stants mR and MR related to the Riesz basis, we have:

(1) Case α ∈ (0, 1): κ0 = απ2, ζ = α−1, mR = 1 − α,
MR = 1+ α;

(2) Case α > 1: κ0 = (α −
√
α2 − 1)π2, ζ = 1, mR =

1− α−1, MR = 1 + α−1.

The boundary disturbance evolves into the two dimen-
sional (m = 2) space (K2, ‖ · ‖2) endowed with the usual
euclidean norm. By selecting E = {e1, e2} as the canon-
ical basis of K2, we obtain c(E) = 1 and ‖Be1‖H =

‖Be2‖H = 1/
√
3. Thus, the constants of the ISS esti-

mate are given by

C0 =

√

1 + α

1− α
, C1 =

2

α
√
3

√

1 + α

1− α
, C2 =

1

απ2

√

1 + α

1− α
(28)

when α ∈ (0, 1), while

C0 =

√

α+ 1

α− 1
, C1 =

2√
3

√

α+ 1

α− 1
, (29)

C2 =
1

(α−
√
α2 − 1)π2

√

α+ 1

α− 1

when α > 1.

We observe that the ISS constants provided by Theo-
rems 1 and 2 diverge to +∞ when the quantity α → 1.
This is due to the fact that the disturbance-free opera-
tor A0 losses its Riesz-spectral properties when α = 1
with in particular mR −→

α→1
0. Thus, the obtained ISS

constants become conservative when α → 1 due to the
fact that the constants of the Riesz basis are such that
MR/mR −→

α→1
+∞. An approach for reducing such a con-

servatism is discussed in the next subsection.

It is interesting to evaluate the impact of an increased
damping term α. Constants C0 and C1 are decreas-
ing functions of α > 1 and we have C0 −→

α→+∞
1 and

C1 −→
α→+∞

2/
√
3. We also observe that C2 −→

α→+∞
+∞;

this divergent behavior is induced by the fact that Theo-
rems 1 and 2 deal with distributed perturbations evolv-
ing in the full space H. However, the distributed distur-
bance evolves in the subspace {0}×L2(0, 1). To provide
a tighter constant C2, we directly estimate (11) with the
sparse structure U = (0, u). This yields the following
version of the ISS constant:

C2 =

√

√

√

√

√

MR

∑

n∈N
∗

ǫ∈{−1,+1}

‖ψ2
n,ǫ‖2L2(0,1)

|Reλn,ǫ|2
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where ψ2
n,ε denotes the second component of ψn,ε. For

α > 1, the eigenvalues of the disturbance-free operator
A0 are given by λn,ǫ = −n2π2(α+ ǫ

√
α2 − 1) ∈ R

∗
−, n ∈

N∗ and ε ∈ {−1,+1}. The corresponding eigenvectors
are given by

φn,ε =
1

n2π2

√

α
(

α+ ε
√
α2 − 1

)

(

sin(nπ·)
λn,ε sin(nπ·)

)

.

The associated biorthogonal sequence is given by

ψn,ε =
2
√

α
(

α+ ε
√
α2 − 1

)

n2π2
(

1− (α+ ǫ
√
α2 − 1)2

)

(

sin(nπ·)
−λn,ε sin(nπ·)

)

.

Now, straightforward computations show that 7

C2 =
1

3
√
10

√

α

α− 1
−→

α→+∞

1

3
√
10
.

5.3 Improvement in the neighborhood of α = 1 by adap-
tation of the spectral decomposition

We propose to adapt the spectral decomposition (9) in
order to reduce the conservatism observed in the neigh-
borhood of α = 1 for the constants C0 and C1. To do

so, we introduce ψn =
1

n2π2

(

sin(nπ·), n2π2 sin(nπ·)
)

∈
D(A∗

0), n ∈ N∗, which are the eigenvectors of A∗
0 in the

case α = 1 associated with the eigenvalues µn = −n2π2.
As {ψn, n ∈ N} is not maximal in H, we introduce

the vectors ψd
n =

1

n2π2

(

sin(nπ·),−n2π2 sin(nπ·)
)

∈
D(A∗

0). Straightforward computations show that
{

ψn, ψ
d
n, n ∈ N∗

}

is a Hilbert basis of H and, for all
n ∈ N∗,

A∗
0ψn = −αn2π2ψn + (α− 1)n2π2ψd

n,

A∗
0ψ

d
n = (α+ 1)n2π2ψn − αn2π2ψd

n.

