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Abstract

We address the problem of distributed convex unconstrained optimization over networks characterized by asynchronous

and possibly lossy communications. We analyze the case where the global cost function is the sum of locally coupled local

strictly convex cost functions. As discussed in detail in a motivating example, this class of optimization objectives is, for

example, typical in localization problems and in partition-based state estimation. Inspired by a generalized gradient descent

strategy, namely the block Jacobi iteration, we propose a novel solution which is amenable for a distributed implementation

and which, under a suitable condition on the step size, is provably locally resilient to communication failures. The theoretical

analysis relies on the separation of time scales and Lyapunov theory. In addition, to show the flexibility of the proposed

algorithm, we derive a resilient gradient descent iteration and a resilient generalized gradient for quadratic programming

as two natural particularizations of our strategy. In this second case, global robustness is provided. Finally, the proposed

algorithm is numerically tested on the IEEE 123 nodes distribution feeder in the context of partition-based smart grid robust

state estimation in the presence of measurements outliers.

1 Introduction

The widespread of smart wireless electronic devices with the consequent creation of large-scale cyber-physical networked sys-

tems promises a new revolution in many fields. However, these novel engineering systems and the advent of the “Big-Data”

era require the development of new computational paradigms, due to the increasing amount of devices and data to be consis-

tently managed. For example, many problems can be cast as optimization problems. As so, in the last years there has been a

growing attention to distributed optimization tools which have become so important for two different reasons: first, the advent

of Big Data asks for parallelisation of the computational burden among many processing units since it is inconceivable to

run optimization algorithms on one single (super)-computer. Second, many optimization problems are sparse by nature since

correlation between data is local. Nevertheless, one of the major hurdle to effectively deal with distributed optimization using

multiple processing units is to guarantee synchronous and reliable communication. Indeed, communication can be wireless

and CPU execution times might not be known in advance as in the context of cloud-computing. For this reason, although

distributed optimization has a long history in the parallel and distributed computation literature, see, e.g., [1], it has mainly

focused on synchronous algorithms. However, to suitably fit with the upcoming large-scale system scenario, in the last years it

has been reconsidered from a new peer-to-peer perspective. The first class of algorithms appearing in this new literature relies

on primal sub-gradient or descent iterations, as in [2, 3, 4], which have the advantage to be easy to implement and suitable

for asynchronous computation. In order to induce robustness in the computation and improve convergence speed, augmented

lagrangian algorithms such as the Alternating Direction Methods of Multipliers (ADMM) have been recently proposed. A

first distributed ADMM algorithm was proposed in [5, 6, 7], while a survey on this technique is [8]. However, for a distributed

implementation, ADMM usually requires problems with very specific structures. In fact, most of the ADMM distributed

algorithms are based on a consensus iteration [9]. Thus, a common drawback of this technique is that each node must store

in its local memory a copy of the entire state vector. To avoid this problem, a recent partition-based and scalable approach

applied to the ADMM algorithm is presented in [10], while to comply with asynchronous computation, suitable modification

of the ADMM algorithm have been proposed in [11, 12]. Finally, distributed algorithms based on Newton methods have been

proposed to speed-up the computation [13, 14].

1M. Todescato, N. Bof, R. Carli and L. Schenato are with the Department of Information Engineering, University of Padova, Italy, 35031. E-mail:

[todescat,bofnicol,carlirug,schenato]@dei.unipd.it.
2G. Cavraro is with the Virginia Polytechnic Institute ans State University, VA, USA. E-mail: cavraro@vt.edu.
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In this paper, we address the problem of distributed convex unconstrained optimization over networks characterized by asyn-

chronous and possibly lossy communications. We analyze the case where the global cost function is the sum of locally coupled

local costs. More specifically, by “locally coupled” and “distributed” we mean the following

Definition 1 (Local coupling and distributed algorithm) Consider a set of N processing units, {1, . . . , N}, which are in-

terconnected according to a certain communication network. To each unit i ∈ {1, . . . , N} a local cost Ji is assigned. We

say that Ji is locally coupled according to the communication network, if Ji depends only on quantities which are related to

unit i and to units directly connected to it. In this case, a distributed algorithm is a procedure running over the communica-

tion network and among the processing units, which only requires the exchange of local information among connected units.

Differently said, with a slight abuse of nomenclature, a distributed algorithm is defined as a locally coupled procedure. �

Given Definition 1, this study is motivated mainly by two facts. The first is its practical engineering relevance. Indeed,

as discussed in detail in a motivating example we provide in Section 3, the structure of the class of convex optimization

problems we analyze, characterizes a large variety of applications such as multi-area electric grid state estimation [15, 7],

localization in multi-robots formation [16] and sensors networks [17] and Network Utility Maximization [18]. The second

is due to the class of gradient-based algorithms (e.g., [2, 3, 4]) we consider to solve our optimization problem. In particular,

while it has the advantage to be easy to implement and suitable for asynchronous implementations, this class usually does

not lead to “distributed” solutions as intended in Definition 1. Indeed, the derivatives of costs obtained as the sum of locally

coupled costs are, usually, not locally coupled, yet they depend on information related to multi-hop processing units. Hence,

the local functional dependance cannot be directly exploited. To overcome this issue, in some cases ([2, 3]) the algorithms

require the local exchange of global information, hence all the processors eventually reach consensus to an optimal solution.

In others, the algorithms require multiple communication rounds within the same algorithmic iteration ([4]). However, this

solution implicitly asks for synchronicity. Hence, to deal with the case of lossy communications, a natural approach is to

make the processing units store the last successfully received information from the neighboring units in order to leverage the

vast existing body of literature on the so called partially asynchronous iterative methods [1]. However, as later described in

Section 3, in this scenario, because of packet drops and communication failures, the same state variables happen to appear

in multiple delayed version. Thus, it is not possible to write the evolution of the state variables as a partially asynchronous

iterative methods. Finally, regarding the problem of computing non-locally coupled derivatives, another used approach is to

exploit hyper-communication graphs which differs from the graph structure induced by the local coupling characterizing the

cost function, thus artificially bypassing the limitations due to a “truly” distributed procedure. As a particular example of this

fact, consider, for instance, the case where the processors communicate through a communication network with star topology.

According to Definition 1, each peripheral node can communicate only with the central node, while the central processor can

communicate with everyone else. Conversely, if a two-hop communication is exploited, then the communication network

turns out to be described by an all-to-all topology.

In this regard, the main contribution of the paper is a truly distributed algorithm, based on a modified generalized gradient

descent iteration which, under suitable assumptions on the step size, is provably convergent and which is resilient to the

presence of packet losses in the communication channel. To the best of the authors’ knowledge, this is one of the first

provably convergent algorithms in the presence of packet losses, since even if both ADMM algorithms and distributed sub-

gradient methods (DSM) can handle asynchronous computations, they still require reliable communication and usually do not

satisfy Definition 1. Interestingly, the proposed algorithm is also suitable for fully parallel computation, i.e., multiple agents

can communicate and update their local variable simultaneously, and for broadcast communication, i.e., nodes do not need

to enforce a bidirectional communication such as in gossip algorithms, and therefore is very attractive from a practical point

of view. It is anticipated that we presented the proposed algorithm in two preliminary versions. In [19] for the specific case

of quadratic programming, while in [17] for the specific application of sensors networks locations. The algorithm is inspired

on and resembles the block Jacobi iteration appeared in [1, 20]. However, in [1], since the authors are majorly interested in

parallel computation rather than implementing a distributed procedure suitable for today’s sensors networks, they implicitly

assume to exploit an hyper-communication graph. Conversely, in [20] the particular local dependency considered in the cost

function ensures that first and successive derivatives are locally coupled.

To show the flexibility of the proposed procedure, we derive a resilient gradient descent iteration and a resilient generalized

gradient for quadratic programming as two natural particularizations of our strategy. In this second case, we are able to provide

global robustness.

Finally, we numerically study our algorithm on the standard IEEE 123-nodes test feeder for robust state estimation in the

presence of measurements outliers.

