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Abstract

This paper considers the persistent coverage of a 2-D manifold that has been embedded in 3-D space. The manifold is subject
to continual impact by intruders which travel at constant velocities along arbitrarily oriented straight-line trajectories. The
trajectories of intruders are estimated online with an extended Kalman filter and their predicted impact points contribute
normally distributed decay terms to the coverage level. A formal hybrid control strategy is presented that allows for power-
constrained 3-D free-flyer agents to persistently monitor the domain, track and intercept intruders, and periodically deploy
from and return to a single charging station on the manifold. Guarantees on intruder interception with respect to agent power
lifespans are formally proven. The efficacy of the algorithm is demonstrated through simulation.
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1 Introduction

1.1 Background

The advent of inexpensive autonomous research plat-
forms has spurred recent interest in teams of mobile
sensors collaborating on complex surveillance and mon-
itoring tasks. Coverage control problems have been par-
ticularly popular due to their numerous applications:
e.g., environmental monitoring (Smith et al. 2011), bat-
tlefield surveillance (Bokareva et al. 2006), lawn mow-
ing and vacuuming, search and rescue (Murphy et al.
2008), and hull inspections (Choset & Kortenkamp 1999,
Hollinger et al. 2013). The latter application is actively
supported by NASA whose work on the Mini AER-
Cam paves the way for a future of extravehicular robotic
(EVR) free flyers performing independent visual inspec-
tions of spacecraft exterior areas of interest (Fredrickson
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et al. 2004). Free flyer visual inspection is the primary
motivating example for our work.

Coverage is often partitioned into three classes of prob-
lems: static, dynamic, and persistent. Static coverage
problems (e.g., area coverage, k-coverage and point cov-
erage) often explore the optimal arrangement of sensor
nodes in a network and the agents tend to immobilize
after this arrangement has been achieved (Cortes et al.
2004). Dynamic coverage problems involve the active
exploration of a domain. Agents typically must sweep
their sensors over all points of a domain until some de-
sired level of coverage has been achieved (Hussein & Sti-
panović 2007, Liu et al. 2013, Stipanović et al. 2013).
Persistent coverage is often similar to dynamic coverage
with the addition of information decay within the envi-
ronment: i.e., agents are required to continually return
to areas of interest in order to restore a deteriorating
coverage level.

The term ”persistent coverage” appears as early as
Hokayem et al. (2007) where agents must cover all
points in a 2-D convex polygonal domain every T ? time
units. This was accomplished with the design of concen-
tric polygonal trajectories with agents following closed
paths in steady state. The work in Song et al. (2013)
is similar but also introduces a linear coverage decay
rate for specific points of interest. In this paper, as
well as Smith et al. (2012), controller design is akin to
regulating the velocity along paths generated offline to
increase observation time at select points of interest. As
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the decay rates are known and time invariant, optimal
speed control is computed via linear programming.

Palacios-Gasós et. al have published multiple works
recently on persistent coverage (Palacios-Gasós et al.
2016a,b, 2017) which build specifically upon Smith
et al. (2012). While the earlier work assumed both the
existence and knowledge of an optimal path to cover
all points of interest, Palacios-Gasós et al. (2016b) uses
techniques from discrete optimization and linear pro-
gramming to iteratively compute this path. The effect
is that if the coverage decay rate of a specific point of
interest is found to be insufficient to justify the transit
time required to service it, then the point may be re-
moved online from the path of the robot. Prior works,
i.e., Smith et al. (2012), Song et al. (2013), would have
instead driven the robot to quickly pass through the
point. Similar techniques are used in Mitchell et al.
(2015) which also considers that agents must periodi-
cally return to refueling depots.

In Hübel et al. (2008) and Song et al. (2011), the de-
sired coverage level of the domain is maintained with
density maps that yield additional observation time at
select areas of interest. In Song et al. (2011) the maps
are time-invariant while Hübel et al. (2008) considers
time-varying density maps that may be designed around
moving points of interest (e.g., aerial surveillance tar-
gets). However, the latter work only uses density maps
in the derivation of control laws and not in the differen-
tial equations governing coverage level evolution.

Common themes through all of these persistent cover-
age works are convex 2-D domains, predictable environ-
ments, and simplified sensing and dynamic models for
agents. Coverage surfaces embedded in R3 are consid-
ered in Cheng et al. (2008); however, this work is closer
to that of Hokayem et al. (2007) in that agents also follow
preplanned trajectories without considering spatially-
dependent coverage decay maps.

Monitoring of stochastic environments is presented in
Pasqualetti et al. (2014), Yu et al. (2015), outside of
the strict persistent coverage formulation. In Yu et al.
(2015), the authors consider that agents must observe
events at multiple points of interest and the precise ar-
rival times of events are unknown a priori. Arrival time
statistics are used to inform a multi-objective schedul-
ing protocol that results in fixed cyclic servicing policies.
In Pasqualetti et al. (2014), the environment contains
smart intruders which actively attempt to evade a cam-
era surveillance network. Camera motion is restricted to
a single pan axis and thus the the system model is es-
sentially that of a 1-D pursuit evasion problem.

1.2 Contribution

In this paper, we present (i) a formal hybrid control
strategy for multi-agent persistent coverage of non-
planar convex surfaces embedded in R3 that does not
make overly simplifying assumptions with respect to

agent dynamic and sensing models, (ii) guarantees on
agent interception of stochastic intruders, and (iii) an
energy-aware agent deployment and scheduling proto-
col. To the best of our knowledge, we are the first to
present a formal hybrid approach to persistent coverage.

Although many of the cited works use density functions
to encode points of interest, the difference in our ap-
proach is both subtle and powerful. The density function
in Hübel et al. (2008) evolves subject to the motion of
an intruder and informs the control laws; however, it has
no effect upon the dynamics of the coverage level. Thus,
only the intruder’s current location has any influence on
the motion of the agents, and the time-history of the
intruder’s trajectory is forgotten. This necessitates that
agents must travel faster than targets in order to cover
points associated with peaks in the density function be-
fore they vanish. Works that do include a density func-
tion in the coverage level evolution, e.g Palacios-Gasós
et al. (2016a,b, 2017), tend to have fixed decay rates that
cannot respond or adapt to a changing environment. In
contrast, our algorithm utilizes a time-varying density
function, which is estimated online via extended Kalman
Filter, to directly encode coverage decay over the surface
around the predicted impact points of intruders. This
encodes a memory effect which drives some agents to
follow coverage gradients towards areas that have previ-
ously been or will soon be impacted by intruders.

Our agents operate with finite resources and are required
to periodically return to a refueling station while ob-
serving stochastic events at locations and times that are
not known a priori. This approach is different from re-
lated works, such as Yu et al. (2015) and Mitchell et al.
(2015), where the locations of events are fixed and the
authors are concerned with optimal servicing routes be-
tween these known stations.

This hybrid system is a successor to our previous works
in Bentz & Panagou (2017, 2018). In Bentz & Panagou
(2017), we derived the first of our hybrid modes (i.e.,
local coverage mode) and our intruder state estimator.
However, the agents had no power constraints and the
approach was unable to provide any formal guarantees
on intruder interception without additional operating
modes. In Bentz & Panagou (2018), we derived these
additional modes to present a hybrid approach to per-
sistent coverage. Agents were now scheduled to inter-
cept intruders and followed path-length optimal trajec-
tories. However, formal guarantees on intruder intercep-
tion were still limited to cases in which no collision-
avoidance deadlocks had occurred. Furthermore, agents
did not make effective use of local coverage mode as they
would often travel to the predicted impact points of in-
truders and then remain stationary until the moment of
impact thus contributing to a rising coverage error.

This work extends the interception guarantee of Bentz
& Panagou (2018) to an arbitrary number of collision
avoidance maneuvers and presents an entirely new
method of collision avoidance over the prior works. It
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also reformulates numerous guard conditions within the
automaton to allow agents to explore actively around
the predicted impact points of intruders. Furthermore,
this contribution revises our sensing function defini-
tion utilized in the prior works which suffered from a
singularity at the sensing cone vertex.

This paper is organized as follows: Section 2 describes
the agents sensing and kinematic models and provides
an overview of our hybrid control strategy, Section 2.2
presents the trajectory estimator for particle intruders
and defines our coverage decay rate map, Sections 3-6
describe each hybrid mode in detail, Section 7 verifies
the algorithm in simulation, Section 8 summarizes our
contributions and Section 9 is an appendix containing
the formal definition of our hybrid automaton.

