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Abstract

This paper discusses the robustness of the constant-delay predictor feedback in the case of an uncertain time-varying input
delay. Specifically, we study the stability of the closed-loop system when the predictor feedback is designed based on the
knowledge of the nominal value of the time-varying delay. By resorting to an adequate Lyapunov-Krasovskii functional, we
derive an LMI-based sufficient condition ensuring the exponential stability of the closed-loop system for small enough variations
of the time-varying delay around its nominal value. These results are extended to the feedback stabilization of a class of
diagonal infinite-dimensional boundary control systems in the presence of a time-varying delay in the boundary control input.
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1 Introduction

Originally motivated by the work of Artstein [1], lin-
ear predictor feedback is an efficient tool for the feed-
back stabilization of Linear Time-Invariant (LTI) sys-
tems with constant input delay. In particular, predic-
tor feedback can be used for controlling plants that are
open-loop unstable and in the presence of large input de-
lays. Many extensions have been reported (see, e.g., [14]
and the references therein). These include the case of
time-varying delay linear predictor feedback [16]; robust-
ness with respect to disturbance signals [5]; truncated
predictor [23]; predictor observers in the case of sensor
delays [14]; predictors for nonlinear systems [3,15]; de-
pendence of the delay on the state [2]; networked con-
trol [22]; and the boundary control of partial differential
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equations [17,20].

Most of the predictor feedback strategies reported in the
literature assume a perfect knowledge in real-time of the
input delay. However, such an assumption might be dif-
ficult to fulfill in practice. Consequently, there has been
an increased interest in the last decade for the study of
the robustness of the predictor feedback with respect to
delay mismatches. An example of such a problem was in-
vestigated in [12] where the exponential stability of the
closed-loop system was assessed for unknown constant
delays with small enough deviations from the nominal
value. The study of the impact of an unknown time-
varying delay, but with known nominal value which is
used to design the predictor feedback, on the system
closed-loop stability was reported in [3]. In particular, it
was shown that the exponential stability of the closed-
loop system is guaranteed for sufficiently small varia-
tions of the delay in both amplitude and rate of variation.
Such an approach was further investigated in [10] where
a small gain condition on the only amplitude of varia-
tion of the delay around its nominal value was derived
for ensuring the exponential stability of the closed-loop
system. However, as underlined in [19], such a small gain
condition might be conservative as it involves norms of
matrices which generally grow quickly with their dimen-
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sions. In order to reduce such a conservatism, it was pro-
posed in [19] to resort to a Lyapunov-Krasovskii func-
tional approach in the case of constant uncertain delays.
By doing so, an LMI-based sufficient condition, was de-
rived, for ensuring the asymptotic stability of the closed-
loop system with constant uncertain delays.

The first contribution of this paper deals with the study
of the robustness of the constant-delay predictor feed-
back that has been designed based on the nominal value
of an uncertain and time-varying input delay. By taking
advantage of classical Lyapunov-Krasovskii function-
als [9], we derive an LMI-based sufficient condition on
the amplitude of variation of the input delay around its
nominal value that ensures the exponential stability of
the closed-loop system. Such an approch was investi-
gated first in [22] in the context of networked control.
However, the LMI condition derived in this paper dif-
fers from the one proposed in [22]. Three examples are
developed showing that, for these case studies, the LMI
condition proposed in this paper provides less conser-
vative results than the small gain condition reported
in [10] and the LMI condition extracted from [22].

The second contribution of this paper deals with the
extension of the above result to the feedback stabiliza-
tion of a class of diagonal infinite-dimensional boundary
control systems [7] in the presence of a time-varying de-
lay in the boundary control input. The control strategy
consists in 1) the use of a predictor feedback to stabi-
lize a finite-dimensional subsystem capturing the unsta-
ble modes of the infinite-dimensional system; 2) ensur-
ing that the control law designed on a finite-dimensional
truncated models successfully stabilizes the full infinite-
dimensional system. Such a control strategy, inspired
by [21] in the case of a delay-free feedback control, was
first reported in [20] for the exponential stabilization of
a reaction-diffusion equation with a constant delay in
the boundary control. Note that a different approach
for tackling the same feedback stabilization problem was
reported in [13] via the use of a backstepping bound-
ary controller. Ideas from [20] were extended to the ex-
ponential stabilization of a class of diagonal infinite-
dimensional boundary control systems with constant de-
lay in the boundary control in [17]. In this present paper,
we go beyond [13,17,20] and assess the robustness of the
control strategy reported in [17] in the case of an uncer-
tain and time-varying input delay. Specifically, we show
that for time-varying delays presenting 1) a sufficiently
small amplitude of variation around its nominal value
(with sufficient condition provided by the LMI condition
discussed above); 2) a rate of variation that is bounded
by an arbitrarily large constant; the infinite-dimensional
closed-loop system is exponentially stable.

The remainder of this paper is organized as follows. The
robustness of the predictor feedback with respect to un-
certain and time-varying delays is investigated in Sec-
tion 2. The extension of this result to the feedback stabi-

lization of a class of diagonal infinite-dimensional bound-
ary control systems is presented in Section 3. The ob-
tained results are applied in Section 4. Finally, conclud-
ing remarks are provided in Section 5.

Notation. The sets of non-negative integers, positive
integers, real, non-negative real, positive real, and com-
plex numbers are denoted by N, N∗, R, R+, R

∗
+, and C,

respectively. The real and imaginary parts of a complex
number z are denoted byRe z and Im z, respectively. The
field K denotes either R or C. The set of n-dimensional
vectors overK is denoted byKn and is endowed with the
Euclidean norm ‖x‖ =

√
x∗x. The set of n×m matrices

over K is denoted by Kn×m and is endowed with the in-
duced norm denoted by ‖ · ‖. For any symmetric matrix
P ∈ Rn×n, P ≻ 0 (resp. P � 0) means that P is positive
definite (resp. positive semi-definite). The set of sym-
metric positive definite matrices of order n is denoted by
S+∗
n . For any symmetric matrix P ∈ Rn×n, λm(P ) and
λM (P ) denote the smallest and largest eigenvalues of P ,
respectively. For M = (mi,j) ∈ Cn×m, we introduce

R(M) ,

[

ReM − ImM

ImM ReM

]

∈ R
2n×2m

where ReM , (Remi,j) ∈ Rn×m and ImM ,

(Immi,j) ∈ Rn×m. For any t0 > 0, we say that
ϕ ∈ C0(R;R) is a transition signal over [0, t0] if
0 ≤ ϕ ≤ 1, ϕ|(−∞,0] = 0, and ϕ|[t0,+∞) = 1. In

Section 3, the notations and terminologies for infinite-
dimensional systems are retrieved from [7].