The rest of the paper is organized as follows: the rest of this section is devoted to the necessary notation and preliminaries. In

Section 2 we formulate the problem. In Section 3 we provide a motivating example for the proposed set-up. In Section 4 we

analyze the case of synchronous and ideal communications. In Section 5 we analyze the case of asynchronous and possibly

unreliable communications. In Section 6 we test our algorithm. Finally, we present some concluding remarks in Section 7.
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1.1 Mathematical Preliminaries

In this paper, G (V , E) denotes a directed graph whereV = {1, . . . , N} is the set of vertices and E ⊆ V×V is the set of directed

edges. More precisely the edge (i, j) is incident on node i and node j and is assumed to be directed away from i and directed

toward j. The graph G is said to be bidirected if (i, j) ∈ E implies (j, i) ∈ E . Given a directed graph G (V , E), a directed path

in G consists of a sequence of vertices (i1, i2, . . . , ir) such that (ij , ij + 1) ∈ E for every j ∈ {1, . . . , r − 1}. The length of

a path is the number of directed edges which it consists of. The directed graph G is said to be strongly connected if for any

pair of vertices (i, j) there exists a directed path connecting i to j. Given the directed graph G, the set of neighbors of node i,
denoted byNi, is given byNi = {j ∈ V | (i, j) ∈ E}. Moreover,N+

i = Ni ∪{i}. Let us denote the cardinality ofN+
i by µi,

while the j-th neighbor of i by N+
i (j). Given a directed graph G (V , E) with |E| = M , let the incidence matrix A ∈ R

M×N

of G be defined as A = [aei], where aei = 1,−1, 0, if edge e is incident on node i and directed away from it, is incident on

node i and directed toward it, or is not incident on node i, respectively. Given a vector or a matrix, with (·)⊤ we denote its

transpose, while with ℜ(·) and ℑ(·) its real and imaginary parts, respectively. Given a vector v, with diag(v) we denote the

diagonal matrix whose diagonal elements are equal to the elements of v. Given a matrix V , with diag(V ) we denote the vector

obtained with the diagonal elements of V . Given a group of matrices V1, . . . , Vn, with blkdiag(V1, . . . , Vn) we denote the

block diagonal matrix whose i-th block diagonal element is equal to Vi. Moreover, we denote withAd := A⊤A the adjacency

matrix or laplacian matrix of G which has the property that [Ad]ij 6= 0 if and only if (i, j) ∈ E . If we associate to each edge

a weight different from one, then it is possible to define the weighted laplacian matrix as L = A⊤WA, where W ∈ R
M×M

represents the diagonal matrix containing in its i-th element the weight associated to the i-th edge. We will also consider

strictly convex functions f(x) : Rn → R, i.e., ∀x1 6= x2 and η ∈ (0, 1) then f(ηx1 + (1 − η)x2) < ηf(x1) + (1 − η)f(x2)
and radially unbounded, i.e. ‖x‖ → +∞ ⇒ f(x) → ∞. Finally, with the symbols E and P we denote, respectively, the

expectation operator and the probability of an event.

2 Problem Formulation

Consider a set of N agents V = {1, . . . , N}, where each agent i ∈ V is described by its state vector xi ∈ Rni . Assume the

agents can communicate among themselves through a bidirected strongly connected communication graph G(V , E). In this

paper, we are interested in extending to the more general case of convex costs the algorithm first presented in [19] for the case

of quadratic programming and in [17] for the specific application of sensors networks localization. In particular, we examine

a particular class of separable strictly convex cost functions which exhibit local and possibly nonlinear dependence among the

states of neighboring nodes. By defining the overall state vector as x = [x⊤1 , . . . , x
⊤
N ]⊤ ∈ Rn (n =

∑
i ni), we consider the

following optimization problem

min
x
J(x) ≡ min

x1,...,xN

N∑

i=1

Ji(xi, {xj}j∈Ni
) . (1)

Observe that the local dependence coincides with the communication graph G, i.e., each cost function Ji depends on informa-

tion regarding only agent j ∈ N+
i .

We will consider the following assumption on the cost fucntions:

Assumption 2 (Strict convexity and radial unboundedness) The function J(x) is assumed to be strictly convex and radi-

ally unbounded. �

Observe that under the previous assumption the minimizer x∗ of Problem (1) exists and is unique

x∗ := argmin
x

J(x) , (2)

but the local costs function Ji do not need to be strictly convex and radially unbounded. Indeed in many estimation problems

the local cost functions Ji are just strictly convex but not radially unbounded. The standard approach to solve the previous

optimization problem is to resort to some centralized iterative algorithm acting on J , e.g., Newton-Raphson, which makes use

of global knowledge of the network’ states, costs and topology. On the contrary, by leveraging the particular local dependence

characterizing each cost function Ji, we want to solve Problem (1) by developing a procedure which is distributed, i.e.,

exploiting only local exchange of information among neighbors, and resilient, i.e., resilient to communication limitations and

non idealities.

We will also use the following simplified notation for local components of gradients and hessians:

∇iJj =
∂Jj
∂xi

, ∇2
iℓJj =

∂2Jj
∂xi∂xℓ

.
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Remark 3 (On the class of separable cost functions) The class of functions considered can arise in diverse applications

such as state estimation in smart electric grids [19] and sensor networks localization [17], just to mention some of them.

In the particular case of quadratic cost, the optimization problem falls onto the standard linear least-squares framework.

Nevertheless, as it will be shown in the simulation Section 6, the class is much more general and comprises penalty functions

used, e.g., to perform robust statistics and general nonlinear least-squares optimization. Of particular interest is the more

general framework of parallel computation in optimization. For both privacy and efficiency reasons, the computational burden

can be split among several distributed machines. To each of them only information about Ji is assigned. Thanks to local

exchange of information, the machines must distributely compute a solution of (1). �

Remark 4 (Partition-based modular communication architecture)

Note that the particular communication architecture considered, seamlessly describes the case of communications among

single peer agents as well as among large areas consisting of a collection of peers. The only difference relies on the particular

definition of the set V and of the agents’ state xi. For instance, in the case of sensor localization, each sensor might represent

an agent of V while xi might describe its absolute position in an inertial global reference frame. Conversely, in the case of

smart grids state estimation, one agent might describe an entire electric feeder; then, xi would be either voltages or currents

at all the electric buses of the corresponding feeder. �

3 Motivating example: State estimation in Smart Power Distribution Grids

In steady state the voltages and currents in a power distribution grid are regulated by the Kirchhoff’s laws which can be written

as follow:

Lv = ic ,

where L is the admittance matrix, and v and ic are the vector collecting all theN voltages and currents of the nodes in the grid,

respectively. The admittance matrix is a sparse matrix, in the sense that the current at a specific node i, namely ici , depends

only on its own voltage and the voltages of its physically connected neighbour nodesNi, i.e.

ici =
∑

j∈N
+

i

Lijvj .