2 Problem Formulation

2.1 Agent Modeling

Consider a network of spherical autonomous agents in-
dexed i ∈ {1, ..., N}, of radius ri, whose motion is sub-
ject to 3-D rigid body kinematics (Beard 2008):ẋiẏi

żi

 =

cos Θi cos Ψi sin Φi sin Θi cos Ψi − cos Φi sin Ψi

cos Θi sin Ψi sin Φi sin Θi sin Ψi + cos Φi cos Ψi

− sin Θi sin Φi cos Θi

cos Φi sin Θi cos Ψi + sin Φi sin Ψi

cos Φi sin Θi sin Ψi − sin Φi cos Ψi

cos Φi cos Θi


uivi
wi

 , (1)

Φ̇i

Θ̇i

Ψ̇i

 =

1 sin Φi tan Θi cos Φi tan Θi

0 cos Φi − sin Φi

0 sin Φi sec Θi cos Φi sec Θi


qiri
si

 , (2)

where pi = [xi yi zi]
T

is the position vector and Ωi =

[Φi Θi Ψi]
T

is the vector of 3-2-1 Euler angles taken
with respect to a global Cartesian coordinate frame G
with origin O. The linear velocities [ui vi wi]

T
and an-

gular velocities [qi ri si]
T

are both presented in the
body fixed frame Bi with origin pi. The state vector of
agent i is defined as q̃i = [pTi ΩTi ]T . In the sequel, the ro-
tation matrices of (1) and (2) shall be denotedR1 andR2

respectively. The agents travel within a stationary do-
main,D ⊂ R3. Their task is to survey a two-dimensional
manifold, C ⊂ D, known as our surface of interest. For
the purpose of this work we assume that the surface is
an ellipsoid of revolution; however, it should be noted
that the coverage laws, as well as the collision avoidance
strategy, can be easily adapted for any convex surface.
The ellipsoid has semi-major axis xC,r and semi-minor
axis zC,r aligned with the global coordinate axes x̂G and
ẑG respectively with center at O. The circumflex (i.e.,
hat) symbols denote unit vectors.

Each agent, i, is equipped with a forward facing sensor
whose spherical sector footprint shall be referred to as

Si. This model, though intended to be generic, is sim-
ilar to conical camera models presented in other works
on dynamic coverage (see Xie & Zhang (2013)). Our
model differs in terms of its heterogeneity, i.e. Si provides
anisotropic sensing data that degrade in quality towards
the periphery of the footprint and changes with respect
to distance from the sensor. Degradation over distance
is not monotonically decreasing but instead contains a
peak located near the vertex of Si as in Hexsel et al.
(2013). This is motivated by the fact that the probabil-
ity of event detection by a camera decreases when ei-
ther very far from or very close to the lens. Anisotropic
sensing is encoded through the definition of the sensing
constraint functions for each agent i:

c1i = βiR
2 − (x̃− xi)2 − (ỹ − yi)2 − (z̃ − zi)2, (3a)

c2i = αi − φi, (3b)

for βi = min{1, ηi
(

(x̃− xi)2 + (ỹ − yi)2 − (z̃ − zi)2
)
}

with real constant ηi >> 1. R is the sensing range,

p̃i = [x̃ ỹ z̃]
T

is the position of a point within Si with
respect to G, αi is the angle between the periphery and
centerline of the spherical sector (the x̂Bi axis), and
φi is the angle between rp̃i/pi = p̃i − pi (resolved in G
by construction) and the x̂Bi axis given as the inverse
cosine of the dot product of r̂p̃i/pi and x̂Bi resolved

in G: φi = arccos
(
r̂p̃i/pi · x̂Bi |G

)
. Note that: r̂p̃i/pi =

1√
(x̃−xi)2+(ỹ−yi)2+(z̃−zi)2

[(x̃− xi) (ỹ − yi) (z̃ − zi)]T ,

and x̂Bi |G is determined by multiplyingR1 by [1 0 0]
T

:

x̂Bi |G =
[
cos Ψi cos Θi sin Ψi cos Θi − sin Θi

]T
. Agent

i is thus capable of detecting objects that lie within
an angle of 2αi > 0 about the x̂Bi axis and a range of
R > 0. The model for agent i is depicted in Fig. 1.

Fig. 1. Agent i is modeled as a sphere of radius ri and has a
forward facing sensor footprint, Si. Sensing constraint func-
tions cki, ∀k ∈ {1, 2}, encode a decay in sensing quality along
the depth and towards the periphery of Si.

Let us denote max{0, cki} = Cki. One can define the
sensing function that represents the quality of informa-
tion available at each point over the sensing domain as:
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Si(q̃i, p̃) =

{
C1iC2i

C1i+C2i
, if card

(
C̄i
)
< 2 ∧ rp̃i/pi > 0;

0, otherwise,

(4)

where C̄i is the set of zero elements in Cki. Si(q̃i, p̃) takes
a value of zero outside of Si. Note that Si(q̃i, p̃) is de-
fined over all of D and thus has static bounds. Si(q̃i, p̃)
is continuous in p̃ while taking a value of zero along ∂Si.
In verifying this continuity, it is important to note that
Si(q̃i, p̃) approaches zero from within Si in the limit that
either card

(
C̄i
)

= 2 or rp̃i/pi = 0 are satisfied. The for-
mer condition may be verified by taking a limit of the
first piecewise definition of (4) as C1i and C2i tend to
zero. The latter condition results from our definitions of
βi and ηi which encode that Si(q̃i, p̃) drops off rapidly
when in very close proximity to the vertex of Si. Increas-
ing ηi >> 1 has the effect of shifting the sensing drop
off point closer to pi. Define the coverage level provided
by agent i at time t as:

Qi(t, p̃) =

∫ t

0

Si (q̃i(τ), p̃)C (p̃) dτ, (5)

where C is defined as: C (p̃) =

{
1, ∀p̃ ∈ C;
0, ∀p̃ /∈ C, and en-

codes that the accumulation of sensing information only
occurs along our surface of interest, C.

As the agents cover C, a set of Np high-speed particle
intruders denoted k ∈ {1, ..., Np}, each of which trav-
els in an arbitrary direction at constant velocity, pass
through the domain. The particles are assumed to be
uncontrolled and cannot deviate from their initial tra-
jectories. No assumptions are made with respect to the
source of the particles or whether they are intelligently
generated. Each particle shall have an associated map
decay term, Λk (τ, p̃), which is defined later in Section
2.3. We may now define the global coverage level:

Q(t, p̃) =
N∑
i=1

Qi(t, p̃)−
Np∑
k=1

∫ t

0

Λk (τ, p̃)C (p̃) dτ. (6)

In this work, coverage refers to the accumulation of sens-
ing data over time. Points, p̃, are said to be sufficiently
covered when Q (t, p̃) ≥ C?. The goal is to derive a hy-
brid control strategy which persistently sweeps Si across
C while emphasizing surveillance within some bound of
the predicted impact points of particles k ∈ {1, ..., Np}
on C. More specifically, we establish theoretical guaran-
tees on the worst case path length from any agent to
any arbitrary impact point thus guaranteeing intercep-
tion for prescribed bounds on intruder speed, detection
range, and agent velocity. This must be done while avoid-
ing collisions. Let us define collision and interception.

Definition 1 Agent i is said to have intercepted particle
k if i is within a ε1 bound of the estimated impact point
of k for a finite interval of time leading up to the impact.

Agent i shall spend this duration of time sweeping the
area in local coverage thus gathering information.

Note that intruders are unaffected by agents and shall
always impact the surface and then disappear. This does
not damage the agent which is free to resume other tasks
upon conclusion of interception.

Definition 2 Agent i avoids collision so long as ‖pi(t)−
pj(t)‖ > ri+rj , ∀t ≥ 0, ∀j 6= i ∈ {1, ..., N} and ‖ni‖ >
ri where the vector ni has direction normal to C and
length equal to the Euclidean distance of its intersection
point on C to pi.

Agents operate with finite power resources and are
required to return every T ? time units to a fueling sta-
tion denoted F . Thus, a scheduling protocol is derived
whereby agents periodically deploy from F to cover
within assigned partitions of C. These partitions are
bounded by latitude lines and are sorted by geodesic
distance from F with agents deploying to the partition
furthest from F and then transferring between adjacent
partitions every T?

N time units as their power resource
dwindles requiring a return to F within T ? time units
after deployment. This partitioning scheme also has the
benefit of ensuring that the network of agents is well
distributed across C with agents nominally assigned to
intercept intruders with predicted impact points within
their own partition.
Agent i is capable of localizing itself in G and detecting
whether there exists j such that ‖pi(t) − pj(t)‖ ≤ R.
Furthermore, agents i and j can communicate their de-
ployment times to one another. A centralized network is
required to publish the current coverage level Q(t, p̃) 1

to all agents and to estimate the trajectories of intruders
using an omnidirectional range sensor whose measure-
ments are fed through an extended Kalman filter. Com-
putation of Q(t, p̃) is contingent upon continuous trans-
mission of agent state q̃i to the centralized network. The
centralized network assigns each intruder to an unas-
signed agent at closest latitude to the predicted impact
point. It also transmits detection time as well as esti-
mated location and time of impact to the agent.