2 Delay-robustness of predictor feedback for
LTI systems

2.1 Problem setting and existing result

The first part of this paper deals with the feedback sta-
bilization of the following LTI systemwith delay control:

ẋ(t) = Ax(t) +Bu(t−D(t)), t ≥ 0, (1)

with A ∈ Rn×n and B ∈ Rn×m such that the pair (A,B)
is stabilizable. Vectors x(t) ∈ Rn and u(t) ∈ Rm denote
the state and the control input, respectively. The com-
mand input is subject to an uncertain time-varying de-
layD ∈ C0(R+;R+). We assume that there existD0 > 0
and 0 < δ < D0 such that |D(t) −D0| ≤ δ for all t ≥ 0.
In this context, the following constant-delay linear pre-
dictive feedback, which is based on the knowledge of the
constant nominal value D0, has been proposed in [3]:

u(t) = K

{

eD0Ax(t) +

∫ t

t−D0

e(t−s)ABu(s) ds

}

(2)
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for t ≥ 0, where K ∈ Rn×m is a feedback gain such that
Acl , A+BK is Hurwitz. The validity of such a control
strategy was assessed in [10] via a small gain argument.

Theorem 1 ([10]) Let D0 > 0 be given and let A ∈
Rn×n, B ∈ Rn×m, and K ∈ Rm×n be such that Acl =
A+ BK is Hurwitz. Let δ ∈ (0, D0) be such that

M‖eD0ABK‖
{

e‖Acl‖δ − e−µδ
}

< µ, (3)

where M,µ > 0 are constants satisfying ‖eAclt‖ ≤
Me−µt for all t ≥ 0. Then, there exists N, σ > 0
such that for all x0 ∈ Rn, u0 ∈ C0([−D0 − δ, 0];Rm)

with u0(0) = K
{

eD0Ax0 +
∫ 0

−D0
e−sABu0(s) ds

}

, and

D ∈ C0(R+;R+) with |D −D0| ≤ δ, the solution of (1-
2) associated with the initial conditions x(0) = x0 and
u(t) = u0(t) for −D0 − δ ≤ t ≤ 0 satisfies for all t ≥ 0
the following estimate:

‖x(t)‖+ max
t−D0−δ≤s≤t

‖u(s)‖

≤ Ne−σt

{

‖x0‖+ max
−D0−δ≤s≤0

‖u0(s)‖
}

.

As the left hand-side of (3) is equal to zero when δ = 0,
a continuity argument shows that there always exists a
δ > 0 such that (3) holds true. Therefore, Theorem 1
ensures the existence of a sufficiently small amplitude of
perturbation δ > 0 of the delay D(t) around its nom-
inal value D0 such that the constant-delay linear pre-
dictor feedback (2) ensures the exponential stability of
the closed-loop system with uncertain time-varying in-
put delays. However, due to the nature of the small gain-
condition (3) that involves the norm of matrices (which
generally grow quickly as a function of the matrices di-
mensions n and m), the admissible values of δ might be
conservative (see [19]). In particular, from the fact that

M ≥ 1 and 0 < µ ≤ µM (Acl) , −max{Reλ : λ ∈
spC(Acl)}, any δ > 0 such that the small gain condition
(3) holds true satisfies the following estimate:

δ < δE ,
1

‖Acl‖
log

(

1 +
µM (Acl)

‖eD0ABK‖

)

. (4)

To reduce the conservatism, an LMI condition ensuring
the exponential stability of the closed-loop system was
derived in [22] in the context of networked control. The
objective of this section it to propose the construction of
an alternative LMI for such a problem. Numerical com-
parisons between the different methods (small gain and
LMIs) will be carried out in Subsection 2.4 and Section 4.

2.2 Preliminary results

For h > 0, we denote by W the space of absolutely
continuous functions ψ : [−h, 0] → Rn with square-

integrable derivative endowed with the norm ‖ψ‖W ,
√

‖ψ(0)‖2 +
∫ 0

−h ‖ψ̇(θ)‖2 dθ (see [11, Chap. 4, Sec. 1.3]).

Lemma 1 Let M,N ∈ Rn×n, D0 > 0, and δ ∈ (0, D0)
be given. Assume that there exist κ > 0, P1, Q ∈ S+∗

n ,
and P2, P3 ∈ Rn×n such that Θ(δ, κ) � 0 with

Θ(δ, κ) = (5)








2κP1 +M⊤P2 + P⊤
2 M P1 − P⊤

2 +M⊤P3 δP⊤
2 N

P1 − P2 + P⊤
3 M −P3 − P⊤

3 + 2δQ δP⊤
3 N

δN⊤P2 δN⊤P3 −δe−2κD0Q









.

Then, there exists C0 > 0 such that, for any D ∈
C0(R+;R+) with |D −D0| ≤ δ, the trajectory x of:

ẋ(t) =Mx(t) +N {x(t−D(t)) − x(t−D0)} , t ≥ 0;

x(t) = x0(t), t ∈ [−D0 − δ, 0]

with initial condition x0 ∈ W (for h = D0 + δ) satisfies
‖x(t)‖ ≤ C0e

−κt‖x0‖W for all t ≥ 0.

Proof. For all t ≥ 0, one has

ẋ(t) =Mx(t) +N

∫ t−D(t)

t−D0

ẋ(τ) dτ. (6)

Inspired by classical Lyapunov-Krasovskii functional
depending on time derivative for systems with fast
varying delays, see [9, Sec. 3.2], we introduce V (t) =
V1(t) + V2(t) with V1(t) = x(t)⊤P1x(t) and V2(t) =
∫ −D0+δ

−D0−δ

∫ t

t+θ e
2κ(s−t)ẋ(s)⊤Qẋ(s) ds dθ, where P1, Q ∈

S+∗
n . Then we have, for all t ≥ 0,

V̇ (t) = 2x(t)⊤P1ẋ(t) + 2δẋ(t)⊤Qẋ(t)− 2κV2(t) (7)

−
∫ −D0+δ

−D0−δ

e2κθẋ(t+ θ)⊤Qẋ(t+ θ) dθ.