In future smart distribution grids, it is expected that each node i would be able to take noisy measurements of its voltage and

current, i.e.

yvi = vi + wv
i ,

yi
c

i = ici + wic

i =
∑

j∈N
+

i

Lijvj + wic

i ,

where wv
i , w

ic

i represent the measurement noise for the voltage and current measurements, respectively. It is also expected

that these nodes are embedded with communication capabilities, such as power line communication (PLC), which allow them

to communicate with their physically connected neighbours. As so the communication network and the physical network will

coincide. The (centralized) state estimation problem is the process that, given all the measurements {yvi , y
ic

i }
N
i=1, should return

the best estimate of all the voltages and currents {vi, i
c
i}

N
i=1. The standard approach is to cast this problem as a least-square

estimation problem, where the unknown quantities to be estimated are the voltages v∗, since the currents can be estimated

directly from the voltages via the Kirchhoff’s law ic∗ = Lv∗. In this work, we are interested in solving this problem in a

distributed fashion via a partition-based communication architecture. For the sake of clarity, let us assume that the grid is

divided into N partitions each corresponding to a node. To each partition, we associate the corresponding voltage, which we

collect in the vector xi ∈ R1. Let us also define with yi = [yvi y
ic

i ]⊤ ∈ R2 and wi = [wv
i w

ic

i ]⊤ ∈ R2 the measurement vector

and the measurement noise corresponding to the measurements of the voltage and current at node i. Let us also define the

vectors x = [x1, . . . , xN ]⊤ ∈ RN , y = [y⊤1 , . . . , y
⊤
N ]⊤ ∈ R2N , w = [w⊤

1 , . . . , w
⊤
N ]⊤ ∈ R2N . As so the measurement model

can be written as:

yi =

N∑

j=1

Aijxj + wi =
∑

j∈N
+

i

Aijxj + wi (Aij = 0 if j /∈ N+
i ) ,

where Aij can be easily be obtained from the elements of the matrix L, or equivalently in vector form

y = Ax+ w ,

1In reality, the voltages and currents in steady state are phasors, i.e., should be represented as complex numbers. However, the discussion in this section

can be extended w.l.o.g. also to the more realistic scenario, which is indeed considered in the Simulation section below.
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where A = [A⊤
1 , . . . , A

⊤
N ]⊤ ∈ R2N×N and Ai = [Ai1, . . . , AiN ] ∈ R2×N . If we define

Ji(xi, {xj}j∈Ni
) =

1

2
‖yi −Aix‖

2, J(x) =
N∑

i=1

Ji(xi, {xj}j∈Ni
) =

1

2
‖y −Ax‖2 ,

with

∇J(x) = A⊤(Ax− y) , ∇2J(x) = H = A⊤A ,

Hij =

N∑

ℓ=1

A⊤
ℓiAℓj =

∑

ℓ∈N
+

i

A⊤
ℓiAℓj =

∑

ℓ∈(N+

i ∩N
+

j )

A⊤
ℓiAℓj

the optimal (centralized) least squares solution2 is given by:

x∗ = argminxJ(x) = (A⊤A)−1A⊤y .

A standard approach to asymptotically obtain the optimal solution is to employ an iterative algorithm based on the generalized

gradient descent:

x+ = x− ǫD−1A⊤(Ax − y) = x− ǫD−1∇J(x) = x− ǫD−1(Hx−A⊤y) ,

where ǫ is a suitable stepsize andD is a strictly positive definite matrix, i.e. D > 0. A typical way to solve the previous update

in a distributed fashion is to pick a block-diagonal matrixD, i.e. D = blkdiag(D1, . . . , DN ), so that the previous centralized

update can be written as

x+i = xi − ǫD
−1
i (

N∑

j=1

Hijxj −
N∑

j=1

A⊤
jiyj)

= xi − ǫD
−1
i (

N∑

j=1

N∑

ℓ=1

A⊤
ℓiAℓjxj −

N∑

j=1

A⊤
jiyj)

= xi − ǫD
−1
i (

∑

j∈N
+

ℓ
,∀ℓ∈N

+

i

A⊤
ℓiAℓjxj −

∑

j∈N
+

i

A⊤
jiyj) , (3)

where we exploited the property that Aij = 0 if j /∈ N+
i . While the second summation involves only measurements that

belongs to the neighbours of node i, the first summation requires the node i to collect the state variables xj that belongs

to the neighbours of the neighbours. As so, this implementation is not really distributed, since two-hop communication is

required. Although this is not impossible from a practical perspective, it requires substantial additional communication and

synchronization efforts. An alternative approach which allows the implementation of a truly distributed algorithm is to create

the additional local variable at each node i:

zi = Aixi =
∑

j∈N
+

i

Aijxj , ∀i ,

which can be collected in the vector z = [z⊤1 , . . . , z
⊤
N ]⊤, so that in matrix form the previous expression can be written as

z = Ax. With this notation the generalized gradient descent can be written as:

z+i =
∑

j∈N
+

i

Aijxj

x+i = xi − ǫD
−1
i (

N∑

ℓ=1

A⊤
ℓi

N∑

j=1

Aℓjxj

︸ ︷︷ ︸
zℓ

−
N∑

j=1

A⊤
jiyj)

= xi − ǫD
−1
i

∑

j∈N
+

i

A⊤
ji(z

+
i − yi) .

2The formulation can be extended to the weighed least square solutions if noise with different variances R are included which would lead to the solution

x∗ = (A⊤R−1A)−1A⊤R−1y, but for the sake of clarity in the notation of this section, it is omitted.
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This alternative solution requires two communication rounds to compute x+i , since first it is necessary to send the xi to

compute z+i , and then to transmit zi to the neighbours3. In practical scenarios, such as using PLC protocols, synchronization

of transmissions and updates can be difficult. Moreover packet losses might occur, i.e. some messages from the neighbours

might not be received. A naive solution to this problem, is to use local registers that keep in memory the latest message

received from the neighbours, and then use these values whenever an update of the local variables xi, zi is needed. It can

be shown that this is equivalent to a scenario where every node j ∈ Ni use a delayed version of the local variables xi, zi.
Since the variables zi are function of the (possibly delayed) state variables xi, the variables xi are themselves functions of the

delayed version of variables xi of the network. More specifically, it can be shown that the previous update equations can be

written as

zi(t+ 1) =
∑

j∈N
+

i

Aijxj(τ
′
ij(t)) , (4)

xi(t+ 1) = xi(t)− ǫD
−1
i

( N∑

ℓ=1

A⊤
ℓi

N∑

j=1

Aℓjxj(τℓj(t))−
N∑

j=1

A⊤
jiyj

)
. (5)

where 0 ≤ τij(t), τ
′
ij(t) ≤ k represent the delay of each variable which depends on the specific sequence of packet losses

and variable updates, and explicitly included the time dependency of each variable. Note that in the last equation the variable

xj might appear with multiple instances with different delays into the update of the variable xi, i.e. it is not possible to write

the evolution of variables of the original generalized gradient descent algorithm given in Eqn. (3) as a partially asynchronous

iterative methods (see chapter 7 of [1]), for which en extensive body of literature exists, since the cited framework would

require the algorithm to be written as:

xi(t+ 1) = xi(t)− ǫD
−1
i

( N∑

j=1

Hijxj(τij(t))−
N∑

j=1

A⊤
jiyj

)
. (6)

Motivated by this observation, in this work we will propose an alternative mathematical machinery based on Lyapunov theory

and the separation of time scale principle to prove convergence of the asynchronous algorithm (5) for a sufficiently small

stepsize ǫ. Note that this machinery can also be applied to more general convex problems. This is useful, for example, in the

presence of outliers or sensor faults in order to develop more robust estimators than least squares. In fact, a common way to

enforce robustness in the estimation is to replace the quadratic cost function defined above with the 1-norm of the residuals,

that is

Ji(xi, {xj}j∈Ni
) = ‖yi −Aix‖1 . (7)

However, since (7) is not differentiable, it cannot be directly used with our algorithm. To deal with this issue, in the Simulation

section 6, we will exploit the following modification of the 1-norm [21]

‖ · ‖1,ν : Rn → R , x 7→ ‖x‖1,ν :=
N∑

i=1

√
x2i + ν , (8)

where ν > 0 is such that the smaller the selected value of ν is, the better the approximation of the 1-norm is. In particular, the

approximation of each term in the summation of the cost function is quadratic when xi belongs to a small neighborhood of 0.

The next Sections will then provide a fully distributed generalized gradient descent algorithm which is resilient to lossy

communication.

4 Synchronous update and reliable communication

In this section we analyze the case of synchronous and ideal, i.e., reliable, communications among neighbors, leaving the

extension to the more realistic case of unreliable communication to Section 5.

