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Abstract

This paper addresses the design of finite-dimensional feedback control laws for linear discrete-time fractional-order systems
with additive state disturbance. A set of sufficient conditions are provided to guarantee convergence of the state trajectories to
an ultimate bound around the origin with size increasing with the magnitude of the disturbances. Performing a suitable change
of coordinates, the latter result can be used to design a controller that is able to track reference trajectories that are solutions
of the unperturbed fractional-order system. To overcome the challenges associated with the generation of such solutions,
we address the practical case where the references to be tracked are generated as a solution of a specific finite-dimensional
approximation of the original fractional-order system. In this case, the tracking error trajectory is driven to an asymptotic
bound that is increasing with the magnitude of the disturbances and decreases with the increment in the accuracy of the
approximation. The proposed controllers are finite-dimensional, in the sense that the computation of the control input only
requires a finite number of previous state and input vectors of the system. Numerical simulations illustrate the proposed
design methods in different scenarios.

1 Introduction

A fractional-order derivative is a generalization of an integer order derivative, where the order can take non-integer
values. Its discretization results in a fractional-order difference [19] that rules the dynamics of the discrete time
counterpart. In this paper, we address the design of control laws for dynamical systems described by fractional-order
difference equations, i.e., discrete-time fractional-order systems (FOSs).

In contrast to integer order differences, which use local information around a given point, fractional-order differences
are obtained using all the previous values of a given function up to the point where the difference is computed. Because
of the global nature of the fractional-order operators, models described by fractional-order differences seem to be
particularly suitable to capture the behavior of systems with infinite memory and hence have found applications in
many fields. Many biological systems manifest fractional-order behaviors [17]. Fractional-order derivatives are used to
model the cardiac tissue-electrode interface and electrically stimulated or mechanically stressed tissues [14,13], drugs
relies and adsorption [12], and the behavior of neural systems [3]. Applications on polymer science are highlighted
in [7]. In [21], transfer functions with a pole of fractional power are used to model analog electronic circuits. The
work [4] explores the benefits of fractional models for modeling of fuel cells.

The many applications and the control challenges associated with fractional-order systems motivated a wide literature
in the control community. For the continuous-time case, [15] shows the equivalence of stability with the presence of the
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eigenvalues of a given polynomial in a specific angular sector, generalizing the integer order case where such a sector
becomes the left half plane. Building on this, the works in [1,5,16] focus on developing linear matrix inequality (LMI)
conditions for stability and extensions to the case of uncertain polytonic FOSs. The work [18] provides analytical
expressions for the unit-step and unit-impulse of FOSs, that is then used to compare a proposed fractional-order
PID controller with the traditional integer-order counterpart. The work [11] presents the concept of Mittag-Leffler
stability for nonlinear FOSs and proposes a Lyapunov-like condition to certify such stability, using both integer and
fractional-order derivative of the Lyapunov function.

For the discrete-time FOSs, the control design problem is addressed either using the infinite-dimensional formulation
of the FOS [6], or adopting a finite-dimensional approximation of the FOS obtained by truncating the infinite-
dimensional fractional-order difference operator and using the associated stabilizing controller to control the original
FOS [9,20]. The main drawback of the first approach is that the stability conditions that arise from the analysis
of the whole infinite-dimensional form of FOS are generally difficult to verify and to apply for (finite-dimensional)
control design purposes. The second approach was initially introduced in [9], without providing stability guarantees,
and then adopted in the work [20] for the design of a stabilizing Model Predictive Control scheme. In the latter
approach, the authors derive sufficient conditions for practical asymptotic stability and, upon satisfaction of an
additional condition, asymptotic stability of the origin. In addition, the latter work is able to explicitly handle
constraints in both the system state and input vectors.

In this work, we retain the simplicity in the design of the widely used approach proposed in [9], while at the
same time providing closed-loop guarantees. The analysis adopted in this work builds upon the reasoning proposed
in [20]. Notwithstanding, as the main differences, this work does not consider system constraints and shows that
convergence can be guaranteed globally, i.e., for any initial conditions of the system. The proposed controller is
easy to implement, without the need of optimization-based schemes. In addition, we address (i) possible additive
disturbances acting on the system and (ii) the trajectory-tracking problem. For the latter case, we also consider the
practical scenario where the reference trajectories are solutions of an exogenous finite-dimensional approximation of
the original infinite-dimensional FOS. Specifically, we provide sufficient conditions for the tracking error to converge
to an asymptotic bound that is increasing with the magnitude of the disturbances and decreases with the increment
in the accuracy of the approximation.

The remainder of this paper is structured as follows. Section 2 introduces the linear discrete-time fractional-order
system and formalizes the control problem addressed in this paper. Section 3 contains the main results that are
illustrated in Section 4 with numerical simulations. All the proofs are relegated to the Appendix.

Notation: The terms R, R+, Z, N, N+ denote the set of reals, non-negative reals, integers, non-negative integers,
and positive integers numbers, respectively. The terms Rn and Rn×m represent the set of column vectors of size
n and n-by-m matrices with real entries. A continuous function α : R+ → R+ is said to belong to class K if it is
strictly increasing and α(0) = 0. In addition, a function is said to belong to class K∞ if, in addition, α(r)→ +∞ as
r → +∞. Moreover, a continuous function β : R+×R+ → R+ is said to belong to class KL if, for a constant s, β(r, s)
belongs to class K with respect to r, and for a constant r it is decreasing on s and satisfies β(r, s) → 0 as s → ∞
(see [10]). The term Id denotes the identity function, i.e., Id(x) = x. The term In is used to denoted a n×n identity
matrix. For a sequence {x(k)}k∈Z, we use the notation ‖x‖∞ = supk∈Z ‖x(k)‖ and ‖x‖[k1,k2] = maxk1≤k≤k2 ‖x(k)‖,
if k1, k2 ∈ Z with k1 ≤ k2, and ‖x‖[k1,k2] = 0 if k1 > k2. Given a square matrix M ∈ Rn×n, the notation M � 0

indicates that the matrix is positive definite, i.e., v>Mv > 0 for any v ∈ Rn. Moreover, whenever clear from the
context, we use x+ and x to refer to x(k + 1) and x(k), respectively.

