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a b s t r a c t

In this paper, we prove the output feedback stabilization for the linearized Korteweg–de Vries (KdV)
equation posed on a finite domain in the case the full state of the system cannot be measured. We
assume that there is a sensor at the left end point of the domain capable of measuring the first and
second order boundary traces of the solution. This allows us to design a suitable observer system
whose states can be used for constructing boundary feedbacks acting at the right endpoint so that
both the observer and the original plant become exponentially stable. Stabilization of the original
system is proved in the L2-sense, while the convergence of the observer system to the original plant
is also proved in higher order Sobolev norms. The standard backstepping approach used to construct
a left endpoint controller fails and presents mathematical challenges when building right endpoint
controllers due to the overdetermined nature of the related kernel models. In order to deal with this
difficulty we use the method of Özsarı and Batal, (2019) which is based on using modified target
systems involving extra trace terms. In addition, we show that the number of controllers and boundary
measurements can be reduced to one, with the cost of a slightly lower exponential rate of decay. We
provide numerical simulations illustrating the efficacy of our controllers.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study the output feedback stabilization of
the linearized Korteweg–de Vries (KdV) equation on a bounded
domain Ω = (0, L) ⊂ R. The linearized version of the model
under consideration is given by⎧⎨⎩

ut + ux + uxxx = 0 in Ω × (0, T ),
u(0, t) = 0, u(L, t) = U(t), ux(L, t) = V (t),
u(x, 0) = u0(x) in Ω,

(1)

whereas the nonlinear version of this model is written with the
main equation replaced by

ut + ux + uxxx + uux = 0. (2)

In (2), u = u(x, t) can for example model the evolution of
the amplitude of a surface water wave in a finite length channel

✩ This research was funded by IZTECH BAP, Turkey Grant 2017IYTE14. The
material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Thomas
Meurer under the direction of Editor Miroslav Krstic.

∗ Corresponding author.
E-mail addresses: ahmetbatal@iyte.edu.tr (A. Batal),

turkerozsari@iyte.edu.tr (T. Özsarı).

where energy to the system is put from the right end and left end
of the system is free. The inputs U(t) and V (t) at the right end
point of the boundary are feedback controllers to be constructed.
The initial–boundary value problems (1) and (2) with homoge-
neous boundary conditions (U = V ≡ 0) are both dissipative,
since their solution satisfies d

dt ∥u(t)∥
2
L2(Ω)

≤ 0. However, this

does not always guarantee exponential decay. It is well-known
that for some special domain lengths (so called critical lengths
for KdV) the solution does not need to decay to zero at all. For
example if L = 2π , u = 1 − cos(x) is a (time independent)
solution of (1) on Ω = (0, 2π ), but its L2−norm is constant in
t . Therefore, introducing a stabilizing effect into the system is
essential if one desires to steer the solution to zero. See also Chu,
Coron, and Shang (2015) and Shang, Tang, Chu, and Coron (2016)
for a detailed discussion of the relationship between stability and
domain length.

If the state of the system can be measured at all times, one
can attempt to construct exponentially stabilizing backstepping
controllers for (1) and (2). A backstepping controller is generally
constructed by using a transformation given by w(x, t) = u(x, t)−∫ x
0 k(x, y)u(y, t)dy, where k is a kernel function which is chosen in

such a way that the solution of (1) can be mapped to the solution
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of the following problem (so called ‘‘target system’’):⎧⎪⎪⎨⎪⎪⎩
wt + wx + wxxx + λw = 0 in Ω × R+,

w(0, t) = w(L, t) = wx(L, t) = 0 in R+,

w(x, 0) = w0(x) ≡ u0 −

∫ x

0
k(x, y)u0(y)dy in Ω.

The reason is that the solution of the above PDE model read-
ily decays to zero, and if one can also show that the inverse
of the backstepping transformation is bounded, then the decay
of w becomes equivalent to the decay of u. Finding a suitable
kernel which serves this purpose is the crucial step. However,
such an attempt to control from the right endpoint, when only
one boundary condition is specified at the left, brings serious
mathematical challenges since then the kernel is forced to satisfy
the overdetermined PDE model given by

kxxx + kyyy + ky + kx = −λk, y ∈ [0, x], x ∈ [0, L]

k(x, x) = k(x, 0) = ky(x, 0) = 0, (3)

kx(x, x) =
λ

3
x.

Unfortunately, the above PDE model does not have smooth so-
lutions (see Özsarı & Batal, 2019 for a detailed discussion of this
issue). This problem is not present if one controls the system from
the left endpoint (Cerpa & Coron, 2013) or alternatively controls
from the right with two boundary conditions specified at the
left. The latter approach was used for instance in Tang and Krstic
(2013a, 2013b) where the controller acted from the right bound-
ary condition while two (mixed type) boundary conditions were
specified at the left. However, usually the boundary conditions
are determined by the intrinsic nature of the physical model, and
one may not be able to choose the number of boundary conditions
at a particular endpoint. The novelty of the present article is that
we are able to construct boundary feedback stabilizers acting
from the opposite of the endpoint where only one boundary
condition is specified.

Two approaches were proposed in order to overcome the dif-
ficulty associated with the overdetermined kernel model. Coron
and Lü (2014) replaced (3) posed on a triangle with an equivalent
PDE model posed on the rectangle [0, L] × [0, L] and showed
that this kernel PDE model has a rough (H1) solution. However,
their result relies on the exact controllability of the linear KdV
equation, which does not hold on domains of critical lengths.
They managed to get high decay rates for domains of uncritical
lengths. The second approach due to Özsarı and Batal (2019)
is a direct method which does not rely on any controllability
result. It is based on constructing a backstepping controller which
uses a modified kernel model disregarding one of the boundary
conditions in (3):

kxxx + kyyy + ky + kx = −λk, y ∈ [0, x], x ∈ [0, L]

k(x, x) = k(x, 0) = 0, (4)

kx(x, x) =
λ

3
x.