Consider the optimization Problem (1). In the ideal communication case, one possible choice to iteratively solve Problem (1)

is to exploit the so called generalized gradient descent iteration

x+ = x− ǫD−1(x)∇J(x) , x(0) = x0 , (9)

3It is necessary to transmit the measurements yi only at the initialization phase since they do not change during the course of the evolution of the algorithm.
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where ∇J(x) :=
[
∂J(x)
∂x |x

]⊤
is the gradient of J evaluated at the current value x, D(x) is a generic positive definite matrix,

possibly function of x itself, and ǫ a suitable positive constant, referred to as step size. Observe that depending on the particular

choice of D(x), Eq. (9) describes various types of algorithms. Indeed, if D(x) = I , the standard gradient descent iteration is

obtained; if D(x) is chosen to be diagonal with diagonal elements equal to those of the Hessian matrix, then a Jacobi descent

iteration is retrieved; while, ifD(x) is equal to the entire Hessian, then Eq. (9) returns the classical Newton-Raphson iteration.

The algorithm we propose (and describe in Section 5) is inspired by the particular case of (9), referred to as block Jacobi,

where we choose D(t) to be the block diagonal matrix such that

D(x) = blkdiag(D1(x), . . . , DN(x)) , Di(x) := ∇
2
iiJ(x) , i ∈ V , (10)

i.e., where each diagonal block coincides with the second order derivative of J w.r.t. xi. Thanks to this choice for the matrix

D, Eq. (9) can be split into partial state updates each of which equal to

x+i = xi − ǫD
−1
i (x)∇iJ(x) , i ∈ V . (11)

Now, it is convenient to explicitly take into account the separable structure of the cost function J in order to show that each

gradient block ∇iJ as well as each Di block can be computed exploiting only local information coming from agent’s i
two-steps neighbors, i.e., agents connected to agent i by a directed path of length two. Indeed, for the gradient we have that

∇iJ(x) =
∑

j∈N
+

i

∇iJj({xk}k∈N
+

j
) = ∇iJi(xi, {xj}j∈Ni

) +
∑

j∈Ni

∇iJj(xj , {xk}k∈Nj
), (12)

and it can be seen that the first term on the RHS of Eq. (12) depends only on information coming from j ∈ N+
i ; while, the

second term depends on information coming from neighbors of node i and from the neighbors of its neighbors, k ∈ N+
j . A

similar reasoning applies to Di indeed,

Di(x) :=
∑

j∈N
+

i

∇2
iiJj({xk}k∈N

+

j
)

= ∇2
iiJi(xi, {xj}j∈Ni

) +
∑

j∈Ni

∇2
iiJj(xj , {xk}k∈Nj

) . (13)

Again, the first term in the RHS of Eq. (13) depends only on node i direct neighbors, j ∈ N+
i , while the second term requires

information coming from the neighbors of its neighbors. In view of a distributed computation, we assume each agent i ∈ V ,

once gathered the neighbors states {xj}j∈Ni
, can compute and store in its local memory, in addition to the state xi, the

following variables

ρ
(j)
i (x) := ∇jJi(xi, {xj}j∈Ni

) , ξ
(j)
i (x) := ∇2

jjJi(xi, {xj}j∈Ni
) , (14)

which represent the partial components of the first and second derivatives of its local cost Ji evaluated at the current state

value. Observe that, since in a distributed framework each agent is assumed to have information only regarding its local cost

Ji, the ρ’s and ξ’s variables represents the quantities which agent i must compute and send to its neighbors in order to let them

compute their corresponding gradient and hessian blocks. Likewise, agent i needs to receive similar variables from each one

of its neighbors. Indeed, thanks to Eqs. (12)–(13), it holds that

∇iJ(x) =
∑

j∈N
+

i

ρ
(i)
j (x) , Di(x) =

∑

j∈N
+

i

ξ
(i)
j (x) . (15)

As above stressed, each agent i ∈ V , to iteratively compute (11), can perform its computations autonomously assuming it has

at its disposal information coming from its two-steps neighbors. However, this presents two major drawbacks:

1. it clashes with a truly distributed setting which exploits the exchange of information only among one-step neighbors;

2. within successive iterations, to ensure consistency and thus convergence of the procedure to a minimizer of Problem (1),

all the communications must be synchronous and reliable.

To workaround the first issue one possible solution would be, at each iteration, to perform two communication rounds among

one-step neighbors as illustratively shown in Figure 1. The first round is used to exchange the state values among neighboring

agents in order them to compute all the partial information terms according to Eqs. (14)–(15); while the second round is

7



Agent i:

1st comm.

round compute
{

ρ
( j)
i (t), ξ

( j)
i (t)

}

j∈N
+

i

to j ∈ Ni from j ∈ Ni

xi x j

2nd comm.

round

update xi(t)

single iteration

to j ∈ Ni from j ∈ Ni

{ρ
( j)
i ,ξ

( j)
i } {ρ

(i)
j ,ξ

(i)
j }

Figure 1: Communication scheme to perform one single block Jacobi iteration (11) in a distributed setting which assumes only information exchange among

one-step neighbors.

used to communicate the computed variables in order to perform the state update as in Eq. (11). Regarding the second

issue, it necessarily enforces the use of suitable synchronization algorithms as well as re-transmission protocols in case of

packet failures. What above described has been compactly written in algorithmic form as reported in Algorithm 1 in which

flagtransmission denotes a variable to control communication and update among the agents. Note that, even if these might

provide possible answers, it is understood they do not represent satisfactory solutions for real-world applications. Conversely,

in the next section we propose a truly distributed and resilient iterative procedure which, by naturally exploiting information

coming from one-step neighbors and being resilient to packet losses and communication non idealities, is much more appealing

from an engineering perspective.

Algorithm 1 Distributed Block Jacobi algorithm (node i).

Require: xoi , ǫ
1: xi ← xoi
2: if flagtransmission = 1 then

3: Broadcast: xi
4: Receive: xj , ∀j ∈ Ni

5: ρ
(j)
i ← ∇jJi({xk}k∈N

+

j
), ∀j ∈ N+

i

6: ξ
(j)
i ← ∇2

jjJi({xk}k∈N
+

j
), ∀j ∈ N+

i

7: Broadcast: ρ
(j)
i , ξ

(j)
i , ∀j ∈ Ni

8: Receive: {ρ
(i)
j , ξ

(i)
j }, ∀j ∈ Nj

9: xi ← xi − ǫ
(∑

j∈N
+

i
ξ
(i)
j

)−1(∑
j∈N

+

i
ρ
(i)
j

)

10: end if

5 Asynchronous updates and unreliable communication: the Resilient Block Ja-

cobi (RBJ) algorithm

In this section we consider the more realistic case of asynchronous and unreliable communications where each agent might

either receive asynchronous information coming from its neighbors, or not receive it. In particular, we present a modified

iteration and analyze its corresponding iterative algorithm, which we refer to as resilient block Jacobi, which (i) exploits only

information coming from one-step neighbors; (ii) requires only one communication round per algorithmic iteration; (iii) is

based on an asynchronous communication protocol; (iv) is resilient to communication failures. First, we present our algorithm

for the general case of separable convex costs. Later, we particularize the algorithm to suit two special cases and showing its

flexibility.

Consider the standard block Jacobi iteration (11). As analyzed in Section 4, the procedure exhibits some fundamental crit-

icisms which deeply compromise its distributed and asynchronous implementation and yet its robustness properties. Thus,

to develop our algorithm, we need to suitably modify iteration (11). The modification we propose is apparently naive since

the idea is to simply equip each agent with an additional amount of memory storage to keep track of the last received and

available information corresponding to each neighbor. This additional memory is then used to perform Eq. (11). Indeed note

that, if agent i does not receive some of the information coming from its neighbors, it does not have the necessary information

to synchronously compute neither (14) nor (15) and thus it is not able to update its state according to (11).

8



xi(t),
{

ρ
( j)
i (t), ξ

( j)
i (t)

}
j∈Ni{

x̂
(i)
j (t), ρ̂

(i)
j (t), ξ̂

(i)
j (t)

}
j∈Ni

Agent i

Agent j ∈ Ni
xi(t),ρ

( j)
i (t),ξ

( j)
i (t)

γ
( j)
i

x j(t),ρ
(i)
j (t),ξ

(i)
j (t)

γ
(i)
j

Figure 2: Memory storage and communication scheme between pairs of neighbors agents for the RBJ algorithm.

