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Abstract

This paper provides results on input-output Lp stability of networked control systems (NCSs) implemented over WirelessHART
(WH). WH is a communication protocol widely used in process instrumentation. It is mainly characterised by its multi-hop
structure, slotted communication cycles, and the possibility to simultaneously transmit over different frequencies. We propose
a non-linear hybrid model of WH–NCSs that is able to capture these network functionalities, and that it is more general
than existing models in the literature. Particularly, the multi-hop nature of the network is translated into an interesting
mathematical structure in our model. We then follow the emulation approach to stabilise the NCS. We first assume that we
know a stabilising controller for the plant without the network. We subsequently show that, under reasonable assumptions on
the scheduling protocol, stability is preserved when the controller is implemented over the network with sufficiently frequent
data transmission. Specifically, we provide bounds on the maximum allowable transmission interval (MATI) under which all
protocols that satisfy the property of being persistently exciting (PE) lead to Lp stable WH–NCSs. These bounds exploit the
mathematical structure of our WH–NCS model, improving the existing bounds in the literature. Additionally, we explain how
to schedule transmissions over the hops to satisfy the PE property. In particular, we show how simultaneous transmissions
over different frequency channels can be exploited to further enlarge the MATI bound.
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1 Introduction

Networked control systems (NCSs) have received much
interest during the last years due to their many practi-
cal implications [11, 13]. While the available results are
able to capture the essential effects that communication
constraints have on the closed-loop system, it remains
unclear how these results can be applied to specific phys-
ical networks. In this paper, we are motivated to de-
velop results tailored to NCSs implemented over wire-
less multi-hop networks, which are increasingly used in
industry control. Particularly, we study WirelessHART
(WH), the first open wireless communication standard
for measurement and control in the process industries [1].
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According to many international companies, it serves
as a compelling alternative for industrial control, as it
improves operations, increases productivity, and saves
money [1]. WH is a mesh network which utilises field de-
vices in a multi-hop fashion and schedule these via time
division multiple access (TDMA).

WH has received a lot of attention in the last decade,
both heuristically [4, 8, 10, 21] and analytically [2, 3, 7,
20, 28, 29, 31, 32]. In particular, scheduling in WH is ad-
dressed in [20, 28, 29, 31], where several scheduling pro-
tocols tailored to different networking requirements can
be found. These works focus on the network itself and
do not use it in a control loop. Regarding control sys-
tems that use a WH network to transmit packets in the
control loop, we can find controller-communication co-
design in [7, 32]. The authors in [32] developed an LQG
framework to study minimum-energy packet forwarding
policies for communicating sensor measurements over a
WH network. The recent work [7] completes the liter-
ature by considering both packet-forwarding and con-
troller co-design. Modelling of WH–NCSs is addressed in
[2,3]. In [3], the authors propose a mathematical frame-
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work for modelling and analysis of multi-hop networks
designed for linear discrete-time systems consisting of
multiple control loops closed over a multi-hop wireless
communication network. They separate control, topol-
ogy, routing, and scheduling and propose formal syntax
and semantics for the dynamics of the composed sys-
tem, providing an explicit translation of multi-hop con-
trol networks to switched systems. A similar work is [2],
in which the formulation, modelling and design of a fixed
structure topology for potential application in wireless
NCSs is provided. The setup consists of a discrete-time
plant, an output feedback discrete-time controller, and
intermediate transfer and receiving networks.

The first purpose of this study is to provide a mod-
elling framework that encompasses the models used
in [2,3,7,32] by considering a more general class of mod-
els that result from a careful study of the WH network.
Note that the existing models of WH–NCSs in [2,3,7,32]
assume the plant and controller to be discrete-time lin-
ear systems. That is, the results are valid only at each
transmission instant, but the inter-sample behaviour is
lost. This also implies that transmissions in the WH
network happen equidistantly. Such assumptions may
be hard to satisfy in WH, where extra features need
to be considered, e.g. possibly non-linear plant and
controller, field-device dynamics, time-varying trans-
mission instants, inter-transmission behaviour given
by the continuous plant dynamics, and at-transmission
behaviour given by packet transmission. We propose a
hybrid model of WH–NCSs that is able to capture all
the latter features. More importantly, the multi-hop
nature of the network is revealed through our model via
an interesting mathematical structure which turns out
to be key in our stability analysis.

An important part of the model is the so-called protocol
equation, which defines how field devices are scheduled
in the superframe table of a WH network. It is desired
that scheduling protocols satisfy certain properties in or-
der to state our results. A key property is the so-called
persistence of excitation in T (PET ) [24]. This prop-
erty was presented in [24] and requires the existence of
a fixed number of transmissions T within which all net-
work nodes are visited by the protocol. In WH networks,
this translates into every field device being scheduled
to transmit within T transmissions. We present a large
class of scheduling protocols for which the PET property
holds. Specifically, we provide three relevant examples
that belong to this class and that exploit the flexibility
of WH networks, i.e. multiple transmissions over differ-
ent frequency channels. These results can also be used to
design other scheduling policies for field devices in WH.

It was shown in [24] that PET protocols lead to Lp sta-
ble NCSs under extra assumptions. However, these re-
sults are derived for generic non-linear NCSs in which a
packet is immediately received by the controller/plant
whenever nodes have access to the network. Therefore,

the potential structure of a physical network is not ex-
ploited, e.g. multi-hop in WH. We go one step further
to [24] and study Lp stability in WH–NCSs, for which we
exploit the mathematical structure of our hybrid model.
Specifically, we analyse Lp stability in the case where
the controller is designed by emulation. The main idea of
emulation is to first design a controller that stabilises the
plant in the absence of the network. Then, the controller
is implemented over the network and it is shown that the
Lp stability of the system is preserved, see e.g. [26]. In
particular, stability is preserved if the scheduling proto-
cols are persistently exciting, and if data is transmitted
at a high enough rate, measured by the maximum al-
lowable transmission interval (MATI). We provide two
different and easily computable MATI bounds and il-
lustrate in examples that our MATI bounds result to
be significantly larger than the ones in [24]. In our pre-
liminary work [16, 17], we presented MATI bounds for
disturbance-free WH–NCSs, which resulted to be quite
conservative. With this article, we extend our previous
results in [16, 17] by considering external disturbances
and by providing much tighter MATI bounds.

In brief, the primary contributions of this paper are:

(1) We provide a hybrid model for WH–NCSs that cap-
tures both at- and inter-transmission behaviour,
time-varying transmission instants, field device dy-
namics, and non-linear plant and controller, thus
generalising the models in [2, 3, 7, 32].

(2) Our model reveals a mathematical structure that
comes directly from the features of WH, i.e. multi-
hop and buffer dynamics. Previous generic models
for non-linear NCSs like [5,18,24,26], although they
can be used to analyse our WH–NCS, these do not
exploit these features and thus provide more con-
servative results.

(3) We provide a large class of protocols that satisfy
the property of being PET , which is natural in WH
networks. We provide three relevant examples that
are implementable in WH and belong to this class.

(4) We provide two different and easily computable
MATI bounds that ensure the Lp stability of our
WH–NCS, and that exploit the mathematical
structure of our model. We illustrate in examples
that our MATI bounds result to be significantly
larger than the ones in [24].

(5) We extend our previous results in [16,17] by consid-
ering external disturbances and by providing sig-
nificantly less conservative MATI bounds.

The paper is organized as follows. Notation and prelimi-
naries are given in Section 2. Section 3 describes the WH
standard in detail. We present the WH–NCS model in
Section 4 and scheduling is analysed in Section 5. Lp sta-
bility results are stated in Section 6. A linear case study
is addressed in Section 7. Numerical examples are given
in Section 8, whilst Section 9 draws conclusions.
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2 Preliminaries

2.1 Notation

Denote by R the set of real numbers, Rn the set of all
real vectors with n components, and Rm×n the set of
all real matrices of dimension m× n. Let R≥0

.
= [0,∞),

Z≥0
.
= {0, 1, 2, . . . }, and N .

= {1, 2, 3, . . . }. Let An≥0

denote the set of all n × n matrices with nonnegative
entries, and let Rn≥0 denote the nonnegative orthant of
Rn. A function α : R≥0 → R≥0 is of class K if it is
continuous, zero at zero and strictly increasing. It is of
class K∞ if it is of class K and unbounded. A function
β : R≥0×R≥0 → R≥0 is of class KL if β(·, t) is of class K
for each t ≥ 0, and if β(s, ·) is continuous, non-increasing
and satisfies limt→∞ β(s, t) = 0 for each s ≥ 0. Given
t ∈ R and a piecewise continuous function f : R → Rn,
we use the notation f(t+)

.
= lims→t,s>t f(s). For sim-

plicity, we use (x, y)
.
= [xT yT ]T ∈ Rn+m, for any

x ∈ Rn and y ∈ Rm. For a vector x = (x1, . . . , xn) ∈ Rn,

‖x‖p
.
= (
∑n
i=1 |xi|p)

1/p
, for all p ∈ [1,∞), and ‖x‖∞

.
=

maxi |xi|. To ease notation, we use |x| to denote ‖x‖2.
The same notation is used to denote the induced 2-norm
of a matrix. For an m × n matrix A, the induced ma-
trix 1-norm is given by ‖A‖1

.
= max1≤j≤n

∑m
i=1 |aij |.