2 Control problem formulation

This section introduces the discrete-time FOS and defines the control objectives addressed in this paper.

2.1 Discrete-time fractional-order systems

Consider a left-bounded sequence {z(k)}k∈Z over k, i.e., lim sup
k→−∞

‖z(k)‖ < ∞. Then, for any a ∈ R+ the Grünwald-

Letnikov fractional-order difference [19] is defined as

∆az(k) :=

∞∑
j=0

caj z(k − j), caj = (−1)j

(
a

j

)
, (1)
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where (
a

j

)
=

{
1, j = 0∏j−1
i=0

a−i
i+1 j > 0

(2)

for all j ∈ N. Notice that the summation in (1) is well defined from the uniform boundedness of the sequence
{z(k)}k∈Z and the fact that

|caj | ≤
aj

j!
, (3)

which implies that the sequence {caj }j∈N is absolutely summable for any a ∈ R+. A discrete-time fractional-order
system with additive disturbance can be modeled as

l∑
i=1

Ai∆
aix(k + 1) =

r∑
i=1

Bi∆
biu(k) +

s∑
i=1

Gi∆
giw(k) (4)

for scalars ai ∈ R+, with i = 1, . . . , l, bi ∈ R+, with i = 1, . . . , r, and gi ∈ R+, with i = 1, . . . , s, and where x(k) ∈ Rn,
u(k) ∈ Rm, and w(k) ∈ Rp denote the state, input, and disturbance vectors at time k ∈ N, respectively. The latter
vector is considered to be bounded as

‖w(k)‖ ≤ bw, k ∈ N, (5)

for some positive scalar bw. We denote by x0 = x(0) the initial condition of the FOS at time k = 0. In the computation
of the fractional-order difference, the state, input, and disturbances are considered to be zero before the initial time,
i.e., x(k) = 0, u(k) = 0, and w(k) = 0 for all k < 0.

It is worth noticing that the infinite dimensional case where the state is defined for all the times, can be addressed in
the presented theorems considering the limit of the initial time that goes to minus infinity (or equivalently, considering
the case k → +∞). In addition, given the robustness properties of the proposed control law, it is possible to addressed
the case where the controller is activated at a given time by considering the previous absence of control input (or
zero input signal) as a (bounded) disturbance.

2.2 Control objectives

The first control objective concerns the regulation of the state of the FOS toward the origin.

Problem 1 (Convergence) Design a
finite-dimensional controller that renders the associated closed-loop system with (4) globally bounded and globally
ultimately bounded with respect to the disturbance (5), i.e., for any initial condition x0 ∈ Rn the associated closed-
loop state trajectory is bounded and satisfies

‖x(k)‖ ≤ β(‖x0‖, k) + γ(bw), k ∈ N (6)

for a function β : R+ × R+ → R+, with β(r, s)→ 0 as s→ +∞, and a class-K function γ : R+ → R+.

Definition 1 (Finite-dimensional controller) We denote by finite-dimensional controller a control law that only
requires a finite number of previous state and input vectors to decide the current input to apply to the system, i.e.,
there exist two values v1, v2 ∈ N such that the control law can be expressed in the form u(k) = κ(x(k), . . . , x(k −
v1), u(k − 1), . . . u(k − v2)).

As it will be made explicit in the remainder of the paper, performing a suitable change of coordinate, a controller
that solves Problem 1 can be used to track any reference trajectory that is a solution of (4) (similar to integer-
order linear systems). It is interesting to note here that since (4) is infinite-dimensional, it often presents a major
challenge in cases where one wishes to generate such a reference trajectory. Specifically, for any desired input reference
trajectory {ur(k)}k∈N, the computation of the associated (nominal) fractional-order state trajectory {xr(k)}k∈N (i.e.,
the solution of (4) considered with w(k) = 0, u(k) = ur(k) and x(k) = xr(k) for all k ∈ N) becomes intractable as
k → ∞ due to the sum of an always growing number of terms. To avoid this situation, we consider the case where
the reference trajectory is generated using a finite-dimensional exogenous system.
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Problem 2 (Tracking exogenous solutions) Let xe(k) ∈ Rne , ur(k) ∈ Rm, and xr(k) ∈ Rn, with k ∈ N, be the
state, input, and output vectors, respectively, of the finite-dimensional exogenous system

xe(k + 1) = Axe(k) +Bur(k), xe(0) = xe,0, (7a)

xr(k) = Cxe(k), (7b)

where xe,0 ∈ Rne denotes the initial condition at time k = 0. Design the matrices A, B, and C of (7) and a
finite-dimensional controller for the FOS (4) such that, for the associated closed-loop, the tracking error

e(k) := x(k)− xr(k), (8)

defined as the difference between the state of the FOS and the reference signal, satisfies

‖e(k)‖ ≤ β(‖e(0)‖, k) + γ(bw) + d (9)

for a function β : R+ × R+ → R+ , with β(r, s)→ 0 as s→ +∞, a class-K function γ : R+ → R+, and a constant
d > 0.

It is worth noticing that although the desired controller is finite-dimensional, the closed-loop guarantees of Problem 2
hold when the plant is described by the closed-loop with the infinite-dimensional system (4).

3 Main contribution

Before stating the main results, different formulations of the FOSs (4) are introduced, as well as mild technical
assumptions.

Assumption 2 The matrix
∑l
i=1Ai is invertible.

Using Assumption 2, the FOS model (4) can be reformulated as

x(k + 1) =

∞∑
j=1

Ǎjx(k − j + 1) +

∞∑
j=0

B̌ju(k − j) +

∞∑
j=0

Ǧjw(k − j) (10)

where Ǎj = −Â−1
0 Âj , B̌j = Â−1

0 B̂j , and Ǧj = Â−1
0 Ĝj with Âj =

∑l
i=1Aic

ai
j , B̂j =

∑r
i=1Bic

bi
j , and Ĝj =

∑s
i=1Gic

gi
j .

Formulation (10) highlights one of the main peculiarities of FOSs, i.e., that the state x(k+ 1) does not depend only
on the state, input, and disturbance at time k, but it is a function of the whole past trajectory.