To model randomly occurring packet losses is convenient to introduce the indicator function

γ
(i)
j (t) =

{
1 if i received the information sent by j at iteration t
0 otherwise.

with the assumption that γ
(i)
i (t) = 1, since node i has always access to its local variables. Then, as suggested above, the main

idea is to equip each agent i with auxiliary variables
{
x̂
(i)
j , ρ̂

(i)
j , ξ̂

(i)
j

}
j∈Ni

, used to keep track of the last available information

received from each neighbors. Specifically, the dynamic for the j-th set of additional variables is given by

{
x̂
(i)
j (t), ρ̂

(i)
j (t), ξ̂

(i)
j (t)

}
=





{
xj(t), ρ

(i)
j (t), ξ

(i)
j (t)

}
, if γ

(i)
j (t) = 1 ;

{
x̂
(i)
j (t− 1), ρ̂

(i)
j (t− 1), ξ̂

(i)
j (t− 1)

}
, if γ

(i)
j (t) = 0 .

(16)

Thanks to this additional memory at every algorithmic iteration, each agent can perform its local update which, inspired on

Eq. (11), becomes equal to

xi(t+ 1) = xi(t)− ǫ


 ∑

j∈N
+

i

ξ̂
(i)
j (t)




−1
 ∑

j∈N
+

i

ρ̂
(i)
j (t)


 . (17)

Observe that the differences between Eqs. (11) and (17) are mainly two:

1. the variables in agent i’s memory, used to store the first and second partial derivatives of Ji w.r.t. j ∈ Ni, are necessarily

computed as

ρ
(j)
i (t) = ∇jJi(xi(t), {x̂

(i)
k (t)}k∈Ni

), ξ
(j)
i (t) = ∇2

jjJi(xi(t), {x̂
(i)
k (t)}k∈Ni

), (18)

that is, they are evaluated at the last stored states’ values; likewise, the values of the additional variables {ρ̂
(i)
j , ξ̂

(i)
j }j∈Ni

correspond to those last received from each neighbor and computed by each of them using the last available information

on their neighbors’ states;

2. conversely to the synchronous implementation of the algorithm, at each iteration only one communication round is

performed. This means the agents send only one packet per iteration, consisting of the state and the partial derivatives.

See Figure 2 for an illustrative representation.

Thanks to this simple modification the agents can perform their updates asynchronously and independently. Moreover, since

only one communication round per iteration is required, both the communication burden and the number of possible commu-

nication failures are reduced. Nevertheless, it is worth stressing that, even if no packet losses occur, the classical block Jacobi

and our resilient block Jacobi iteration does not exactly coincide. Indeed, in the resilient case, by sending only one packet per

iteration, the state and the partial derivative information would be “delayed” one from each other of one iteration if compared

with the synchronous implementation. The resilient block Jacobi algorithm (hereafter referred to as RBJ algorithm) for sep-

arable convex functions is formally described in Algorithm 2 where it is presented in an event-based update performed by a

generic node i. The variables flagtransmission, flagreception, flagupdate are flag variables which determines which specific

action a node is performing, namely transmission, reception or update. When each action is performed it cannot be inter-

rupted, however the specific order or consecutive calls of an action do not impair the convergence of the proposed algorithm

and therefore can be used independently of the specific communication protocol or CPU multitasking scheduling.

9



Algorithm 2 Resilient Block Jacobi (RBJ) Algorithm (node i)

Require: xoi , ǫ
Initialization (atomic)

1: xi ← xoi
2: x̂

(i)
j ← 0, ∀j ∈ Ni

3: ρ
(j)
i ← 0, ∀j ∈ Ni

4: ρ̂
(i)
j ← 0, ∀j ∈ Ni

5: ξ
(j)
i ← I, ∀j ∈ Ni

6: ξ̂
(i)
j ← I, ∀j ∈ Ni

7: flagtransmission← 1 (optional)

Transmission (atomic)

8: if flagtransmission = 1 then

9: transmitter node ID← i
10: ρ

(j)
i ← ∇jJi(xi, {x̂

(i)
k }k∈Ni

), ∀j ∈ Ni

11: ξ
(j)
i ← ∇2

jjJi(xi, {x̂
(i)
k }k∈Ni

), ∀j ∈ Ni

12: Broadcast: transmitter node ID, xi, {ρ
(j)
i , ξ

(j)
i }j∈Ni

13: flagtransmission← 0
14: flagreception← 1 (optional)

15: end if

Reception (atomic)

16: if flagreception = 1 then

17: j ← transmitter node ID

18: x̂
(i)
j ← xj

19: ρ̂
(i)
j ← ρ

(i)
j

20: ξ̂
(i)
j ← ξ

(i)
j

21: flagreception← 0
22: flagupdate← 1 (optional)

23: end if

Estimate update (atomic)

24: if flagupdate = 1 then

25: ρ̂
(i)
i ← ∇iJi(xi, {x̂

(i)
k }k∈Ni

)

26: ξ̂
(i)
i ← ∇

2
iiJi(xi, {x̂

(i)
k }k∈Ni

)

27: xi ← xi − ǫ
(∑

j∈N
+

i
ξ̂
(i)
j

)−1(∑
j∈N

+

i
ρ̂
(i)
j

)

28: flagupdate← 0
29: flagtransmission← 1 (optional)

30: end if

10



Remark 5 (Resilient gradient descent (RGD) Algorithm) If memory, communication and computational complexity are a

concern, it is possible to modify the proposed algorithm mimicking the standard gradient descent algorithm. In this framework,

the second order information is not needed and therefore the variables ξ
(i)
j , ξ̂

(i)
j (lines 5, 6, 17, 21 in Algorithm 2)

do not need to be computed and the update for the local variable xi (line 22 in Algorithm 2) should be replaced with the

following:

xi ← xi − ǫ
∑

j∈N
+

i

ρ̂
(i)
j .

Obviously, the price to pay for this choice is a likely decrease in convergence speed.

Remark 6 (Resilient Weighted Least Squares (RWLS) Algorithm) If the local cost functions are quadratic, i.e:

Ji(xi, {xj}j∈Ni
) =

1

2
‖yi −Aix‖

2
Wi

=
1

2
(yi −

∑

j∈N
+

i

Aijxj)
⊤Wi(yi −

∑

j∈N
+

i

Aijxj) ,

where Wi > 0 are the local weights, then the problem to be solved becomes a Weighted Least Squares problem. For this

special case, the gradient and the hessian components simplify to:

ρ
(j)
i (x) := A⊤

ijWi(
∑

j∈N
+

i

Aijxj − yi) , ξ
(j)
i (x) := A⊤

ijWiAij , (19)

therefore the RBJ Algorithm can be simplified by substituting lines 10 and 11 with the following updates:

ρ
(j)
i ← A⊤

ijWi(Aiixi +
∑

j∈Ni

Aij x̂
(i)
j − yi), ∀j ∈ Ni , (20)

ξ
(j)
i ← A⊤

ijWiAij . (21)

It is clear from the previous expression, that the algorithm could be modified by having a preliminary phase when the ξ
(j)
i

are transmitted reliably to the neighbours so that eventually ξ̂
(j)
i = ξ

(j)
i , and then the algorithm could simply transmit the

variables xi, ρ
(j)
i and update the variables xi, x̂

(i)
j , ρ̂

(i)
j which are the only variables that evolve over time, thus considerably

reducing the communication complexity which corresponds with that of the RGD algorithm.

5.1 Theoretical analysis of RBJ Algorithm

Before presenting the major theoretical result characterizing the convergence properties of the proposed RBJ algorithm, we

introduce the following assumption on the nature of lossy communication we consider. It mainly states that each agent i ∈ V
receives information coming from each agent j ∈ Ni at least once within any window of T iterations of the algorithm.