The remaining of the proof is now an adaptation of [8,

Proof of Thm 1]. Introducing P =

[

P1 0

P2 P3

]

, where

P2, P3 ∈ Rn×n are “slack variables” [9], we have

x(t)⊤P1ẋ(t)

(6)
=

[

x(t)

ẋ(t)

]⊤

P⊤

[

ẋ(t)

−ẋ(t) +Mx(t) +N
∫ t−D(t)

t−D0
ẋ(τ) dτ

]

=

[

x(t)

ẋ(t)

]⊤

P⊤

[

0 I

M −I

] [

x(t)

ẋ(t)

]

(8)

+

∫ t−D(t)

t−D0

[

x(t)

ẋ(t)

]⊤

P⊤

[

0

N

]

ẋ(τ) dτ.

3



Now, from the fact that, for any a, b ∈ Rn, 2a⊤b ≤
‖a‖2 + ‖b‖2, we obtain that

2

[

x(t)

ẋ(t)

]⊤

P⊤

[

0

N

]

ẋ(τ)

= 2



e−κ(τ−t)Q−1/2

[

0

N

]⊤

P

[

x(t)

ẋ(t)

]





⊤
(

eκ(τ−t)Q1/2ẋ(τ)
)

≤ e−2κ(τ−t)

[

x(t)

ẋ(t)

]⊤

P⊤

[

0

N

]

Q−1

[

0

N

]⊤

P

[

x(t)

ẋ(t)

]

+ e2κ(τ−t)ẋ(τ)⊤Qẋ(τ).

With (7-8) we deduce that

V̇ (t) + 2κV (t)

≤ 2κV1(t) + 2

[

x(t)

ẋ(t)

]⊤

P⊤

[

0 I

M −I

][

x(t)

ẋ(t)

]

+ δe2κD0

[

x(t)

ẋ(t)

]⊤

P⊤

[

0

N

]

Q−1

[

0

N

]⊤

P

[

x(t)

ẋ(t)

]

+ 2δẋ(t)⊤Qẋ(t) +

∫ t−D(t)

t−D0

e2κ(τ−t)ẋ(τ)⊤Qẋ(τ) dτ

−
∫ t−D0+δ

t−D0−δ

e2κ(τ−t)ẋ(τ)⊤Qẋ(τ) dτ

≤
[

x(t)

ẋ(t)

]⊤






Ψ+ δe2κD0P⊤

[

0

N

]

Q−1

[

0

N

]⊤

P







[

x(t)

ẋ(t)

]

,

where it has been used the fact that the sum of the two
integral terms is always non positive, and with

Ψ , P⊤

[

0 I

M −I

]

+

[

0 I

M −I

]⊤

P + 2

[

κP1 0

0 δQ

]

.

From Θ(δ, κ) � 0, the direct application of the Schur

complement yields V̇ (t) + 2κV (t) ≤ 0. The conclusion
follows from the fact that λm(P1)‖x(t)‖2 ≤ V (t) ≤
max (λM(P1), 2δλM(Q)) ‖x(t+ ·)‖2W for all t ≥ 0 . ✷

By a continuity argument, Θ(δ, 0) ≺ 0 implies Θ(δ, κ) �
0 for some κ > 0. We deduce the following result.

Corollary 1 Let M,N ∈ Rn×n, D0 > 0, and δ ∈
(0, D0) be given. Assume that Θ(δ, 0) ≺ 0. Then the con-
clusions of Lemma 1 hold true for some decay rate κ > 0.

From Lemma 1, the feasibility of the LMI Θ(δ, κ) � 0
ensures that M is Hurwitz. The following lemma states
a form of converse result.

Lemma 2 Let D0 > 0 and M,N ∈ Rn×n with M Hur-
witz be given. Let P2 ∈ S+∗

n be the unique solution of
M⊤P2 + P2M = −I and let 0 ≤ κ < 1/(4λM (P2)) be
given. Introducing δ∗ = δ∗(κ) > 0 defined by 1

δ∗ , min



D0,
min

{

1− 4κλM (P2), λm
(

(M−1)⊤M−1
)}

2
√
2eκD0

∥

∥

∥N⊤
[

P2 −(M−1)⊤P2

]∥

∥

∥



 ,

the LMI Θ(δ, κ) ≺ 0 is feasible for all δ ∈ (0, δ∗).

Proof. As M is Hurwitz, let P2 ∈ S+∗
n be the unique

solution of the Lyapunov equationM⊤P2+P2M = −I.
We introduce P1 = 2P2 ∈ S+∗

n , P3 = −(M−1)⊤P2, and
Q = αI ∈ S+∗

n with α > 0. Then Θ(δ, κ) ≺ 0 becomes:









4κP2 − I 0 δP2N

0 −S3 + 2αδI δP⊤
3 N

δN⊤P2 δN⊤P3 −αδe−2κD0I









≺ 0. (9)

with S3 = P3 + P⊤
3 = (M−1)⊤M−1 ≻ 0. As α, δ > 0,

the Schur complement shows that (9) is equivalent to

[

4κP2 − I 0

0 −S3 + 2αδI

]

+
δ

α
e2κD0

[

P2N

P⊤
3 N

][

P2N

P⊤
3 N

]⊤

≺ 0.

A sufficient condition ensuring that the above LMI

is satisfied is provided by −β0 + 2αδ +
δ

α
β1 < 0,

where β0 , min {1− 4κλM (P2), λm(S3)} > 0 and

β1 , e2κD0

∥

∥

∥N⊤
[

P2 P3

]∥

∥

∥

2

≥ 0. We deduce that

δ <
β0

2α+ β1/α
implies that Θ(δ, κ) ≺ 0, where α > 0

can be freely selected. In the case N = 0, we obtain
that β1 = 0 and thus, by letting α → 0+, δ∗ = D0. In
the case N 6= 0, we have β1 > 0. Indeed, by contradic-
tion, β1 = 0 implies N⊤P2 = P2N = 0. Multiplying
M⊤P2 + P2M = −I from the left side by N⊤ and from
the right side by N , we obtain that N⊤N = 0 yielding
N = 0. To conclude the proof, it is sufficient to note that,
for any given a, b > 0, the function f(α) = aα + b/α is

such that f(α) ≥ f(
√

b/a) = 2
√
ab for all α > 0. ✷

2.3 Robustness of constant-delay predictor feedback
with respect to time-varying input delays

We can now introduce the main result of this section.