In stands for the n × n identity matrix. We also use
INn

.
= [In · · · In]N to denote the matrix [In · · · In] ∈

Rn×Nn. We will often consider vectors of the form x̄,
where x ∈ Rn and x̄

.
= (|x1|, . . . , |xn|)T . For a function

f : R → Rn, we define f̄ : t → f(t). Let Df(t) denote
the left-handed derivative of f : R → Rn, if it exists,

i.e.Df(t)
.
= limh→0,h<0

f(t+h)−f(t)
h . We define 1S as the

function 1S : N → {0, 1} such that 1S(i) = 1 if i ∈ S,
and 1S(i) = 0 if i /∈ S. Let f : R→ Rn be a (Lebesgue)
measurable function and define

‖f‖Lp
.
=

(∫
R
‖f(s)‖p ds

)1/p

, (1)

for p ∈ N, ‖f‖L∞
.
= ess supt∈R ‖f(t)‖, and ‖f‖L∞[a,b]

.
=

ess supt∈[a,b] ‖f(t)‖. Note that ‖ · ‖ in (1), for any p ∈
[1,∞], can be any p-norm on Rn [14]. We use the Eu-
clidean norm ‖ · ‖ .

= | · | as default throughout the pa-
per. However, at the end of Section 6 we use the p-
norm on Rn, i.e. ‖ · ‖ .

= ‖ · ‖p, which will become clear
from the context. Let f : R → Rn and let [a, b] ⊂ R,

we use the notation ‖f‖Lp[a,b]
.
=
( ∫

[a,b]
‖f(s)‖p ds

)1/p
,

to denote the Lp norm of f when restricted to the in-
terval [a, b]. For T ∈ N, we define a collection of se-
quences of n×nmatrices Sn(T ), such that, for all s ∈ N,

{Ai}i∈N ∈ Sn(T ) if and only if
∏s+T−1
i=s Ai = 0. Let

x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn. A partial order
� is given by x � y ⇐⇒ xi ≤ yi, for all i ∈ {1, . . . , n}.
We define an analogous partial order on elements ofAn≥0

in the natural way, i.e. A � B ⇐⇒ B −A ∈ An≥0.

2.2 Underlying stability theory

Consider the jump-flow (hybrid system) model Σ,

ż = f(t, z, w), t ∈ [ti, ti+1], (2a)

z(t+i ) = h(i, z(ti)), (2b)

y = H(t, z), (2c)

where z ∈ Rnz is the state,w ∈ Rnw is an exogenous per-
turbation, y ∈ Rny is a prescribed output, nz, nw, ny ∈
N, and {ti}∞i=0 is a sequence of increasing time instants
such that, for some τ ∈ R and ε > 0, ε < ti+1− ti < τ <
∞ for all i ∈ N. Suppose Σ is initialised at (t0, z0) with
input w. We assume enough regularity on f and h to
guarantee existence of the solution z(·) = z(·, t0, z0, w)
on the interval of interest, see [18].

We now define the stability notions used throughout this
paper.

Definition 1 Let p ∈ N∪{+∞} and γ ≥ 0 be given. We
say that Σ is Lp stable from w to y with gain γ if there
exists K ≥ 0 such that ‖y‖Lp[to,t] ≤ K|z0|+γ‖w‖Lp[t0,t],
for all t ≥ t0, w ∈ Lp[t0, t] and z0 ∈ Rnz . �

Definition 2 Let p, q ∈ N ∪ {+∞} and γ ≥ 0 be
given. The state z of Σ is said to be Lp to Lq detectable
from (y, w) with gain γ if there exists K ≥ 0 such that
‖z‖Lq [t0,t] ≤ K|z0| + γ‖y‖Lp[t0,t] + γ‖w‖Lp[t0,t], for all
t ≥ t0, y ∈ Lp[t0, t], w ∈ Lp[t0, t] and z0 ∈ Rnz . �

Consider the feedback interconnection of two systems
Σ1 and Σ2, each one of the same form as Σ in (2), that is

Σ1


ẋ1 = f1(t, x1, x2, w), t ∈ [ti, ti+1],

x1(t+i ) = h1(i, x1(ti)),
y1 = H1(t, x1, y2, w),

(3)

Σ2


ẋ2 = f2(t, x1, x2, w), t ∈ [ti, ti+1],

x2(t+i ) = h2(i, x2(ti)),
y2 = H2(t, y1, x2, w).

(4)

This interconnection admits a small-gain theorem pre-
sented in [18, Section II-B], which will later be used to
prove our main stability result.

Theorem 1 Suppose that p, q ∈ N ∪ {+∞}, and the
following hold:

(1) System (3) is Lp stable from (y2, w) to y1 with gain
γ1;

(2) x1 in (3) is Lp to Lq detectable from (y1, w);
(3) (4) is Lp stable from (y1, w) to y2 with gain γ2;
(4) x2 in (4) is Lp to Lq detectable from (y2, w);
(5) The small-gain condition γ1γ2 < 1 holds.

Then, (3)-(4) is Lp stable from w to (x1, x2). �
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Fig. 1. WirelessHART architecture.

We use the standard notion of uniform global exponen-
tial stability (UGES) for system (3)-(4) in the absence
of exogenous perturbations.

Definition 3 Consider system Σ and suppose that w
.
=

0. We say that the origin of Σ is uniformly globally ex-
ponentially stable if there exist K,L ≥ 0 such that, for
every z0 ∈ Rnz , |z(t, t0, z0)| ≤ K exp(−L(t− t0))|z0| for
all t ≥ t0. �

The following sufficient condition is used to ensure
UGES of (3)-(4) in the absence of w [24].

Theorem 2 Suppose that systems (3) and (4) sat-
isfy all hypotheses of Theorem 1. If there exist
L1, L2, L3, L4 ≥ 0 such that |f1(t, x1, x2, 0)| ≤ L1(|x1|+
|x2|), |f2(t, x1, x2, 0)| ≤ L2(|x1| + |x2|), |h1(i, x1)| ≤
L3|x1|, |h2(i, x2)| ≤ L4|x2|, for all x1 ∈ Rnx1 , x2 ∈
Rnx2 , nx1 , nx2 ∈ N, all t ≥ t0 and all i ∈ N. Then, (3)-
(4) with w

.
= 0 is UGES. �

3 WirelessHART Network

In the following, a description of WH and the adopted
assumptions are provided.

3.1 Communication features

The general architecture of WH is shown in Fig. 1. It con-
sists of an interconnection of basic components including
field devices (sensor, actuators and routers), handheld
devices, gateways, and a network manager. WH is based
on the IEEE 802.15.4-2006 physical layer and operates in
the 2.4 GHz ISM radio band with a maximum data rate
of 250 kbps over 15 frequency division multiplexed chan-
nels. In the data link layer, WH defines a slotted TDMA
technology. That is, each frequency channel is subdi-
vided into timeslots in which an assigned field device is
allowed to transmit. WH networks also support multi-
ple access timeslots, where multiple devices can share a
specific channel. In this case, WH uses carrier sense mul-
tiple access with collision avoidance (CSMA/CA) mech-
anisms to avoid collisions. We restrict our attention to
TDMA in this paper. We study WH–NCSs under CSMA
in our recent work [15].

Fig. 2. WirelessHART superframe table.

3.2 TDMA superframe structure

All communications in a WH network are defined
with respect to a superframe. For each l-th channel,
l = 1, . . . , 15, a superframe is an a priori fixed period
of time Tl > 0, contiguous in real time with other su-
perframes within each channel, that is divided into a
sequence of timeslots as depicted in Fig. 2. Field devices
are scheduled to transmit in the superframe, and each
one of the 15 channels may have a different superframe
depending on the chosen scheduling protocol. The set
of superframes across frequency channels is called a
superframe table. Each timeslot is strictly Ts = 10[ms]
in duration. Within this timeslot, a complete single
data packet and its corresponding acknowledgement are
transmitted between two field devices. The transmis-
sion delay required for the delivery of a packet from a
transmitting device to a receiving device, in each l-th
channel and i-th timeslot, is denoted by tRX

l,i − tTX
l,i and

it depends on the packet size. For each channel l-th
channel and at the end of every i-th timeslot, the time
it takes to acknowledge such a packet is denoted by
τACK
l,i . For effective TDMA communications, all devices

need to be synchronized. This is ensured, at the begin-
ning of each i-th timeslot on the l-th channel, by the
amount τSYNC

l,i . For simplicity, the following additional
assumption is adopted.

Assumption 4 The following holds.

(a) Transmissions across all channels are synchro-
nized, i.e. τSYNC

i
.
= τSYNC

l,i = τSYNC
k,i for all

l, k ∈ {1, . . . , 15}. We define ε
.
= infi∈N τ

SYNC
i and

assume that ε > 0.
(b) Acknowledgement time is negligible in each timeslot,

i.e. τACK
l,i = 0 for all l ∈ {1, . . . , 15} and i ∈ N.