In Özsarı and Batal (2019) it is proven that the exponential
stability can still be achieved by using such a kernel with the cost
of a low exponential rate of decay. The slower decay is due to
the fact that disregarding a boundary condition from (3) changes
the target system in such a way that its main equation involves a
trace term which depends on the kernel. Although this trace term
badly affects the decay, its effect can be eliminated by choosing λ
sufficiently small in which case one can still obtain an exponential
decay but not with an arbitrarily large rate. For more details
see Özsarı and Batal (2019, Section 2.1). This approach has the
advantage that it is independent of whether the domain length
is critical or not. The existence as well as the smoothness of the

kernel k satisfying (4) was previously proved in Özsarı and Batal
(2019, Lemma 2.1):

Lemma 1 (Özsarı & Batal, 2019). There exists a C∞-function k that
solves the boundary value problem (4).

The proof of the above lemma was done in Özsarı and Batal
(2019) in two steps. The first step was to show that k solves (4)
if and only if G = G(s, t) solves the integral equation

G(s, t) =
λ

3
st

+
1
3

∫ t

0

∫ s

0

∫ ω

0
(−Gttt + 3Gstt − Gt − λG)(ξ, η)dξdωdη, (5)

where t ≡ y, s ≡ x − y, and G(s, t) ≡ k(x, y). The second
step was to obtain the smooth solution of (5) via a successive
approximation technique and uniform boundedness analysis of
the subsequent series.

In both Coron and Lü (2014) and Özsarı and Batal (2019), it
was assumed that the state of the system could be measured at
all times. Unfortunately, this is not always the case. For instance,
if one has no access to the medium, a controller that requires
measurement of the full state of the original system may not be
constructed. In such a case, one generally first constructs an ob-
server system that estimates the plant if some partial information
such as a boundary measurement is available. The advantage is
that the observer can be controlled since its full state is available
unlike the original plant. This implies that the original plant can
be stabilized by the same controller applied to the boundary of
the observer. From the mathematical point of view, the question
is the following.

Problem 2. Can you write a boundary feedback system with
exponential stability, say with the unknown û, such that this
system (observer) estimates the solution of the original plant
with the same controller which uses the states of the observer?

In this paper, we will assume that there are sensors at the
left end point of the channel capable of measuring the bound-
ary traces ux(0, t) and uxx(0, t). In order to answer Problem 2,
we introduce and stabilize the following observer system whose
boundary feedback will also be applied to the original plant:⎧⎪⎪⎨⎪⎪⎩

ût + ûx + ûxxx + P1(x)
(
ux(0, t) − ûx(0, t)

)
+P2(x)

(
uxx(0, t) − ûxx(0, t)

)
= 0, in Ω × (0, T ),

û(0, t) = 0, û(L, t) = U(t), ûx(L, t) = V (t), in (0, T ),
û(x, 0) = û0(x), in Ω.

(6)

Note that the error ũ = û − u satisfies the PDE model given by⎧⎪⎪⎨⎪⎪⎩
ũt + ũx + ũxxx

= P1(x)ũx(0, t) + P2(x)ũxx(0, t) in Ω × (0, T );
ũ(0, t) = 0, ũ(L, t) = 0, ũx(L, t) = 0 in (0, T );
ũ(x, 0) = u0(x) − û0(x) in Ω.

(7)

P1(x) and P2(x) are observer gains in (6) and (7), which are chosen
in such a way that the solution û of the estimator can be later
controlled and moreover the error is enforced to go to zero as t
gets larger (see Section 2.2). In some sense, we want to control
the error, too. This is achieved by using a bounded invertible
(backstepping) transformation in the form

ũ(x, t) = w̃(x, t) −

∫ x

0
p(x, y)w̃(y, t)dy (8)
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by mapping the error system to the (exponentially stable) target
system given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

w̃t + w̃x + w̃xxx + λ̃w̃ = 0, in Ω × (0, T ),

w̃(0, t) = 0, w̃(L, t) = 0,

w̃x(L, t) =

∫ L

0
px(L, y)w̃(y, t)dy, in (0, T ),

w̃(x, 0) = w̃0(x), in Ω

(9)

where λ̃ > 0. Computing the relevant partial derivatives of both
sides of (8), applying integration by parts and using the given
boundary conditions, it can be shown that the desired target
system (9) is obtained if P1(x) := py(x, 0), P2(x) := −p(x, 0) and
p(x, y) satisfies the following PDE model on ∆:⎧⎪⎪⎨⎪⎪⎩

pxxx + pyyy + px + py = λ̃p,
p(L, y) = 0, p(x, x) = 0,

px(x, x) = −
λ̃

3
(x − L).

(10)

Existence of a solution to (10) as well as the exponential decay of
(9) is shown in Section 2.2.

1.1. A few more words on the literature

Recently, Marx and Cerpa (2018) proved the output feedback
stabilization of the Korteweg–de Vries equation subject to the
boundary conditions u(0, t) = U(t), ux(L, t) = uxx(L, t) = 0
by using the partial measurement y(t) = u(L, t). Here the left
end boundary input U(t) is a controller (stabilizer) obtained by
using the backstepping method. This controller uses only the state
values of the observer. Prior to this work, the same authors (Marx
& Cerpa, 2014) proved the output feedback stabilization of the
Korteweg–de Vries equation subject to the boundary conditions
u(0, t) = U(t), u(L, t) = ux(L, t) = 0 by using the partial
measurement y(t) = uxx(L, t). The same problem in the nonlin-
ear case was studied by Hasan (2016). We should also mention
some important work related to the control and stabilization of
the KdV equation. Exact boundary controllability of the linear
and nonlinear KdV equations with the same type of boundary
conditions as in (1) was studied by Cerpa (2007), Cerpa and
Crépeau (2009), Coron and Crépeau (2004), Glass and Guerrero
(2008, 2010), Rosier (1997), Rosier and Zhang (2009) and Zhang
(1999). Stabilization of solutions of the KdV equation with a
localized interior damping was achieved by Balogh and Krstic
(2000), Massarolo, Menzala, and Pazoto (2007), Pazoto (2005) and
Perla Menzala, Vasconcellos, and Zuazua (2002). There are also
some results achieving stabilization of the KdV equation by us-
ing predetermined local boundary feedbacks, see for instance Jia
(2016) and Liu and Krstić (2002).