Theorem 2 LetA ∈ Rn×n,B ∈ Rn×m, andK ∈ Rm×n

be such that Acl , A+ BK is Hurwitz. Let ϕ be a tran-
sition signal 2 over [0, t0] with t0 > 0 and let D0 > 0

1 With the convention δ∗ = D0 in the case N = 0.
2 See notation section.
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be a given nominal delay. Then, there exists δ ∈ (0, D0)
such that for any D ∈ C0(R+;R+) with |D − D0| ≤ δ,
the closed-loop system given for t ≥ 0 by

ẋ(t) = Ax(t) +Bu(t−D(t)),

u|[−D0−δ,0] = 0,

u(t) = ϕ(t)KeD0Ax(t)

+ ϕ(t)K

∫ t

t−D0

e(t−s)ABu(s) ds,

x(0) = x0

with initial condition x0 ∈ Rn is exponentially stable
in the sense that there exist constants κ,C1 > 0, in-
dependent of x0 and D, such that ‖x(t)‖ + ‖u(t)‖ ≤
C1e

−κt‖x0‖. In particular, this conclusion holds true
(resp., with given decay rate κ > 0) for any δ ∈ (0, D0)
such that there exist P1, Q ∈ S+∗

n and P2, P3 ∈ Rn×n

for which the LMI Θ(δ, 0) ≺ 0 (resp., Θ(δ, κ) � 0) holds
true with M = Acl and N = eD0ABK.

Proof. Let δ ∈ (0, D0) be such that Θ(δ, 0) ≺ 0 is
feasible (see Lemma 2) and, by a continuity argument,
let κ > 0 be such that Θ(δ, κ) � 0 is feasible. By the
properties of the Artstein transformation [4], we have
x ∈ C1(R+;R

n) and u ∈ C0([−D0−δ,+∞);Rm). We in-
troduce z ∈ C1(R+;R

n) defined for all t ≥ 0 by (see [1]):

z(t) = eD0Ax(t) +

∫ t

t−D0

e(t−s)ABu(s) ds. (10)

As u = ϕKz, we have for all t ≥ 0,

ż(t) = (A+ ϕ(t)BK)z(t) (11)

+ eD0ABK{[ϕz](t−D(t))− [ϕz](t−D0)}.

In particular, we have for all t ≥ t1 , t0 +D0 + δ that

ż(t) = Aclz(t)+e
D0ABK{z(t−D(t))−z(t−D0)} (12)

with Acl = A+BK Hurwitz and the continuously differ-
entiable initial condition z|[t0,t1]. Applying Lemma 1, we

obtain that ‖z(t)‖ ≤ C0e
−κ(t−t1)‖z(t1+ ·)‖W for t ≥ t1.

We introduce V (t) = ‖z(t)‖2/2 for t ≥ 0. The use of
the Young’s inequality shows that there exist constants
γ1, γ2 > 0, independent of x0 and D, such that for all
t ≥ 0, V̇ (t) ≤ γ1V (t) + γ2[ϕ(t−D(t))]2V (t−D(t)) +
γ2[ϕ(t−D0)]

2V (t−D0). We show by induction that, for
any n ∈ N∗, there exists a constant cn > 0, independent
of x0 and D, such that V (t) ≤ c2n‖x0‖2/2 for all t ∈
[0, n(D0 − δ)]. In the case n = 1, we have for all t ∈
[0, D0 − δ], ϕ(t −D(t)) = ϕ(t −D0) = 0. Thus V̇ (t) ≤
γ1V (t) and we obtain that the property holds true with
c1 = eγ1(D0−δ)/2‖eD0A‖. Assume that V (t) ≤ c2n‖x0‖2/2
for all t ∈ [0, n(D0−δ)]. Then, for all t ∈ [0, (n+1)(D0−

δ)], we have t−D(t) ≤ n(D0−δ) and t−D0 ≤ n(D0−δ),
yielding V̇ (t) ≤ γ1V (t) + γ2c

2
n‖x0‖2. A straightforward

integration shows the existence of the claimed cn+1 > 0.

Let n0 ≥ 1 be such that n0(D0 − δ) ≥ t1. This yields
sup

t∈[0,t1]

‖z(t)‖ ≤ cn0
‖x0‖. From (11), we infer the ex-

istence of a constant c̃0 > 0, independent of x0 and
D, such that sup

t∈[0,t1]

‖ż(t)‖ ≤ c̃0‖x0‖. From the defini-

tion of ‖ · ‖W , we obtain that ‖z(t1 + ·)‖W ≤ c̃1‖x0‖
with c̃1 =

√

c2n0
+ (D0 + δ)c̃20. We deduce that

‖z(t)‖ ≤ C̃0e
−κt‖x0‖ for all t ≥ 0 with C̃0 =

eκt1 max(C0c̃1, cn0
) > 0. The conclusion follows from

straightforward estimations of u = ϕKz and (10). ✷

Remark 1 In Theorem 2, the initial control input is
identically zero, i.e., u0 , u|[−D0−δ,0] = 0. This can be

obtained in practice by initially applying a zero control
input. This avoids the necessity of 1) regularity assump-
tions on u0; 2) the introduction of compatibility condi-
tions restricting the admissible initial conditions x0 (see
Theorem 1); 3) the explicit knowledge of u0 to initialize
the computation of the predictor feedback. Note that in
the case of an actuator exhibiting a dynamical behavior,
the initial actuator state is, in general, non zero. In this
case, one could augment the state of the plant with the
dynamics of the actuator. In this setting, the initial con-
dition of the actuator is captured by x0.

2.4 Applications

Using the LMI solvers of Matlab R2017b, we com-
pare the application of the results of: (T1) Theorem 1
from [10]; (T2) the LMI condition from [22, Thm 2]; (T3)
Theorem 2. The examples are extracted from [19].

Example 1 With the matrices

A =

[

0 1

−1 1

]

, B =

[

0

1

]

, K =
[

−1 −3
]

,

the closed-loop poles are located in −1± j. For D0 = 1 s,
we obtain (T1) δ = 0.0212 (δE = 0.0400); (T2) with
κ = 0.2, δ = 0.0563; (T3) with κ = 0.2, δ = 0.0780.

Example 2 With the matrices

A =









−2/3 −1 5/3

0 −1 0

1/3 −1 2/3









, B =









1 −1

0 2

−2 1









,

K =

[

0.3572 −0.4853 1.1281

0.3925 −0.5660 0.4235

]

,
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the closed-loop poles are located in −1 ± j and −2. For
D0 = 1 s, we obtain (T1) δ = 0.0147 (δE = 0.0391); (T2)
with κ = 0.2, δ = 0.0591; (T3) with κ = 0.2, δ = 0.0796.