2.2 Intruder Modeling

We assume that the omnidirectional range sensor (e.g.,
LiDAR) is co-located with O and provides measure-
ments of each particle’s position in spherical coordinates.
We also assume that particle detection and state esti-
mate initialization occur while the distance of the parti-
cle from O is greater than or equal to Rdet + xC,r where
Rdet is a lower bound on distance from detection to im-
pact. We define the model for the motion of particle k:

1 In practice, it is not necessary to publishQ(t, p̃), ∀p̃ ∈ D to
every agent. For agent i to compute its local coverage control
signal, it need only values for Q(t, p̃) within a closed ball of
radius R due to the fact that Si(q̃i, p̃) = 0, ∀p̃ /∈ B̄Rpi(t).
This substantially reduces the communication overhead.
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˙̃qk (t) =

[
03×3 I3×3
03×3 03×3

]
q̃k (t) , (7)

z̃k (t) =


√
x2k + y2k + z2k

atan2 (yk, xk)

arccos

(
zk√

x2
k
+y2

k
+z2

k

)
+ ε, (8)

where q̃k = [xk, yk, zk, ẋk, ẏk, żk]
T

and z̃k = [ρk, θk, ψk]
T

are the Cartesian state and spherical coordinate mea-
surement vectors of particle k resolved in G. We as-
sume that particle speed is upper bounded such that√
ẋ2k + ẏ2k + ż2k ≤ U intmax. ρk, θk, and ψk are the range,

azimuthal angle, and polar angle of k respectively. In the
sequel, the matrix in (8) shall be denoted h̃ (xk, yk, zk).
Assume that the measurement noise, ε, is zero-mean

Gaussian and has covariance R = diag
(
σ2
ρ, σ

2
θ , σ

2
ψ

)
.

This system models high-speed particles incident upon
a surface with negligible drag (e.g., micrometeoroids
impacting a spacecraft hull); thus, it is reasonable to
omit the process noise. The state and covariance esti-
mates, ˆ̃q and Pk, are computed with a continuous-time
extended Kalman filter which is initialized upon particle
k’s detection at time tdk.

2.3 Information Decay

At any time t, we define our decay rate map for parti-
cle k in terms of its predicted position and covariance
evolution over a horizon TH,k(t). As the particles are as-
sumed to travel at fixed velocities 2 , the predicted values
for Cartesian position p̃′k (t+ τ) and associated covari-

ance Pk (t+ τ) are defined as p̃′k (t+ τ) = G (τ) ˆ̃qk (t),

and P′k (t+ τ) = G (τ) Pk (t)G (τ)
T

respectively where

G (τ) = [I3×3 τI3×3] and ˆ̃qk (t) is our current estimate
for q̃k (t). We define the decay rate map associated with
particle k as the integral of our predicted normal distri-
bution N (p̃′k (t+ τ) ,P′k (t+ τ)) through horizon TH,k:

Λk (t, p̃) =

∫ TH,k(t)

0

λkN
(
p̃′k (t+ τ) ,P′k (t+ τ)

)
dτ, (9)

where λk > 0 is a tuning parameter for the decay rate.
We recommend choosing λk < 1 as this typically allows
for the rate of coverage to exceed the decay rate over
points intersecting Si. For t < tdk, define Λk (t, p̃) =
0, ∀p̃ ∈ D. Our formulation for (9) essentially takes a
normal distribution for the position of particle k at time
t and cumulatively propagates it forward in time up to
our horizon TH,k(t). The horizon is lower-bounded by an
estimate of the remaining time until impact of particle
k on C. This may be computed using q̃k (t) along with

2 The guarantee of intruder interception presented in this
work can be extended to intruders with time-varying veloc-
ities that are bounded by U intmax. However, it is still required
that intruders follow straight line trajectories such that the
network may estimate fixed impact points.

the surface geometry. With this design, Q(t, p̃) decays
along the predicted trajectory of k with tapering omni-
directional decay rates spreading out from the predicted
path. This design lends itself naturally to our local cov-
erage formulation, which is gradient following in nature,
in that the agents may follow these tapered decay paths
towards the predicted impact points on our surface of
interest.

2.4 Algorithmic Overview

Fig. 2. Agent i operates in accordance with this automaton.
For clarity, elements of the reset map and brief descriptions
of transitions are included.

The coverage strategy for agent i is represented by the
hybrid automaton in Fig. 2. Rigorous definitions of all
entities of the automaton, including the guard conditions
and reset maps, are included in the appendix. Note that
each agent operates in accordance with its own automa-
ton and thus an arbitrary number of agents may be in
any operating mode at any given time. Before proceed-
ing, we provide a brief overview of each mode.

• Local Coverage: This mode governs the active ex-
ploration of our surface of interest C. When active,
the agent continuously seeks to orient and trans-
late Si such that Si intersects portions of C with
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a lower coverage level. This is conceptually similar
to following the gradient of the coverage error. An
agent currently assigned to an intruder may operate
in Local Coverage while within an ε1 bound of the
the intruder’s predicted impact point. Any agent
not currently assigned to an intruder shall operate
in Local Coverage assuming that it is within its as-
signed latitude partition. Operation in Local Cov-
erage is always concurrent with agent assignment to
the lowest concentric surface (see Surface Transfer
below) and transition to Local Coverage can occur
from any mode aside from Return to Base Mode.

• Particle Intercept: In this mode, an intruder is as-
signed to agent i and i is guided along its assigned
surface to the predicted impact point of the in-
truder. After intruder assignment occurs, the agent
will nominally remain in Particle Intercept Mode
until after the intruder impacts C; however, the
agent may temporarily leave the mode before im-
pact to avoid collision through Surface Transfer
Mode or to explore in Local Coverage within a ε1
bound of the the intruder’s predicted impact point.

• Partition Transfer: This mode is defined for agents
that are not currently assigned to an intruder and
its purpose is to ensure that the agents are spa-
tially distributed across the entire surface area of C.
Activation of this mode will guide agent i along a
longitudinally-oriented geodesic trajectory until its
position satisfies a set of latitude constraints, i.e.,
agents travel to the southernmost latitude partition
upon deployment and transition through progres-
sively northern partitions as their fuel is depleted.
Transition to this mode can occur from any other
mode. The partitioning scheme is shown in Fig. 6.

• Surface Transfer: This mode’s primary purpose is to
ensure that agents avoid collision with two distinct
cases resulting in its activation. In the first case,
two or more agents have violated a safe-proximity
condition. The mode removes select agents from the
deadlock by guiding them along vectors normal to
C to a higher-altitude ellipsoidal surface concentric
with C. An agent trajectory is then temporarily con-
fined to this newly assigned surface until it reaches
the surface projection of its destination. The sec-
ond case occurs under the condition that the agent
has arrived at the projection of its destination on
a higher-altitude surface. The mode is activated to
return the agent to the innermost surface. Transi-
tion to this mode can occur from any other mode
aside from Return to Base as agents in the latter
mode always take priority in a deadlock. The sur-
face transfer geometry is illustrated in Fig. 4.

• Return to Base: The final mode is activated when
the time since an agent’s deployment has surpassed
some threshold. It guides the power-critical agent
along the optimal trajectory to the refueling sta-
tion. After charging, the agent is redeployed. Agent
deployments occur one at a time with a fixed period.
A power critical agent in Particle Intercept Mode or

Surface Transfer Mode shall first complete its task
of intercepting the assigned intruder or transfer-
ring surfaces before transitioning to Return to Base
Mode. If an agent is designated as power-critical
while in Partition Transfer Mode it shall immedi-
ately abandon its task and transition to Local Cov-
erage which shall result in instantaneous transition
to Return to Base Mode. Theoretical guarantees
on successful return to base with respect to agent
power lifespan in accordance with our automaton
is presented in Theorem 2 of Section 5.

3 Local Coverage Mode

Local coverage constitutes the first of five hybrid modes
in our automaton. This mode is gradient following in
nature and commands agent i to always seek to orient
and translate Si such that the volume of uncovered space
intersecting Si is increased. In this way, it emphasizes
active exploration of the domain by agents that are not
currently assigned to either monitor intruders or relocate
within the domain. The control laws are designed such
that agent motion in local coverage shall tend to reduce
the rate of growth of the global coverage error. Define
the global coverage error with respect to C? as:

E(t) =

∫
D

h (C?C (p̃)−Q(t, p̃)) dp̃, (10)

where h(w) = (max{0, w})3 with first derivative h′ =
dh
dw = 3(max{0, w})2 and second derivative h′′ = d2h

dw2 =
6(max{0, w}). Our local coverage control laws are de-
rived via differentiation of (10). This is included in the
Appendix in the interest of space. The result is the se-
lection of the following control strategy:

uloci = ku
ai1(t, Q(t, p̃))√
a2
i1 + a2

i2 + a2
i3

+ x̂Bi · ρl,i, (11a)

vloci = kv
ai2(t, Q(t, p̃))√
a2
i1 + a2

i2 + a2
i3

+ ŷBi · ρl,i, (11b)

wloci = kw
ai3(t, Q(t, p̃))√
a2
i1 + a2

i2 + a2
i3

+ ẑBi · ρl,i, (11c)

rloci = r̄isat
(krai4(t, Q(t, p̃))

r̄i

)
+ ŷBi · ρa,i, (11d)

sloci = s̄isat
(ksai5(t, Q(t, p̃))

s̄i

)
+ ẑBi · ρa,i, (11e)

where:

ρl,i = − ln

(
1

γR− ri (‖ni‖ − ri)
)
R−1

1 n̂i, (12)

ρa,i = ξR−1
2


0

arcsin (n̂i · ẑG)−Θi

atan2 (−n̂i · ŷG ,−n̂i · x̂G)−Ψi

 . (13)
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ρl,i is a collision avoidance term with respect to the sur-
face of interest. It takes a value of zero when agent i’s
normalized distance from C is γR for γ ∈ (0, 1] and is
logarithmically repulsive and attractive from the surface
when the distance is decreased or increased respectively.
Small values for γ tend to direct the agent to travel closer
to the surface. This coincides with a smaller cross section
of Si intersecting the surface but is also typically associ-
ated with a higher quality of sensing. A larger choice for
γ will direct the agent to fly at a higher altitude with re-
spect to the surface and thus the area covered by Si will
tend to be broader with a decreased quality of sensing.
ρa,i, for ξ << 1, encodes that the agents should tend
to align x̂Bi with −n̂i if the coverage terms associated
with ri and si have become sufficiently small. The phys-
ical meaning of ρa,i is to direct Si back onto C if it has
reached a configuration in which it no longer intersects
C. See Fig. 3 for further details.

Fig. 3. As agent i explores C, ρl,i is parallel to ni for
‖ni‖ < γR, antiparallel to ni for ‖ni‖ > γR, and the zero
vector otherwise. This term prevents collision of i with C and
prevents i from flying away from C. ρa,i tends to direct Si
onto C.

r̄i and s̄i are saturation limits for the coverage angular
velocity inputs to the system. ku, kv and kw are tun-
ing gains which are chosen to satisfy

√
k2u + k2v + k2w ≤

Uagtmax. As ρ`,i is normal to the surface, it can be shown
that Uagtmax is an upper bound to agent velocity tangen-
tial to C.

4 Particle Intercept Mode

Assuming that particle k is embedded within the surface
upon impact, its position shall intersect C at most one
time. We define particle k’s estimated impact time as

tck = min

(
t ∈ R+ | (x̂k+ ˙̂xkt)

2

x2
C,r

+
(ŷk+ ˙̂ykt)

2

x2
C,r

+
(ẑk+ ˙̂zkt)

2

z2
C,r

= 1

)
,

with estimated impact point p̃′k (tck) = G (tck − t) ˆ̃qk (t).
Upon detection, particle k is assigned to a free agent
i with the minimum distance from the estimated
point of impact along the ẑG direction. We define
a new index, ik, as the index of the agent assigned
to intercept particle k at destination pid = p̃′k (tck):
ik = argmini∈{1,...,N}|ip 6=1,fi 6=1‖z̄′k(tck) − zi(tdk)‖. Note

that z̄′k(tck) is the z component of p̄′k(tck) and fi ∈ {0, 1}
is a particle assignment flag for agent i defined as 0
when the agent is free (i.e., not currently assigned a
particle). ip ∈ {1, ..., N}, the power index of agent i,
shall be fully described in Section 5; however, it should
be noted that the definition of ik implies that there are
at most N − 1 agents available for particle interception
at any given time.

As with our local coverage strategy, it is assumed that
agents shall maintain a distance γR normal to C in the
nominal case that they are not maneuvering to avoid
collision. We define an ellipsoid of revolution, C0, which
is concentric with C and has the property that each semi-
principal axis is γR longer than its associated counter-
part in C, i.e., xC0,r = xC,r + γR, and zC0,r = zC,r + γR.
The nominal trajectories of i are attractive to C0.
Agents maneuvering to avoid collision shall transfer
to additional concentric ellipsoidal surfaces each sepa-
rated by a distance of R. These surfaces are denoted
C1, C2, ..., CN−1 with associated semi-principal axes
xC1,r = xC,r + (γ + 1)R and zC1,r = zC,r + (γ + 1)R,
xC2,r = xC,r + (γ + 2)R and zC2,r = zC,r + (γ + 2)R,
etc. Surface assignment and transfer scheduling in colli-
sion avoidance mode is described in full detail in Section
6 and the geometry is illustrated in Fig. 4.

Fig. 4. Three agents enter a deadlock in (a). The green agent,
which has the greatest time since deployment, is prioritized
to continue on C0 and the red and blue agents are each trans-
ferred to C1 before entering a second deadlock in (b). The blue
agent, which has the second greatest time since deployment,
is prioritized to continue on C1 and the red agent is trans-
ferred to C2 before continuing along geodesic to projC2 p̃

′
k (tck )

in (c). Red agent transfers back to C0 directly above predicted
impact point of particle k in (d). Note that surface transfer
trajectories are always normal to Cµi , ∀µi ∈ {0, ..., N − 1}.

When agent i has been assigned to intercept particle k,
fi is set to 1 and it is said to have transitioned into par-
ticle intercept mode. In this mode, agent i shall nomi-
nally follow the optimal trajectory along C0 to within a
ε1 bound of the projection of point p̃′k(tck) onto C0 (de-
noted projC0 p̃

′
k (tck )). The agent shall then transition to
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local coverage to actively explore within this ε1 bound
until t > tck at which time fi is set to 0. If local coverage
guides the agent out of the ε1 bound, particle intercept
mode will again guide the agent back inside the bound.
The optimal trajectory is referred to as a geodesic and
its computation may be executed in an iterative man-
ner. Specifically, we use Vincenty’s formulae as presented
in Vincenty (1975a). For cases involving nearly antipo-
dal points in which the standard inverse method does
not converge, we use Vincenty’s supplemental algorithm
presented in Vincenty (1975b).

As an input, Vincenty’s algorithm requires an ellipsoid of
revolution along with two points, current and desired po-
sition, on that surface. The algorithm returns a heading
angle measured clockwise from North. This heading an-
gle shall be referred to as χi. We now define the heading
unit vector ν̂i which lies in a plane tangent to the surface
at pi. It may be computed by rotating the North-pointing
vector at pi clockwise by an angle of χi within the tan-
gent plane. For our implementation of Vincenty’s algo-
rithm, we input the following: Cµi for surface assignment
index µi ∈ {0, ..., N−1}, pi, and projCµi

p̃′k (tck ). The po-

sition controller used to guide agent i to projCµi
p̃′k (tck )

is composed of two terms: one which commands veloc-
ity tangential to Cµi along ν̂i and one logarithmic term
which commands velocity normal to Cµi in order to con-
strain the geodesic trajectory of i to Cµi . The particle
intercept mode position control law is:
upimi

vpimi

wpimi

 = UagtmaxR−1
1

ν̂i − ln
(

1
(γ+µi)R−ri (‖ni‖ − ri)

)
n̂i

‖ν̂i − ln
(

1
(γ+µi)R−ri (‖ni‖ − ri)

)
n̂i‖

.

(14)

As agent i travels along the geodesic, it is desirable that
it should point Si towards C. Therefore, the orientation
controller for particle intercept mode is similar to that
of Section 3:

qpimi

rpimi

spimi

 = R−12


0

arcsin (n̂i · ẑG)−Θi

atan2 (−n̂i · ŷG ,−n̂i · x̂G)−Ψi

 ,
(15)

which is essentially a proportional controller that tends
to align x̂Bi with −n̂i. As (14) commands the vehi-
cle to follow the optimal length path along Cµi to
projCµi

p̃′k (tck ), we can establish a few guarantees on

system performance. To simplify notation, define:

gCN−1
=

1 +

∞∑
n=1

(
(2n− 1)!!

2nn!

)2

(
xCN−1,r

−zCN−1,r

xCN−1,r
+zCN−1,r

)2n
(2n− 1)

2

 ,
(16)

and gC0 is defined similarly in terms of the semi-principal
axes of C0.

Lemma 1 Let us assume that agent i has been assigned
to particle k with fi := 1. Given an arbitrary agent
position pi(tdk) and an arbitrary predicted impact point
for the intruder p̃′k(tck), there exists an upper bound to
the maximum path length until interception: Pmax ≤
πxCN−1,r + π

2

(
xCN−1,r + zCN−1,r

)
gCN−1

+ 2 (N − 1)R.

PROOF. At the moment that fi := 1 we have that
agent i transitions to Particle Intercept Mode. Un-
der the condition that the agent has not yet come
within proximity of the predicted impact point, i.e.,
‖pi−projCµi

p̃′k (tck )‖ > ε1, we have that only G (ζi2, ζi4)

and G (ζi4, ζi2) are defined (see Appendix). These two
transitions occur sequentially for each deadlock event
that agent i encounters as it approaches projCµi

p̃′k (tck ).

In any given deadlock arrangement, one agent remains
on its current surface without ascending to a higher one.
This implies that µi = 1 for at most N − 1 agents as
the remaining agent would be unable to encounter a
deadlock on C0. Furthermore, this implies that µi = 2
for at most N − 2 agents etc. until we have µi = N
for at most zero agents. The worst cast surface assign-
ment that can be incurred during sequential cycles of
((ζi2, ζi4) , (ζi4, i2)) would be µi = N − 1.