For any given integer v ∈ N+, the model (4) can be equivalently rewritten as

x̃(k + 1) = Ãvx̃(k) + B̃vu(k) + G̃vr(k), x̃(0) = x̃0 (11a)

r(k) =

∞∑
j=v+1

Ǎjx(k − j + 1) +

∞∑
j=v+1

B̌ju(k − j) +

∞∑
j=0

Ǧjw(k − j) (11b)

using the augmented state vector

x̃(k) = [x>(k), . . . , x>(k − v + 1), u>(k − 1), . . . , u>(k − v)]> ∈ Rv(n+m)

and appropriate matrices Ãv, B̃v, and G̃v, where x̃0 = [x>0 , 0, . . . , 0]> denotes the initial condition. Specifically,

the terms {Ǎj}j=1,...,v and {B̌j}j=1,...,v are used to form the matrices Ãv and B̃v, whereas the remaining terms

{Ǧj}j=1,...,∞ and the states and input components not included in x̃(k) are collected in the term G̃vr(k).

Definition 3 (v-approximation) The v-approximation of the discrete-time FOS (4) is defined to be the system
(11a) but with r(k) = 0 for all k ∈ N.
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Assumption 4 (v-stabilizability) The pair (Ãv, B̃v) of the v-approximation of the FOS system (4) is stabilizable.

Assumption 4 implies the existence of a matrix Kv such that for any positive definite matrix Q the equality

A>KPAK − P +Q = 0, AK = Ãv + B̃vKv (12)

holds for a positive definite matrix P . At this point, we are ready to state one of the main results of this paper.

Theorem 5 Consider the FOS system (4), the reformulation (11), and let Assumptions 2 and 4 hold. Moreover,
consider v ∈ N such that

cΨΨ(v) < 1 (13)

with

Ψ(v)=

l∑
i=1

‖Â−1
0 Ai‖φai(v)+

r∑
i=1

‖Â−1
0 BiKv‖φbi(v) (14)

and φa(v) = ea −
∑v
j=0

aj

j! , cΨ =
√

c2
ĉ4cρλmin(P ) , c2 = λmax(G̃>v PG̃v) +

‖G̃>
v PAK‖

2

θλmin(Q) , c4 = (1−θ)λmin(Q)
λmax(P ) , ĉ4 =

min(c4, θ̂), for any θ, θ̂, cρ ∈ (0, 1). Then, for any positive definite matrix Q � 0, there exists a pair of matrices Kv

and P � 0 such that (12) holds and the controller

u(k) = Kvx̃(k), (15)

with x̃(k) = [x>(k), . . . , x>(k − v + 1), u>(k − 1), . . . , u>(k − v)]>, solves Problem 1 with γ(r) = cγr, where κ ∈
(cΨΨ(v), 1) and cγ = cΨ

κ
1−κ

∑s
i=1 ‖Â

−1
0 Gi‖egi .

Theorem 5 provides a set of sufficient conditions that guarantee the state vector of the closed-loop system (4) with
(15) to converge to an ultimate bound with size proportional to the maximum magnitude of the noise. The controller
(15) is designed to be any linear controller that stabilizes the v-approximation of (4), where v satisfies condition
(13). It is worth noticing that since the state of the v-approximation (with v > 1) stores the previous state and
input signals of the original fractional-order system, the control (15) is not a standard state-feedback controller for
the FOS, but rather uses feedback of a window of past states and inputs, where the window size increases with v.

In the control design for integer-order linear system, a controller designed to stabilize the origin of the state space
can be used to stabilize the system around any of its solutions, i.e., performing a suitable change of coordinates, it
is possible to stabilize the origin of the error space defined as the difference between the current state of the system
and a solution of the system that we wish to track.

Similarly, performing a suitable change of coordinates the controller of Theorem 5 can be used to track any feasible
solution of the FOS (4). This fact is made explicit in the following corollary.

Corollary 6 (Tracking FOS solution) Let the assumptions of Theorem 5 hold and consider a generic state and
input reference trajectory pair {xr(k)}k∈N and {ur(k)}k∈N, respectively, that are the solution of (4) with w(k) = 0,
for all k ≥ 0, and the associated augmented state vector x̃r(k) = [x>r (k), . . . , x>r (k−v+1), u>r (k−1), . . . , u>r (k−v)]>.
Then, the closed-loop (4) with

u(k) = ur(k) +Kv ẽ(k), ẽ(k) = x̃(k)− x̃r(k) (16)

leads to an error trajectory e(k) := x(k)−xr(k) that is globally bounded and globally ultimately bounded with respect
to the disturbance (5). Specifically, for any initial condition e0 ∈ Rn the error trajectory is bounded over time and
satisfies

‖e(k)‖ ≤ β(‖e0‖, k) + γ(bw), k ∈ N (17)

for a function β : R+ × R+ → R+, with β(r, s)→ 0 as s→ +∞, and a class-K function γ : R+ → R+.
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Corollary 6 highlights the robustness of the proposed control strategy, where the origin of the error space is ultimately
bounded with the size of the ultimate bound being increasing with the bound of the disturbance.

In what follows, we consider the case where the trajectory that we want to track is not a solution of (4), but rather
it is a solution of a finite-dimensional approximation.

Theorem 7 (Tracking solution v-approximation) Let the assumptions of Theorem 5 hold and consider the
v-approximation of the discrete-time FOS (4) from Definition 3. Moreover, let

‖ur(k)‖ ≤ bur , ‖xr(k)‖ ≤ bxr , k ∈ N (18)

for two scalars bxr , bur ∈ R+. Then, selecting A = Ãv, B = B̃v, and C = [Inx×nx , 0nx×1, . . . , 0nx×1], the control law

u(k) = ur(k) +Kv ẽ(k), ẽ(k) = x̃(k)− xe(k) (19)

solves Problem 2 with

d =
κ

1− κ

(
bxr

l∑
i=1

‖Â−1
0 Ai‖φai(v) + bur

r∑
i=1

‖Â−1
0 Bi‖φbi(v)

)
(20)

and κ, γ(·), and φa(·) as described in Theorem 5.

It is worth noticing that the existence of bounded state and input trajectories {ur(k)}k∈N and {xr(k)}k∈N required
in (18) is always guaranteed by the Assumption 4. Moreover, we recall that since the exponential function can be

rewritten as the infinite sum ex =
∑∞
j=0

xj

j! , the function φa(v) defined in Theorem 5 can be equivalently reformulated
as

φa(v) = ea −
v∑
j=0

aj

j!
=

∞∑
j=v+1

aj

j!
(21)

that decreases to zero as v goes to infinity. As a consequence, the asymptotic bound of Theorem 7 is decreasing with
the increment in the accuracy of the approximation.