Then, introducing cn(t) , 〈X(t), ψn〉H and cdn(t) ,
〈

X(t), ψd
n

〉

H
, we have ‖X(t)‖2H =

∑

n≥1

|cn(t)|2 + |cdn(t)|2.

Furthermore, by using the same approach as the one em-
ployed to derive (9), the following decomposition holds
true for any classical solution X associated with an ini-
tial condition X0 and a boundary disturbance d,

[

ċn(t)

ċdn(t)

]

= n2π2M

[

cn(t)

cdn(t)

]

− n2π2M

[

〈D(t), ψn〉H
〈

D(t), ψd
n

〉

H

]

7 We used
∑

n≥1

1

n4
=

π4

90
.

with

M ,

[

−α α− 1

α+ 1 −α

]

and where D(t) is defined by (21). Then, for all t ≥ 0,
we have

[

cn(t)

cdn(t)

]

= en
2π2Mt

[

cn(0)

cdn(0)

]

− n2π2M

∫ t

0

en
2π2M(t−τ)

[

〈D(τ), ψn〉H
〈

D(τ), ψd
n

〉

H

]

dτ.

In the case α > 1, we have

en
2π2Mt = e−αn2π2t









cosh(θnt)

√

α− 1

α+ 1
sinh(θnt)

√

α+ 1

α− 1
sinh(θnt) cosh(θnt)









where θn , n2π2
√
α2 − 1. Then, with a similar approach

as the one employed in the proof of Theorem 1 and using
the inequalities cosh(x) ≤ ex, sinh(x) ≤ ex/2, sinh(x) ≤
x cosh(x), and xe−γx ≤ e−1/γ that hold for all x ≥ 0
and γ > 0, we obtain for any ǫ ∈ (0, 1) the following
versions of the ISS constants:

κ0 = (1− ǫ)(α−
√

α2 − 1)π2,

C0 = 2max

(

1,
e−1(α + 1)

ǫ(α−
√
α2 − 1)

)

, (30)

C1 =
4(α+ 1)(2α−

√
α2 − 1)√

3(α−
√
α2 − 1)2

.

Similar computations show that the above constants are
also valid in the case α = 1 while the case α ∈ (0, 1)
yields the following versions of the constants:

κ0 = (1− ǫ)απ2,

C0 = 2max

(

1,
e−1(α+ 1)

ǫα

)

, C1 =
8(α+ 1)√

3α
. (31)

Comparing to (28-29), the above ISS constants (30-31)
are less conservative in a small neighborhood of α = 1
because finite in α = 1. However, outside such a neigh-
borhood, they become more conservative. For instance,
the above version of C1 given by (30-31), which is such

that C1 ∼
α→+∞

16α4/
√
3, is only less conservative than

the version (28-29) over the (approximate) range α ∈
(0.967, 1.020).The evolution of the constantC1 obtained
by taking the minimum of the versions (28-29) and (30-
31) is depicted in Fig. 1.
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Fig. 1. ISS constant C1 for the Euler-Bernoulli beam

6 Conlusion

This paper discussed the establishment of Input-to-State
Stability (ISS) estimates for a class of Riesz-spectral
boundary control system with respect to both boundary
and distributed perturbations. First, a spectral decom-
position depending only on the boundary disturbance
(but not on its time derivative) was obtained by project-
ing the system trajectories over an adequate Riesz basis.
This was used to derive an ISS estimate with respect to
classical solutions. Then, in order to relax the regularity
assumptions required for assessing the existence of clas-
sical solutions, a concept of weak solution that applies
to a large class of boundary control systems (which is
not limited to Riesz-spectral ones) has been introduced
under a variational formulation. Assuming that an ISS
estimate holds true with respect to classical solutions,
various properties of the weak solutions were derived, in-
cluding their existence and uniqueness, as well as their
ISS property.
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A Proof of Lemma 3