As the geodesic path length between any two points
projected onto surface Cµi shall always be less than the
geodesic path length between the same two points pro-
jected onto surface Cµi+1, we may bound the geodesic
portion of the trajectory by one that is constrained en-
tirely to CN−1. We denote this term Pgeo. As any two
points on Cµi can be connected by a path of constant
latitude Plat followed by a path of constant longitude
Plong, we have that:

Pgeo ≤ Plat + Plong. (17)

For two generic points on CN−1, we have that:

Plat ≤ πxCN−1,r, (18)

Plong ≤
π

2

(
xCN−1,r + zCN−1,r

)
gCN−1

. (19)

where the bound on Plat is half of the circumference
of the ellipsoid of revolution CN−1 about its equa-
tor and the bound on Plong is half of the perime-
ter of the revolved ellipse. The infinite series expres-
sion term, denoted gCN−1

in (19), is first presented
in Ivory (1798). The remaining portion of the path
length is simply the straight line segments connecting
C0 to CN−1 and back again. This length is precisely
2 (N − 1)R. Thus, Pmax = Pgeo + 2 (N − 1)R as illus-
trated in Fig. 5. Invoking (18) and (19) gives us Pmax ≤
πxCN−1,r + π

2

(
xCN−1,r + zCN−1,r

)
gCN−1

+ 2 (N − 1)R.
This concludes the proof.

Theorem 1 Assuming that the bounds on intruder ve-
locity and range from detection to impact satisfy Rdet

Uintmax
>
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Fig. 5. The longest possible path from pi(tdk) to p̃′k(tck),
taken by agent i assigned to intercept particle k, is illustrated
above. We denote this path as Pmax and it may be upper
bounded as established in Lemma 1.

Pmax
Uagtmax

, where Pmax may be bounded via Lemma 1, agent

i shall reach projC0 p̃
′
k (tck ) before tck.

PROOF. Given the fact that agents in the particle in-
tercept and surface transfer modes travel at speed Uagtmax,
we have that the time tik required to travel from pi (tdk)
to projC0 p̃

′
k (tck ) must satisfy: tik ≤ Pmax

Uagtmax
. Given that

tck − tdk ≥ Rdet
Uintmax

, agent i reaching projC0 p̃
′
k (tck ) be-

fore tck implies that Rdet
Uintmax

> tik. This is guaranteed if
Rdet
Uintmax

> Pmax
Uagtmax

This concludes the proof.

Remark 1 At any given time, there are at most N − 1
agents available to intercept particles. Thus, satisfaction
of Theorem 1 implies that the network is capable of in-
tercepting all particles so long as a maximum of N − 1
particle impacts occur in any moving time window of
πxCN−1,r

+π
2 (xCN−1,r

+zCN−1,r)gCN−1
+2(N−1)R

Uagtmax
.

5 Energy-aware Scheduling Protocol

5.1 Domain Partitioning

As this is a persistent coverage protocol, which operates
indefinitely, it is necessary to establish an agent deploy-
ment and scheduling protocol that realistically consid-
ers the agents’ finite power and/or propulsive resources.
Our strategy is to periodically deploy agents from a fu-
eling station F which we assume to be located at the

North pole of C0, i.e., at the point [0 0 zC0,r]
T

. Define
T ? as the power lifespan of each agent in the network.
Given T ? and N , we define our deployment and schedul-
ing protocol such that one agent is deployed from F ev-
ery T?

N seconds. The initial deployment is that of agent
i = 1 at t = 0 seconds with agent i = 2 following at
t = T?

N . This continues indefinitely with the second de-
ployment of agent i = 1 occurring at t = T ? seconds.

In order to adequately distribute agents across C, it is
desirable to partition the domain and assign agents to
monitor separate regions. Specifically, partitioning the
domain by latitude, rather than longitude, ensures that
agents are poised to intercept particles without the need

for frequent crossings of the equator which tend to be as-
sociated with larger values of Pgeo on an oblate spheroid.

Define the power index of agent i as ip(t) = 1 +

mod
(
i− 2−

⌊
tN
T?

⌋
, N
)

where the first argument of
our modulo operation is the dividend and the second
argument is the divisor. The lower-bracketed delimiters
represent the floored division operation. Upon deploy-
ment from F , agent i has power index ip = N and this

index is reduced by one every T?

N seconds until ip = 1,
i.e., agent i is the power critical agent. Note that no two
agents may share the same power index as a result of
our periodic deployment and scheduling protocol.

Latitude partitions are characterized by a static upper
bound in ẑG denoted z̄ip−2 and a static lower bound
z̄ip−1. Rather than dynamically sizing partitions relative
to agent power resources, we divide partitions such that
N − 1 agents are assigned equal surface areas of C to
explore. This choice maximizes the coverage of any indi-
vidual partition as the allocation of a larger partition to
a recently deployed agent would result in less effective
coverage of that partition. Agents are sorted by their re-
maining power and transfer between partitions that are
progressively closer to F as their power resource expires.
Define the surface area of our ellipsoid of revolution C as:

AC = 2πx2
C,r

1 +

1 +

(
1− z2

C,r
x2
C,r

)
(√

1−
z2
C,r
x2
C,r

) artanh

(√
1−

z2
C,r

x2
C,r

) .

(20)

The agent with ip = 2 is assigned to monitor the par-
tition characterized by upper bound at north pole of C,
i.e., z̄0 = zC,r. The lower bound z̄1 may be computed by
dividing (20) by (N − 1), equating with the integral of
ellipse cross sectional circumferences parametrized by z̃,
and then numerically solving for z̄1:

AC

N − 1
=

∫ z̄1
zC,r

2π

√√√√√
x2
C,r −

x2
C,r z̃

2

z2
C,r

1 +
z̃2x4
C,r

x2
C,r

(
z4
C,r − z

2
C,r z̃

2
)
dz̃.

(21)

One may then iteratively solve for the remaining bounds
for increasing values of ip up to ip = N − 1:

AC

N − 1
=

∫ z̄ip−1

z̄ip−2

2π

√√√√√
x2
C,r −

x2
C,r z̃

2

z2
C,r

1 +
z̃2x4
C,r

x2
C,r

(
z4
C,r − z

2
C,r z̃

2
)
dz̃.
(22)

The final computation of (22) for ip = N is not neces-
sary as z̄N−1 is the south pole of C, i.e., z̄N−1 = −zC,r,
although this may be shown through numerical com-
putation as well. Our partitioning strategy for the case
where N = 4 is presented in Fig. 6.

Note that no partition has been assigned to the agent
for which ip = 1. This is the power critical agent and
it shall have flag fi := 1 at the instant ip := 1. The
power critical agent cannot be assigned a new particle to
intercept after ip := 1 as this opens the possibility that
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Fig. 6. Our domain partitioning scheme for C is illustrated
above. Agents with ip ∈ {2, 3, 4} are indicated with blue,
green and black Si respectively. Their partitions are sepa-
rated by latitude lines upper bounded at z̄ip−2 and lower
bounded at z̄ip−1. The power critical has Si indicated in red.

particle assignment could occur near the end of the T?

N
time window during which time the agent with ip = 1
should be transitioning back to F to exchange its power
source. The power critical agent will instead spend the
majority of this time window in local coverage mode
assisting the other agents in gathering information. It
can only be tasked with intercepting a particle if this
assignment had occurred previously when ip = 2. In
this scenario, the agent should be capable of intercepting
particle k and then transitioning back to F so long as
a bound is established on the length of our deployment
scheduling window T?

N .

Theorem 2 If agent power lifespan T ? satisfies T?

N ≥
tck − tdk + π

2Uagtmax
(xC0,r + zC0,r) gC0 , ∀k then the agent

with ip = 1 shall always be capable of reaching F within
T?

N of the time at which ip := 1.

PROOF. Consider the worst-case scenario in which
the agent with ip = 2 is assigned to intercept par-
ticle k at the instant before ip := 1. It’s remaining

flight time is currently T?

N . The time required to in-
tercept the particle is tck − tdk, after which our con-
trol strategy dictates that the agent will follow a
geodesic trajectory to F . As F lies at the north pole
of C0, this will be a trajectory of constant longitude
which may be upper bounded by a length half the
perimeter of our revolved ellipsoid: π2 (xC0,r + zC0,r) gC0
by definition. As the agent is controlled by (14)
with a North-pointing ν̂i, it will proceed along this
geodesic at speed Uagtmax. Thus the time required to
complete this trajectory is π

2Uagtmax
(xC0,r + zC0,r) gC0

and we may bound our deployment window: T?

N ≥
tck − tdk + π

2Uagtmax
(xC0,r + zC0,r) gC0 , ∀k. This concludes

the proof.