1.2. Preliminaries, notation, and main result

Before we state our main results, let us give some important
facts and notations that will be needed later. To this end, let η be
a C∞-function and Υη : H l(Ω) → H l(Ω) (l ≥ 0) be the integral
operator defined by (Υηϕ)(x) :=

∫ x
0 η(x, y)ϕ(y)dy, where H l(Ω)

denotes the L2−based Sobolev spaces with H0(Ω) = L2(Ω). Then
the following result holds true (Liu, 2003; Özsarı & Batal, 2019):

Lemma 3. I − Υη is invertible with a bounded inverse from
H l(Ω) → H l(Ω) (l ≥ 0). Moreover, (I − Υη)−1 can be written as
I + Φ , where Φ is a bounded operator from L2(Ω) into H l(Ω) for
l = 0, 1, 2 and from H l−2(Ω) into H l(Ω) for l > 2.

For a given function ϕ, we say it satisfies the (higher or-
der) compatibility conditions (see e.g., Bona, Sun, & Zhang, 2003,

Definition 1.1) if

ϕ(x̄) = ϕ′′′(x̄) + ϕ′(x̄) = 0, x̄ = 0, L. (11)

We also set X s
T = C([0, T ];Hs(Ω)) ∩ L2(0, T ;Hs+1(Ω)) for rep-

resenting solution spaces for s ≥ 0. In what follows, we will
write A ≲ B to denote an inequality A ≤ cB where c > 0
may only depend on the fixed parameters of the problem under
consideration which are not of interest. The main result of the
paper is stated in the following theorem:

Theorem 4. Let T > 0, u0, û0 ∈ H6(Ω) with u0(0) = u0(L) = 0,
p and k be the smooth kernels solving (10) and (4), respectively. Let
also (I − Υp)−1ũ0 = w̃0 satisfy the compatibility conditions (11).
Then, the plant-observer-error (POE) system given in (1), (6), (7) has
a solution (u, û, ũ) ∈ X3

T × X3
T × X6

T with right endpoint boundary
controllers

U(t) := [Υkû](L, t) and V (t) := [Υkx û](L, t).

Moreover, there exist α > κ > 0 such that the decay rate estimates

∥u(t)∥L2(Ω) ≲
(
∥û0∥L2(Ω) + ∥u0 − û0∥H3(Ω)

)
e−κt

+∥u0 − û0∥L2(Ω)e
−αt , (12)

∥û(t)∥L2(Ω) ≲
(
∥û0∥L2(Ω) + ∥u0 − û0∥H3(Ω)

)
e−κt , (13)

∥u(t) − û(t)∥L2(Ω) ≲ ∥u0 − û0∥L2(Ω)e
−αt , (14)

∥u(t) − û(t)∥H3(Ω) ≲ ∥u0 − û0∥H3(Ω)e
−αt (15)

hold true for t ∈ [0, T ].

2. Linearized model

2.1. Wellposedness

The initial step is to prove the wellposedness of the target
error system (9). To this end, we first consider the following open
loop system instead of (9) for a moment:⎧⎨⎩w̃t + w̃x + w̃xxx + λ̃w̃ = 0, in Ω × (0, T ),

w̃(0, t) = 0, w̃(L, t) = 0, w̃x(L, t) = h(t),
w̃(x, 0) = w̃0(x), in Ω,

(16)

where h ∈ H1(0, T ), w̃0 ∈ H3(Ω) satisfy the compatibility
conditions w̃0(0) = 0, w̃0(L) = 0. The well-posedness of (16) was
obtained in Bona et al. (2003, Lemma 3.3), and one has w̃ ∈ X3

T
together with w̃t ∈ X0

T .

Lemma 5 (Bona et al., 2003). For given T > 0, let h ∈ H1(0, T ),
w̃0 ∈ H3(Ω) satisfy the compatibility conditions w̃0(0) = 0, w̃0(L) =

0. Then Eq. (16) has a unique solution w̃ in X3
T with w̃t ∈ X0

T such
that the following estimates hold true:(
∥w̃∥X3

T
+ ∥w̃t∥X0

T

)
≤ C

(
∥w̃0∥H3(Ω) + ∥h∥H1(0,T )

)
.

Note that in (9), the boundary condition w̃x(L, t) =
∫ L
0 px(L, y)

w̃(y, t)dy is of feedback type. This corresponds to a closed loop
version of (16) where h(t) = h(w̃)(t) =

∫ L
0 px(L, y)w̃(y, t)dy.

The wellposedness of the closed loop problem will be treated
by using a fixed point argument. To achieve this, we define the
Banach space QT ≡ {w̃ ∈ X3

T | w̃t ∈ X0
T } and its complete

metric subspace Q̃T = {w̃ ∈ QT | w̃(·, 0) = w̃0(·)} with the
metric induced from the norm of QT . Observe that given w̃∗

∈

Q̃T , since p is a smooth solution of (10), one has h(w̃∗)(·) =∫ L
0 px(L, y)w̃∗(y, ·)dy ∈ H1(0, T ). Indeed,

∥h(w̃∗)∥H1(0,T ) =

∫ L

0
px(L, y)w̃∗(y, ·)dy


H1(0,T )

≤
√
T∥px(L, ·)∥L2(Ω)

(
∥w̃∗

∥X0
T

+ ∥w̃∗

t ∥X0
T

)
< ∞. (17)
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Now, we replace the boundary condition w̃x(L, t) = h(w̃)(t) with
w̃x(L, t) = h(w̃∗)(t) for fixed w̃∗