(c) Packets are transmitted instantaneously in every
timeslot, i.e. ti

.
= tTX

l,i = tRX
l,i for all l ∈ {1, . . . , 15}

and i ∈ N. We refer to ti as transmission instant.
(d) One successful transmission between devices occurs

within each timeslot, per channel. �
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Item (a) is adopted to avoid accounting for clock drift.
This assumption is reasonable under the strict synchro-
nization procedure in WH [1]. However, this assumption
can be relaxed, and the analytical tools we present in this
paper can be used to deal with such scenario. Notation
in that case becomes cumbersome and we thus adopt
Assumption 4(a) for clarity. In Section 8, we present a
simulation in which the WH network is subject to clock
drift, and we illustrate that our results still work un-
der this constraint. Items (b) and (c) are reasonable in
the context of WH in practice. Note that each times-
lot is strictly 10[ms], and the WH specification allocates
832[µs] for the whole ACK packet. The timeslot length
is about 12 times the ACK packet, hence why neglecting
it is appropriate. With respect to item (c), please note
that the maximum packet length in WH is 127 bytes [6].
We allude to papers like [8, 21], in which the authors
have implemented the NCS over a real WH network and
measured packet transmission delays, among other val-
ues. In these experiments, we can see that the transmis-
sion delay ranges from 0.919[ms] to 1[ms]. The timeslot
length is then about 10 times the transmission delay,
hence why we believe it is appropriate to neglect it. We
adopt item (d) so as to restrict attention to the effects
of the transmission instants ti in the modelling. Packet
drops are outside the scope of this paper, but are anal-
ysed in our recent paper [15] with an analogue stochastic
framework.

Remark 5 The transmission instants ti need not be
equally spaced between each other depending on synchro-
nization time τSYNC

i . This models the fact that real-life
networks in general have time-varying transmission in-
stants and not necessarily equidistant as often modelled,
see [2, 3, 7, 32]. �

We will parametrize our model with the so-called maxi-
mal allowable transmission interval (MATI) [26], which
we denote as τ > 0. It is a measure of how fast the net-
work needs to transmit in order to preserve stability of
the NCS. The next corollary comes from Assumption 4.

Corollary 1 If Assumption 4 holds, the transmission
instants ti in the WH network, satisfy ε ≤ ti+1 − ti ≤
τ ≤ 2Ts − ε for all i ∈ N. �

Corollary 1 states that a packet must be transmitted at
most in τ seconds, which cannot be larger than 2Ts − ε.

4 Model of a WH–NCS

In this section we provide the hybrid modelling frame-
work for WH–NCSs. Consider Fig. 3, where the plant is
modelled as a general non-linear system via

ẋp = fp(xp, û, w), y = gp(xp), (5)

Fig. 3. Block diagram of a NCS over WirelessHART.

Fig. 4. NCS closed over a WH network with `y field devices
in the y-path and `u field devices in the u-path.

where xp ∈ Rnp is the state, û ∈ Rnu is the control signal
received by the plant, y ∈ Rny is the plant output, w ∈
Rnw is an exogenous perturbation which is assumed to
belong toLp, i.e. itsLp norm is finite for given p ∈ [1,∞],
and np, nu, ny, nw ∈ N. The controller is also modelled
as a non-linear system given by

ẋc = fc(xc, ŷ, w), u = gc(xc), (6)

where xc ∈ Rnc is the state of the controller, ŷ ∈ Rny is
the plant output received by the controller, u ∈ Rnu is
the control signal, and nc ∈ N. The functions fp, fc are
assumed to be continuous and gp, gc are assumed to be
continuously differentiable.

We now model the WH network based on the descrip-
tion and assumptions provided in Section 3. Particularly,
we model the WH network as in Fig. 4, i.e. we consider
`y ∈ Z≥0 field devices interconnected in the plant-to-
controller path (y-path), and `u ∈ Z≥0 in the controller-
to-plant path (u-path). We label field devices as Dy

α and
Du
β , where α = 1, . . . , `y and β = 1, . . . , `u. For each field

device, its inputs and outputs are depicted in Fig. 4. The
signal that reaches the controller (resp. plant) in Fig. 4,
i.e. y`y (resp. u`u), is denoted as ŷ (resp. û) to be consis-
tent with Fig. 3 and existent NCS literature. Each field
device acts as a router for data from/to neighbouring
field devices and we model them as buffers. We introduce
buffer state variables byα and buβ for field devices in the
y-path and u-path, respectively. We now explain the re-
ception and transmission behaviour of field devices, and
we present the corresponding equations. We treat field
devices as zero-order-hold devices, in which their buffer
value and output are held between transmissions.
Reception: Suppose a field device Dy

α receives a packet
at time instant ti. Then, Dy

α updates the content of its
buffer via its input. During this process, the output of
Dy
α remains unchanged. We write this as follows,

ẏα(t) = 0, ḃyα(t) = 0, t ∈ [ti, ti+1], (7a)

byα(t+i ) = yα−1(t+i ), yα(t+i ) = yα(ti). (7b)
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for all α = 1, . . . , `y. Note that y0
.
= y for α = 1, i.e.

device one samples the value of the plant output.
Transmission: Suppose a field device Dy

α is scheduled
to transmit at time instant ti. Here,Dy

α sends the content
of its buffer through its output, and keeps it until a new
packet is received. This can be written as follows,

ẏα(t) = 0, ḃyα(t) = 0, t ∈ [ti, ti+1], (8a)

yα(t+i ) = byα(ti), byα(t+i ) = byα(ti), (8b)

for all α = 1, . . . , `y.

Motivated by (8)-(7), we introduce the network-induced
error ζ ∈ Rnζ , with nζ

.
= nζy + nζu , nζy

.
= 2`yny,

and nζu
.
= 2`unu. We define it as ζ

.
= (ζy, ζu), where

ζy ∈ Rnζy and ζu ∈ Rnζu are the corresponding errors
of the y-path and u-path, respectively, and are given by

ζy =
(
ζy1 , ζ

y
2 , . . . , ζ

y
`y
, ζy`y+1, ζ

y
`y+2, . . . , ζ

y
2`y

)
.
=
(
by1 − y, b

y
2 − y1, . . . , b

y
`y
− y`y−1,

y1 − by1, y2 − by2, . . . , y`y − b
y
`y

)
, (9a)

ζu =
(
ζu1 , ζ

u
2 , . . . , ζ

u
`u , ζ

u
`u+1, ζ

u
`u+2, . . . , ζ

u
2`u

)
.
=
(
bu1 − u, bu2 − u1, . . . , b

u
`u − u`u−1,

u1 − bu1 , u2 − bu2 , . . . , u`u − bu`u
)
. (9b)

The first `? components of ζ?, ? ∈ {y, u}, are related to
the buffer update during reception, and we call these re-
ception errors. The remaining `? components of ζ? are
related to the transmission of such buffer value through
their output, and we call them transmission errors. In
particular, we reset to zero these errors to model recep-
tion and transmission. This is a major difference with
previous models of non-linear NCSs like [5, 18, 26], in
which the network-induced error is given by e

.
= (ŷ −

y, û − u) (i.e. no specific network is considered, and
the possible buffer dynamics are ignored). Specifically,
whenever there is a transmission, this error models it as
the plant (resp. controller) receiving the sensor (resp. ac-
tuator) packet immediately. In WH networks, this is not
always the case, as the packet needs to travel along dif-
ferent field devices before it reaches its destination, gen-
erating an intrinsic delay. Therefore, dynamics of field
devices have to be taken into account, together with a
proper definition of the network-induced error, as in (9).

Now that all components of Fig. 4 have been modelled,
we are in a position to present the model for a WH–
NCS. Define the augmented state x

.
= (xp, xc), where

x ∈ Rnx . By using (5), (6), (7), (8), and (9), we present
a hybrid model for the block diagram in Fig. 4,

ẋ(t) = f(x(t), ζ(t), w), t ∈ [ti, ti+1], (10a)

ζ̇(t) = g(x(t), ζ(t), w), t ∈ [ti, ti+1], (10b)

x(t+i ) = x(ti), (10c)

ζ(t+i ) = H(i)ζ(ti), (10d)

where i ∈ N, f : Rnx × Rnζ × Rnw → Rnx and g :
Rnx × Rnζ × Rnw → Rnζ are defined as

f(x, ζ, w)
.
=
(
fp(xp, I

2`u
nu · ζ

u + gc(xc), w),

fc(xc, I
2`y
ny · ζ

y + gp(xp), w)
)
, (11)

g(x, ζ, w)
.
=(

− ∂gp
∂xp

fp(xp, I
2`u
nu · ζ

u + gc(xc), w), 0, . . . , 0,

− ∂gc
∂xc

fc(xc, I
2`y
ny · ζ

y + gp(xp), w), 0, . . . , 0

)
, (12)

and where H(i) is a time-varying matrix that decides
when field devices are scheduled to transmit. In particu-
lar, this matrix will zero components of ζ(t+i ) according
to how devices are scheduled in the superframe table.
We refer to ζ(t+i ) = H(i)ζ(ti) as the protocol equation,
which is properly studied in Section 5.

5 Scheduling protocols

In this section, we first explain how scheduling protocols
can be translated into the form (10d). We then define a
large class of protocols for which its protocol equation
satisfies the property of being persistently exciting. This
property will be key to ensuring Lp stability of (10). To
finalise, we give three relevant protocols which belong to
this class and that exploit the flexibility of the network.

5.1 Constructing the protocol equation

In order to have proper TDMA communications in WH,
the construction of the superframe table has to satisfy
the following requirements from the WH standard [1]:

(i) Only one transmission per frequency channel per
timeslot may be scheduled between field devices.

(ii) A field device cannot transmit and receive at the
same time.

(iii) All 15 available frequency channels may be used to
schedule transmissions.

(iv) Superframes along frequency channels may have
different periods.