Remark 2 The appropriate design method for this

surveillance system is to first ensure that the time from
detection to impact of any arbitrary particle, tck − tdk,
as governed by the omnidirectional range sensor sat-
isfies Theorem 1. One must subsequently ensure that
power lifespan T ?, for all agents, satisfies Theorem 2.

5.2 Partition Transfer and Return to Base

If an agent with ip ∈ {2, ..., N} lies outside of its pre-
scribed partition, and we have if = 0, then the agent
shall enter partition transfer mode. This mode uses the
same geodesic position and orientation controllers (14)
and (15) with the destination position set to the point:

pid = [xid yid zid]
T =

xC,r cos
(

arcsin
(
zid
zC,r

))
cos

(
atan2

(
yi(t), xi(t)

))
yC,r cos

(
arcsin

(
zid
zC,r

))
sin

(
atan2

(
yi(t), xi(t)

))
z̄ip−1, if zi < z̄ip−1; or z̄ip−2, if zi > z̄ip−2

 ,
i.e., the closest point along the agent’s current longitude
which lies on the boundary of its assigned partition.

The return to base mode is similar to partition transfer
mode but is defined for the agent with ip = 1. This mode
is activated when the time since agent i’s last deployment
from F , denoted tiF ≥ T ? − π

2Uagtmax
(xC0,r + zC0,r) gC0 as

established in Theorem 2. The control strategy is the
same as partition transfer mode with the desired position
set to F . Control laws for partition transfer mode and
return to base shall be denoted with superscripts ptm
and rtb respectively.

6 Surface Transfer Mode

The primary purpose of surface transfer mode is to en-
code collision avoidance and it can be transitioned into
from any other mode aside from the return to base mode.
This mode is triggered for agent i, assigned to surface
Cµi , when we have the condition that ‖pi − pj‖ ≤ R

for i 6= j. Denote j̃ = i ∪ j as the set of agents satisfy-
ing this condition. Agents in j̃ are ranked by tj̃F . One
agent, denoted ipr, whose value for tj̃F is highest, i.e.,

ipr = argmaxj̃

(
tj̃F

)
is permitted to proceed. The re-

maining agents increment their surface assignment in-
dices, µi, by one and transition to surface transfer mode.
This mode controls the agents to follow n̂i until they
have transferred to their newly assigned concentric sur-
face at a height R above the previous. Note that in gen-
eral, convexity of surface C is required to ensure that
intersections of ni and nj , ∀i 6= j, lie within the interior
space that is bounded by the surface. The surface trans-
fer position control strategy is:
ustmi

vstmi

wstmi

 = UagtmaxR−11

ln
(

1
(γ+µi)R−ri (‖ni‖ − ri)

)
n̂i

‖ln
(

1
(γ+µi)R−ri (‖ni‖ − ri)

)
n̂i‖

.

(23)
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As the agents ascend to a point at which R does not in-
tersect C, sensing information is not gathered in avoid-
ance mode and thus the avoidance orientation control is
simply [qstmi rstmi sstmi ]

T
= [0 0 0]

T
.

Agents are said to have converged upon their newly as-

signed surface when |ln ‖ni‖−ri
(γ+µi)R−ri | < ε2. At this point,

each agent shall transition back to its prior mode as de-
scribed in the following two scenarios.

(1) If agent i had been in either particle intercept or
partition transfer mode before the deadlock, it shall
resume that mode and continue along a geodesic
trajectory on the newly assigned surface until it
reaches the projection of its destination. At this
point, the condition that ‖pi − projCµi

pid‖ ≤ ε1
triggers a reset µi := 0 concurrent with a transi-
tion back to surface transfer mode thus allowing
the agent to transfer back to C0. The agent then
resumes coverage of C0 in its prior mode. For addi-
tional details on flag conditions in these transitions,
see guards G (ζi2, ζi4) , G (ζi4, ζi2) , G (ζi3, ζi4), and
G (ζi4, ζi3) of our hybrid automaton as presented in
the appendix.

(2) If agent i had been in local coverage mode before
the deadlock, it shall then transition back to local
coverage mode concurrent with reset µi := 0. This
transition is dependent upon the conditions that
fi = 0 and that the agent is operating within its as-
signed partition. The agent shall oscillate between
local coverage and surface transfer at an altitude of
R above C0 until ipr has moved along C0 to resolve
the deadlock. At this point, the local coverage con-
troller shall attract agent i back to the surface.

While similar work on multi-agent systems often invoke
avoidance barrier functions to encode collision avoid-
ance, such as in Panagou et al. (2016), it may be impos-
sible to bound the time that agents spend avoiding one
another in these maneuvers—especially when the algo-
rithm is scaled to many agents. In contrast, our tech-
nique results in an explicit bound on path length to an
intruder as was proven in Lemma 1. With an additional
assumption on the size of agents, we can establish a guar-
antee on collision avoidance for agents in surface transfer
mode.

Theorem 3 For agents {i, j} ∈ j̃, the condition that
min(Rj̃) > 2ri + 2rj implies that i does not collide with
j.

PROOF. Consider the case in which i 6= ipr and j 6=
ipr. Both agents operate in accordance with (23) and
follow trajectories along n̂i and n̂j respectively. Both
unit vectors are normal to surface Cµi , an ellipsoid of
revolution, and thus diverge from one another away from
Cµi . Agents i and j shall enter surface transfer mode at

an instant when ‖pi−pj‖ ≥ min
(
Rj̃

)
and their distance

shall tend to increase under (23). Thus min(Rj̃) > ri+rj
and subsequently min(Rj̃) > 2ri + 2rj imply that they
avoid collision.

Consider the case in which i = ipr and thus j 6= ipr. In
the instant that j transitions to surface transfer mode

we have that ‖pi − pj‖ ≥ min
(
Rj̃

)
. Thus the distance

for i to travel until collision is greater than or equal to

min
(
Rj̃

)
− ri − rj . This straight line path for i is a

conservative estimate as the true path is curved. Colli-
sion will be avoided if agent j, whose path is normal to
the surface, may cover a distance ri + rj before i covers

min
(
Rj̃

)
− ri − rj . As j moves at speed Uagtmax and i’s

tangential speed is upper bounded by Uagtmax, this con-

dition is satisfied if min
(
Rj̃

)
− ri − rj > ri + rj . This

may equivalently be written as min
(
Rj̃

)
> 2ri + 2rj .

These arguments apply to the case in which j = ipr and
i 6= ipr as well. This concludes the proof.

7 Simulations

A simulation was performed in MATLAB to verify the
efficacy of the algorithm. Four agents are deployed to
monitor the surface of an ellipsoid of revolution, C, whose
radius in the xy-plane is 80 and whose radius in the z-
plane is 20. For each agent, R = 10, ri = 1, αi = 30◦,
ku = 1, kv = 5, kw = 1, kr = 0.1, ks = 0.1, r̄i = 0.4,
s̄i = 0.4, Uagtmax = 6, and T ? = 792. Upon initialization
of the simulation, C was set to a fully covered level of
C? = 20 which would begin decaying upon detection of
the first intruder k ∈ {1, ..., 4} at t = 600 seconds. The
four agents were deployed from F sequentially at times
t = 0, t = T?

4 , t = 2T?

4 , and t = T?

4 seconds respectively.
Upon deployment, each agent was initialized in local cov-
erage mode with Φi = 0, Θi = π

2 , and Ψi = 0. Intruders

traveled in random directions with U intmax = 0.7, though
were still constrained to always impact the surface, and
were generated every 35 seconds beginning at t = 3T?

4
seconds. The detection system had a lower bound on
range Rdet = 80, decay rate parameter λk = 0.05, and
measurement variances σ2

ρ = 0.0625, σ2
θ = 0.25 deg2,

and σ2
ψ = 0.25 deg2 respectively Agents were able to suc-

cessfully intercept all particles along their geodesic tra-
jectories while actively avoiding collision over the entire
duration of the attack (see Fig. 7 and Fig. 8); however,
it should be noted that one avoidance anomaly occurred
before the initial intruder was generated during the in-
terval of t = 418− 420. As our sensing range for agents
was R = 10 and our simulation time step size was 1, it
is clear that this anomaly occurred due to a selection
of Uagtmax that was too large relative to the time step. In
a continuous time implementation, a transition to sur-
face transfer mode would have occurred between t = 418
and t = 419 thus preventing collision. Aside from this
anomaly, the simulation parameters adequately approx-
imated the continuous time agent kinematics.
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Fig. 7. Agent i = 3, indicated with green Si, is on a collision course with agent i = 1, indicated with blue Si, during the
interval from t = 2125 to t = 2130. At t = 2135, agent i = 1 has transitioned to surface transfer mode and is following a
trajectory normal to the surface while agent i = 4, indicated with black Si, follows a collision course through t = 2160. Agent
i = 4 transitions to surface transfer mode as well leading to the conditions that µ1 = 2 and µ4 = 1, i.e., agent i = 1 is assigned
to the second tier of avoidance surfaces at a higher altitude than i = 4 as illustrated at t = 2180. Both agents proceed along
their respective Cµi towards their destination with i = 1 having arrived and transferred back to C0 before t = 2195. Note that
agent trajectories for t ≥ 2125 are plotted.