In practice, Theorem 7 shows that the state and input trajectories of the original FOS can track arbitrarily well (by
increasing the value of v) any references {xr(k)}k∈N and {ur(k)}k∈N that are generated as a solution of (7), where
xe is the state of the v-approximation. As a consequence, we can control the original infinite-dimensional FOS by
designing a finite-dimensional controller (using standard techniques for finite dimensional systems) for the auxiliary
system (7). The overall controller (that includes the v-approximation system) achieves in closed loop a tracking
error whose ultimate bound decreases with the increment in the accuracy of the approximation. An illustrative
example is presented in the following section with the design of a finite-dimensional controller that is able to steer
the infinite-dimensional FOS around a desired trajectory.

4 Numerical simulation

Consider the discrete-time fractional-order system (4) with A =

(
1 1

0 1

)
, B1 =

(
0

1

)
, l = 3, A1 = I2×2, A2 = A,

A3 = −A , a1 = 0, a2 = 1.7, a3 = 0, r = 1, b1 = 0, s = 1, g1 = 0, which satisfies Assumption 2 since
∑l
i=1Ai = I2×2

is a full rank matrix. The matrix G1 is selected depending on the simulation.

For different values of v ∈ N+, we display the behavior of the closed-loop (4) with (15) and (19) for both the cases
of convergence to the origin and trajectory-tracking displayed in Fig. 2 and Fig. 3, respectively. Moreover, in the
first case, we consider both the noise-free case with G1 = 02×2 and the case with noise where G1 = I2 and the noise
{w(k)}k∈N is generated as a random signal uniformly distributed within the interval [−0.5, 0.5] (i.e., bw = 0.5).
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Fig. 1. On the top we show the values of φa(v) by varying v and a, and on the bottom we show these in a logarithmic scale.

Different approaches can be used to generate solutions of (7), that are reference trajectories for the trajectory-tracking
algorithm. In this example, we used a model predictive control scheme (detailed in Appendix B) to compute reference
trajectories for the v-approximation that drives x1 toward a pre-defined sinusoidal trajectory. It is worth noticing
that for each v, we generally have a different state and input solution of the v-approximation (7) that achieve our
objective (i.e., that drives x1). This behavior is shown in Fig. 3 where the reference trajectory for x2 in the case
v = 1 (dashed-line blue) differs from the case v = 9 (dashed-line orange). Despite this, in both cases the state x1 is
driven toward the desired pre-defined sinusoidal trajectory.

It is worth noticing that the system under analysis is open-loop unstable. Moreover, despite the v-approximation
with v = 1 being stabilizable, it follows that the associated linear controller does not stabilize the original infinite-
dimensional system. Specifically, for the case v = 1, Assumption 4 is satisfied but the condition (13) is violated. Fig.
2 and Fig. 3 show that the closed-loop system is unstable with the error trajectory oscillating with increasing mag-
nitude. To avoid this undesired behavior, Theorem 5 provides a suitable selection of the value of v that satisfies (13)
and therefore guarantees global convergence to the origin and, for the case of trajectory-tracking, global convergence
to an ultimate bound d around the reference signal.

It is worth noticing that the function φa(v) strongly decreases as the value of v increases, as depicted in Fig. 1. This
plays an important role in the design and analysis of the controller, since small values of φa(v) render condition (13)
easy to satisfy and lead to small values of the term d in (20). This is reflected in the following table where the value
of d is close to zero since v = 8.

v 1 8 20

Ψ(v) 4.4883 6.3481 · 10−4 1.5 · 10−15

cΨ 163.2081 647.1015 1495.2155

cγ − 462.2394 15.1032

d − 5.768 · 10−3 1.9 · 10−16

Besides, the table highlights that the constants in Theorem 5 are generally conservative. For instance, this applies to
the term cγ that leads to a pessimistic estimate of the effect of the disturbances, which is in practice much smaller,
as illustrated in Fig. 2.

5 Conclusions

This work introduces a set of procedures to design finite-dimensional controllers for FOSs that guarantee closed-loop
convergence to the origin, in the case of regulation, or to a reference trajectory, in the case of trajectory-tracking.
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Fig. 2. Closed-loop trajectories for the regulation of the origin in cases with and without noise (right and left column,
respectively).
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Fig. 3. Closed-loop trajectories and reference signals (dashed lines) for the scenario of trajectory-tracking of the solution of
an exogenous system. For the sake of clarity, the plot associated with the unstable case v = 1 are dotted.

This is achieved exploiting a linear controller designed for a suitable finite-dimensional approximation of the original
FOS. For the case of trajectory-tracking, we consider both cases where the trajectories to be tracked are solutions
of a FOS or solution of an exogenous finite-dimensional linear system. The latter case is desired in many practical
cases where the reference trajectories are to be generated. All the proposed results are global, in the sense that the
convergence is guaranteed for any initial condition of the system, and robust to additive disturbances.

A Appendix

The following lemma is used in the proofs of the main results.

Lemma 8 Consider the system (11) and let Assumptions 2 and 4 hold. Then, for any positive definite matrix Q � 0
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there exists a pair of matrices Kv and P � 0, with P being a symmetric matrix, such that (12) holds and, for the
closed-loop system (11) with (15), the state trajectory satisfies

‖x̃(k0 + k)‖ ≤ β(‖x̃(k0)‖, k) + cΨ‖r‖[k0,k0+k−1] (A.1)

with k0, k ≥ 0, for a class-KL function β : R+ × N+ → R+, and cΨ from Theorem 5.