∈ X3
T . This is nothing but the

problem given in (16) which has a unique solution by Lemma 5.
This defines an operator Γ : Q̃T → Q̃T given by Γ (w̃∗) = w̃.
Regarding the closed loop problem (9), it is now enough to show
that Γ has a fixed point. Let w̃1, w̃2 ∈ Q̃T . Using the estimate in
Lemma 5, we have

d(Γ (w̃1), Γ (w̃2))Q̃T
= ∥Γ (w̃1) − Γ (w̃2)∥QT

≤ C∥h(w̃1)(·) − h(w̃2)(·)∥H1(0,T )

≤ CT∥w̃1 − w̃2∥QT = CTd(w̃1, w̃2)Q̃T
. (18)

Note that by choosing T sufficiently small we can make the
constant at the right hand side of the above inequality less than
1. Now, unleashing the Banach fixed point theorem, we obtain
the existence of a unique local solution w̃ ∈ QT . This implies
the local well-posedness for the target error system (9). In order
to show that the local solution is indeed global, it is enough to
prove that the local solution stays uniformly bounded in time.
But this readily follows from the stabilization estimates given in
Section 2.2. Now, by using the transformation in (8), we obtain
the wellposedness of the error system (7).

We prove in Lemma 6 that w̃x(0, ·), w̃xx(0, ·) ∈ L2(0, T ). More-
over, for w̃0 ∈ H6(Ω), we have z0 := −w̃′

0 − w̃′′′

0 − λ̃w̃0 ∈

H3(Ω) satisfying the compatibility conditions. Introducing z =

w̃t , we observe that z satisfies the main equation as well as the
boundary conditions of (9) but with initial condition z(x, 0) =

z0. Applying the above arguments to z, we deduce that w̃t =

z ∈ X3
T . Moreover, we have w̃xt (0, t) = zx(0, t), w̃xxt (0, ·) =

zxx(0, ·) ∈ L2(0, T ). Therefore, the right hand side of (32) can be
written as a(x)ŵx(0, t) + f (x, t) with a(x) = ky(x, 0) and f (x, t) =

−Ψ1(x)w̃x(0, t)− Ψ2(x)w̃xx(0, t) such that f ∈ W 1,2(0, T ;H∞(Ω)).
Well-posedness of this problem was studied in Bona et al. (2003,
Lemma 3.3), and for given ŵ0 ∈ H3(Ω) satisfying the compati-
bility, one has ŵ ∈ X3

T . Now, by the invertibility of (30) due to
Lemma 3, we obtain the wellposedness of the observer system
(6) so that û ∈ X3

T . Combining the wellposedness of (6) and (7),
we obtain the wellposedness of the original system and conclude
that u = X3

T .

2.2. Stabilization

Note that with the change of variables x̃ ≡ L− y and ỹ ≡ L− x
and k(x̃, ỹ) = p(x, y), it is easy to see that k is the C∞ kernel
which solves (4), where x, y, and λ, replaced by x̃, ỹ, and λ̃. Note
also that by this transformation we see that px(L, y) = −kỹ(x̃, 0),
and in Özsarı and Batal (2019, Lemma 2.5) it is shown that for
suitably small, λ̃ > 0, the quantity λ̃ −

1
2∥kỹ(·, 0)∥

2
L2(Ω)

is strictly
greater than zero. Therefore choosing λ̃ sufficiently small, we
can guarantee that α ≡ λ̃ −

1
2∥px(L, ·)∥

2
L2(Ω)

> 0. We need the
following lemma:

Lemma 6. Let w̃ be the solution of (9). Then the following
inequalities hold:

∥w̃∥L2(Ω) ≤ ∥w̃0∥L2(Ω)e
−αt , (19)

|w̃x(0, t)| + |w̃xx(0, t)| + ∥w̃∥H3(Ω) ≲ ∥w̃0∥H3(Ω)e
−αt . (20)

We multiply (9) by w̃ and integrate over Ω . Applying integra-
tion by parts and boundary conditions we obtain

1
2

d
dt

∥w̃(t)∥2
L2(Ω) + λ̃∥w̃(t)∥2

L2(Ω) +
1
2
|w̃x(0, t)|2

=
1
2
|w̃x(L, t)|2,

which, together with (9), implies
1
2

d
dt

∥w̃(t)∥2
L2(Ω) + λ̃∥w̃(t)∥2

L2(Ω)

≤
1
2

(∫ L

0
px(L, y)w̃(y, t)dy

)2

.

Applying the Cauchy–Schwarz inequality to the right hand side
we see that
1
2

d
dt

∥w̃(t)∥2
L2(Ω) +

(
λ̃ −

1
2
∥px(L, ·)∥2

L2(Ω)

)
∥w̃(t)∥2

L2(Ω) ≤ 0,

which gives (19).
In order to prove (20), we first differentiate (9) with respect

to t , then multiply by w̃t and integrate over Ω . Using integration
by parts and boundary conditions as well, we see that
1
2

d
dt

∥w̃t (t)∥2
L2(Ω) + λ̃∥w̃t (t)∥2

L2(Ω) +
1
2
|w̃tx(0, t)|2

=
1
2
|w̃tx(L, t)|2. (21)

Moreover by (9) we have w̃tx(L, t) =
∫ L
0 px(L, y)w̃t (y, t)dy. Hence

we obtain
1
2

d
dt

∥w̃t (t)∥2
L2(Ω) + λ̃∥w̃t (t)∥2

L2(Ω)

≤
1
2

(∫ L

0
px(L, y)w̃t (y, t)dy

)2

.