Assumption 7 (Persistent communication) There exists a constant T such that, for all t ≥ 0, for all i ∈ V and for all

j ∈ Ni,

P

[
{γ

(i)
j (t), . . . , γ

(i)
j (t+ T )} = {0, . . . , 0}

]
= 0.

�

Theorem 8 (Local convergence of the RBJ algorithm) Let Assumptions 2 and 7 hold. Moreover assume that the cost func-

tions Ji are three-time differentiable and continuous. Consider Problem (1) and the RBJ algorithm. Let x∗ be the minimizer

of (1). There exists ǭ > 0 and δ > 0, such that, if 0 < ǫ < ǭ and ‖x(0)− x∗‖ < δ, then the trajectory x(t), generated by the

RBJ algorithm, converges exponentially fast to x∗, i.e.,

‖x(t)− x∗‖ ≤ Cρt

for some constants C > 0 and 0 < ρ < 1. �

The proof of Theorem 8 can be found in Appendix A, and basically relies on separation of time scales principle between the

dynamics of the states xi’s and those of the auxiliary variables x̂
(i)
j ’s, ρ

(i)
j ’s, ρ̂

(j)
i ’s, ξ

(i)
j ’s and ξ̂

(j)
i ’s. Loosely speaking, the

result builds on the idea that if the step-size ǫ is small enough, the variation of the true states xi’s is sufficiently slow and,

despite the lossy communication, the values of the auxiliary variables stored in memory equal the true values.
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Remark 9 (Local convergence of the RGD algorithm) The same argument used in the previous theorem can be applied to

the Robust Gradient Descent Algorithm presented in Remark 5 above under the weaker assumption that the cost functions Ji
are two-time differentiable, thus providing the same local exponential convergence. Typically, the critical value ǭ for the RGD

algorithm is smaller than that of the RBJ algorithm, and consequently also the rate of convergence is slower. �

Lemma 10 (Global convergence RWLS algorithm) Let Assumptions 2 and 7 hold. Consider Problem (1) with a quadratic

cost function J(x) and the RWLS algorithm. There exists ǭ such that, if 0 < ǫ < ǭ, then, for any x(0) ∈ Rn, the trajectory

x(t), generated by the RWLS algorithm, converges exponentially fast to the minimizer x∗ of the corresponding problem, i.e.,

‖x(t)− x∗‖ ≤ Cρt

for some constants C > 0 and 0 < ρ < 1. �

6 Simulations

In this section we present some simulative results obtained using the RBJ algorithm. The simulations involve the IEEE 123

nodes distribution grid benchmark (see [7]). The problem we address is the robust estimation of the voltage level at each

node of the grid (except the PCC node which is assumed fixed and known) from voltage and current measurements in the

presence of measurements outliers. We recall that voltages and currents in an AC power distribution grid are complex values.

However, in view of the state estimation problem we consider, it is convenient to exploit an equivalent standard reformulation

in rectangular coordinates. In particular, given the complex vectors of voltages and currents, denoted as v ∈ C122 and

i
c ∈ C122 respectively, and the weighted Laplacian matrix L ∈ C122×122 describing the electric grid, thanks to Kirchhoff’s

voltage and current laws, it holds that

i
c = Lv. (22)

However, by rewriting voltage and currents in rectangular coordinates as

v := [ℜ(v)⊤ ℑ(v)⊤]⊤ ∈ R
244 , ic := [ℜ(ic)⊤ ℑ(ic)⊤]⊤ ∈ R

244 .

and, similarly, by splitting L into its real and imaginary parts as

L =

[
ℜ(L) −ℑ(L)
ℑ(L) ℜ(L)

]
,

Eq. (22) is equivalent to

ic = Lv .

Thus, by assuming to collect both current and voltage measurements directly in rectangular coordinates4, our measurement

model reads as
[
yv

yi
c

]
=

[
I
L

]
v +

[
wv

wic

]
+

[
ov

oi
c

]
,

[
wv

wic

]
∼ N

([
0
0

]
,

[
σ2
vdiag(|v|)

σ2
icdiag(|i

c|)

])
,

where I ∈ R244 is the identity matrix, yv, yi
c

∈ R244 are the measurements, which we collect in vector y ∈ R488, wv, wic ∈
R244 are the measurements’ noise, and ov, oi

c

∈ R244 are sparse vectors which contain possible measurement outliers. We

choose5 σv = 10−3[p.u.] and σic = 10−1[p.u.]. Finally, concerning the outliers, 10% of the measurements are corrupted, and

the distribution of the outliers is uniform between 1/100 and 1/80 of the respective measurement for voltages and between

1/2 and 1 of the respective current measurement.

As suggested at the end of Section 3, to perform robust state estimation in the presence either of measurements faults or

outliers, one interesting choice for the cost function is the modified 1-norm defined is Eq. (8) as

‖r‖1,ν

where r = y − Av are the measurements residuals with A = [I L⊤]⊤. To run the RBJ algorithm we need to identify some

partition of the grid. To do so, the feeder is divided into N non overlapping areas, and a computing unit, which can collect

4According to future smart grids paradigm, it is assumed each node of the grid to be equipped with a smart measurement units, e.g., a Phasor Measurement

Unit (PMU), which can return measurements of current and voltage. Usually, electric quantities are measured in polar coordinates. However, for the sake of

simplicity, we assume to have at our disposal measurements directly in rectangular coordinates, stressing that, thanks to a suitable linearization, it is always

possible to pass from polar to rectangular coordinates.
5The choice for the measurements error standard deviations is dictated by the fact that the de facto standard for modern PMUs requires at most a 0.1%

error in the voltage measurements. This translates in a current error of more or less 10%.
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PCC

Figure 3: Division in N = 13 areas of the IEEE 123 nodes distribution grid.

the measurements of the nodes belonging to the area and can run the algorithm, is associated to each area. An example of the

division in areas is given in Figure 3. The communication graph G can be obtained from the division in areas, and in particular,

two units can communicate with each other if the two areas are physically connected (that is if there exists two nodes, each

one belonging to one of the areas, which are connected by an electric wire). The vectors y, x and r and matrix A are divided

according to the partition of the nodes in areas. Given the cost function, the values of ρ
(i)
j and ξ

(i)
j are computed as:

ρ
(i)
j = A⊤

ji

(
(diag(rj(t)))

2
+νI

)−1/2

rj(t), ∀ j ∈ N+
i

ξ
(i)
j = νH⊤

ji

(
(diag(rj(t)))

2
+ νI

)−3/2

Hji, ∀ j ∈ N+
i .

We tested the RBJ algorithm under two different scenarios to evaluate the influence of different parameters involved in the

algorithm. All the results showed are obtained averaging over 100 Monte Carlo runs (MCR).

In the first considered scenario we study the influence of the number N of areas on the performance of the algorithm.

Observe that, for the case N = 1 the proposed RBJ algorithm resembles a Newton-Raphson iteration. Thus, in general and

as shown in Figure 4, the fewer the number of areas, the faster the convergence rate. In the second scenario we analyze the

influence of the step size ǫ on the convergence rate. As can be seen from Figure 5, we can infer that the convergence rate

improves for bigger values of ǫ. Nevertheless, it is important to highlight the fact that that the algorithm may diverge if the

selected ǫ is a too large. Finally, we have considered a third scenario, not reported reported here, in which the robustness

of the algorithm is tested for increasing values of the packet loss probability. The results show that the algorithm is really

robust to packet losses as can be seen both from Figures 4–5 where the algorithm has been tested considering a 30% packet

loss probability. In particular, since the curves obtained are really close to each other, we decided not to show the results

of the simulations. As last remark regarding the packet loss scenario, it is numerically observed that the higher the packet

loss probability, the smaller the value of the step size to ensure convergence of the algorithm. Therefore, in the choice of the

step size of the algorithm, which is still an open problem, the degree of reliability of the communication network must be

considered.