By linearity, we must show that if X ∈ C0(R+;H) satis-
fies

∫ T

0

〈

X(t),A∗
0z(t) +

dz

dt
(t)

〉

H

dt = 0 (A.1)

for all T > 0 and for all z ∈ C0([0, T ];D(A∗
0)) ∩

C1([0, T ];H) such that A∗
0z ∈ C0([0, T ];H) and

z(T ) = 0, then X = 0. Denoting by S the C0-semigroup
generated by A0, then S∗ is the C0-semigroup gener-
ated by A∗

0 (see, e.g., [8, Thm 2.2.6]). Let z0 ∈ D(A∗
0)

and α > 0 be arbitrarily given. For any given T > 0, we
consider the function zz0,α,T defined for any t ∈ [0, T ]
by zz0,α,T (t) = S∗(αt)z0 − S∗(αT )z0. As z0 ∈ D(A∗

0),
we obtain that for any t ≥ 0, S∗(αt)z0 ∈ D(A∗

0),
A∗

0S
∗(αt)z0 = S∗(αt)A∗

0z0, and

dzz0,α,T
dt

(t) = αA∗
0S

∗(αt)z0 = αS∗(αt)A∗
0z0.

Thus, zz0,α,T is a test function over [0, T ] and (A.1)
shows:

(α+ 1)

∫ T

0

〈X(t), S∗(αt)A∗
0z0〉H dt

=

∫ T

0

〈X(t), S∗(αT )A∗
0z0〉H dt.

Using the definition of the adjoint operator, the fact that
S(αT ) ∈ L(H), and the properties of the Bochner inte-
gral, the equation above is equivalent to

〈

(α+ 1)

∫ T

0

S(αt)X(t) dt− S(αT )

∫ T

0

X(t) dt,A∗
0z0

〉

H

= 0.

BecauseH is a Hilbert space with A0 closed and densely

defined, we have that ker (A0)
⊥
= R(A∗

0) (see, e.g., [4,
Chap. 2, Rem. 17]). Since A0 is assumed to be injective,

this yields that R (A∗
0) = H. Consequently, we obtain

that the following equality holds true for all α > 0 and
T ≥ 0

(α+ 1)

∫ T

0

S(αt)X(t) dt = S(αT )

∫ T

0

X(t) dt. (A.2)

This implies that, for any h > 0,

α+ 1

h

∫ T+h

T

S(αt)X(t) dt

= S(α(T + h))

{

1

h

∫ T+h

T

X(t) dt

}

+
S(αh)− IH

αh

{

αS(αT )

∫ T

0

X(t) dt

}

.

As t → X(t) and t → S(αt)X(t) are continuous over
R+, we obtain by the continuity property of the C0-
semigroups that

lim
h→0+

S(αh)− IH
αh

{

S(αT )

∫ T

0

X(t) dt

}

=
α+ 1

α
S(αT )X(T )− 1

α
S(αT )X(T )

= S(αT )X(T ).
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Thus we have S(αT )
∫ T

0
X(t) dt ∈ D(A0) and

A0

{

S(αT )

∫ T

0

X(t) dt

}

= S(αT )X(T ).

From (A.2), we deduce that
∫ T

0 S(αt)X(t) dt ∈ D(A0)
and

(α + 1)A0

∫ T

0

S(αt)X(t) dt = S(αT )X(T )

for all α > 0 and T ≥ 0. Introducing yα(T ) =
∫ T

0
S(αt)X(t) dt and noting that t → S(αt)X(t) is con-

tinuous over R+, we obtain that yα satisfies over R+

the differential equation
dyα
dT

= (α + 1)A0yα with the

initial condition yα(0) = 0. As A0 generates the C0-
semigroup S and α + 1 > 0, we deduce that (α + 1)A0

generates the C0-semigroup S((α + 1)·). Thus we have
yα = S((α + 1)·)yα(0) = 0. By taking the time deriva-
tive of yα, we deduce that S(αt)X(t) = 0 for all α > 0
and t ≥ 0. From the continuity property of the C0-
semigroups, we obtain by letting α→ 0+ that X(t) = 0
for all t ≥ 0. ✷