Applying the Cauchy–Schwarz inequality to the right hand side
we get
1
2

d
dt

∥w̃t (t)∥2
L2(Ω) +

(
λ̃ −

1
2
∥px(L, ·)∥2

L2(Ω)

)
∥w̃t (t)∥2

L2(Ω) ≤ 0, (22)

which implies

∥w̃t (t)∥L2(Ω) ≤ ∥w̃t (0)∥L2(Ω)e
−αt

≤ ∥w̃0∥H3(Ω)e
−αt (23)

since ∥w̃t (0)∥L2(Ω) = ∥w̃′

0+w̃′′′

0 +λ̃w̃0∥ ≤ ∥w̃0∥H3(Ω). On the other
hand, by (9) we also have

∥w̃xxx(t)∥2
L2(Ω)

≤ 3
(
∥w̃x(t)∥2

L2(Ω) + λ̃∥w̃(t)∥2
L2(Ω) + ∥w̃t (t)∥2

L2(Ω)

)
. (24)

Applying ϵ-Young’s inequality to the square of the right hand side
of the Gagliardo–Nirenberg inequality

∥w̃x(t)∥L2(Ω) ≤ ∥w̃xxx(t)∥
1
3
L2(Ω)

∥w̃(t)∥
2
3
L2(Ω)

,

we also obtain

∥w̃x(t)∥2
L2(Ω) ≤ ϵ∥w̃xxx(t)∥2

L2(Ω) + cϵ∥w̃(t)∥2
L2(Ω) (25)

for ϵ > 0. Combining (24) and (25), and choosing ϵ small enough,
we see that

∥w̃xxx(t)∥L2(Ω) ≲ ∥w̃(t)∥L2(Ω) + ∥w̃t (t)∥L2(Ω). (26)

Hence

∥w̃(t)∥H3(Ω) ≲ ∥w̃(t)∥L2(Ω) + ∥w̃t (t)∥L2(Ω), (27)

which, together with (19) and (23), implies

∥w̃∥H3(Ω) ≲ ∥w̃0∥H3(Ω)e
−αt . (28)

To obtain the second part of inequality (20), we multiply (9) by
(L−x)w̃xx and integrate over Ω . Applying integration by parts and
boundary conditions, we obtain

w̃2
x (0, t) + w̃2

xx(0, t)

=
2
L

∫ L

0

(
(L − x)w̃tw̃xx +

1
2
w̃2

x +
1
2
w̃2

xx + λ̃(L − x)w̃w̃xx
)
dx.
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Using Cauchy–Schwarz and Young’s inequalities on the first and
last term of the right hand side, we see that

|w̃x(0, t)|2 + |w̃xx(0, t)|2 ≲ ∥w̃t∥
2
L2(Ω) + ∥w̃∥

2
H3(Ω), (29)

which, together with (23) and (28), implies (20).
Now for û, we apply the backstepping transformation

ŵ = û −

∫ x

0
k(x, y)û(y, t)dy (30)

where k is the kernel (Özsarı & Batal, 2019, Lemma 2.1) which
solves (4). Choosing

U(t) =

∫ L

0
k(L, y)û(y, t)dy,

V (t) =

∫ L

0
kx(L, y)û(y, t)dy.

(31)

in (6), we obtain the following equation for ŵ:{
ŵt + ŵx + ŵxxx + λŵ

= ky(x, 0)ŵx(0, t) − Ψ1(x)w̃x(0, t) − Ψ2(x)w̃xx(0, t),
ŵ(0, t) = 0, ŵ(L, t) = 0, ŵx(L, t) = 0,

(32)

where Ψi(x) ≡ Pi(x) −
∫ x
0 Pi(y)k(x, y)dy for i ∈ {1, 2}. Multiplying

(32) by ŵ and integrating over Ω , we obtain
1
2

d
dt

∥ŵ(t)∥2
L2(Ω) + λ∥ŵ(t)∥2

L2(Ω) +
1
2
|ŵx(0, t)|

2

= ŵx(0, t)
∫ L

0
ky(x, 0)ŵ(x, t)dx

−w̃x(0, t)
∫ L

0
Ψ1(x)ŵ(x, t)dx − w̃xx(0, t)

∫ L

0
Ψ2(x)ŵ(x, t)dx.

Applying ϵ-Young’s and Cauchy–Schwarz inequalities to the right
hand side, for any ϵ we get
1
2

d
dt

∥ŵ(t)∥2
L2(Ω) +κ∥ŵ(t)∥2

L2(Ω) ≤
1
2ϵ

[
w̃2

x (0, t) + w̃2
xx(0, t)

]
, (33)

where

κ ≡ λ −
1
2
∥ky(·, 0)∥2

L2(Ω) −
1
2
ϵ
(
∥Ψ1∥

2
L2(Ω) + ∥Ψ2∥

2
L2(Ω)

)
.

By Özsarı and Batal (2019, Lemma 2.5) we know that for suffi-
ciently small λ, the quantity λ −

1
2∥ky(·, 0)∥

2
L2(Ω)

> 0. Therefore
choosing ϵ sufficiently small we can make the coefficient κ > 0.
Moreover, since α ≡ λ̃ −

1
2∥px(L, ·)∥

2
L2(Ω)

and px(L, y) = ky(x, 0),
choosing λ = λ̃ if necessary, we can assume α > κ . Inequalities
(33) and (20) imply
1
2

d
dt

∥ŵ(t)∥2
L2(Ω) + κ∥ŵ(t)∥2

L2(Ω) ≲ ∥w̃0∥
2
H3(Ω)e

−2αt .