Fig. 8. Agent i = 2 follows its geodesic trajectory to the
predicted impact point of particle k over time lapse (a)-(d).
The true trajectory of the particle is indicated in red and
the estimated trajectory in green.

The coverage error on C, normalized with respect to the
maximum error in which all of C takes a value of zero
for Q (t, p̃), as well as the minimum inter-agent distance
over time are presented in Fig. 9. The error tends to spike
upon particle detections with agents effectively curtail-
ing these spikes as they cover around the vicinity of pre-
dicted impact points in local coverage mode. Two par-
ticularly large spikes occur at t = 3225 and t = 5180
respectively. These anomalies are each associated with
particle impacts occurring close to the equator of the el-
lipsoid where even small values of σ2

θ and σ2
ψ result in

an estimated particle trajectory that does not initially

intersect C thus delaying an agent assignment. In both
cases, the estimated trajectory did eventually intersect
C with enough time to allow for agent interception. How-
ever, this delay in assignment significantly reduced the
time the agent spent exploring in the vicinity of the pre-
dicted impact point thus contributing to a noticeable
rise in the coverage error. One potential solution to this
problem would be to prescribe some boundary tolerance
to our surface C thus loosening our definition of an im-
pacting particle for the sake of measurement uncertainty.

Fig. 9. The coverage error, normalized to the maximum pos-
sible value, is presented. Anomalies are observed at t = 3225
and t = 5180 respectively. The minimum distance between
any two agents at any given time is also presented with an
anomaly observed at t = 419.
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Fig. 10. A typical agent’s hybrid modes are presented over
time. Abbreviations from top to bottom refer to surface
transfer mode, partition transfer mode, particle intercept
mode, return to base, and local coverage mode respectively.

Agent i = 1’s operating modes with respect to time are
presented in Fig. 10. It should be noted that the most
frequent transition out of particle intercept mode is to
local coverage mode. This corresponds to an agent ar-
riving at the estimated impact point of a particle and
then surveying the local area up until the moment of im-
pact. As the agent surveys it tends to hit the ε1 proxim-
ity boundary to the impact point thus requiring a short
operation in particle intercept mode to direct the agent
back within the ε1 boundary.

To demonstrate scalability, we have made an additional
simulation with 100 agents available online at: https:
//1drv.ms/f/s!AsiVOlIEkwNEgX2o1eV2hJ_bbaQU.

8 Conclusions

In this paper, we presented a hybrid formulation for
the persistent coverage problem in an environment sub-
ject to stochastic intruders. This formulation was moti-
vated in part by extravehicular applications of the NASA
Mini AERCam. Agents operated with finite power re-
sources and were required to periodically return to a re-
fueling station while patrolling assigned latitude parti-
tions along the surface of an ellipsoid. Formal guaran-
tees were established on the ability of agents to inter-
cept all intruders and the efficacy of the algorithm was
demonstrated in simulation. This approach succeeds our
previous work in Bentz & Panagou (2017) and Bentz
& Panagou (2018) by extending the guarantees on in-
truder interception to an arbitrary number of collision
avoidance maneuvers. It also removes singularities in the
sensing function definition and redefines the guard con-
ditions in a manner that supports a more effective use
of local coverage around the vicinity of intruder impact
points.

9 Appendix

9.1 Additional Derivations for Local Coverage Strategy

Our local coverage control laws are derived via differ-
entiation of (10) of which we seek to reduce the rate
of growth. It is a volume integral, so a few mathemat-
ical preliminaries are required. Recall the generalized
transport theorem (GTT) (Slattery 1999): d

dt

∫
R(s)

fdV =

∫
R(s)

∂f
∂t dV +

∫
S(s)

fv(s) · n dA, where f is any scalar-,

vector-, or tensor-valued function of position and time,
S(s) is the boundary of the volume R(s) over which f is
integrated, n is the unit vector normal to the boundary,
and v(s) is the velocity of the boundary. V and A refer
to volume and area respectively. Invoking GTT allows
for differentiation of (10) with respect to time:

Ė(t) =

∫
D

h′(C?C (p̃)−Q(t, p̃))

(
−∂Q(t, p̃)

∂t

)
dp̃

+

∫
∂D

(
h(C?C (p̃)−Q(t, p̃))

)
v(s) · n dA,

(24)

where ∂D is the boundary of D. D is time invariant and
thus v(s) = 0. (24) reduces to Ė(t) =

∫
D

h′(C?C (p̃) −

Q(t, p̃))
(
−∂Q(t,p̃)

∂t

)
dp̃, which expands to:

Ė(t) = −
∫
D

h′(C?C (p̃)−Q(t, p̃))

( N∑
i=1

Si(q̃i(t), p̃)C (p̃)

−
Np∑
k=1

Λk (t, p̃)C (p̃)

)
dp̃

=

N∑
i=1

∫
D

−h′(C?C (p̃)−Q(t, p̃))Si(q̃i(t), p̃)C (p̃) dp̃

︸ ︷︷ ︸
=êi(t)

−
Np∑
k=1

∫
D

−h′(C?C (p̃)−Q(t, p̃))Λk (t, p̃)C (p̃) dp̃

︸ ︷︷ ︸
=ẽk(t)

=
N∑
i=1

êi(t)−
Np∑
k=1

ẽk(t).

(25)

êi(t) is the rate of change of the coverage error due to
the motion of the agents while ẽk(t) is the rate of change
of the coverage error due to a contrived information de-
cay surrounding the predicted impact point of particle
k on C. Our strategy is to control the agents’ kinemat-
ics, recovered in the derivative of êi(t), to decrease (25).
Note that we do not presume that our local coverage
strategy provides any additional bounds on (10). Nor do
we provide guarantees on the rate of growth of this con-
trived quantity. Curtailing the growth of the coverage
error simply imparts the desired effect of active explo-
ration in the vicinity of impact points into our system.
Using this strategy, the agents actively seek to increase
their rate of coverage by rotating and/or translating Si
to be encompass the most uncovered space in the local
vicinity.

Taking the derivative of êi(t) with respect to time yields:
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Expand d
dt

(Si(q̃i(t), p̃)):

d

dt
(Si(q̃i(t), p̃)) =

∂Si

∂xi
ẋi(t) +

∂Si

∂yi
ẏi(t) +

∂Si

∂zi
żi(t) +

∂Si

∂Ψi
Ψ̇i(t) +

∂Si

∂Θi
Θ̇i(t) =

(
∂Si

∂xi
cos Θ cos Ψ +

∂Si

∂yi
cos Θ sin Ψ−

∂Si

∂zi
sin Θ

)
ui(t)

+

(
∂Si

∂xi
(sin Φ sin Θ cos Ψ− cos Φ sin Ψ) +

∂Si

∂yi
(sin Φ sin Θ sin Ψ + cos Φ cos Ψ) +

∂Si

∂zi
sin Φ cos Θ

)
vi(t)

+

(
∂Si

∂xi
(cos Φ sin Θ cos Ψ + sin Φ sin Ψ) +

∂Si

∂yi
(cos Φ sin Θ sin Ψ− sin Φ cos Ψ) +

∂Si

∂zi
cos Φ cos Θ

)
wi(t)

+

(
∂Si

∂Ψi
sin Φ sec Θ +

∂Si

∂Θi
cos Φ

)
ri(t) +

(
∂Si

∂Ψi
cos Φ sec Θ−

∂Si

∂Θi
sin Φ

)
si(t).

(27)

Now introduce the following definitions:

ai0(t, Q(t, p̃)) =

∫
Di

h
′′

(C
?
C (p̃)−Q(t, p̃))Si(q̃i(t), p̃)C (p̃)

∂Q(t, p̃)

∂t
dp̃, (28)

ai1(t, Q(t, p̃)) =

∫
Di

h
′
(C
?
C (p̃)−Q(t, p̃))C (p̃)

(
∂Si

∂xi
cos Θ cos Ψ +

∂Si

∂yi
cos Θ sin Ψ−

∂Si

∂zi
sin Θ

)
dp̃, (29)

ai2(t, Q(t, p̃)) =

∫
Di

h
′
(C
?
C (p̃)−Q(t, p̃))C (p̃)

(
∂Si

∂xi
(sin Φ sin Θ cos Ψ − cos Φ sin Ψ) +

∂Si

∂yi
(sin Φ sin Θ sin Ψ + cos Φ cos Ψ) +

∂Si

∂zi
sin Φ cos Θ

)
dp̃, (30)

ai3(t, Q(t, p̃)) =

∫
Di

h
′
(C
?
C (p̃)−Q(t, p̃))C (p̃)

(
∂Si

∂xi
(cos Φ sin Θ cos Ψ + sin Φ sin Ψ) +

∂Si

∂yi
(cos Φ sin Θ sin Ψ− sin Φ cos Ψ) +

∂Si

∂zi
cos Φ cos Θ

)
dp̃, (31)

ai4(t, Q(t, p̃)) =

∫
Di

h
′
(C
?
C (p̃)−Q(t, p̃))C (p̃)