To construct the protocol equation (10d) associated to
the superframe table, we need to follow the above re-
quirements together with the dynamics (8)-(7) of the
field devices. We proceed to illustrate this process by a
simple example. Let us consider Table 1, where devices
are scheduled in a WH network with `y = 2, `u = 0,
using a single frequency channel, denoted by CH1. Note
that ζ = ζy given that `u = 0. Based on (8), (7) and Ta-
ble 1, we now show how the network error ζy behaves at
t+i , for i ∈ N. At time instant t1, Dy

1 updates its buffer
value with the plant output, and the rest of outputs and
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Table 1
Example of a superframe table constructed under the re-
quirements of the WH standard.

t1 t2 t3
CH1 P → Dy

1 Dy
1 → Dy

2 Dy
2 → C

buffer values remain constant. Hence, the reception er-
ror associated with Dy

1 gets reset to zero, that is

ζy(t+1 ) =


by1(t+1 )− y(t+1 )
by2(t+1 )− y1(t+1 )
y1(t+1 )− by1(t+1 )
y2(t+1 )− by2(t+1 )

 =

 0
ζy2 (t1)

y1(t1)− y(t1)
ζy4 (t1)



=

 0 0 0 0
0 Iny 0 0
Iny 0 Iny 0
0 0 0 Iny

 ζy(t1).

At time instant t2, Dy
1 transmits its buffer value towards

Dy
2 . After this transmission the buffer value by1 remains

unchanged, and by2 gets updated. Hence, the transmis-
sion error associated with Dy

1 gets reset to zero, and the
reception error associated with Dy

2 gets reset to zero,

ζy(t+2 ) =

 ζy1 (t2)
0
0

y2(t2)− b1(t2)

 =

Iny 0 0 0
0 0 0 0
0 0 0 0
0 Iny Iny Iny

 ζy(t2).

Finally, at time instant t3, Dy
2 transmits its buffer value

to the controller, thus the transmission error associated
with Dy

2 gets reset to zero. That is,

ζy(t+3 ) =


by1(t+3 )− y(t+3 )
by2(t+3 )− y1(t+3 )
y1(t+3 )− by1(t+3 )
y2(t+3 )− by2(t+3 )

 =

Iny 0 0 0
0 Iny 0 0
0 0 Iny 0
0 0 0 0

 ζy(t3).

Consequently, the above generates the protocol equation
ζy(t+i ) = Hy(i)ζy(ti), i ∈ N, where Hy(i) is a time-
varying matrix of the form

Hy(i) =

[
∆y(i) 0

I −∆y(i) Γy(i)

]
,

where ∆y(i) = diag
{
δy1 (i)Iny , δ

y
2 (i)Iny

}
, and

Γy(i) =

[
γy1 (i)Iny 0

(1− γy1 (i))Iny γ
y
2 (i)Iny

]
,

with δyα(i) = 0 when i = α + 3σ and δyα(i) = 1 other-
wise, and γyα(i) = 0 when i = α+ 1 + 3σ and γyα(i) = 1
otherwise, for α = 1, 2 and σ ∈ Z≥0. Note that the su-
perframe table is periodic, thus the term 3σ in the above
equations. This process can be followed to construct the
protocol equation from any superframe table.

In the general case, H(i)
.
= diag {Hy(i),Hu(i)}, where

H?(i) .
=

[
∆?(i) 0

I −∆?(i) Γ?(i)

]
, (13)

∆?(i)
.
= diag

{
δ?1(i)Iny , . . . , δ

?
`?(i)Iny

}
,

Γ?(i)
.
=


γ?1 (i)Iny

(1− γ?1 (i))Iny γ
?
2(i)Iny

. . .
. . .

(1− γ?`?−1(i))Iny γ
?
`?

(i)Iny

 ,
with ? ∈ {y, u}, and γyα(i), γuβ (i), δyα(i), δuβ(i) ∈ {0, 1},
α = 1, . . . , `y, β = 1, . . . , `u, which are defined differ-
ently according to the constructed superframe table.
Therefore, given a superframe table, we can construct
the protocol equation as done for the example above, and
the resultingH(i) matrix will have the form in (13), with
specific definitions of γyα(i), γuβ (i), δyα(i), δuβ(i) depending
on the chosen table. Later in this section, we provide rel-
evant scheduling protocols that arise in WH networks,
for which we give these definitions.

5.2 A class of persistently exciting protocols

We would like to implement scheduling protocols that
satisfy the property of being persistently exciting. In this
section, we provide a large class of TDMA scheduling
protocols that satisfy this property.

Definition 6 The protocol (10d) is said to be persis-
tently exciting in T (PET ) if there exists T ∈ N such that

i+T−1∏
k=i

H(k) = 0, (14)

for every i ∈ N. �

Recall that transmissions are modelled by resetting to
zero components of ζ(t+i ). Then, we can interpret PET
protocols in WH as protocols that regularly schedule to
transmit every field device within a fixed period of time.
Motivated by this, we state the following assumption
that will allow us to define the class of PET protocols.

Assumption 7 Every field device Dy
α, D

u
β , α =

1, . . . , `y, β = 1, . . . , `u, needs to be scheduled to transmit
within a fixed period of time. �

Assumption 7 is naturally satisfied by many network
technologies such as Ethernet, IEEE 802.11, and IEEE
802.15.4 standard [24], including WirelessHART (WH)
networks as we illustrate in Section 5.3. The reason be-
hind it is that Assumption 7 only requires that every
field device in the path transmits within a fixed period
of time. This is not hard to satisfy as the schedule is de-
signed by the network manager. Additionally, protocols
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that have been designed optimally w.r.t. a certain crite-
ria also satisfy Assumption 7, see. e.g. [29, 30].

The next lemma states that, if a scheduling protocol
satisfies Assumption 7, then such protocol is PET . The
proof is provided in the appendix.

Lemma 8 Consider the WH–NCS (10) and suppose As-
sumption 7 holds. Then, the corresponding protocol equa-
tion (10d) satisfies (14) for some T ∈ N. �

We are now in a position to define a class of schedul-
ing protocols that can be implemented in WH and that
satisfy the PET property.

Definition 9 (Class of WH-PET protocols) This
class contains all scheduling protocols that satisfy As-
sumption 7, and thus satisfy the property of being PET
according to Lemma 8. �

Constructing scheduling protocols that belong to this
class is important. In fact, in Section 6 we show that
PET protocols lead to Lp stable WH–NCSs. Therefore,
Assumption 7 can be used to design different types of
scheduling policies. We now present three relevant ex-
amples that belong to the class of WH-PET protocols in
Definition 6. These are important to illustrate how the
flexibility offered by the WH network can be exploited
(multiple frequency channels).

5.3 Examples of PET scheduling protocols

5.3.1 Simple Round Robin (S-RR)

This protocol schedules the field devices in a round-robin
manner [18], i.e. in a predetermined and cyclic manner.
A single frequency channel is used and the field devices
communicate one after the other. In particular, we adopt
the superframe table shown in Table 2.

Table 2
Superframe table for the S-RR protocol.

t1 · · · t`y+1 t`y+2 · · · t`y+`u+2

CH1 P → Dy
1 · · · D

y
`y
→ CC → Du

1 · · · Du
`u
→ P

For this scheduling protocol, and enlightened by Table
2 and the constructive procedure of Section 5.1, it is
possible to show that, δyα(i)

.
= 1 − 1Syα(i), δuβ(i)

.
= 1 −

1Su
β

(i), γyα(i)
.
= 1−1S̄yα(i), and γuβ (i)

.
= 1−1S̄u

β
(i), where

Syα
.
= {i ∈ N : i = α+ (`y + `u + 2)σ, σ ∈ Z≥0} ,

Syβ
.
= {i ∈ N : i = β + `y + 1 + (`y + `u + 2)σ, σ ∈ Z≥0} ,

S̄yα
.
= {i ∈ N : i = α+ 1 + (`y + `u + 2)σ, σ ∈ Z≥0} ,

S̄yβ
.
= {i ∈ N : i = β + `y + 2 + (`y + `u + 2)σ, σ ∈ Z≥0} ,

for α = 1, . . . , `y and β = 1, . . . , `u. It can be shown that
the parameter T in Lemma 8 is given by T = TS-RR

.
=

max{2`y + `u + 2, 2`u + `y + 2}.

5.3.2 Frequency Division Duplex Round Robin (FDD-
RR)

This scheduling protocol establishes a full-duplex com-
munication link that uses two different frequency chan-
nels for measurements and actuation operations, see Ta-
ble 3. For illustration purposes only, note that the su-
perframe period in Table 3 is deliberately chosen to be
different for the two channels.

Table 3
Superframe table for the FDD-RR protocol.

t1 t2 · · · t`y t`y+1

CH1 P → Dy
1 Dy

1 → Dy
2 · · · D

y
`y−1
→ Dy

`y
Dy
`y
→ C

CH2 C → Du
1 Du

1 → Du
2 · · · Du

`u
→ P

In this case, we have that δyα(i)
.
= 1 − 1Dyα(i), δuβ(i)

.
=

1−1Du
β
(i), γyα(i)

.
= 1−1D̄yα(i), and γuβ (i)

.
= 1−1D̄u

β
(i),

where

Dyα
.
= {i ∈ N : i = α+ (`y + 1)σ, σ ∈ Z≥0},

Duβ
.
= {i ∈ N : i = β + (`u + 1)σ, σ ∈ Z≥0},

D̄yα
.
= {i ∈ N : i = α+ 1 + (`y + 1)σ, σ ∈ Z≥0},

D̄yβ
.
= {i ∈ N : i = β + 1 + (`u + 1)σ, σ ∈ Z≥0}

for α = 1, . . . , `y and β = 1, . . . , `u. For this case, the
parameter T in Lemma 8 is given by T = TFDD-RR

.
=

max{2`y + 1, 2`u + 1}.