Using the assumption α > κ , multiplying both sides of the above
inequality by e2κt and taking the integral of both sides from 0 to
t we can easily see that

∥ŵ(t)∥2
L2(Ω) ≲

(
∥ŵ0∥

2
L2(Ω) + ∥w̃0∥

2
H3(Ω)

)
e−2κt ,

which is equivalent to saying

∥ŵ(t)∥L2(Ω) ≲
(
∥ŵ0∥L2(Ω) + ∥w̃0∥H3(Ω)

)
e−κt . (34)

On the other hand, both of the transformations given in (8) and
(30) are bounded with bounded inverses by Lemma 3. Therefore,
we have
∥ũ(t)∥H3(Ω) ≲ ∥w̃(t)∥H3(Ω), ∥w̃0∥H3(Ω) ≲ ∥ũ0∥H3(Ω),

∥û(t)∥L2(Ω) ≲ ∥ŵ(t)∥L2(Ω), ∥ŵ0∥L2(Ω) ≲ ∥û0∥L2(Ω).
(35)

Combining (34) and (35), we achieve

∥û∥L2(Ω) ≲
(
∥û0∥L2(Ω) + ∥u0 − û0∥H3(Ω)

)
e−κt . (36)

Moreover, (19), (20) and (35) also imply

∥u − û∥L2(Ω) ≲ ∥u0 − û0∥L2(Ω)e
−αt , (37)

∥u − û∥H3(Ω) ≲ ∥u0 − û0∥H3(Ω)e
−αt . (38)

Using (36)–(37) together with the triangle inequality, we obtain

∥u∥L2(Ω) = ∥û + ũ∥L2(Ω) ≤ ∥û∥L2(Ω) + ∥u − û∥L2(Ω)

≲
(
∥û0∥L2(Ω) + ∥u0 − û0∥H3(Ω)

)
e−κt

+∥u0 − û0∥L2(Ω)e
−αt . (39)

3. Numerics

3.1. Algorithm

In this section, we describe the steps to obtain the numeri-
cal solution of the plant-observer-error system given in (1), (6),
and (7). We follow a different approach compared to for in-
stance (Marx & Cerpa, 2018). Our idea is based on first solving the
models (7) and (32) with homogeneous boundary conditions and
then obtaining the solutions of nonhomogeneous boundary value
problems (1) and (6) by using the invertibility of the backstepping
transformation given in Lemma 3.

(Step 1) At first we obtain numerical solutions of kernel models
(4) and (10). This is done via successive approximation.
More precisely, we first change variables by setting t ≡ y,
s ≡ x − y, and G(s, t) ≡ k(x, y). Then, G satisfies the
boundary value problem given by

Gttt − 3Gstt + 3Gsst + Gt = −λG, (40)
G(s, 0) = G(0, t) = 0, (41)

Gs(0, t) =
λ

3
t (42)

on the triangular domain T0 ≡ {(s, t) | t ∈ [0, L], s ∈

[0, L − t]}. Note that the solution of (40)–(42) can be
constructed by solving the integral equation

G(s, t) =
λ

3
st +

1
3

∫ t

0

∫ s

0

∫ ω

0
P[G](ξ, η)dξdωdη, (43)

where the differential operator P is defined by P[G] =

−Gttt + 3Gstt − Gt − λG. Therefore, we set

Gn(s, t) =
λ

3
st +

1
3

∫ t

0

∫ s

0

∫ ω

0
P[Gn−1

](ξ, η)dξdωdη, (44)

for n ≥ 1 with G0
≡ 0. We have proven in Özsarı and

Batal (2019) that the sequence Gn uniformly converges
to a smooth function on T0. For the sake of numerical
experiments, we define a parameter niter ∈ Z+ and use

knum(x, y) = Gniter (x − y, y)

for the kernel k. Since the solution of (10) is given by
p(x, y) = k(L − y, L − x), we will use

pnum(x, y) = knum(L − y, L − x) = Gniter (x − y, L − x)

for the kernel p. The observer gains P1 and P2 will then be
taken as

P1,num(x) =
∂

∂y
pnum(x, 0) and P2,num(x, 0) = −pnum(x, 0).

Using these polynomial approximations, we also define
approximations for Ψi, i = 1, 2 by setting

Ψi,num(x) ≡ Pi,num(x) −

∫ x

0
Pi,num(y)knum(x, y)dy.

(Step 2) Secondly, we numerically solve the error system (7). In
order to do this, we modify the finite difference scheme
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given in Pazoto, Sepúlveda, and Villagrán (2010). To this
end, we set the discrete space

XJ := {ũ = (ũ0, ũ1, . . . , ũJ ) ∈ RJ+1
| ũ0 = ũJ−1 = ũJ = 0},

and the difference operators (D+ũ)j :=
ũj+1−ũj

δx , (D−ũ)j :=
ũj−ũj−1

δx for j = 1, . . . , J − 1, and D =
1
2 (D

+
+ D−). Let

δx and δt be the space and time steps for j = 0, . . . , J ,
and n = 0, 1, . . . ,N , respectively. Then the numerical
approximation of the linearized error system (7) takes the
form

ũn+1
j − ũn

j

δt
+ (Aũn+1)j = P1,num(xj)

ũn
1

δx
(45)

+P2,num(xj)
(ũn

2 − 2ũn
1)

(δx)2
, j = 1, . . . , J − 1 (46)

ũ0 = ũJ−1 = ũJ = 0, (47)

ũ0 =

∫ x
j+ 1

2

x
j− 1

2

ũ0(x)dx, j = 1, . . . , J − 1, (48)

where xj∓ 1
2

= (j ∓
1
2 )δx, xj = jδx. The (J − 1) × (J − 1)

matrix A approximates ũx + ũxxx and it is defined by A :=

D+D+D−
+ D. Let us set C̃ := I + δtA. Then, from the main

equation, we obtain

ũn+1
j = C̃−1

(
ũn
j

+P1,num(xj)
(δt)ũn

1

δx
+ P2,num(xj)

δt(ũn
2 − 2ũn

1)
(δx)2

)
(49)

for j = 1, . . . , J − 1.