7 Conclusions

Considering the emerging area of large-scale multi-agent systems, this paper addressed the always more timely problem

of unconstrained robust distributed convex optimization in the presence of communication non idealities. In particular, we

analyzed a particular class of locally coupled cost functions which arise in diverse interesting engineering problems such as

multi-area state estimation of smart electric grids and multi-robot localization, just to mention two possible applications. We

considered a particularly flexible partition-based communication architecture which seamlessly accounts for peer-to-peer and
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Figure 4: Normalized cost function as a function of the iteration, for different numbers of areas N . In all simulations there is a packet loss probability of

30% and ǫ = 0.0004. The results are obtained averaging over 100 MCR.

Figure 5: Normalized cost function as a function of the iteration, for different values of the parameter ǫ. The number of areas used is N = 13 and the results

are obtained averaging over 100 MCR. In all simulations there is a packet loss probability of 30%.
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wide-area communications. We proposed a generalized gradient algorithm based on the well-known Jacobi iteration. By

leveraging Lyapunov theory and separation of time scale principle, we proved robustness of the algorithm to packet drops and

communication failures. Finally, we extensively tested the proposed solution for robust state estimation in the presence of

measurements outliers using as benchmark the standard IEEE 123 nodes distribution feeder.

A Proof of Theorem 8

The proof of Theorem 8 relies on the time scale separation of the dynamic of the xi’s and of the auxiliary variables x̂
(i)
j ’s,

ρ̂
(i)
j ’s and ξ̂

(i)
j ’s, and fully exploits the following Lemma

Lemma 11 (Time scale separation principle for discrete time dynamical systems) Consider the dynamical system

[
x(t+ 1)
y(t+ 1)

]
=

[
I −ǫB

C(t) F (t)

] [
x(t)
y(t)

]
. (23)

Let the following assumptions hold

1. There exists a matrix G such that y = Gx satisfies the expression y = C(t)x+ F (t)y, ∀t, ∀x

2. the system

z(t+ 1) = F (t)z(t) (24)

is exponentially stable;

3. the system

ẋ(t) = −BGx(t) (25)

is exponentially stable.

4. The matrices C(t) and F (t) are bounded, i.e. there exists m > 0 such that ‖C(t)‖ < m, ‖F (t)‖ < m, ∀t ≥ 0.

Then, there exists ǭ, with 0 < ǫ < ǭ such that the origin is an exponentially stable equilibrium for the system (23). �

Proof 12 (Proof of Lemma 11) Let us first consider the following change of variable:

z(t) = y(t)−Gx(t)

The dynamics of the system in the variables x, z can be written after some straightforward manipulations as follows:

[
x(t+ 1)
z(t+ 1)

]
=




[
I − ǫBG 0

0 F (t)

]

︸ ︷︷ ︸
Σ(t)

+ǫ

[
0 −BG

GBG GB

]

︸ ︷︷ ︸
Γ




[
x(t)
z(t)

]

︸ ︷︷ ︸
µ(t)

(26)

where we used Assumption 1. From Assumption 2, 3 and 3, using converse Lyapunov theorems [22], it follows that there exist

positive definite matrices Px > 0 and Pz(t) > 0 such that

−PxBG−G
TBTPx ≤ −aI, F (t)

TPz(t+ 1)F (t)− Pz(t) ≤ −aI, ∀t

where a is a positive scalar and Pz(t) is bounded, i.e. ‖Pz(t)‖ ≤ m. We will use the following positive definite Lyapunov

function to prove exponential stability of the whole system:

U(x, z, t) = xTPxx+ zTPz(t)z =
[
xT zT

] [Px 0
0 Pz(t)

]

︸ ︷︷ ︸
P (t)

[
x
z

]

If we define time difference of the Lyapunov function as ∆U(x, z, t) = U(x(t+ 1), z(t+ 1), t+ 1)−U(x(t, )z(t), t) we get:

∆U(x, z, t) = xT
(
−ǫ(PxBG+GTBTPx)+ǫ

2GTBTPxBG
)
x+

+zT
(
F (t)TPz(t+1)F (t)−Pz(t)

)
z+2ǫµTΣT (t)P (t+1)Γµ+ǫ2µTΓTP (t+1)Γµ

≤ −ǫa‖x‖2−a‖z‖2+ǫ2‖P
1
2
x BG‖

2

︸ ︷︷ ︸
b

‖x‖2+2ǫµTΣT(t)P (t+1)Γµ+ǫ2‖P
1
2 (t+1)Γ‖2‖µ‖2
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Note that the top left block of Γ is zero and that Σ(t) and P (t) are diagonal and bounded for all times. From this it follows

that

ΣT (t)P (t+ 1)Γ =

[
0 ⋆
⋆ ⋆

]
=⇒ 2µTΣT (t)P (t+ 1)Γµ ≤ c(2‖x‖‖z‖+ ‖z‖2)

for some positive scalar c. Boundedness of P (t) also implies that

‖P
1
2 (t+ 1)Γ‖2‖µ‖2 ≤ d(‖x‖2 + ‖z‖2)

for some positive scalar d. Putting all together we get

∆U(x, z, t) ≤
[[
‖x‖ ‖z‖

]] [−ǫa+ bǫ2 ǫc
ǫc −a+ ǫc+ ǫ2d

] [
‖x‖
‖z‖

]

It follows immediately that there exists a critical ǫ such that for 0 < ǫ < ǫ the matrix in the above equation is strictly negative

definite and therefore the system is exponentially stable.

We are now ready to state the formal proof of Theorem 8.

Proof 13 (Proof of Theorem 8) The proof relies on Lemma 11. In order to improve readability, this proof is broken into few

steps. The first step is to write the evolution of the RBJ algorithm as the evolution of a dynamical system. The second step is

to find its equilibrium point and to linearize it around this point. The third step is show that the linerized dynamical system

satisfies the three assumptions listed in Lemma 11.

RBJ as a dynamical system:

First of all, note that thanks to Assumption 2 the second order derivatives and in particular all the variables ξ
(i)
j , ξ̂

(i)
j are

always well defined and invertible. Now, let the vectors ê
(i)
j be the vectorization of ξ̂

(i)
j , ê

(i)
j = vec(ξ̂

(i)
j ), and the un-

vectorization operator vec−1 as the inverse of the vectorization operator, i.e. vec−1(ê
(i)
j ) = ξ̂

(i)
j . Let x̂i, ρ̂i and êi be the

vectors in which all the x̂
(i)
j ’s, the ρ̂

(i)
j ’s, and the ê

(i)
j ’s are stacked, respectively, i.e. x̂i = (x̂

(i)
j1
· · · x̂

(i)
jNi

) and similarly for ρ̂i
and êi. Let x, x̂, ρ̂, ê be the vectors collecting all the xi, x̂i’s, ρ̂i’s and êi’s, respectively, i.e. x = (x1 · · ·xN ) and similarly

for x̂, ρ̂ and ê.
For every agent i and neighbours j ∈ Ni, the dynamic of the local variables are given by the following equations:

xi(t+ 1) = f i
1(x(t), ρ̂(t), ê(t)) (27a)

x̂
(i)
j (t+ 1) = f ij

2 (x(t), x̂(t), t) (27b)

ρ̂
(i)
j (t+ 1) = f ij

3 (x(t), x̂(t), ρ̂(t), t) (27c)

ê
(i)
j (t+ 1) = f ij

4 (x(t), x̂(t), ê(t), t) (27d)

where

f i
1(x, ρ̂, ê) = xi − ǫ

( ∑

j∈N
+

i

vec−1(ê
(i)
j )

︸ ︷︷ ︸
fi
e(ê)

)−1( ∑

j∈N
+

i

ρ̂
(i)
j

︸ ︷︷ ︸
fi
ρ(ρ̂)