5.3.3 Wave Round Robin (W-RR)

This scheduling protocol schedules devices in an inter-
leaved manner, see Table 4. That is, device one receives
the measurement from the plant in the first timeslot,
and at the same exact time (but in different frequency
channels), device two transmits to device three and so
on. Note that the number of channels used for the y-

Table 4
Superframe table for the W-RR protocol (`y even, `u odd).

t1 t2
CH1 P → Dy

1 Dy
1 → Dy

2

CH2 Dy
2 → Dy

3 Dy
3 → Dy

4
...

...
...

CHMy−1 Dy
`y−2 → Dy

`y−1 Dy
`y−1 → Dy

`y

CHMy Dy
`y
→ C

CHMy+1 C → Du
1 Du

1 → Du
2

CHMy+2 Du
2 → Du

3 Du
3 → Du

4

...
...

...

CHMy+Mu−1 D
u
`u−3 → Du

`u−2 D
u
`u−2 → Du

`u−1

CHMy+Mu
Du
`u−1 → Du

`u
Du
`u
→ P

path (namely My), and the number of channels used for
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the u-path (namely Mu) satisfy My
.
=

`y+2−θy
2 , Mu

.
=

`u+2−θu
2 , where θy, θu ∈ {0, 1}. In particular, θy (resp.

θu) is 0 if `y (resp. `u) is even, and 1 if `y (resp. `u)
is odd. Furthermore, it is important to note that in
WH networks, the available number of channels is fixed
(equal to 15). Therefore, My and Mu need to satisfy
My +Mu ≤ 15. However, this is not a problem because
if there are too many field devices, the superframe pe-
riod can always be increased to schedule the remaining
devices that did not fit the 15 channels into another W-
RR starting immediately after timeslot two.

For this example, δy1+2α1
(i)

.
= 1 − 1W(i), δy2+2α2

(i)
.
=

1W(i), δu1+2β1
(i)

.
= 1 − 1W(i), δu2+2β2

(i)
.
= 1W(i),

γyα(i)
.
= 1−δyα(i), and γuβ (i)

.
= 1−δuβ(i), whereW .

= {i ∈
N : i = 1 + 2σ, σ ∈ Z≥0}, for α1 = 0, 1, . . . ,

`y+θy−2
2 ,

α2 = 0, 1, . . . ,
`y−θy−2

2 , β1 = 0, 1, . . . , `u+θu−2
2 ,

β2 = 0, 1, . . . , `u−θu−2
2 , α = 1, . . . , `y, and β = 1, . . . , `u.

For this case the parameter T in Lemma 8 is given by
T = TW-RR

.
= max{`y + 2, `u + 2}.

Remark 10 It can be seen that, exploiting multiple fre-
quencies channels reduces the amount of timeslots re-
quired in the superframe (cf. Tables 2, 3 and 4). Specif-
ically, it reduces the parameter T related to the PET
property of the protocol. We note that, in particular,
TS-RR > TFDD-RR ≥ TW-RR for all `y, `u 6= 0. This will be-
come important in Sections 6 and 8 when comparing the
MATI bounds of these three protocols. �

6 Lp stability of WH–NCSs

In this section, we prove that PET protocols lead to Lp
stability of the WH–NCS. Inspired by the results in [24],
we show that by exploiting the structure of our model, we
can further improve the MATI bounds in [24]. Note that
g in (12) has a particular structure in which several rows
are equal to zero. To better reveal this structure from our
model (10), we re-arrange the error vector ζ = (ζy, ζu)
in (9) via a change of coordinates. That is, we define
ζ
.
= T ζ, where T is a matrix such that

ζ̇ = T g(x, ζ, w)
.
= g(x, ζ, w)

=


− ∂gp
∂xp

fp(xp, I
2`u
nu · ζ

u + gc(xc), w)

− ∂gc
∂xc

fc(xc, I
2`y
ny · ζy + gp(xp), w)

0
...
0

 (15)

Note that the first two components of ζ̇ are non-zero
while the rest are zero. This mathematical structure is
key in the following stability results, and it comes di-
rectly from our modelling study in Section 4.

We impose the following assumption on the ζ-subsystem.

Assumption 11 Let L11 ∈ A
nζy

1
+nζu

1

≥0 and L12
.
=

L11diag{I2`y−1
ny , I2`u−1

nu }. There exists a matrix A ∈ Anζ≥0

of the form

A =

[
L11 L12

0 0

]
, (16)

and a continuous function ỹ : Rnx × Rnw → Rnζ+ such
that the error dynamics (10b) satisfy 1

¯̇
ζ = ḡ(x, ζ, w) � Aζ̄ + ỹ(x,w), (17)

for all (x, ζ, w) ∈ Rnx × Rnζ × Rnw . �

Assumption 11 is the vector analogue of the dissipation
type inequality imposed on the network-induced error
system in [18], or many other works on non-linear NCSs
[17, 19, 27]. This type of inequality essentially requires
that the network-induced error exponentially grows dur-
ing flows. Such a property is natural, as the ζ-system is
typically unstable between two transmission instants.

Assumption 11 is also particularly inspired by (38) in
[24]. However, in [24], the function g does not have the
structure in (15) that follows directly from our model.
Note that ḡ has the form (ḡ1, ḡ2, 0, · · · , 0), and that g1

and g2 depend on sums of the components of ζ (instead
of the whole error as in [24]). Then, we can assume a lin-
ear bound on each component as in [24], i.e. we assume

that there exist L1 ∈ A
ny×nu
≥0 , L2 ∈ A

nu×ny
≥0 and func-

tions ỹ1 : Rnx ×Rnw → Rny and ỹ2 : Rnx ×Rnw → Rny ,
such that ḡ1(x, I2`u

nu · ζ
u, w) ≤ L1(ζ̄u1 + · · · + ζ̄u2`u) +

ỹ1(x,w), ḡ2(x, I
2`y
ny ·ζy, w) ≤ L2(ζ̄y1 +· · ·+ζ̄y2`y )+ỹ2(x,w).

Then, given the definition of ζ, we naturally get the
bound in (17), i.e.

ḡ �


0 L1 0 L1I

2`u−1
nu

L2 0 L2I
2`y−1
ny 0

0 0 0 0
...

...
...

...
0 0 0 0

 ζ̄ +


ỹ1(x,w)
ỹ2(x,w)

0
...
0

 ,

for ? ∈ {y, u}, and thus L11, L12 and ỹ(x,w) in Assump-
tion 11 follow. We will show in Section 7 that the block
structure of A in (16) arises naturally in linear systems.

This next theorem states, in essence, that for sufficiently
small MATI, the class of PET protocols in Section 5.2
lead to the finite Lp stability of the ζ-subsystem, which
is key to prove Theorem 4 below. The proof can be found
in the appendix.

1 Recall that for any x ∈ Rn, x̄
.
= (|x1|, . . . , |xn|)T .
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Theorem 3 Suppose that the scheduling protocol (10d)
is persistently exciting in time T and that Assumption 11
holds. Further suppose that MATI satisfies τ ∈ [ε, τ∗),
ε ∈ (0, τ∗) where τ∗ = ln

(
1 + 1/

√
%
) /

(|L11|T ), and
%
.
= max{2`y, 2`u}. Then, the system (10b), (10d) is Lp

stable from ỹ to ζ for p ∈ [1,∞] with gain

γ̃(τ) =
T exp(|A|(T + 1)τ)(exp(|A|τ)− 1)

|A|
(
1−√% (exp(|L11|Tτ)− 1)

) . (18)

�

The following theorem provides the closed-loop Lp sta-
bility result for the WH–NCS in (10), and is the main re-
sult of this section. It asserts that PET protocols lead to
Lp stability of the WH–NCS for sufficiently small MATI.

Theorem 4 Consider the WH–NCS (10) and suppose
that

(1) The conditions of Theorem 3 hold with ỹ = G(x) +
w;

(2) (10a) is Lp stable from (ζ, w) to G(x) with gain γ
for some p ∈ [1,∞];

(3) MATI satisfies τ ∈ [ε, τ∗), ε ∈ (0, τ∗), where τ∗ =
ln(z)/(|A|T ), A comes from Assumption 11, and z
solves

γTz1+2/T − γTz1+1/T +
√
%|A|z|L11|/|A|

− (1 +
√
%) |A| = 0. (19)

Then, the WH–NCS is Lp stable from w to (G(x), ζ) with
linear gain.

PROOF. The proof follows from the fact that γ̃(τ) in
(18) is differentiable and monotonically increasing in τ
for τ ∈ [ε, ln(1 + 1/

√
%)/|L11|T ] and thus, in view of

the inverse function theorem [22], there exists a unique
solution τ∗ to γ̃(τ)γ = 1. That is, γT exp(|A|(T +
1)τ)(exp(|A|τ)−1)−|A|

(
1−√% (exp(|L11|Tτ)− 1)

)
=

0, for which we define z
.
= exp(|A|Tτ) and thus get (19).