(
∂Si

∂Ψi
sin Φ sec Θ +

∂Si

∂Θi
cos Φ

)
dp̃, (32)

ai5(t, Q(t, p̃)) =

∫
Di

h
′
(C
?
C (p̃)−Q(t, p̃))C (p̃)

(
∂Si

∂Ψi
cos Φ sec Θ−

∂Si

∂Θi
sin Φ

)
dp̃. (33)

One can then rewrite (26) as:

˙̂ei(t) = ai0(t, Q(t, p̃))− ui(t)ai1(t, Q(t, p̃))− vi(t)ai2(t, Q(t, p̃))− wi(t)ai3(t, Q(t, p̃))− ri(t)ai4(t, Q(t, p̃))− si(t)ai5(t, Q(t, p̃)). (34)

˙̂ei(t) =

∫
Di

(
h′′(C?C (p̃)−Q(t, p̃))Si(q̃i(t), p̃)C (p̃)

∂Q(t, p̃)

∂t

− h′(C?C (p̃)−Q(t, p̃))
d

dt
(Si(q̃i(t), p̃))C (p̃)

)
dp̃. (26)

The sensing footprint is independent of Φi assuming that
the centerline of the spherical sector is aligned with the
x̂Bi axis. d

dt (Si(q̃i(t), p̃)) is expanded in (27) and through
the definitions in (28-33) one may restate (26) as (34). If
one were to command zero inputs to this system, it be-
comes clear that ai0(t, Q(t, p̃)) may be physically inter-
preted as the rate at which the coverage rate is reducing
due to information saturation at any particular position
and orientation of the sensing footprint, Si. As the foot-
print remains stationary, there are diminishing returns
on the value of newly acquired information. Thus, the
additional terms in (34) allow for the coverage rate to be
increased by mobilizing the sensor. One strategy is that
of (11).

9.2 Formal Hybrid Formulation

To provide a compact notation in this section, define f́i =
x2
i

(xC,r+ri)2 +
y2
i

(yC,r+ri)2 +
z2
i

(zC,r+ri)2 . The coverage strategy

for agent i is represented by the hybrid automaton in Fig.
2, described by the following entities (Lygeros 2004):

• A set of discrete states: Zi = {ζi0, ζi1, ζi2, ζi3, ζi4},
• A set of continuous states: q̃i = {xi, yi, zi,Φi,Θi,Ψi},
• A vector field:
f(ζi0, q̃i) = R

[
uloci vloci wloci 0 rloci sloci

]T
,

f(ζi1, q̃i) = R
[
urtbi vrtbi wrtbi qrtbi rrtbi srtbi

]T
,

f(ζi2, q̃i) = R
[
upimi vpimi wpimi qpimi rpimi spimi

]T
,

f(ζi3, q̃i) = R
[
uptmi vptmi wptmi qptmi rptmi sptmi

]T
,

f(ζi4, q̃i) = R [ustmi vstmi wstmi 0 0 0 ]
T

where R =[
R1 0

0 R2

]
,

• A set of initial states: {ζi3} × {q̃i ∈ R6 | pi = F
∧ Φi ∈ [−π,+π] ∧ Θi ∈

[−π
2 ,

+π
2

]
∧ Ψi ∈

[−π,+π]},
• A domain: Dom (ζi0) = {q̃i ∈ R6 | f́i ≥ 1 ∧(

ip ∈ {2, ..., N} =⇒ z̄ip−1 ≤ zi ≤ z̄ip−2
)
},

Dom (ζi1) = {q̃i ∈ R6 | f́i ≥ 1},
Dom (ζi2) = {q̃i ∈ R6 | f́i ≥ 1},
Dom (ζi3) = {q̃i ∈ R6 | f́i ≥ 1 ∧(
ip ∈ {2, ..., N} =⇒ zi < z̄ip−1 ∨ zi > z̄ip−2

)
},

Dom (ζi4) = {q̃i ∈ R6 | f́i ≥ 1},
• A set of edges: E = {(ζi0, ζi1) , (ζi0, ζi2) , (ζi0, ζi3) ,

(ζi0, ζi4) , (ζi1, ζi3) , (ζi2, ζi0) , (ζi2, ζi1) , (ζi2, ζi3) ,
(ζi2, ζi4) , (ζi3, ζi0) , (ζi3, ζi2) , (ζi3, ζi4) , (ζi4, ζi0) ,
(ζi4, ζi2) , (ζi4, ζi3) , },

• A set of guard conditions:
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G (ζi0, ζi1) = {ip = 1∧ tiF ≥ T ?−
πgC0

2U
agt
max

(
xC0,r + zC0,r

)
},

G (ζi0, ζi2) = {(∃k | i = ik) ∧
(
‖pi − projCµi

pid‖ > ε1
)
},

G (ζi0, ζi3) = {ip 6= 1 ∧
(
zi < z̄ip−1 ∨ zi > z̄ip−2

)
},

G (ζi0, ζi4) = {‖pi − pj‖ ≤ R ∧ ipr 6= argmaxj̃

(
tj̃F

)
},

G (ζi1, ζi3) = {‖pi −F‖ ≤ ε1 ∧ tiF = T ?},
G (ζi2, ζi0) = {

(
t ≥ tck ∧((

ip ∈ {2, ..., N} ∧ z̄ip−1 ≤ zi ≤ z̄ip−2

)
∨(

ip = 1 ∧ tiF < T ? − πgC0
2U

agt
max

(
xC0,r + zC0,r

))))
∨(

t < tck ∧ ‖pi − projCµi
pid‖ ≤ ε1 ∧ µi = 0

)
},

G (ζi2, ζi1) = {‖pi − projCµi
pid‖ ≤ ε1 ∧ µi = 0 ∧ t ≥

tck ∧ ip = 1 ∧ tiF ≥ T ? −
πgC0

2U
agt
max

(
xC0,r + zC0,r

)
}

G (ζi2, ζi3) = {‖pi − projCµi
pid‖ ≤ ε1 ∧ µi = 0 ∧ t ≥

tck ∧ ip ∈ {2, ..., N} ∧
(
zi < z̄ip−1 ∨ zi > z̄ip−2

)
},

G (ζi2, ζi4) = G (ζi0, ζi4) ∨ {‖pi − projCµi
pid‖ ≤ ε1 ∧(

‖pi − pj‖ > R, ∀j ∨ ipr = argmaxj̃

(
tj̃F

))
∧ µi > 0},

G (ζi3, ζi0) = {ip = 1 ∨
(
ip 6= 1 ∧ z̄ip−1 ≤ zi ≤ z̄ip−2

)
},

G (ζi3, ζi2) = G (ζi0, ζi2) ,
G (ζi3, ζi4) = G (ζi0, ζi4) ∨ {‖pi − projCµi

pid‖ ≤ ε1 ∧(
‖pi − pj‖ > R, ∀j ∨ ipr = argmaxj̃

(
tj̃F

))
∧ µi > 0},

G (ζi4, ζi0) = {fi = 0 ∧ |ln
(
‖ni‖−ri

(γ+µi)R−ri

)
| < ε2 ∧(

ip = 1 ∨
(
ip ∈ {2, ..., N} ∧ z̄ip−1 ≤ zi ≤ z̄ip−2

))
},

G (ζi4, ζi2) = {fi = 1 ∧ |ln
(
‖ni‖−ri

(γ+µi)R−ri

)
| < ε2},

G (ζi4, ζi3) = {fi = 0 ∧ |ln
(
‖ni‖−ri

(γ+µi)R−ri

)
| < ε2 ∧(

ip 6= 1 ∧
(
zi < z̄ip−1 ∨ zi > z̄ip−2

))
}.

• Additional parameters include a clock set: C = {tiF}, a
flag: fi ∈ {0, 1}, an assignment index µi = {0, ..., N − 1}
and,

• A reset map: R (ζi0, ζi2, fi) = {1}, R (ζi0, ζi4, µi) =
{µi + 1}, R (ζi1, ζi3, tiF ) = {0}, R (ζi2, ζi0, fi) =
{0 if t ≥ tck; 1 otherwise}, R (ζi2, ζi1, fi) = {0},
R (ζi2, ζi3, fi) = {0}, R (ζi2, ζi4, µi) = {0 if ‖pi−projCµi pid‖

≤ ε1 ∧
(
‖pi − pj‖ > R, ∀j ∨ ipr = argmaxj̃

(
tj̃F

))
∧ µi >

0;µi + 1 otherwise}, R (ζi3, ζi2, fi) = {1},
R (ζi3, ζi4, µi) = {0 if ‖pi − projCµi

pid‖ ≤ ε1 ∧(
‖pi − pj‖ > R, ∀j ∨ ipr = argmaxj̃

(
tj̃F

))
∧ µi > 0;

µi + 1 otherwise}, R (ζi4, ζi0, µi) = {0}, and continuous
states do not reset between transitions.
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