(Step 3) The next step is to solve (32). The right hand side of
the main equation in (32) includes the traces w̃x(0, t) and
w̃xx(0, t). Observe that these traces are equal to ũx(0, t)
and ũxx(0, t) by the transformation (8) and the boundary
conditions p(x, x) = 0 and w̃(0, t) = 0. Therefore, we can
use the approximations ũn1

δx and ũn2−2ũn1
(δx)2

from the previous
step to approximate ũx(0, tn) and ũxx(0, tn) at the nth time
step. Then the numerical approximation of the linearized
observer target system (32) takes the form

ŵn+1
j − ŵn

j

δt
+ (Aŵn+1)j + λŵn+1

= (RHS), (50)

ŵ0 = ŵJ−1 = ŵJ = 0, (51)

ŵ0 =

∫ x
j+ 1

2

x
j− 1

2

ŵ0(x)dx, (52)

for j = 1, . . . , J , where ŵ0 is obtained from the transfor-
mation (30) and

(RHS) =
∂

∂y
knum(xj, 0) − Ψ1,num(xj)

ũn
1

δx

−Ψ2,num(xj)
(ũn

2 − 2ũn
1)

(δx)2
. (53)

Let us set Ĉ := (1 + δtλ)I + δtA. Then, from the main
equation, we obtain

ŵn+1
j = Ĉ−1

(
ŵn

j +
∂

∂y
knum(xj, 0) − Ψ1,num(xj)

ũn
1

δx

−Ψ2,num(xj)
(ũn

2 − 2ũn
1)

(δx)2

)
(54)

for j = 1, . . . , J − 1.

Fig. 1. Uncontrolled solution with initial datum u0 = 1− cos(x) on a domain of
length 2π .

In order to obtain the solution of the observer system (6),
we use the inverse of the transformation (30). Given w̃,
we can find the corresponding inverse image û via the
succession method given in the proof of Lemma 3 (see for
example Liu (2003, Lemma 2.4) and Özsarı and Batal (2019,
Lemma 2.2)). To this end, let miter denote the number of
iterations in the succession and set v0

= Kw̃, vk
:=

K(w̃ + vk−1) for 1 ≤ k ≤ miter , where K is the numerical
approximation of the integral in the definition of Υk. Then,
vmiter is an approximation of v = Φ(w̃), and one gets an
approximation of the solution of the observer system by
setting û(xj, tn) := ŵ(xj, tn) + vmiter (xj, tn).

(Step 4) Finally, we solve the original plant (1) by setting

u(xj, tn) := û(xj, tn) + ũ(xj, tn).

3.2. Simulations

In this section, we give two simulations for the linear model
on a domain of critical length: (i) uncontrolled solution and (ii)
controlled solution. The first simulation (Fig. 1) shows a time
independent solution of the KdV equation on Ω = (0, 2π )
with initial datum u0 = 1 − cos x when no boundary feedback
is present. This is the case when all boundary conditions are
homogeneous: u(0, t) = u(2π, t) = ux(2π, t) = 0. The second
simulation (Fig. 2) shows the solution of the KdV equation with
the same initial datum but subject to the backstepping feedback
controllers given in (31) which use the state of the observer
system. The bump at x = 2π in Fig. 2 represents the action of
the feedbacks at the right endpoint of the domain.

4. Output feedback stabilization with a single controller and
boundary measurement

Using two feedback controllers at the right endpoint of the
domain and measuring two traces at the left are not necessary to
obtain the stabilization results in Section 2.2. One can achieve this
by using only one controller and making only one measurement
as well. More precisely, if we respectively take V (t) = 0 and
P1(x) = 0 in (1) and (6), then Theorem 4 still holds but with decay
rate constants smaller than α and κ . To see this, let us assume u
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Fig. 2. Controlled solution with initial datum u0 = 1 − cos(x), û0 = 0, kernel
parameters λ = λ̃ = 0.01 on a domain of length L = 2π , niter = miter = 10.

solves (1) with V (t) = 0, and û solves (6) with V (t) = P1(x) = 0.
Then the error target system becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

w̃t + w̃x + w̃xxx + λ̃w̃ = −py(x, 0)w̃x(0, t), in Ω × (0, T ),
w̃(0, t) = 0, w̃(L, t) = 0,

w̃x(L, t) =

∫ L

0
px(L, y)w̃(y, t)dy, in (0, T ),

w̃(x, 0) = w̃0(x), in Ω.

(55)

Applying the same multipliers to (55) as in Section 2.2, we get

∥w̃(t)∥L2(Ω) ≤ ∥w̃(0)∥L2(Ω)e
−βt , (56)

∥w̃t (t)∥L2(Ω) ≤ ∥w̃t (0)∥L2(Ω)e
−βt , (57)

where β =
(
λ̃ −

1
2∥px(L, ·)∥

2
L2(Ω)

−
1
2∥py(·, 0)∥

2
L2(Ω)

)
. Moreover,

∥w̃t∥L2(Ω) ≤ ∥w̃x + w̃xxx + λ̃w̃∥L2(Ω) +∥py(·, 0)∥L2(Ω)|w̃x(0, t)|;
and w̃x(0, t) = w̃x(L, t) −

∫ L
0 w̃xx(x, t)dx, which, together with the

boundary condition, implies

|w̃x(0, t)| ≲ ∥w̃∥L2(Ω) + ∥w̃xx∥L2(Ω). (58)

Therefore

∥w̃t∥L2(Ω) ≲ ∥w̃∥H3(Ω). (59)

Combining (57) and (59), we obtain

∥w̃t (t)∥L2(Ω) ≤ ∥w̃0∥H3(Ω)e
−βt . (60)

On the other hand by (55) and (58) we have

∥w̃xxx∥
2
L2(Ω) ≤ 4(∥w̃x(t)∥2

L2(Ω) + λ̃∥w̃(t)∥2
L2(Ω)

+∥w̃t (t)∥2
L2(Ω) + ∥py(·, 0)∥2

L2(Ω)|w̃x(0, t)|2)

≲ ∥w̃x(t)∥2
L2(Ω) + ∥w̃xx(t)∥2

L2(Ω)

+∥w̃(t)∥2
L2(Ω) + ∥w̃t (t)∥2

L2(Ω). (61)

Applying ϵ-Young’s inequality to the Gagliardo–Nirenberg in-

equality ∥w̃xx∥L2(Ω) ≤ ∥w̃xxx∥
2
3
L2(Ω)

∥w̃∥

1
3
L2(Ω)

