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Abstract

Given an unstable hybrid stochastic differential equation (SDDE, also known as an SDDE with Markovian switching), can we
design a delay feedback control to make the controlled hybrid SDDE become asymptotically stable? If the feedback control
is based on the current state, the stabilisation problem has been studied. However, there is little known when the feedback
control is based on the past state. The problem becomes even harder when the coefficients of the underlying hybrid SDDE do
not satisfy the linear growth condition (namely, the coefficients are highly nonlinear). The aim of this paper is to tackle the
stabilisation problem for a given unstable highly nonlinear hybrid SDDE.
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1 Introduction

Hybrid stochastic differential delay equations (SDDEs)
whose coefficients depend on the states of continuous-
time Markov chains (also known as SDDEs with Marko-
vian switching) appear in many branches of science
and industry. One of the important issues in the study
of hybrid SDDEs is the analysis of stability (see, e.g.,
[11,12,21,24,25,30,31,33]). In particular, the stability of
highly nonlinear hybrid SDDEs has recently become
one of the most popular topics (see, e.g., [8,11,17]).

Consider an unstable hybrid SDDE

dx(t) = f(x(t), x(t− δ), r(t), t)dt
+ g(x(t), x(t− δ), r(t), t)dB(t),

(1.1)

where the state x(t) takes values in Rn and the mode
r(t) is a Markov chain taking values in a finite space
S = {1, 2, · · · , N}, B(t) is a Brownian motion, δ is a
positive constant which stands for the time delay of the
system, and f and g are referred to as the drift and
diffusion coefficient, respectively. In order to make this
given unstable system become stable, it is classical to
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find a feedback control u(x(t), r(t), t), based on the cur-
rent state x(t), for the controlled system

dx(t) = [f(x(t), x(t− δ), r(t), t) + u(x(t), r(t), t)]dt

+ g(x(t), x(t− δ), r(t), t)dB(t) (1.2)

to become stable. However, taking into account a time
lag τ (> 0) between the time when the observation of the
state is made and the time when the feedback control
reaches the system, it is more realistic that the control
depends on a past state x(t−τ). Accordingly, the control
should be of the form u(x(t− τ), r(t), t). Hence, the sta-
bilisation problem becomes to design a delay feedback
control u(x(t− τ), r(t), t) for the controlled system

dx(t) = [f(x(t), x(t− δ), r(t), t) + u(x(t− τ), r(t), t)]dt

+ g(x(t), x(t− δ), r(t), t)dB(t) (1.3)

to be stable. When the given unstable system is a hy-
brid SDE (not SDDE), Mao et al. [23] were the first to
study this stabilisation problem by the delay feedback
control and there have been some further developments
since then (see, e.g., [22,32]), although the method of de-
lay feedback controls has been well used in the area of
ordinary differential equations (see, e.g., [1,6,29]). The
common stringent assumption imposed in these papers
in the area of hybrid SDEs is that both drift and diffu-
sion coefficients need to satisfy the linear growth condi-
tion. Only very recently have Lu et al. made a signifi-
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cant progress in [17] where they established a new theory
on the stabilisation by delay feedback control for highly
nonlinear hybrid SDEs. The aim of this paper is to de-
velop their theory further for highly nonlinear hybrid
SDDEs. This is necessary from practical point of view.
In fact, many real world systems are described by highly
nonlinear hybrid SDDEs, for example, population sys-
tems, neural networks, financial and economic systems
(see, e.g.,[3,5,16,26]). Although there are some papers on
the delay feedback controls (see, e.g., [1,6,23]), they are
not applicable to highly nonlinear hybrid SDDEs. Math-
ematically speaking, the development from SDEs to SD-
DEs is no trivial at all due to the infinite-dimensional
nature of SDDEs. We highlight a few significant features
in comparison with [17]:

• Under some standing hypotheses we will propose a
number of rules to stabilise the given SDDE. We will
explain how to design the delay feedback control to
satisfy these rules and these discussions will also re-
veal that there are many such delay feedback controls
available. Such developments are totally different from
the study in [17].
• The stabilisation of SDDEs discussed in this paper is

an infinite-dimensional problem while that of SDEs in
[17] is finite-dimensional.
• The mathematical analysis of the infinite-dimensional

problem in this paper is much harder than that of a
finite-dimensional one in [17].

Let us begin to develop our new theory on the stabilisa-
tion problem.

2 Notation and Standing Hypotheses

Throughout this paper, unless otherwise specified, we
use the following notation. If A is a vector or matrix,
its transpose is denoted by AT . For x ∈ Rn, |x| de-
notes its Euclidean norm. If A is a matrix, we let |A| =√

trace(ATA) be its trace norm. If A is a symmetric
real-valued matrix (A = AT ), denote by λmin(A) and
λmax(A) its smallest and largest eigenvalue, respectively.
By A ≤ 0 and A < 0, we mean A is non-positive and
negative definite, respectively. Let R+ = [0,∞). For
h > 0, denote by C([−h, 0];Rn) the family of continu-
ous functions ϕ from [−h, 0]→ Rn with the norm ‖ϕ‖ =
sup−h≤u≤0 |ϕ(u)|. Denote by C(Rn;R+) the family of
continuous functions from Rn to R+. If both a, b are real
numbers, then a∧ b = min{a, b} and a∨ b = max{a, b}.
If A is a subset of Ω, denote by IA its indicator function;
that is, IA(ω) = 1 if ω ∈ A and 0 otherwise.