3 Extension to the feedback stabilization of a
class of diagonal infinite-dimensional systems

We extend the results of Theorem 2 to the feedback
stabilization of a class of diagonal (infinite-dimensional)
boundary control systems exhibiting a finite number of
unstable modes by means of a boundary control input
that is subject to an uncertain and time-varying delay.
In the sequel, (H, 〈·, ·〉H) is a separable K-Hilbert space.

3.1 Problem setting

Let D0 > 0 and δ ∈ (0, D0) be given. We consider the
abstract boundary control system [7]:















dX

dt
(t) = AX(t), t ≥ 0

BX(t) = ũ(t) , u(t−D(t)), t ≥ 0

X(0) = X0

(13)

with

• A : D(A) ⊂ H → H a linear (unbounded) operator;
• B : D(B) ⊂ H → Km with D(A) ⊂ D(B) a linear
boundary operator;

• u : [−D0 − δ,+∞) → Km with u|[−D0−δ,0) = 0 the

boundary control;
• D : R+ → [D0 − δ,D0 + δ] a time-varying delay.

It is assumed that (A,B) is a boundary control system:

(1) the disturbance-free operator A0, defined on the

domain D(A0) , D(A)∩ker(B) by A0 , A|D(A0)
,

is the generator of a C0-semigroup S on H;
(2) there exists a bounded operator B ∈ L(Km,H),

called a lifting operator, such that R(B) ⊂ D(A),
AB ∈ L(Km,H), and BB = IKm ;

where ker(B) stands for the kernel ofB and R(B) denotes
the range of B.

In the following developments, we assume that the
boundary control system exhibits a diagonal structure:

Assumption 1 The disturbance-free operator A0 is a
Riesz spectral operator [7], i.e., is a linear and closed
operator with simple eigenvalues λn and corresponding
eigenvectors φn ∈ D(A0), n ∈ N∗, that satisfy:

(1) {φn, n ∈ N∗} is a Riesz basis [6]:
(a) spanK

n∈N∗

φn = H;

(b) there exist constants mR,MR ∈ R∗
+ such that

for all N ∈ N∗ and all α1, . . . , αN ∈ K,

mR

N
∑

n=1

|αn|2 ≤
∥

∥

∥

∥

∥

N
∑

n=1

αnφn

∥

∥

∥

∥

∥

2

H

≤MR

N
∑

n=1

|αn|2.

(14)
(2) The closure of {λn, n ∈ N∗} is totally disconnected,

i.e. for any distinct a, b ∈ {λn, n ∈ N∗}, [a, b] 6⊂
{λn, n ∈ N∗}.

We also assume that the system presents a finite number
of unstable modes and that the set composed of the real
part of the stable modes does not accumulate at 0:

Assumption 2 There exist N0 ∈ N
∗ and α ∈ R

∗
+ such

that Reλn ≤ −α for all n ≥ N0 + 1.

As {φn, n ∈ N∗} is a Riesz basis, we can introduce its
biorthogonal sequence {ψn, n ∈ N∗}, i.e., 〈φk, ψl〉H =
δk,l ∈ {0, 1} with δk,l = 1 if and only if k = l. Then,
we have for all x ∈ H the following series expansion:
x =

∑

n≥1

〈x, ψn〉H φn. As A0 is a Riesz-spectral operator,

then ψn is an eigenvector of the adjoint operator A∗
0

associated with the eigenvalue λn.

3.2 Spectral decomposition and finite dimensional trun-
cated model

Under the assumption that ũ ∈ C2([0,+∞);Km) and
X0 ∈ D(A) such that BX0 = ũ(0) = u(0 − D(0)) = 0
(i.e., X0 ∈ D(A0)), there exists a unique classical solu-
tion X ∈ C0(R+;D(A)) ∩ C1(R+;H) of (13); see, e.g.,
[7, Th. 3.3.3]. Then,

X(t) =
∑

n∈N∗

〈X(t), ψn〉H φn =
∑

n∈N∗

cn(t)φn,

where cn(t) , 〈X(t), ψn〉H. We infer that cn ∈
C1(R+;K) and, from (13), we have for all t ≥ 0 the
following spectral decomposition [18]:

ċn(t)

= 〈AX(t), ψn〉H
= 〈A0 {X(t)−Bũ(t)} , ψn〉H + 〈ABũ(t), ψn〉H
= 〈X(t)−Bũ(t),A∗

0ψn〉H + 〈ABũ(t), ψn〉H
= λncn(t)− λn 〈Bũ(t), ψn〉H + 〈ABũ(t), ψn〉H , (15)

where it has been used that B {X(t)−Bũ(t)} = ũ(t) −
ũ(t) = 0, showing that X(t)−Bũ(t) ∈ D(A)∩ker(B) =
D(A0).

Let E = (e1, e2, . . . , em) be the canonical basis of Km.

Introducing bn,k , −λn 〈Bek, ψn〉H + 〈ABek, ψn〉H, we
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obtain from (15) that the following linear ODE holds
true for all t ≥ 0

Ẏ (t) = AN0
Y (t) +BN0

u(t−D(t)), (16)

where AN0
= diag(λ1, . . . , λN0

) ∈ K
N0×N0 , BN0

=
(bn,k)1≤n≤N0,1≤k≤m ∈ KN0×m, and

Y (t) =











c1(t)
...

cN0
(t)











=











〈X(t), ψ1〉H
...

〈X(t), ψN0
〉H











∈ K
N0 . (17)

Under the following assumption, we obtain the existence
of a feedback gain Km×N0 such that AN0

+ BN0
K is

Hurwitz.

Assumption 3 (AN0
, BN0

) is stabilizable.

Then, we can employ the strategy presented in Section 2
to ensure the exponential feedback stabilization of the
finite-dimensional truncated dynamics (16). The objec-
tive is now to assess that such a strategy ensures the
stabilization of the full infinite-dimensional system.

Remark 2 In general, even for problems originally de-
fined over the real fieldK = R, the spectral decomposition
(16) might be complex-valued due to the incursion into
the complex plan to define the eigenstructures (λn, φn) of
the system ; typical examples of such systems are strings
and beams. Consequently, we need in the sequel the fol-
lowing complex-version of Theorem 2.