PROOF. Consider the function

V (x̃) = x̃>Px̃. (A.2)

Using the system model (11) and the equality (12), the function (A.2) evolves in time according to

V + = x̃>A>KPAK x̃+ r>G̃>v PG̃vr + 2r>G̃>v PAK x̃

= V − (1− θ)x̃>Qx̃− θx̃>Qx̃+ r>G̃>v PG̃vr + 2r>G̃>v PAK x̃ (A.3)

for any scalar θ ∈ (0, 1). Notice that for any c̄α, c̄β , c̄γ ∈ R the inequality

−c̄αx2+c̄βy
2+c̄γxy=−(c̄ax−c̄by)2+c̄cy

2≤ c̄cy2 (A.4)

holds with c̄a =
√
c̄α, c̄b =

c̄γ
2c̄a

, c̄c = c̄β + c̄2b . Then, we can bound the last part of the right hand side of (A.3) as
follows

−θx̃>Qx̃+ r>G̃>v PG̃vr + 2r>G̃>v PAK x̃ ≤ −θλmin(Q)‖x̃‖2 + ‖r‖2λmax(G̃>v PG̃v) + 2‖r‖‖G̃>v PAK‖‖x̃‖ ≤ c2‖r‖2

with c2 = λmax(G̃>v PG̃v) +
‖G̃>

v PAK‖
2

θλmin(Q) and where in the first inequality we used the fact that for any symmetric

matrix Q the inequality
λmin(Q)‖x‖2 ≤ x>Qx ≤ λmax(Q)‖x‖2

holds and in the last inequality, we used (A.4) with c̄α = θλmin(Q), c̄β = λmax(G̃>v PG̃v) and c̄γ = 2‖G̃>v PAK‖. As
a consequence, by replacing it in (A.3) we obtain

V (x̃(k + 1)) ≤ V (x̃(k))− (1− θ)x̃(k)>Qx̃(k) + c2‖r(k)‖2.

Therefore, we can write
α1(‖x̃‖) ≤ V (x̃) ≤ α2(‖x̃‖),

V (x̃(k + 1))− V (x̃(k)) ≤ −α3(‖x̃‖) + σ(‖r(k)‖) ≤ −α4(V (x̃)) + σ(‖r(k)‖)
with α1(r) = λmin(P )r2, α2(r) = λmax(P )r2, α3(r) = (1 − θ)λmin(Q)r2, σ(r) = c2r

2, and α4 = α3 ◦ α−1
2 , i.e.,

α4(r) = c4r, with c4 = (1−θ)λmin(Q)
λmax(P ) . Noticing that α1, α2, α3, σ ∈ K∞, the function V (·) is an ISS-Lyapunov function

(see, e.g., Definition 3.2 of [8]), which implies that there exist a class-KL function β : R+ ×R+ → R+ and a class-K
function γ : R+ → R+ such that

‖x̃(k0 + k)‖ ≤ β(‖x̃(k0)‖, k) + γ(‖r‖[k0:k0+k−1]) (A.5)

for all k0, k ≥ 0. Now, let α̂4(r) be any class-K∞ lower bound of α4 ∈ K∞ such that Id−α̂ ∈ K, e.g., α̂4(r) = ĉ4r

with ĉ4 = min(c4, θ̂) for any θ̂ ∈ (0, 1). Moreover, let ρ(r) = cρr, with cρ ∈ (0, 1). Then, following [8] (specifically,

from (13) to (17)) it is possible to show that (A.5) holds with γ = α−1
1 ◦ γ̂ where γ̂ = α̂−1

4 ◦ρ−1 ◦σ, i.e., γ̂(r) = c2
ĉ4cρ

r2,

and β(s, t) = α−1
1 (β̂(α2(s), t)) for a class-KL function β̂ : R+ × R+ → R+, which concludes the proof. �
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A.1 Proof of Theorem 5

The proof is structured as follows. First, we show that the state trajectory of the closed-loop system (11) with
(15) is uniformly bounded over time and converges to an ultimate bound proportional to the value of ‖r‖∞, which
also includes the contributes of the disturbance vectors {w(k)}k∈N. Then, noticing that the magnitude of ‖r(k)‖ is
increasing with the increase of the norm of the past state vectors, a contraction argument can be invoked to show
convergence to an ultimate bound that is proportional only to ‖w‖∞, which concludes the proof.

A.1.1 Ultimate boundedness

Taking the norm of r(k) in (11b) and using the bound (5) on the disturbance, results in

‖r(k)‖ ≤
l∑
i=1

‖Â−1
0 Ai‖

∞∑
j=v+1

|caij |‖x‖[0,k−v] +

r∑
i=1

‖Â−1
0 BiKv‖

∞∑
j=v+1

|cbij |‖x‖[0,k−v−1] + γw

with

γw=bw

s∑
i=1

‖Â−1
0 Gi‖

∞∑
j=0

gji
j!

=bw

s∑
i=1

‖Â−1
0 Gi‖egi . (A.6)

Notice that we used the fact that ‖x‖[−∞,k−v] = ‖x‖[0,k−v] since, as described in the problem formulation, the state
of the system is considered to be the zero vector before the initial time 0. Combining the latter with (3) and the
defining (21) we obtain

‖r(k)‖≤Ψ(v)|‖x‖[0,k−v]+γw ≤ Ψ(v)|‖x‖∞+γw (A.7)

with Ψ(·) as in (14). Combining (A.1) in Lemma 8 with (A.7) results in

‖x̃‖∞ ≤ β(‖x̃0‖, 0) + cΨ‖r‖∞ ≤ β(‖x̃0‖, 0) + cΨΨ(v)|‖x‖∞ + cΨγw,

that under condition (13) leads to

‖x̃‖∞≤ (1−cΨΨ(v))−1(β(‖x̃0‖, 0)+cΨγw)=:bx. (A.8)

Replacing the latter bound on the state trajectory into (A.7), and then (A.1), results in

‖x̃(k)‖≤β(‖x̃0‖, k)+sx, sx := cΨ[Ψ(v)bx + γw] (A.9)

for a class-KL function β : R+ × R+ → R+.
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A.1.2 Convergence

We start by noticing that for any M ∈ N+ the bound on the norm of r(k) in (11b) can be decomposed as

‖r(k)‖ ≤
l∑
i=1

‖Â−1
0 Ai‖

v+1+M∑
j=v+1

|caij |‖x‖[k−v−M,k−v]

+

l∑
i=1

‖Â−1
0 Ai‖

∞∑
j=v+2+M

|caij |‖x‖[0,k−v−M−1]

+

r∑
i=1

‖Â−1
0 BiKv‖

v+1+M∑
j=v+1

|cbij |‖x‖[k−v−M−1,k−v−1]