, we obtain

∥w̃xx∥
2
L2(Ω) ≤ δ∥w̃xxx∥

2
L2(Ω) + cδ∥w̃∥

2
L2(Ω) (62)

for any δ > 0. Combining (25), (61) and (62), we see that our new
error target w̃ also satisfies (26). Hence (27), which together with

(56) and (60) implies

∥w̃∥H3(Ω) ≲ ∥w̃0∥H3(Ω)e
−βt . (63)

Not only ∥w̃∥H3(Ω) but also |w̃xx(0, t)|2 is bounded by ∥w̃0∥H3(Ω)
e−βt . To see this let us multiply (55) by (L − x)w̃xx and integrate
over Ω . After applying integration by parts and the boundary
conditions we obtain

w̃2
x (0, t) + w̃2

xx(0, t)

=
2
L

∫ L

0

(
(L − x)w̃tw̃xx +

1
2
w̃2

x +
1
2
w̃2

xx + λ̃(L − x)w̃w̃xx
)
dx

−
2
L
w̃x(0, t)

∫ L

0
(L − x)py(x, 0)w̃xxdx. (64)

Using Cauchy–Schwarz and Young’s inequalities, we achieve |w̃xx
(0, t)|2≲ ∥w̃t∥

2
L2(Ω)

+∥w̃∥
2
H3(Ω)

, which, together with (60) and (63),
implies

|w̃xx(0, t)|2 ≲ ∥w̃0∥H3(Ω)e
−βt . (65)

In the case of one observer, i.e., P1(x) = V (t) = 0, ŵ given by
(30) solves the following observer target system⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ŵt + ŵx + ŵxxx + λŵ

= ky(x, 0)ŵx(0, t) − Ψ2(x)w̃xx(0, t),

ŵ(0, t) = 0, ŵ(L, t) = 0,

ŵx(L, t) = −

∫ L

0
kx(L, y)û(y, t)dy.

(66)

Multiplying (66) by ŵ and integrating over Ω , we obtain
1
2

d
dt

∥ŵ(t)∥2
L2(Ω) + λ∥ŵ(t)∥2

L2(Ω) +
1
2
|ŵx(0, t)|

2

= ŵx(0, t)
∫ L

0
ky(x, 0)ŵ(x, t)dx

−w̃xx(0, t)
∫ L

0
Ψ2(x)ŵ(x, t)dx

+
1
2

[∫ L

0
kx(L, y)û(y, t)dx

]2

. (67)

Note that ŵ = (I − Υk)û. Therefore by Lemma 3 we have
∥û∥L2(Ω) ≤ ∥(I − Υk)−1

∥B[L2(Ω)]∥ŵ∥L2(Ω). Using this fact and
applying ϵ-Young’s and Cauchy–Schwarz inequalities to the right
hand side of (67), for any ϵ we get
1
2

d
dt

∥ŵ(t)∥2
L2(Ω) + µ∥ŵ(t)∥2

L2(Ω) ≤
1
2ϵ

w̃2
xx(0, t), (68)

where

µ ≡ λ −
1
2
∥ky(·, 0)∥2

L2(Ω) −
1
2
ϵ∥Ψ2∥

2
L2(Ω)

−
1
2
∥kx(L, ·)∥2

L2(Ω)∥(I − Υk)−1
∥
2
B[L2(Ω)].

Inequalities (68) and (63) imply
1
2

d
dt

∥ŵ(t)∥2
L2(Ω) + µ∥ŵ(t)∥2

L2(Ω) ≲ ∥w̃0∥
2
H3(Ω)e

−2βt . (69)

By the proof of Özsarı and Batal (2019, Lemma 2.5), we know
that asymptotically ∥ky(·, 0)∥L2(Ω) ∼ λ. A similar argument also
implies ∥kx(L, ·)∥L2(Ω) ∼ λ. Moreover, using the calculations in Liu
(2003), it is not hard to see that ∥(I − Υk)−1

∥B[L2(Ω)] ∼ 1 + λeCλ

where C > 0 depends only on L. Therefore choosing λ and ϵ

sufficiently small we can guarantee that µ > 0. In addition, in the
case of λ = λ̃, we have p(x, y) = k(L−y, L−x) and ∥ky(·, 0)∥L2(Ω) =

∥px(L, ·)∥L2(Ω), ∥py(·, 0)∥L2(Ω) = ∥kx(L, ·)∥L2(Ω) which imply that
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choosing λ = λ̃ if necessary we can also guarantee β > µ. Taking
β > µ, multiplying (69) by e2µt and integrating from 0 to t we
obtain

∥ŵ(t)∥L2(Ω) ≲
(
∥ŵ0∥L2(Ω) + ∥w̃0∥H3(Ω)

)
e−µt , (70)

which together with (35) implies

∥û∥L2(Ω) ≲
(
∥û0∥L2(Ω) + ∥u0 − û0∥H3(Ω)

)
e−µt . (71)

By (56), (63) and (35) we also have

∥u − û∥L2(Ω) ≲ ∥u0 − û0∥L2(Ω)e
−βt , (72)

∥u − û∥H3(Ω) ≲ ∥u0 − û0∥H3(Ω)e
−βt . (73)

Again, combining (71) and (72) and using the triangle inequality,
we prove the exponential decay of u.

5. Conclusion

In this paper, we studied an output feedback stabilization
problem with right endpoint controller(s) to which the stan-
dard backstepping method does not apply because the associated
kernel PDE models become overdetermined and do not possess
smooth solutions. The difficulty was due to the type of given
boundary conditions (one b.c. at the left, two b.c. at the right)
and the location of the controller(s). We dealt with this issue by
using a kernel instead, that does not satisfy all of the boundary
conditions implied by the standard algorithm of backstepping.
Although using such a kernel is associated with more complicated
target systems and slower rate of decay, it had the major advan-
tage that the exponential stabilization can be achieved even on
critical length domains. This method is interesting in the sense
that it can be applied to many other PDEs where one encounters
overdetermined kernel models.
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