Corollary 2 In the context of Theorem 2 but with
complex-valued A, B, K, and x0, i.e., A ∈ Cn×n,
B ∈ Cn×m, K ∈ Cm×n, and x0 ∈ Cn, the conclu-
sions of Theorem 2 hold true with M = R(Acl) and
N = R(eD0ABK). In this case, the matrices of (5) are
such that P1, Q ∈ S

+∗
2n and P2, P3 ∈ R

2n×2n.

Proof. For z(t) ∈ C
n, we infer that (12) is equivalent to

˙̃z(t) = R(Acl)z̃(t)

+R(eD0ABK) {z̃(t−D(t)) − z̃(t−D0)}

with z̃(t) =
[

Re z(t)⊤ Im z(t)⊤
]⊤

∈ R2n. Furthermore,

as Acl is assumed Hurwitz, so is R(Acl). Then, the con-
clusion follows from the proof of Theorem 2. ✷

3.3 Dynamics of the closed-loop system

Let D0, t0 > 0 and δ ∈ (0, D0) be given. Let
ϕ ∈ C2(R;R) be a transition signal over [0, t0] and
D ∈ C2(R+;R) be a time-varying delay such that

|D −D0| ≤ δ. The dynamics of the closed-loop system
takes the form (see [17] for the nominal caseD(t) = D0):

dX

dt
(t) = AX(t), (18a)

BX(t) = ũ(t) = u(t−D(t)), (18b)

u|[−D0−δ,0] = 0, (18c)

u(t) = ϕ(t)KeD0AN0Y (t) (18d)

+ ϕ(t)K

∫ t

t−D0

e(t−s)AN0BN0
u(s) ds,

X(0) = X0 (18e)

for any t ≥ 0 with Y given by (17). The gainK ∈ Km×N0

is selected such that Acl , AN0
+BN0

K is Hurwitz.

Lemma 3 Let (A,B) be an abstract boundary control
system such that Assumptions 1, 2, and 3 hold true.
For any X0 ∈ D(A0) and D ∈ C2(R+;R) such that
|D − D0| ≤ δ < D0, the closed-loop system (18a-18e)
admits a unique classical solution X ∈ C0(R+;D(A)) ∩
C1(R+;H). The associated control law u is the unique
solution of the implicit equation (18d) and is of class
C2([−D0−δ,+∞);Km). It can be written under the form
u = ϕKZ with, for all t ≥ 0,

Z(t) , eD0AN0Y (t)+

∫ t

t−D0

e(t−s)AN0BN0
u(s) ds, (19)

which is such that Z ∈ C2(R+;K
N0) with for all t ≥ 0,

Ż(t) = (AN0
+ ϕ(t)BN0

K)Z(t) (20)

+ eD0AN0BN0
K{[ϕZ](t−D(t))− [ϕZ](t−D0)}.

The proof of Lemma 3 relies on the invertibility of the
Artstein transformation [4] and on the fact that, for any
t ∈ [n(D0 − δ), (n + 1)(D0 − δ)] with n ∈ N, the ac-
tual control input ũ(t) is such that ũ(t) = 0 for n = 0
and depends only on the system state X (via Y ) over
the range of time [0, n(D0 − δ)] when n ≥ 1. Therefore,
the existence of a classical solutionX for the closed-loop
system (18a-18e) can be shown by induction using clas-
sical results on boundary control systems with bound-
ary input of class C2 (see, e.g., [7, Th. 3.3.3]). Such a
regularity of the control input follows first from the fact
that the control law u implicitly defined by (18d) via the
Artstein transformation is of class C0 (see [4]) and then
from (19-20). A detailed proof in the case δ = 0, i.e.,
D(t) = D0, can be found in [17, Section IV.B] and, based
on the above remarks, can be extended in a straightfor-
ward manner to the configuration of Lemma 3.

3.4 Exponential stability of the closed-loop system

The exponential stability of the closed-loop system (18a-
18e) in the nominal case D(t) = D0 has been assessed
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in [17]. The contribution of this paper relies on the
following robustness assessment of the control strategy
with respect to uncertain and time-varying delays D(t).

Theorem 3 Let (A,B) be an abstract boundary control
system such that Assumptions 1, 2, and 3 hold true. There
exist δ ∈ (0, D0) and η > 0 such that, for any given
δr > 0, we have the existence of a constant C2 > 0
such that, for any X0 ∈ D(A0) and D ∈ C2(R+;R) with

|D − D0| ≤ δ and sup
t∈R+

∣

∣

∣Ḋ(t)
∣

∣

∣ ≤ δr, the trajectory X

and the control input u of the closed-loop dynamics (18a-
18e) satisfy ‖X(t)‖H + ‖u(t)‖ ≤ C2e

−ηt‖X0‖H for all
t ≥ 0. In particular, this conclusion holds true for any
δ ∈ (0, D0) such that Θ(δ, 0) ≺ 0 is feasible with

• in the case K = R, M = AN0
+ BN0

K, N =
eD0AN0BN0

K, P1, Q ∈ S+∗
n , and P2, P3 ∈ Rn×n;

• in the case K = C, M = R(AN0
+ BN0

K), N =
R(eD0AN0BN0

K), P1, Q ∈ S
+∗
2n , and P2, P3 ∈ R2n×2n.

Furthermore, if κ > 0 is such that Θ(δ, κ) � 0 is feasible,
then the decay rate η can be taken as any element of (0, κ]
if α > κ or (0, α) if α ≤ κ.

Proof. Let δ ∈ (0, D0) and κ > 0 be such that Θ(δ, κ) �
0 is feasible (see Lemma 2). We introduce η ∈ (0, κ] if
α > κ or η ∈ (0, α) if α ≤ κ. Thus, we can select a

ǫ ∈ (0, 1) such that αǫ , α(1 − ǫ) > η. Let δr > 0 be
arbitrarily given. Let X0 ∈ D(A0) and D ∈ C2(R+;R)

such that |D −D0| ≤ δ and sup
t∈R+

|Ḋ(t)| ≤ δr be given.