+

r∑
i=1

‖Â−1
0 BiKv‖

∞∑
j=v+M+2

|cbij |‖x‖[0,k−v−M−2]

+ γw
≤Φv(M)‖x‖[k−v−M−1,k−v]+Ψ(v+1+M)bx+γw (A.10)

with γw as in (A.6), bx as in (A.8), Ψ(·) as in (14), and

Φv(M) :=

l∑
i=1

‖Â−1
0 Ai‖

v+1+M∑
j=v+1

|caij |+
r∑
i=1

‖Â−1
0 BiKv‖

v+1+M∑
j=v+1

|cbij |. (A.11)

The remainder of the proof is carried out by recursion. Specifically, for a generic i ∈ N, consider a constant si ≥ 0
and a function βi : R+ × R+ → R+ such that

‖x̃(k)‖ ≤ βi(‖x̃0‖, k) + si, (A.12)

holds, where for any given r ∈ R+, βi(r, s) is bounded over s ∈ R+ and satisfies βi(r, s) → 0 as s → ∞. Moreover,
consider a θi ∈ R that satisfies

θi∈
(

0,min

{
1,
κ− ε
ε

si

})
=⇒ ε(si + θi) ≤ κsi (A.13)

with κ ∈ (ε, 1) and ε = cΨΨ(v), which satisfies ε ∈ (0, 1) as a consequence of (13), and select a θi+1 ∈ (0, κθi), which
from (A.13) satisfies

0 < ε(si + θi+1) < ε(si + θi) < κsi. (A.14)

From (A.12), there exists a ki = ki(θi+1) such that k ≥ ki =⇒ ‖x‖[k−v+1,k] ≤ ‖x̃(k)‖ ≤ si + θi+1

2 , which implies
that for any Mi ∈ N we have

k ≥ ki +Mi + 2 =: k̄i =⇒ ‖x‖[k−v−Mi−1,k−v] ≤ si +
θi+1

2
.

Hence, combining the latter with (A.10), we obtain

‖r(k)‖ ≤ Φv(Mi)

(
si +

θi+1

2

)
+ Ψ(v +Mi + 1)bx + γw

for all k ≥ k̄i. Therefore, by choosing Mi to satisfy

cΨΨ(v +Mi + 1)bx ≤ εθi+1/2, (A.15)

11



from (A.1) in Lemma 8, we have

‖x̃(k̄i + k)‖ ≤ β(‖x̃(k̄i)‖, k) + si+1 (A.16)

with

si+1 = cΨ

(
Φv(Mi)

(
si+

θi+1

2

)
+Ψ(v+Mi+1)bx+γw

)
≤ cΨΦv(M)

(
si +

θi+1

2

)
+ ε

θi+1

2
+ cΨγw

≤ cΨΨ(v)

(
si +

θi+1

2

)
+ ε

θi+1

2
+ cΨγw

= ε

(
si +

θi+1

2

)
+ ε

θi+1

2
+ cΨγw

≤ ε(si + θi+1) + cΨγw ≤ κsi + cΨγw,

where the first inequality comes from (A.15), the second from the fact that Ψ(v) ≥ Φv(M) for any v,M ∈ N, and
the third from (A.14). Combining (A.12) with (A.16), we obtain

‖x̃(k)‖≤


βi(‖x̃0‖, k) + si, k ∈ [0, k̄i − 1]

min{βi(‖x̃0‖, k)+si,

β(βi(‖x̃0‖, k̄i)+si, k−k̄i)+κsi+cΨγw},
k ∈ [k̄i,+∞]

and consequently

‖x̃(k)‖ ≤ βi+1(‖x̃0‖, k) + κsi + cΨγw (A.17)

with

βi+1(r, k) :=


βi(r, k)+(1−κ)si−cΨγw, k ∈ [0, k̄i − 1]

min{βi(r, k) + (1− κ)si − cΨγw,
β(‖x̃(k̄i)‖, k − k̄i)}, k ∈ [k̄i,+∞]

that recursively satisfy the fact that βi+1(r, k) → 0 as k → ∞. Roughly speaking, we showed that as the state
converges toward si, it is possible to compute another ultimate bound si+1 ≤ κsi + cΨγw. Iterating the process
starting from (A.9), i.e., β0(r, s) = β(r, s), s0 = sx, and any θ0 ∈

(
0,min

{
1, κ−εε sx

})
, we obtain

si = κis0 + cΨγw

i−1∑
j=0

κj


and therefore

‖x̃(k)‖ ≤ β∞(‖x̃0‖, k) + s∞ (A.18)

with

s∞ = lim
i→∞

si = cΨγw
κ

1− κ
where β∞(r, k) → 0 as k → ∞. The proof is concluded by noticing that ‖x̃0‖ = ‖x0‖ and ‖x(k)‖ ≤ ‖x̃(k)‖, which
implies (17) with β = β∞. �
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A.2 Proof of Corollary 6

By the linearity of the Grünwald-Letnikov fractional-order difference operator, the evolution of the error vector e(k)
is governed by the fractional-order system

l∑
i=1

Ai∆
aie(k + 1) =

r∑
i=1

Bi∆
bi(u(k)− ur(k)) +

s∑
i=1

Gi∆
giw(k).

Hence, the result readily follows by applying Theorem 5 with suitable change of state and input coordinates. �

A.3 Proof of Theorem 7

For the closed-loop system (4) with (19) the tracking error trajectory satisfies

ẽ(k + 1) = Ãv ẽ(x) + B̃v(u(k)− ur(k)) + G̃vr(k)

where the norm of r(k) is bounded as

‖r(k)‖ ≤
l∑
i=1

‖Â−1
0 Ai‖

∞∑
j=v+1

|caij |‖e(k − j + 1)‖

+

l∑
i=1

‖Â−1
0 Ai‖

∞∑
j=v+1

|caij |‖xr(k − j + 1)‖

+

r∑
i=1

‖Â−1
0 BiKv‖

∞∑
j=v+1

|cbij |‖e(k − j)‖

+

r∑
i=1

‖Â−1
0 Bi‖

∞∑
j=v+1

|cbij |‖ur(k − j)‖+ γw (A.19)