B Proof of Theorem 3

To establish the uniqueness part, we only need to show
that A0 is injective. In that case, the conclusion will fol-
low from the application of Lemma 3. Let x0 ∈ ker(A0)
be arbitrarily given. IntroducingX(t) = x0 for all t ≥ 0,
X0 = x0, d = 0, and U = 0, one has for all t ≥ 0,
dX

dt
(t) = 0 = A0x0 = AX(t) + U(t), BX(t) = Bx0 =

0 = d(t), and X(0) = x0. Thus X is the classical so-
lution associated with (X0, d, U) = (x0, 0, 0). The ISS
estimate (24) gives ‖x0‖H ≤ β(‖x0‖H , t) −→

t→+∞
0. This

yields x0 = 0, ensuring the injectivity of A0.

To show the existence part, let an initial condition
X0 ∈ H, and disturbances d ∈ C0(R+;K

m) and
U ∈ C0(R+;H) be arbitrarily given. We also consider
an arbitrarily given lifting operator B associated with
(A,B).

Step 1: Construction of a weak solution candidate X ∈
C0([0, T ];H) by density arguments.

Let T > 0 be arbitrarily given. As C2([0, T ];Km)
and C1([0, T ];H) are dense in C0([0, T ];Km) and
C0([0, T ];H), respectively, there exist sequences (dn)n ∈
C2([0, T ];Km)N and (Un)n ∈ C1([0, T ];H)N (we can
actually use here approximating sequences of smooth
functions, i.e., of class C∞) such that

‖dn − d‖C0([0,T ];Km) −→
n→+∞

0,

‖Un − U‖C0([0,T ];H) −→
n→+∞

0.

Now, as D(A0) = H, there exists
(

X̃0,n

)

n
∈ (D(A0))

N

such that X̃0,n −→
n→+∞

X0 − Bd(0). Introducing X0,n ,

X̃0,n + Bdn(0) ∈ D(A), the bounded nature of B gives
X0,n −→

n→+∞
X0. Recalling that D(A0) ⊂ ker(B) and

BB = IK, we get BX0,n = BX̃0,n + BBdn(0) = dn(0).

For any n ∈ N, letXn ∈ C0([0, T ];D(A))∩C1([0, T ];H)
be the classical solution of the abstract system (1) over
[0, T ] associated with (X0,n, dn, Un). For any n,m ∈ N,
by linearity, Xn − Xm is the unique classical solution
of the abstract system (1) over [0, T ] associated with
(X0,n−X0,m, dn−dm, Un−Um). Thus the ISS estimate
for classical solutions (24) yields for all n,m ∈ N,

‖Xn −Xm‖C0([0,T ];H) ≤β (‖X0,n −X0,m‖H, 0)
+ γ1

(

‖dn − dm‖C0([0,T ];Km)

)

+ γ2
(

‖Un − Um‖C0([0,T ];H)

)

.

Since (X0,n)n, (dn)n, and (Un)n are Cauchy se-
quences, so is (Xn)n. As C0([0, T ];H) is a Banach
space, there exists X ∈ C0([0, T ];H) such that
‖Xn −X‖C0([0,T ];H) −→

n→+∞
0. Writing the ISS estimate

(24) for each classical solution Xn and letting n→ +∞
shows that (24) holds true for X for all t ∈ [0, T ].

Step 2: The obtained X ∈ C0([0, T ];H) is independent of
the chosen approximating sequences of X0, d, and U .