Then, by monotonicity of γ̃(τ), we have that γ̃(τ)γ < 1
for any τ ∈ [ε, τ∗). The proof is complete in light of the
small-gain Theorem 1. �

It is not immediately clear how the MATI bound τ∗

behaves for different values of T . From Remark 10 we
know that TS-RR > TFDD-RR ≥ TW-RR for all `y, `u 6=
0. Intuition suggests that protocols exploiting multiple
frequencies to schedule devices, i.e. smaller T , would lead
to larger MATI bounds. In fact, if we take less time to
get a packet from plant to controller (or vice-versa) then
the inter-transmission bound may not need to be small
in order to preserve stability. However, if we design a
scheduling protocol in which the packet takes longer to
reach the controller (e.g. S-RR), then faster transmission

is required in order to preserve stability. Hence, we would
expect that τ∗S-RR ≤ τ∗FDD-RR ≤ τ∗W-RR. In Section 8,
we provide numerical examples in which this statement
indeed holds.

In the proof of Theorem 4, the Lp stability property is
obtained from an L1 bound, see (A.19). Such L1 bound
is computed under the definition of ‖ · ‖Lp in (1) with
‖ · ‖ .= | · |. However, using ‖ · ‖ .= ‖ · ‖p in (1) to define
‖ · ‖Lp (and thus ‖ · ‖L1

) will be particularly useful given
the structure of A. In particular, we will see that this
approach provides larger MATI bounds than the ones
obtained in Theorem 4. To be precise and consistent with
the above discussion, in Theorem 5 and Theorem 6, the
definition of Lp stability is as per Definition 1 with ‖·‖Lp
as in (1), with ‖ · ‖ .= ‖ · ‖p.

Theorem 5 Suppose that the scheduling protocol (10d)
is persistently exciting in time T and that Assumption 11
holds. Further suppose that MATI satisfies τ ∈ [ε, τ∗),
ε ∈ (0, τ∗) where τ∗ = ln(2)

/
(‖L11‖1T ). Then, the NCS

error subsystem (10b)-(10d) is Lp stable from ỹ to ζ for
p ∈ [1,∞] with gain

γ̃(τ) =
T exp(‖L11‖1(T + 1)τ)(exp(‖L11‖1τ)− 1)

‖L11‖1(2− exp(‖L11‖1Tτ))
.

PROOF. The proof follows along similar lines to the
proof of Theorem 3. However, we use the definition of
‖ · ‖Lp as in (1) with ‖ · ‖ .

= ‖ · ‖p. Specifically, we use
this definition in (A.19) when computing the L1 bound.
Therefore, instead of having inequalities with Euclidean
norm as in (A.18), we now bound ‖ζ̄(ϑ)‖1 so that we get
‖ζ̄‖L1[tk,tk+1] with the current definition. We point out
here the important differences, in which the structure
of A plays a crucial role. The first significant difference
appears when dealing with terms of the form (cf. (A.4))

exp(ATτ)− I =

[
exp(L11Tτ)− I 0

0 0

] [
I Iy,u
0 0

]
,

where Iy,u
.
= diag{I2`y−1

ny , I2`u−1
nu }. By definition of the

induced 1-norm of a matrix, definition of matrix expo-
nential and triangle inequality, we have that∥∥ exp(ATτ)− I

∥∥
1

≤
∥∥∥∥[exp(L11Tτ)− I 0

0 0

]∥∥∥∥
1

∥∥∥∥[I Iy,u
0 0

]∥∥∥∥
1

= ‖exp(L11Tτ)− I‖1 · 1
≤ exp(‖L11‖1Tτ)− 1. (20)

The other significant difference is that we can bound
terms of the form exp(At), for any t ≥ 0, as follows
‖ exp(At)‖1 = ‖ exp(At)− I + I‖1 ≤ ‖ exp(At)− I‖1 +
‖I‖1. Now, we can use (20) in the last inequality to ob-
tain ‖ exp(At)‖1 ≤ exp(‖L11‖1t). Consequently, the in-
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duced 1-norm suits the structure of A perfectly in the
sense that we can now bound the exponential matrix
exp(At) by a matrix that only depends on L11. �

Theorem 6 Consider the WH–NCS (10) and suppose
that

(1) The conditions of Theorem 5 hold with ỹ = G(x) +
w;

(2) (10a) is Lp stable from (ζ, w) to G(x) with gain γ
for some p ∈ [1,∞];

(3) MATI satisfies τ ∈ [ε, τ∗), ε ∈ (0, τ∗), where τ∗ =
ln(z)/(‖L11‖1T ) and z solves

γTz1+2/T − γTz1+1/T + z ‖L11‖1 − 2‖L11‖1 = 0.

Then, the WH–NCS is Lp stable from w to (G(x), ζ) with
linear gain. �

7 Case study: The linear case

Consider the WH–NCS of Fig. 4 where the plant and
controller have the following linear state-space form

ẋp = Apxp +Bpû, ẋc = Acxc +Bcŷ,

y = Cpxp, u = Ccxc.
(21)

Recall the network-induced error in (9) and the aug-
mented state x = (xp, xc), then (10a)-(10b), together
with the re-arranged error ζ, becomes

ẋ = A11x+A12ζ (22a)

ζ̇ = A21x+A22ζ. (22b)

where

A11
.
=

[
Ap BpCc
BcCp Ac

]
,

A12
.
=

[
0 Bp 0 BpI

2`y−1
ny

Bc 0 BcI
2`u−1
nu 0

]
,

A21
.
=


−[Cp 0]A11

−[0 Cc]A11

0
...
0

 ,

A22
.
=


0 −CpBp 0 −CpBpI2`u−1

nu

−CcBc 0 −CcBcI
2`y−1
ny 0

0 0 0 0
...

...
...

...
0 0 0 0

 .

With the above, we can state the following immediate
result.

Proposition 1 Consider the linear system (22). Then,
Assumption 11 is satisfied with A = A22, and ỹ(x)

.
=

A21x, for any x ∈ Rnx , and thus Theorems 4 and 6 can be
directly invoked to compute the MATI bound that ensures
Lp stability of the linear system (22). �

Note that Assumption 11 is naturally satisfied in linear
WH–NCSs, given the structure of the WH network.

8 Numerical examples

8.1 MATI Computation

In this section, we numerically compare our MATI
bounds to the bounds in [17, 24] on an example. We
restrict the discussion of this section to linear time-
invariant systems in the absence of exogenous distur-
bances, and we thus verify UGES via Theorem 2.

Table 5
MATI bounds achieving UGES for the linear example in
Section 8.1, when the three PET scheduling protocols of
Section 5.3 are implemented. (`y = 2, `u = 1.)

S-RR FDD-RR W-RR

τ∗[17] in [ms] 5.11 · 10−5 4.18 · 10−3 3.86 · 10−2

τ∗[24] in [ms] 13.28 18.37 22.72

τ∗thm.4 in [ms] 13.53 18.69 23.1

τ∗thm.6 in [ms] 17.54 24.31 30.11

τ∗thm.4 vs. τ∗[17] 2.65 · 107% 4.47 · 105% 5.97 · 104%

τ∗thm.4 vs. τ∗[24] 1.82% 1.75% 1.69%

τ∗thm.6 vs. τ∗[17] 3.43 · 107% 5.81 · 105% 7.79 · 104%

τ∗thm.6 vs. τ∗[24] 32% 32.3% 32.55%

Consider the linear WH–NCS in (22) with Ap =
0.5, Bp = 1.1, Cp = 1, Dp = 0, Ac = −2, Bc = −1, Cc =
1.5, Dc = 0, and `y = 2, `u = 1. In this case,

A =


0 1.1 0 0 0 1.1

1.5 0 1.5 1.5 1.5 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

and we note that L11 =

[
0 1.1

1.5 0

]
, |A| = 3, and |L11| =

‖L11‖1 = 1.5. We implement the three scheduling pro-
tocols of Section 5.3, for which TS-RR = 7, TFDD-RR = 5
and TW-RR = 4. We can compute the L2 gain from ζ
to ỹ = A21x using Matlab and have γ = 5.19. With
the above, Table 5 is constructed by using Theorems 4
and 6 to compute the MATI bounds τ∗thm.4 and τ∗thm.6
(both theorems can be directly invoked given Proposi-
tion 1). The bound τ∗[17] is computed by using our previ-

ous work [17]. Then, τ∗[24] is obtained by using the PET
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Fig. 5. Linear example: Percentage of improvement between
τ∗thm.4, τ

∗
thm.6 and τ∗[24] (left), and between τ∗thm.4, τ

∗
thm.6 and

τ∗[17] (right). (`y ∈ [1, 20] and W-RR.)

framework in [24], which does not exploit the structure
of A. Next, we obtain the bounds τ∗thm.3 and τ∗thm.4, in
view of Theorems 4 and 6. Note that we can use the same
L2 gain γ in both Theorems 4 and 6 given that ‖ · ‖Lp in
(1) with ‖ · ‖ .= | · |, for p = 2, coincides with ‖ · ‖Lp when
using ‖ · ‖ .= ‖ · ‖p. In order to have a clear comparison,
we have also included, in the last four rows, the per-
centage of improvement between our proposed bounds
τ∗thm.4, τ

∗
thm.6 and previous literature τ∗[17], τ

∗
[24]. (We de-

fine the percentage of improvement between τA > 0 and
τB > 0, where τA ≥ τB , as 100× (τA − τB)/τB .)

We make the following comments:

(1) We can see that implementing a W-RR protocol
results in larger MATI bounds in comparison to S-
RR and FDD-RR. This is consistent with intuition.