In contrast to the case considered in Corollary 6, where the reference to track is a solution of the FOS (4), the term
r(k) it is not only function of the disturbance {w(k)}k∈N and the previous error vectors {e(k)}k∈N but also of the
reference signals {xr(k)}k∈N and {ur(k)}k∈N. The same proof of Theorem 5 applies here, the only difference being
the term γw, which is to be replaced with

l∑
i=1

‖Â−1
0 Ai‖

∞∑
j=v+1

|caij |‖xr(k − j + 1)‖+

r∑
i=1

‖Â−1
0 Bi‖

∞∑
j=v+1

|cbij |‖ur(k − j)‖+ γw

. Using the latter substitution in (A.18) evaluated on the error space results in

‖ẽ(k)‖ ≤ β∞(‖ẽ0‖, k) +
κ

1− κ
γw + d (A.20)

with d in (20) where we used the bounds (18) and (3) and the function φa(·) from (21). The proof is closed noticing
that ‖ẽ(0)‖ = ‖e(0)‖ and ‖e(k)‖ ≤ ‖ẽ(k)‖ and therefore (9) holds with β = β∞ and γ(·) from Theorem 5. �

B Generation of reference trajectories

In practical applications, the trajectories {xr(k)}k∈N and {ur(k)}k∈N that are a solution of (7) are unknown, and
need to be computed. A possible approach consists of using model predictive control (MPC) schemes. For instance,
consider the case where we wish to drive the first component of the state of the FOS system (4) to a given desired
trajectory

pd(k) = −10 sin(0.2k) + 3 sin(0.5k),
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possibly not feasible for (7), while minimizing the use of the input. Then, we can design a MPC scheme that minimizes
the stage cost

le(k, x, u) = 10‖x1(k)−pd(k)‖2+‖u(k)‖2

where x(k) = [x1(k), x2(k), . . . ]′. Specifically, for a given a pair (k, xe)∈R≥k0 × Rnxe and an integer horizon length
N > 0, the open-loop optimization problem P(k, xe) consists of finding the optimal control trajectory

ū∗r :={u∗r(k), u∗r(k+1), . . . , u∗r(k+N−1)}

that solves

J∗(k, xe) = min
ūr

J(k, xe, ūr)

s.t. x̄e(i+1)=Ãvx̄e(k)+B̃vūr(i), i ∈ Zk:k+N−1 (B.1)

x̄e(k) = xe,

with ūr = {ūr(k), ūr(k + 1), . . . , ūr(k +N − 1)} and where the performance index is defined as

J(k,xe,ūr) :=

k+N−1∑
i=k

l(i,x̄e(i),ūr(i))+ms(x̄e(k+N)) (B.2)

with l(k, x, u) = cle atan(le(i, x, u)/cle)+ ls(x), ms(x) = csx
>Px, and ls(x) = csx

>Qx for some constants cle , cs > 0,
and the matrices P and Q satisfy Assumption 4. It is worth noticing that for small values of cs and high values
of cle , the effect of the function ls and ms and the saturation cle atan(·/cle) is neglectable for contained values of
‖xe‖. These terms are added to provide a formal guarantee of boundedness of the closed-loop trajectory, by following
a similar reasoning to that presented in [2] for continuous-time systems. Indeed, for bounded values of the state,
arbitrarily small values cs and arbitrarily high values of cle , the performance index is approximately given by

J(k, xe, ūr) ∼
k+N−1∑
i=k

le(i, x̄e(i), ūr(i)). (B.3)

Notice that, in the numerical example in Section 4, we used cle = 1 · 105 and cs = 1 · 10−5.

In order to make explicit the dependence of the optimal solution to the parameters of the open-loop optimization
problem, let ū∗,k(i) and x̄∗,ke (i) denote the optimal input and state trajectories ū∗,kr and x̄∗,ke computed by solving
P(k, xe(k)) associated with the predicted time i. Then, the state and input reference trajectories xr and ur are
computed as the output and input trajectories, respectively, of the closed-loop (7) with

ur(k) = κMPC(k, xe(k)) := ū∗,kr (k) (B.4)

obtained by solving the open-loop optimization problem at any time step and applying the first optimal input to
the system.

B.1 Boundedness of the reference trajectories

In contrast with the work [2], where boundedness was obtained in continuous-time systems, in this section we
provide the proof for the adopted discrete-time setting. Specifically, we show that the state and input reference
signals associated with the closed-loop (B.4) with (B.1) are bounded. For the sake of clarity, wherever clear from
the context, we use the compact notation, e.g., l(i, x̄∗,ke (i), ū∗,kr (i)) = l̄∗,k(i).

Consider the MPC value function

VMPC(k, xe) := J(k, xe, ū
∗,k
r ) (B.5)
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and, for any i ≥ k, we denote by the extended input trajectory the concatenation of the optimal input trajectory
ū∗,kr with the linear controller ur(k) = Kvxe(i), that is

uext,k(i) =

{
ū∗,kr (i), i = k, . . . , k +N − 1,

Kvx
ext,k
e (i), i ≥ k +N,

(B.6)

where xext,k(i) denotes the associated state trajectory.

Value function evolution. Multiplying the first equality in (12) by cs and using the definition (B.6), for any
i ≥ k +N the following holds

mext,k
s (i) = lext,ks (i) +mext,k

s (i+ 1). (B.7)

Then, the MPC value function evolves as follows:

VMPC(k + 1, xe(k + 1)) ≤ J(k + 1, xe(k + 1),uext,k)

=
k+N∑
i=k+1

lext,k(i) +mext,k(k +N + 1) + VMPC(k, xe(k))− VMPC(k, xe(k))

= VMPC(k, xe(k))− lext,k(k)−mext,k
s (k +N) +mext,k

s (k +N + 1) + lext,k(k +N)

= VMPC(k, xe(k))− lext,ks (k) + cle atan(lext,ke (k +N)/cle)− cle atan(lext,ke (k)/cle)

≤ VMPC(k, xe(k))− α(‖xe(k)‖) + 2cle
π

2
(B.8)

where the first inequality is a consequence of the from the sub-optimality of uext,k, the last equality from (B.7), the
last inequality from the bounds

‖cle atan(le(i, x, u)/cle)‖ ≤ cle
π

2
, (B.9)

and x>e Qxe ≥ α(‖xe‖) with α(r) =: λmin(Q)r2.