From Lemma 3, we denote by X ∈ C0(R+;D(A)) ∩
C1(R+;H) the unique classical solution of the closed-
loop system (18a-18e) and u ∈ C2([−D0 − δ,+∞);Km)
the associated control input. Thus (16) holds true for
all t ≥ 0. Furthermore, as u = ϕKZ with Z given by
(19) and u|[−D0−δ,0] = 0, we obtain from Theorem 2

that ‖Y (t)‖ + ‖u(t)‖ ≤ C1e
−κt‖Y (0)‖ and ‖Z(t)‖ ≤

C̃0e
−κt‖Y (0)‖ for all t ≥ 0 with constants C1, C̃0 > 0

independent of X0 and D. From (14) and (17), we have
that ‖Y (0)‖ ≤ ‖X0‖H/

√
mR. This yields, along with

0 < η ≤ κ, ‖Y (t)‖ + ‖u(t)‖ ≤ C1e
−ηt‖X0‖H/

√
mR and

‖Z(t)‖ ≤ C̃0e
−ηt‖X0‖H/

√
mR for all t ≥ 0.

In order to assess the exponential stability of the full
infinite-dimensional system, we introduce for all t ≥ 0,

V (t) =
1

2

∑

k≥N0+1

|〈X(t)−Bũ(t), ψk〉|2 ≥ 0,

which is such that V (t) ≤ ‖X(t) − Bũ(t)‖2H/(2mR) <
+∞ and V ∈ C1(R+;R). The quantity V (t) is used to
derive an upper bound of ‖X(t)‖H as follows. Noting

that

1

2

N0
∑

k=1

|〈X(t)−Bũ(t), ψk〉|2

≤
N0
∑

k=1

|〈X(t), ψk〉|2 +
N0
∑

k=1

|〈Bũ(t), ψk〉|2

(17)

≤ ‖Y (t)‖2 +
∑

k≥1

|〈Bũ(t), ψk〉|2

(14)

≤ ‖Y (t)‖2 + 1

mR
‖Bũ(t)‖2H,

we obtain that

V (t)

=
1

2

∑

k≥1

|〈X(t)−Bũ(t), ψk〉|2 −
1

2

N0
∑

k=1

|〈X(t)−Bũ(t), ψk〉|2

(14)

≥ 1

2MR
‖X(t)−Bũ(t)‖2H − ‖Y (t)‖2 − 1

mR
‖Bũ(t)‖2H.

Using the triangular inequality, this yields for all t ≥ 0,

‖X(t)‖H ≤ ‖Bũ(t)‖H

+

√

2MR

(

V (t) + ‖Y (t)‖2 + 1

mR
‖Bũ(t)‖2H

)

.

Noting that t − D(t) ≥ t − D0 − δ, we have ‖ũ(t)‖ =
‖u(t − D(t))‖ ≤ C1e

η(D0+δ)e−ηt‖X0‖H/
√
mR. As B

is bounded and ‖Y (t)‖ ≤ C1e
−ηt‖X0‖H/

√
mR, the

proof will be complete if we can show the existence
of C̃1 > 0, independent of X0 and D, such that
V (t) ≤ C̃1e

−2ηt‖X0‖2H. To do so, we compute for t ≥ 0
the time derivative of V as follows:

V̇ (t) =
∑

k≥N0+1

Re

{〈

dX

dt
(t)−B ˙̃u(t), ψk

〉

H

× 〈X(t)−Bũ(t), ψk〉H
}

,

where ˙̃u(t) = (1−Ḋ(t))u̇(t−D(t)). Using (15), Assump-
tion 2, and the Young Inequality (Y.I.), we obtain that

V̇ (t)
(15)
=

∑

k≥N0+1

Re(λk) |〈X(t)−Bũ(t), ψk〉H|2

+
∑

k≥N0+1

Re
{(

〈ABũ(t), ψk〉H −
〈

B ˙̃u(t), ψk

〉

H

)

× 〈X(t)−Bũ(t), ψk〉H
}

≤ −2αV (t)

8



+
∑

k≥N0+1

(

|〈ABũ(t), ψk〉H|+
∣

∣

〈

B ˙̃u(t), ψk

〉

H

∣

∣

)

× |〈X(t)−Bũ(t), ψk〉H|

Y.I.
≤ −2αǫV (t) (21)

+
1

2ǫα

∑

k≥N0+1

(

|〈ABũ(t), ψk〉H|2 +
∣

∣

〈

B ˙̃u(t), ψk

〉

H

∣

∣

2
)

.

For all t ≥ D0 + δ + t0, as t − D(t) ≥ t0 and thus
ϕ(t−D(t)) = 1, we have

ũ(t) = u(t−D(t)) = KZ(t−D(t)) =

m
∑

i=1

{KiZ(t−D(t))} ei

where Ki stands for i-th line of K. We deduce that

∑

k≥N0+1

|〈ABũ(t), ψk〉H|2

≤ m

m
∑

i=1

∑

k≥1

| 〈ABei, ψk〉 |2|KiZ(t−D(t))|2

(14)

≤ m

mR

(

m
∑

i=1

‖ABei‖2H‖Ki‖2
)

‖Z(t−D(t))‖2.

Similarly, for all t ≥ t1 , 2(D0 + δ) + t0,

u̇(t−D(t))

= KŻ(t−D(t))

(20)
= KAclZ(t−D(t))

+KB̃N0
K{Z(t− 2D(t))− Z(t−D(t)−D0)}

=
m
∑

i=1

{KiAclZ(t−D(t))} ei

+

m
∑

i=1

{

KiB̃N0
K{Z(t− 2D(t))− Z(t−D(t)−D0)}

}

ei

with B̃N0
, eD0AN0BN0

. We deduce that

∑

k≥N0+1

∣

∣

〈

B ˙̃u(t), ψk

〉

H

∣

∣

2

≤ 2βm

mR

(

m
∑

i=1

‖Bei‖2H‖KiAcl‖2
)

‖Z(t−D(t))‖2

+
2βm

mR

(

m
∑

i=1

‖Bei‖2H‖KiB̃N0
K‖2

)

× ‖Z(t− 2D(t))− Z(t−D(t)−D0)‖2,

where β , (1 + δr)
2
. Thus, introducing the constants

k1, k2 ≥ 0 defined by:

k1 =
m

2ǫαmR

m
∑

i=1

{

‖ABei‖2H‖Ki‖2 + 2β‖Bei‖2H‖KiAcl‖2
}

,

k2 =
βm

ǫαmR

m
∑

i=1

‖Bei‖2H‖KiB̃N0
K‖2,

we obtain that, for all t ≥ t1, V̇ (t) ≤ −2αǫV (t) + ω(t)
with ω(t) ≥ 0 defined by:

ω(t) = k1‖Z(t−D(t))‖2

+ k2‖Z(t− 2D(t))− Z(t−D(t)−D0)‖2

≤ k3e
−2ηt‖X0‖2H,

where k3 = C̃2
0e

2η(D0+δ){k1 + 2k2e
2ηD0(e2ηδ + 1)}/mR.