(2) Our MATI bounds τ∗thm.4 and τ∗thm.6 are both larger
than the bounds in previous works [17] and [24],
given we exploit the mathematical structure of our
WH–NCS model. In fact, the bound τ∗[17] is quite

conservative in the context of WH.
(3) The bound τ∗[17] = 3.86 ·10−2[ms] (W-RR column)

that preserves UGES is equivalent to a network
throughput of 26.32 Mbps (WH has a maximum
packet length of 127 bytes). However, the maxi-
mum data rate allowed in WH networks is 250 kbps,
meaning that the bounds in [17] are quite conser-
vative. Our current bounds τ∗thm.3 = 23.1[ms] and
τ∗thm.4 = 30.11[ms], are equivalent to 43.98 kpbs
and 33.74 kbps, respectively. These are actually
achievable on current WH networks.

(4) When using Theorem 4, the corresponding bounds
are larger by around 1.7%. This is a modest im-
provement but still tighter than [24]. Theorem 6
provides MATI bounds around 33% better. In addi-
tion, Figure 5 shows that the percentage of improve-
ment between our bounds and [17,24] increases with
the number of field devices.

0 2 4 6 8 10

Time (seconds)

0

2

4

6

Without clock drift

With clock drift

Fig. 6. Stabilisation of the plant (21) when the controller is
implemented over a WH network via the TrueTime sim-
ulator without clock drift (solid line) and with clock drift
(dashed line).

8.2 TrueTime simulation of the WH–NCS

We now present a simulation in TrueTime, which is
a Simulink-based simulator for real-time control sys-
tems, including controller task execution, real-time ker-
nels, network transmissions and continuous plant dy-
namics [12]. Consider the same linear plant and con-
troller in Section 8.1. We have implemented the FDD-
RR protocol from Section 5.3.2, in which the sensor mea-
surements are sent in a RR fashion via channel one, and
the control signal is sent via channel two. In the y-path
we one sensor and one router (i.e. `y = 2), and in the u-
path we have one actuator (i.e. `u = 1). All the commu-
nications are done through a WH network under TDMA
communications. The controller and every field device
are simulated with TrueTime kernel blocks, which are
responsible for control logic, network data acquisition,
data processing and calculations. The TrueTime net-
work block simulates the transfer of packets in a real
network, in this case, a WH network.

In Figure 6, we can see that the controller can suc-
cessfully stabilise the plant from an initial condition of
xp(0) = 5 when implemented over a WH network. In
the same figure, we supposed that the actuator is sub-
ject to clock drift with respect to the field devices in
the y-path, which can be explicitly added in the True-
Time kernel block. That is, we are perturbing Assump-
tion 4(a), and thus transmissions in channel one might
not happen at the same time as transmissions in channel
two. The usual clock drift in digital devices is around 10
parts-per-million (ppm), and we have used this value in
the simulation. We can see from Figure 6 that the con-
troller is still capable of stabilising the plant even when
field devices are subject to clock drift.

9 Conclusions

This paper studied general non-linear control systems
with disturbances that are implemented over WH net-
works. We first provided a hybrid model of WH–NCSs,
which captures most functionalities of the network. Such
model is then used to studyLp stability of WH–NCSs. In
particular, we showed that, for high enough transmission
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rates, a scheduling protocol that regularly schedules to
transmit every field device within a fixed period of time
ought to preserveLp stability of the network-free system.
We thus provided guidelines to design scheduling proto-
cols, implementable in WH under TDMA communica-
tions, such that this property is indeed satisfied. Quanti-
tatively, this paper provided sharp MATI bounds, signif-
icantly improving upon bounds provided in [17] and [24].
This improvement relies exclusively on exploiting the
mathematical structure of our model. Future work will
focus on studying the tracking problem, and also on ob-
taining results for more general network topologies.

A Appendix

A.1 Technical lemmas

In order to prove the main results of this paper, we first
need the following lemmas.

Lemma 12 LetA,B ∈ An≥0, and supposeA � B. Then:
∀x ∈ Rn≥0, Ax � Bx; ∀C ∈ An≥0, AC � BC; and ∀C ∈
An≥0, CA � CB. �

Lemma 13 (cf. [24, 25]) Let v ∈ Rn and con-
sider Dv(t) � Av(t) + d(t) with v(t0) = v0, for
all t ∈ I ⊂ R, where Dv(t) denotes the left-handed
derivative of v(t), A ∈ An≥0 and d(t) : I → Rn
is continuous. Then, v(t) is bounded by v(t) �
exp(A(t−t0))v0+

∫ t
t0

exp(A(t−s))d(s) ds, for all t ∈ I.�

Lemma 14 Suppose that A ∈ An≥0 has the block struc-

ture in (16), and {Qi}i∈N ∈ Sn(T ) are arbitrary. Then∣∣(∏n+T−1
i=n Qi exp(Aτ)

)∣∣ ≤ λ < 1, for all n ∈ N, and

all τ ∈ [0, τ∗), where τ∗ = ln
(
1 + 1/

√
%
) /

(|L11|T ), and
λ
.
= (exp(|L11|Tτ)− 1)

√
%, and %

.
= max{2`y, 2`u}.

PROOF. Fix n ∈ N and τ ∈ R. By following the in-
duction procedure in the proof of Lemma 7.1 in [24], to-
gether with properties (2) and (3) of Lemma 12, we get(
n+T−1∏
i=n

Qi exp(Aτ)

)
�

(
n+T−1∏
i=n

Qi

)
+ exp(ATτ)− I.

Then, given that {Qi}i∈N ∈ Sn(T ),∣∣∣∣∣
(
n+T−1∏
i=n

Qi exp(Aτ)

)∣∣∣∣∣ ≤ | exp(ATτ)− I|. (A.1)

We now exploit the structure of A. Note that since A has
the block structure in (16), we have that, by definition
of the matrix exponential

exp(ATτ)− I =

[
L11 L12

0 0

]
Tτ

+
1

2!

[
L2

11 L11L12

0 0

]
(Tτ)2 + · · · (A.2)

Now, note that by definition of L12 in Assumption 11,
we have that

L12Tτ +
1

2!
L11L12(Tτ)2 + · · ·

= (exp(L11Tτ)− I)Iy,u. (A.3)

Given (A.2) and (A.3), we have that

exp(ATτ)− I =

[
exp(L11Tτ)− I 0

0 0

] [
I Iy,u
0 0

]
. (A.4)

Therefore, the induced 2-norm of exp(ATτ)− I can be
bounded as follows

| exp(ATτ)− I| ≤
∣∣∣∣[exp(L11Tτ)− I 0

0 0

]∣∣∣∣ ∣∣∣∣[I Iy,u
0 0

]∣∣∣∣
= | exp(L11Tτ)− I|

√
max{%}, (A.5)

where the last equality follows from the definition of 2-
norm and Iy,u. Then,

| exp(L11Tτ)− I| ≤ |L11|Tτ +
1

2!
|L11|2(Tτ)2 + · · ·

= exp(|L11|Tτ)− 1. (A.6)

Putting together (A.1), (A.5) and (A.6) we can conclude∣∣∣∣∣
(
n+T−1∏
i=n

Qi exp(Aτ)

)∣∣∣∣∣ ≤ | exp(ATτ)− I|

≤ (exp(|L11|Tτ)− 1)
√
%. (A.7)

It is clear now that we need to choose τ such that (A.7) is
less than one. We thus let (exp(|L11|Tτ∗)− 1)

√
% = 1,

and get τ∗ = ln
(
1 + 1/

√
%
)
/(|L11|T ). By monotonicity

of (exp(|L11|Tτ)− 1)
√
% in τ , (A.7) is less than one for

all [0, τ∗), completing the proof. �

A.2 Proof of Lemma 8

Consider a scheduling protocol that satisfies Assumption
7. Then, the corresponding protocol equation is given
by (10d) with H(i) satisfying (13). Now, consider the
following auxiliary discrete-time system

ζ(k + 1) = H(k)ζ(k), (A.8)

initialized at time i with initial condition ζ(i) = ζ. The
solution of this system at time k, starting at time i and
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initial condition ζ is denoted by φ(k, i, ζ), and it is given

by φ(k, i, ζ) =
(∏k−1

j=i H(j)
)
ζ. Now, recall from Sec-

tion 5.1 that H(i) depends on γyα(i), γuβ (i), δyα(i), δuβ(i)

which take values in {0, 1}, and these are related to the
components of ζ being reset to zero whenever transmis-
sions take place. Therefore, if every field device transmits
within T units of time, it means that every component
of the error would have been reset to zero in that period.
Therefore, there exists T ∈ N such that the solution of
the discrete-time system (A.8) satisfies φ(T + i, i, ζ) = 0

for all i ∈ N and ζ ∈ Rnζ . That is,
(∏T+i−1

j=i H(j)
)
ζ = 0,

for all i ∈ N and ζ ∈ Rnζ . Because the latter holds for
every ζ ∈ Rnζ , we conclude thatH satisfies (14) for some
T ∈ N, completing the proof. �

A.3 Proof of Theorem 3

Define Qi
.
= H(i) for each i ∈ N, and assume the sys-

tem is initialised at time ts, ts ∈ [0, t0], t0 − ts < τ .
Given that the protocol isPET , then {Qi}i∈N ∈ Snζ (T ).
For simplicity, we write ỹ(s) instead of ỹ(x(s), w(s)). By

hypothesis, we have that ḡ(x, ζ, w) =
¯̇
ζ � Aζ̄ + ỹ(t),

for almost all t ∈ [ti, ti+1]. The ι-th component of
¯̇
ζ,

ι ∈ {1, . . . , 2`y + 2`u}, is given by∣∣∣∣ ddtζι(t)
∣∣∣∣ =

∣∣∣∣ lim
h→0,h<0

ζι(t+ h)− ζι(t)
h

∣∣∣∣
≥ lim
h→0,h<0

|ζι(t+ h)| − |ζι(t)|
h

= Dζ̄ι(t),

hence Dζ̄ � Aζ̄+ ỹ(t). We now apply Lemma 13 to this
equation with initial condition ζ̄(t+i−1), together with the
protocol equation (10d), to get