Upper bound value function. Let xKv and uKv be the state and input trajectories associated with the system
(B.1) in closed-loop with ur(k) = Kvxe(k). Then, we can write

mKv
s (i) = lKvs (i) +mKv

s (i+ 1)

that results in
k+N−1∑
i=k

lKvs (i) +mKv
s (k +N) = mKv

s (k) ≤ αc(‖xe‖)

, with αc(r) := λmax(P )r2. By the sub-optimality of uKv , and combining the latter equality with the bound (B.9)
and the definition (B.2), it follows that to

VMPC(k, xe) = J(k, xe,u
∗,k) ≤ J(k, xe,u

Kv ) ≤ αc(‖xe‖) +Ncle
π

2
. (B.10)

Lower bound value function. From the definition (B.2) and the fact that le(·) is always non negative, we have

VMPC(k, xe(k)) = J(k, xe(k),u∗,k) ≥ α(‖xe‖). (B.11)

Shifted value function. Let us consider the shifted value function

W (k, xe) := VMPC(k, xe)−Ncle
π

2
.
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Then, using the bounds (B.10) and (B.11), we can write

α(‖x̂‖)− cle
π

2
N ≤W (k, xe(k))) ≤ αc(‖xe‖).

Moreover, from (B.8), we obtain

W (k + 1, x(k + 1))) ≤W (k, xe(k))− α(‖xe(k)‖) + 2cle
π

2
≤W (k, xe(k))− α(α−1

c (W (k, xe(k)))) + 2cle
π

2

. At this point, following standard arguments from input-to-state stability analysis for discrete time systems [8], it
is possible to show that xe is bounded, which implies that xr and ur are bounded. Specifically, let α4 be a class
K∞ function such that α4(r) ≤ α(α−1

c (r)), Id−α4 belongs to class K∞, and ρ be a class-K∞ function such that
Id−ρ ∈ K∞ . Then, we obtain that

W (k) ≤ max(βe(W (0), k), γ̂(α3(N,n))) (B.12)

with γ̂(r) = α−1
4 (ρ−1(r)) and a class-KL function βe. More on how to compute βe can be found in [8].

References

[1] H. S. Ahn and Y. Q. Chen. Necessary and sufficient stability condition of fractional-order interval linear systems. Automatica,
44(11):2985–2988, 2008.

[2] A. Alessandretti, A. P. Aguiar, and C. N. Jones. An Input-to-State-Stability Approach to Economic Optimization in Model Predictive
Control. IEEE Transactions on Automatic Control, 62(12):6081–6093, dec 2017.

[3] T. J. Anastasio. The fractional-order dynamics of brainstem vestibulo-oculomotor neurons. Biological Cybernetics, 72(1):69–79,
1994.

[4] H. Cao, Z. Deng, X. Li, J. Yang, and Y. Qin. Dynamic modeling of electrical characteristics of solid oxide fuel cells using fractional
derivatives. International Journal of Hydrogen Energy, 35(4):1749–1758, 2010.

[5] C. Farges, M. Moze, and J. Sabatier. Pseudo-state feedback stabilization of commensurate fractional order systems. Automatica,
46(10):1730–1734, 2010.

[6] S. Guermah, S. Djennoune, and M. Bettayeb. A New Approach for Stability Analysis of Linear Discrete-Time Fractional-Order
Systems, pages 151–162. Springer Netherlands, Dordrecht, 2010.

[7] R. (Editor) Hilfer. Applications of fractional calculus in physics. In Applied Mathematical Sciences. World Scientific, 2000.

[8] Z.-P. Jiang and Y. Wang. Input-to-state stability for discrete-time nonlinear systems. Automatica, 2001.

[9] T. Kaczorek. Practical stability of positive fractional discrete-time linear systems. Bull. Pol. Acad. Techn. Sci, 56(4), 2008.

[10] H. K. Khalil. Nonlinear Systems. Prentice Hall PTR, 2002.

[11] Y. Li, Y. Q. Chen, and I. Podlubny. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica, 45(8):1965–
1969, 2009.

[12] R. Magin, M. D. Ortigueira, I. Podlubny, and J. Trujillo. On the fractional signals and systems. Signal Processing, 91(3):350–371,
2011.

[13] R. L. Magin. Fractional calculus models of complex dynamics in biological tissues. Computers and Mathematics with Applications,
59(5):1586–1593, 2010.

[14] R. L. Magin and M. Ovadia. Modeling the Cardiac Tissue Electrode Interface Using Fractional Calculus. Journal of Vibration and
Control, 14(9-10):1431–1442, 2008.

[15] D. Matignon. Stability Results For Fractional Differential Equations With Applications To Control Processing. In In Computational
Engineering in Systems Applications, pages 963–968, 1996.

[16] I. N’Doye, M. Darouach, M. Zasadzinski, and N. E. Radhy. Robust stabilization of uncertain descriptor fractional-order systems.
Automatica, 49(6):1907–1913, 2013.

[17] L. M. Pereira. Fractal Pharmacokinetics. Computational and Mathematical Methods in Medicine, 11(2):161–184, 2010.

[18] I. Podlubny. Fractional-order systems and PIλDµ-Controllers. IEEE Transactions on Automatic Control, 44(1):208–214, jan 1999.

[19] S. G. Samko, A. A. Kilbas, and O. I. Marichev. Fractional integrals and derivatives. Theory and Applications, Gordon and Breach,
Yverdon, 1993, 1993.

[20] P. Sopasakis and H. Sarimveis. Stabilising model predictive control for discrete-time fractional-order systems. Automatica, 75:24–31,
2017.

[21] H. H. Sun, A. A. Abdelwahab, and B. Owaral. Linear Approximation of Transfer Function with a Pole of Fractional Power. Montana
The Magazine Of Western History, AC-29(5):1–4, 1984.

16


	1 Introduction
	2 Control problem formulation
	2.1 Discrete-time fractional-order systems
	2.2 Control objectives

	3 Main contribution
	4 Numerical simulation
	5 Conclusions
	A Appendix
	A.1 Proof of Theorem ??
	A.2 Proof of Corollary ??
	A.3 Proof of Theorem ??

	B Generation of reference trajectories
	B.1 Boundedness of the reference trajectories

	References