)
(28a)

f ij
2 (x, x̂, t) =

{
x̂
(i)
j if γ

(i)
j (t) = 0

xj if γ
(i)
j (t) = 1

(28b)

f ij
3 (x, x̂, ρ̂, t) =

{
ρ̂
(i)
j if γ

(i)
j (t) = 0

∇iJj(xj , {x̂
(j)
k }k∈Nj

) if γ
(i)
j (t) = 1

(28c)

f ij
4 (x, x̂, ê, t) =

{
ê
(i)
j if γ

(i)
j (t) = 0

vec
(
∇2

iiJj(xj , {x̂
(j)
k }k∈Nj

)
)

if γ
(i)
j (t) = 1

. (28d)

Note that the variables ρ
(i)
j and ξ

(i)
j do not appear in the dynamics since they are deterministic functions of the variables x

and x̂, and therefore can be omitted.
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Equilibrium point and linearization:

Let x∗ be the minimizer of the optimization problem and let us define

Hhk = ∇2
hkJ(x

∗) =
N∑

j=1

∇2
hkJj(x

∗
j , {x

∗
k}k∈Nj

)
︸ ︷︷ ︸

Hj

hk

=
N∑

j=1

Hj
hk

x̂
(i)∗
j = x∗j

ρ̂
(i)∗
j = ∇iJj(x

∗
j , {x

∗
k}k∈Nj

)

ê
(i)∗
j = vec

(
∇2

iiJj(x
∗
j , {x

∗
k}k∈Nj

)
)
= vec(Hj

ii)

Notice that
∑N

j=1 ρ̂
(i)∗
j = ∇iJ(x

∗) = 0, since the gradient computed at the minimizer is zero. It is now simple to verify by

direct inspection that (x∗, x̂∗, ρ̂∗, ê∗) is an equilibrium point for the dynamical system described by (27). Next, we will analyze

the behaviour of system (27) in the neighborhood of the equilibrium point (x∗, x̂∗, ρ̂∗, ê∗). Consider the change of variables

ψ = x− x∗

ψ̂ = x̂− x̂∗

η̂ = ρ̂− ρ̂∗

ζ̂ = ê− ê∗

(29)

If we linearize equations (27) around (x∗, x̂∗, ρ̂∗, ê∗), we obtain

ψi(t+ 1) ≃ ψi(t)− ǫH
−1
ii

∑

j∈N
+

i

η̂
(i)
j (30)

ψ̂
(i)
j (t+ 1) ≃

{
ψ̂
(i)
j (t) if γ

(i)
j (t) = 0

ψj(t) if γ
(i)
j (t) = 1

(31)

η̂
(i)
j (t+ 1) ≃

{
η̂
(i)
j (t) if γ

(i)
j (t) = 0

Hj
ijψj(t) +

∑
k∈Nj

Hj
ikψ̂

(i)
k (t) if γ

(i)
j (t) = 1

(32)

ζ̂
(i)
j (t+ 1) ≃

{
ζ̂
(i)
j (t) if γ

(i)
j (t) = 0

Kj
ijψj(t) +

∑
k∈Nj

Kj
ikψ̂

(i)
k (t) if γ

(i)
j (t) = 1.

. (33)

where in Eqn. (30) we used the fact that
∂fi

1

∂ê

∣∣∣
x∗,ρ̂∗,ê∗

= −ǫ∂(f
i
e)

−1

∂ê f i
ρ

∣∣∣
x∗,ρ̂∗,ê∗

= 0 since f i
ρ

∣∣
x∗,ρ̂∗,ê∗

= ∇iJ(x
∗) = 0, and

the fact that f i
e(ê

∗) = Hii. In Eqn.(32) we used the fact that Hj
ik = ∇2

ikJj(x
∗
j , {x

∗
k}k∈Nj

). Finally, in Eqn. (33) the matrices

Kj
ik depends on third order derivatives of J(x) whose values are unimportant for the analysis of the stability of the dynamics.

By collecting all the variables together, we obtain the system




ψ(t+ 1)

ψ̂(t+ 1)
η̂(t+ 1)

ζ̂(t+ 1)


 =




I 0 −ǫB 0
C1(t) F1(t) 0 0
C2(t) F2(t) F3(t) 0
C3(t) F4(t) 0 F5(t)







ψ(t)

ψ̂(t)
η̂(t)

ζ̂(t)




[
ψ(t+ 1)
y(t+ 1)

]
=

[
I −ǫB

C(t) F (t)

] [
ψ(t)
y(t)

]
. (34)

where y = (ψ̂, ξ̂, ζ̂) collects the fast dynamic variables. Notice that F1(t), F3(t) and F5(t) are diagonal matrices whose

entries are either 1 or 0, depending on the communication between agent success, and, as a consequence, F (t) is a lower

triangular matrix, ∀t.

Assumption 1 of Lemma 11:

We now start proving that the linearized dynamics above satisfies the three assumptions of Lemma 11 where ψ plays the role

of x in the Lemma. It is simple to verify by direct inspection that for a fixed ψ, the following maps satisfy Assumption 1 of
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Lemma 11:

ψ̂
(i)
j = ψj (35)

η̂
(i)
j = Hj

ijψj +
∑

k∈Nj

Hj
ikψk (36)

ζ̂
(i)
j = Kj

ijψj +
∑

k∈Nj

Kj
ikψk (37)

in fact, this is equivalent of saying that there exists a matrix G such that y = Gψ satisfies the equality y = C(t)ψ + F (t)y
for all ψ and t.

Assumption 2 of Lemma 11:

Let us now consider the fast dynamics of the system given by the following system:

z(t) = F (t− 1) · · ·F (0)z(0) = Ω(t)z(0)

Assumption 7, on the persistent communication among the agents, assures that

F1(T − 1) · · ·F1(0) = Ω1(T ) = 0
F3(T − 1) · · ·F3(0) = Ω3(T ) = 0
F5(T − 1) · · ·F5(0) = Ω5(T ) = 0

in fact when γ
(i)
j (t) = 1, the corresponding raws in the matrices F1(t), F3(t), F5(t) become zero, and this property will be

inherited also by the product matrices Ω1(T ), Ω3(T ), Ω3(T ) since all F1(t), F2(t), F3(t) are diagonal. Since all γ
(i)
j (t) will

be equal to one at least once within the window t ∈ [0, · · · , T − 1], then the matrices Ω1(T ), Ω3(T ), Ω3(T ) must be all zero.

Finally, since the matrix F (t) is lower triangular, we have that after a maximum of (2T + 1) iterations the product matrix

Ω(2T + 1) will be zero and thus z(2T + 1) = 0. That is, the fast variable dynamic is exponentially stable, since it reaches

the equilibrium in a finite number of iteration.

Assumption 3 of Lemma 11:

Finally, consider the slow dynamical system

ψ̇(t) = −BGψ(t). (38)

which by direct substitution from the previous analysis can be locally written as:

ψ̇i(t) = −H
−1
ii


 ∑

j∈N
+

i

(
Hj

ijψj +
∑

k∈Ni

Hj
ikψk

)
 = −H−1

ii H
iψ

where H was defined above and corresponds to the Hessian of the global cost J computed at x∗, i.e. H = ∇2J(x∗) and Hi

is its i-th block-row,

i.e., Hi = [∇2
i1J(x

∗) · · · ∇2
iNJ(x

∗)]. This implies that

BG = (diag(H))
−1
H ,

therefore, if we choose

V (ψ) =
1

2
ψ⊤Hψ,

as a Lyapunov function, it is straightforward to see that system (38) is asymptotically stable since V̇ (ψ(t)) = −ψ⊤(t)H (diag(H))
−1
Hψ(t) <

0, x 6= 0 being H > 0 by assumption.

Assumption 4 of Lemma 11:

This comes from the observation that the time-variance of the state matrices depends on the specific sequence of packet losses

that can occur. Since there are only a finite number of possible different sequences, the assumption is clearly satisfied.

Concluding, system (34) satisfies the hypothesis of Lemma 11, and thus there exists ǭ, with 0 < ǫ < ǭ such that, by using

the resilient block Jacobi Algorithm 2,

lim
t→∞

x(t) = x∗.

locally exponentially fast.
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