ζ̄(t+i ) � Qi exp(A(ti − ti−1))ζ̄(t+i−1)

+Qi

∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds. (A.9)

Define Ri
.
= Qi exp(Aτ). By iterating the linear recur-

rence (A.9) from the initial condition ζ̄(ts), and using
Corollary 1, we get the following bound for all k ∈ Z≥0

ζ̄(t+k ) �

(
k∏
i=0

Ri

)
ζ̄(ts) +

k∑
i=0

(
k∏
n=i

Rn

)

× exp(−Aτ)

∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds. (A.10)

Fix τ ∈ (0, τ∗), where τ∗ comes from Lemma 14. We
first set the disturbance term ỹ = 0 and we focus in
the contribution of the initial condition ζ̄(ts). Then, by

using Lemma 14, we have that, for all m ∈ N

|ζ̄(t+mT−1)| ≤

∣∣∣∣∣
mT−1∏
i=0

Ri

∣∣∣∣∣ |ζ̄(ts)| ≤ λm|ζ̄(ts)|. (A.11)

From Dζ̄ � Aζ̄ + ỹ(t) with ỹ = 0, we have that ζ̄(s) �
exp(A(s − s0))ζ̄(s0) (cf. Lemma 13), for every ζ̄(s0) ∈
Rnζ . From the latter, and by using ζ̄(s0) = ζ̄(t+mT−1)
and its bound in (A.11), we have that

|ζ̄(θ)| ≤ exp(|A|(θ − tmT−1))λm|ζ̄(ts)|, (A.12)

for all m ∈ N and θ ∈ (tmT−1, t(m+1)T−1). Rais-
ing (A.12) to the p-th power and integrating over
[tmT−1, t(m+1)T−1], we get

∥∥ζ̄∥∥pLp[tmT−1,t(m+1)T−1]
≤ λmp

p|A|
(exp(|A|pTτ)− 1)|ζ̄(ts)|p,

(A.13)

for all m ∈ N and all p ∈ [1,∞). Now, we need to com-
pute a similar bound in the interval [ts, tT−1]. Proceed-
ing as above, we have that

∥∥ζ̄∥∥pLp[ts,tT−1]
≤ 1

p|A|
(exp(|A|pTτ)− 1)|ζ̄(ts)|p,

(A.14)

for all p ∈ [1,∞). Therefore, by summing (A.14) and
(A.13) with m→∞, and taking the p-th root, we have
that, for all t ≥ ts

∥∥ζ̄∥∥Lp[ts,t]
≤
∞∑
i=0

λi
(

exp(|A|pTτ)− 1

p|A|

)1/p

|ζ̄(ts)|

≤ 1

1− λ

(
exp(|A|pTτ)− 1

p|A|

)1/p

|ζ̄(ts)|, (A.15)

where the last inequality follows from λ < 1 given
Lemma 14. For p = ∞ we get the L∞ bound by taking
limp→∞

∥∥ζ̄∥∥Lp[ts,t]
in (A.15), that is,

∥∥ζ̄∥∥L∞ ≤ 1

1− λ
exp(|A|Tτ)|ζ̄(ts)|. (A.16)

We now focus on bounding the contribution from the
disturbance term in (A.10), obtained by setting ζ̄(ts) =
0. We get

ζ̄(t+k ) �
k∑
i=0

(
k∏
n=i

Rn

)
exp(−Aτ)

×
∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds. (A.17)
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Again, applying Lemma 13 to Dζ̄ � Aζ̄ + ỹ(t) with
initial condition (A.17), we get, for ϑ ∈ [tk, tk+1]

ζ̄(ϑ) � exp(A(ϑ− tk))

k∑
i=0

(
k∏
n=i

Rn

)

× exp(−Aτ)

∫ ti

ti−1

exp(A(ti − s))ỹ(s)ds

+

∫ ϑ

tk

exp(A(ϑ− s))ỹ(s)ds.

We now use the same division algorithm used in [24,
Theorem 5.1] to show that∣∣∣∣∣

k∏
n=i

Rn

∣∣∣∣∣ ≤ λb(k+1−i)/Tc exp(|A|(T − 1)τ).

With the above we can get the following bound for all
ϑ ∈ [tk, tk+1]

|ζ̄(ϑ)| ≤ exp(|A|(ϑ− tk)) exp(|A|Tτ)

k∑
i=0

λb(k+1−i)/Tc

×
∫ ti

ti−1

exp(|A|(ti − s))|ỹ(s)|ds

+

∫ ϑ

tk

exp(|A|(ϑ− s))|ỹ(s)|ds. (A.18)

In order to compute the Lp bound in this case, we will
start by finding anL1 estimate. Define ϕ(s)

.
= exp(|A|s).

We integrate (A.18) and use Young’s inequality [9] to get∥∥ζ̄∥∥L1[tk,tk+1]
≤ ‖ϕ‖L1[0,τ ] exp(|A|Tτ)

×
k∑
i=0

λb(k+1−i)/Tc
∫ ti

ti−1

exp(|A|(ti − s))|ỹ(s)|ds

+ ‖ϕ‖L1[0,τ ] ‖ỹ‖L1[tk,tk+1] .

We can further bound the above as∥∥ζ̄∥∥L1[tk,tk+1]
≤ ‖ϕ‖L1[0,τ ] exp(|A|(T + 1)τ)

×
k∑
i=0

λb(k+1−i)/Tc ‖ỹ‖L1[ti−1,ti]

+ ‖ϕ‖L1[0,τ ] ‖ỹ‖L1[tk,tk+1]

≤ ‖ϕ‖L1[0,τ ] exp(|A|(T + 1)τ)

×
k+1∑
i=0

λb(k+1−i)/Tc ‖ỹ‖L1[ti−1,ti]
. (A.19)

As in [24, Theorem 5.1], the bound on ‖ζ̄‖L∞[tk,tk+1] is
similar and omitted for brevity. Then, we can use the
Riesz-Thorin interpolation theorem [23, p.52] to bound
the Lp norm by the above L1 estimate. That is, summing
(A.19) over the interval [ts, tM ], for all M ≥ 0, we get∥∥ζ̄∥∥Lp[ts,tM ]

≤ ‖ϕ‖L1[0,τ ] exp(|A|(T + 1)τ)

×
M−1∑
k=−1

k+1∑
i=0

λb(k+1−i)/Tc ‖ỹ‖Lp[ti−1,ti]
,

for p ∈ [1,∞]. We now apply the Discrete Young’s In-
equality [24, Lemma 1.1], and take the limit as M →∞
in the above summation to get∥∥ζ̄∥∥Lp[ts,tM ]

≤ ‖ϕ‖L1[0,τ ] exp(|A|(T + 1)τ)

×
∞∑
i=0

λbi/Tc
∞∑
i=0

‖ỹ‖Lp[ti−1,ti]

= ‖ϕ‖L1[0,τ ] exp(|A|(T + 1)τ)

×
(

T

1− λ

)
‖ỹ‖Lp[ts,tM ]

=
T exp(|A|(T + 1)τ)(exp(|A|τ)− 1)

|A|
(
1 +
√
%−√% exp(|L11|Tτ)

) ‖ỹ‖Lp[ts,tM ] ,

(A.20)

where the last equality comes from the definition of ϕ,
and the definition of λ in Lemma 14. Note that either
‖ỹ‖Lp[ts,tM ] = 0 or the ratio

∥∥ζ̄∥∥Lp[ts,tM ]
/ ‖ỹ‖Lp[ts,tM ]

is bounded by an expression that is independent of M ,
hence, (A.20) remains true with t in lieu of tM for any
t ≥ ts. To finish the proof, we sum both (A.15) and
(A.20), to get

∥∥ζ̄∥∥Lp[ts,t]
≤ 1

1−√% (exp(|L11|Tτ)− 1)

×
(

exp(|A|pTτ)− 1

p|A|

)1/p ∣∣ζ̄(ts)
∣∣

+
T exp(|A|(T + 1)τ)(exp(|A|τ)− 1)

|A|
(
1−√% (exp(|L11|Tτ)− 1)

) ‖ỹ‖Lp[ts,t]
,

(A.21)

for p ∈ [1,∞). The L∞ bound is obtained by summing
(A.16) and (A.20), that is

∥∥ζ̄∥∥L∞[ts,t]
≤ exp(|A|Tτ)

1−√% (exp(|L11|Tτ)− 1)
|ζ̄(ts)|+

T exp(|A|(T + 1)τ)(exp(|A|τ)− 1)

|A|
(
1−√% (exp(|L11|Tτ)− 1)

) ‖ỹ‖L∞[ts,t]
.

(A.22)

15



By using Definition 1 together with (A.21) and (A.22),
we conclude that the system (10b), (10d) is Lp stable
from ỹ to ζ for p ∈ [1,∞] with gain γ̃(τ) as per (18). �
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[16] A.I. Maass, D. Nešić, and P.M. Dower. A hybrid
model of networked control systems implemented on
WirelessHART networks under source routing configuration.
In Proceedings of the Australian Control Conference, pages
60–65, Newcastle, Australia, 2016.
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