For a given T > 0, we show that the construc-
tion of Step 1 provides a X ∈ C0([0, T ];H) that
uniquely depends on (X0, d, u) in the sense that it
is independent of the employed approximation se-
quences. Assume that, following the construction of
Step 1, (X1,0,n)n ∈ D(A)N, (d1,n)n ∈ C2([0, T ];Km)N,
(U1,n)n ∈ C1([0, T ];H)N and (X2,0,n)n ∈ D(A)N,
(d2,n)n ∈ C2([0, T ];Km)N, (U2,n)n ∈ C1([0, T ];H)N

converge to X0, d|[0,T ], U |[0,T ], respectively. For any

n ∈ N and i ∈ {1, 2}, let Xi,n be the unique clas-
sical solution associated with (Xi,0,n, di,n, Ui,n) over
[0, T ]. We know from Step 1 that Xi,n converges to
some Xi ∈ C0([0, T ];H) when n → +∞. By linearity
X1,n − X2,n is the unique classical solution associated
with (X1,0,n − X2,0,n, d1,n − d2,n, U1,n − U2,n). Thus
the ISS estimate for classical solutions (24) yields for all
n ∈ N,

‖X1,n −X2,n‖C0([0,T ];H) ≤β (‖X1,0,n −X2,0,n‖H, 0)
+ γ1

(

‖d1,n − d2,n‖C0([0,T ];Km)

)

+ γ2
(

‖U1,n − U2,n‖C0([0,T ];H)

)

.

Letting n→ +∞, it gives ‖X1 −X2‖C0([0,T ];H) = 0, i.e.,
X1 = X2.
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Step 3: Definition of a weak solution candidate X ∈
C0(R+;H).

Let 0 < T1 < T2 be arbitrarily given and let X1 ∈
C0([0, T1];H) andX2 ∈ C0([0, T2];H) as provided by the
construction of Step 1. It is easy to see that, by restricting
the approximation sequences of d|[0,T2]

and U |[0,T2]
from

[0, T2] to [0, T1] and by resorting to the uniqueness result
of Step 2, that X1 = X2|[0,T1]

. Therefore, we can define

X ∈ C0(R+;H) such that for any T > 0, X |[0,T ] ∈
C0([0, T ];H) is the result of the construction of Step 1.
As (24) holds true for all t ∈ [0, T ] and for all T > 0 with
functions β, γ1, γ2 that are independent of T , then (24)
holds true for the built function X ∈ C0(R+;H) for all
t ≥ 0.

Step 4: The obtained candidate X ∈ C0(R+;H) is the
unique weak solution associated with (X0, d, U).

Let T > 0 be arbitrarily given. Let (X0,n)n ∈ D(A)N,
(dn)n ∈ C2([0, T ];Km)N, and (Un)n ∈ C1([0, T ];H)N be
approximating sequences, compliant with the procedure
of Step 1, converging to X0, d|[0,T ], and U |[0,T ], respec-

tively. Thus, the corresponding sequence of classical so-
lutions (Xn)n converges to X |[0,T ]. Based onCorollary 1,

Xn is also a weak solution for all n ∈ N. Thus, we have
for all z ∈ C0([0, T ];D(A∗

0)) ∩ C1([0, T ];H) such that
A∗

0z ∈ C0([0, T ];H) and z(T ) = 0,

∫ T

0

〈

Xn(t),A∗
0z(t) +

dz

dt
(t)

〉

H

dt

=− 〈X0,n, z(0)〉H +

∫ T

0

〈Bdn(t),A∗
0z(t)〉H dt (B.1)

−
∫ T

0

〈ABdn(t), z(t)〉H dt−
∫ T

0

〈Un(t), z(t)〉H dt.

From X0,n −→
n→+∞

X0, we have 〈X0,n, z(0)〉H −→
n→+∞

〈X0, z(0)〉H. By the Cauchy-Schwarz inequality, we get

∣

∣

∣

∣

∣

∫ T

0

〈

Xn(t)−X(t),A∗
0z(t) +

dz

dt
(t)

〉

H

dt

∣

∣

∣

∣

∣

≤ T

∥

∥

∥

∥

A∗
0z +

dz

dt

∥

∥

∥

∥

C0([0,T ];H)

‖Xn −X‖C0([0,T ];H)

−→
n→+∞

0.

Applying a similar procedure to the three integral terms
on the right hand side of (B.1), and recalling that opera-
tors B and AB are bounded, one can show their conver-
gence when n → +∞. Thus, letting n → +∞ in (B.1),
we obtain that X satisfies (22) for all T > 0 and all test
function z over [0, T ]. Thus, X is the unique weak solu-
tion associated with (X0, d, U). ✷
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