Now, as V is of class C1 over R+, we obtain after inte-
gration that, for all t ≥ t1,

V (t) ≤ e−2αǫ(t−t1)V (t1) + e−2αǫt

∫ t

t1

e2αǫτω(τ) dτ

≤ e−2η(t−t1)V (t1) +
k3

2(αǫ − η)
e−2ηt‖X0‖2H

where it as been used that αǫ > η.

It remains to evaluate V (t) for 0 ≤ t ≤ t1. From the
exponential estimate of Z(t), we have that ‖Z(t)‖ ≤
C̃0‖X0‖H/

√
mR for all t ≥ 0. From (20), we deduce the

existence of a constant c̃2 > 0, independent ofX0 andD,
such that ‖Ż(t)‖ ≤ c̃2‖X0‖H for all t ≥ 0. Then, from

(21), the facts that sup
t∈R+

|Ḋ(t)| ≤ δr and sup
t∈R

|ϕ̇(t)| <

+∞, and V (0) ≤ ‖X0‖2H/(2mR), we obtain the existence
of a constant c̃3 > 0, independent of X0 and D, such
that V (t) ≤ c̃3‖X0‖2H for all t ∈ [0, t1]. Consequently,

we obtain that V (t) ≤ C̃1e
−2ηt‖X0‖2H for all t ≥ 0 with

C̃1 = c̃3e
2ηt1 +

k3
2(αǫ − η)

. This completes the proof. ✷

4 Illustrative example

We consider the following one-dimensional reaction-
diffusion equation on (0, L) with a delayed Dirichlet
boundary control:















yt(t, x) = ayxx(t, x) + cy(t, x), (t, x) ∈ R+ × (0, L)
[

y(t, 0)

y(t, L)

]

= u(t−D(t)), t > 0

with a, c > 0, y(t, x) ∈ R, and u(t) ∈ R2. Introducing the

R-Hilbert space H = L2(0, L) with 〈f, g〉H =
∫ L

0 fg dx,
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Nominal delay D0

0

0.2

0.4
Thm 1 - E

[22,Thm 2]
Thm 2

Fig. 1. Comparison of the estimate δE (4) derived from The-
orem 1 with the admissible values of δ ∈ (0, D0) computed
for κ = 0.2 based on [22, Thm 2] and Theorem 2

it is well-known that the above reaction-diffusion equa-
tion can be written under the form of the abstract
boundary control system (13) with X(t) = y(t, ·) ∈ H,
Af = af ′′ + cf on the domain D(A) = H2(0, L),
and the boundary operator Bf = (f(0), f(L)) on
the domain D(B) = H1(0, L). An example of lifting
operator B associated with (A,B) is given for any
(u1, u2) ∈ R2 by {B(u1, u2)}(x) = u1 + (u2 − u1)x/L
with x ∈ (0, L). It is well-known that the disturbance-
free operator A0 is a Riesz-spectral operator that gen-
erates a C0-semigroup with λn = c − an2π2/L2 and

φn(x) = ψn(x) =
√

2/L sin(nπx/L), n ≥ 1. Then, the
boundary control system (A,B) satisfies Assumptions 1
and 2. Furthermore, straightforward computations show
that bn,1 = anπ

√

2/L3 and bn,2 = (−1)n+1anπ
√

2/L3.
As the eigenvalues are simple and bn,k 6= 0 for all n ≥ 1
and k ∈ {1, 2}, we obtain from the Kalman condition
that (AN0

, BN0
) is controllable, fulfilling Assumption 3.

Thus, one can compute a feedback gain K ∈ Km×N0

such that AN0
+ BN0

K is Hurwitz and then apply
the result of Theorem 3 for ensuring the exponential
stability of the closed-loop system.

For numerical computations, we set a = c = 0.5 and
L = 2π. In this configuration, we have two unstable
modes λ1 = 0.375 and λ2 = 0 while the two first stable
modes are such that λ3 = −0.625 and λ4 = −1.5. Setting
N0 = 3, the feedback gain K ∈ R2×3 is computed to
place the poles of the closed-loop truncated model Acl =
AN0

+ BN0
K at −0.75, −1, and −1.25. Over the range

D0 ∈ (0, 5], Figure 1 depicts: 1) the estimate δE (4) on
the admissible values of δ > 0 given by Theorem 1 taken
from [10] ; 2) with decay rate κ = 0.2, the admissible
values of δ > 0 based on [22, Thm 2] and Theorem 2.
For the studied example, the values of δ provided by
Theorem 2 are significantly less conservative.

For numerical simulations, we set the nominal value of
the delay to D0 = 1 s. In this case, Theorem 3 ensures
the exponential stability of the closed-loop system with
decay rate κ = 0.2 for values of δ up to δ = 0.260. We
set the initial condition X0(x) = −x(2L/3− x)(L − x)
and the time-varying delay D(t) = 1 + 0.25 sin(3πt +
π/4) which is of class C2 and is such that |D(t)−D0| ≤
0.25 ≤ 0.260 and |Ḋ(t)| ≤ 0.75π < +∞ for all t ≥
0. The transition time t0 is taken as t0 = 0.5 s while
the transition signal ϕ|[0,t0] is selected as the restriction

-40
8

-20

0

20

6 10

y(
t,x

)

40

x

60

4

Time (s)

80

52
0 0

Fig. 2. Time evolution of y(t) for the closed-loop system
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Fig. 3. Delayed command effort ũ(t) = u(t−D(t))

over [0, t0] of the unique quintic polynomial function f
satisfying f(0) = f ′(0) = f ′′(0) = f ′(t0) = f ′′(t0) = 0
and f(t0) = 1. The employed numerical scheme relies
on the discretization of the reaction-diffusion equation
using its first 10modes. The time domain evolution of the
closed-loop system is depicted in Figs. 2-3. As expected
from Theorem 3, both the system state and the control
input converge to zero.

5 Conclusion

This paper discussed first the use of predictor feedback
for the stabilization of finite-dimensional LTI systems in
the presence of an uncertain time-varying delay in the
control input. By means of a Lyapunov-Krasovskii func-
tional, it has been derived an LMI-based sufficient condi-
tion ensuring the exponential stability of the closed-loop
system for small enough variations of the time-varying
delay around its nominal value. Then, this result has
been extended to the feedback stabilization of a class of
diagonal infinite-dimensional boundary control systems.
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