Let (Ω,F , {Ft}t≥0,P) be a filtered complete probabil-
ity space with a filtration satisfying the usual condi-
tions (i.e., it is right continuous while F0 contains all
P-null sets). Let B(t) = (B1(t), · · · , Bm(t))T be an m-
dimensional Brownian motion defined on the probabil-
ity space. Let r(t), t ≥ 0, be a right-continuous Markov

chain on the same probability space taking values in
a finite state space S = {1, 2, · · · , N} with generator
Γ = (γij)N×N given by

P{r(t+ ∆) = j|r(t) = i} =

{
γij∆ + o(∆) if i 6= j,

1 + γii∆ + o(∆) if i = j,

where ∆ > 0. Here γij ≥ 0 is the transition rate from
i to j if i 6= j while γii = −

∑
j 6=i γij . We assume that

the Markov chain r(·) is independent of the Brownian
motion B(·) under P.

Suppose that the underlying system is described by the
nonlinear hybrid SDDE (1.1) with the initial data

{x(t) : −δ ≤ t ≤ 0} = ξ ∈ C([−δ, 0];Rn), (2.1)

where the coefficients f : Rn ×Rn × S ×R+ → Rn and
g : Rn × Rn × S × R+ → Rn×m are Borel measurable
functions. The classical conditions for the existence and
uniqueness of the global solution are the local Lipschitz
condition and the linear growth condition (see, e.g., [18–
20,25]). In this paper, we of course need the local Lips-
chitz condition. However, we will consider highly nonlin-
ear hybrid SDDEs which, in general, do not satisfy the
linear growth condition. We therefore impose the poly-
nomial growth condition, instead of the linear growth
condition.

Assumption 2.1 Assume that for any real number b >
0, there exists a positive constant Kb such that

|f(x, y, i, t)− f(x̄, ȳ, i, t)| ∨ |g(x, y, i, t)− g(x̄, ȳ, i, t)|
≤ Kb(|x− x̄|+ |y − ȳ|) (2.2)

for all x, y, x̄, ȳ ∈ Rn with |x| ∨ |y| ∨ |x̄| ∨ |ȳ| ≤ b and
all (i, t) ∈ S × R+. Assume moreover that there exist
constantsK > 0, q1 > 1 and qi ≥ 1 (2 ≤ i ≤ 4) such that

|f(x, y, i, t)| ≤ K(|x|+ |y|+ |x|q1 + |y|q2),

|g(x, y, i, t)| ≤ K(|x|+ |y|+ |x|q3 + |y|q4)
(2.3)

for all (x, y, i, t) ∈ Rn ×Rn × S ×R+.

For the convenience of the study in this paper we let
q1 > 1 but essentially we need only max1≤i≤4 qi > 1
as we are here interested in hybrid SDDEs without the
linear growth condition. We will refer to condition (2.3)
as the polynomial growth condition.

It is known that Assumption 2.1 only guarantees that the
hybrid SDDE (1.1) has a unique maximal local solution,
which may explode to infinity at a finite time (see, e.g.,
[25]). To avoid such a possible explosion, we need to
impose another Khasminskii-type condition.
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Assumption 2.2 Assume that there exist positive con-
stants p, q, α1, α2, α3 such that α2 > α3 and

q > (p+ q1 − 1) ∨ (2(q1 ∨ q2 ∨ q3 ∨ q4)), (2.4)

p ≥ 2(q1 ∨ q2 ∨ q3 ∨ q4)− q1 + 1, (2.5)

(where q1, · · · , q4 have been specified in Assumption 2.1)
while for all (x, i, t) ∈ Rn × S ×R+,

xT f(x, y, i, t) +
q − 1

2
|g(x, y, i, t)|2

≤ α1(|x|2 + |y|2)− α2|x|p + α3|y|p.
(2.6)

It is useful to point out conditions (2.4) and (2.5) along
with q1 > 1 implies that both p and q are larger than 2.
The following theorem does not only show the existence
and uniqueness of the global solution but also the Lq-
boundedness of the solution.

Theorem 2.3 Under Assumptions 2.1 and 2.2, equa-
tion (1.1) with the initial data (2.1) has a unique global
solution x(t) on [−δ,∞) which satisfies

sup
−δ≤t<∞

E|x(t)|q <∞. (2.7)

Proof. We will apply [11, Theorem 3.1] to show this
theorem. Comparing the assumptions of [11, Theorem
3.1] with those in our Theorem 2.3, we see that all we
need to do is to verify Assumption 2.2 in [11]. Follow-
ing the notation used in [11], we define V (x, i, t) = |x|q
for (x, i, t) ∈ Rn × S × R+. Then the function L1V :
Rn×Rn×S×R+ → R with respect to the SDDE (1.1)
defined there ([11] uses LV but we change it into L1V
in order to show it differs from L2U etc. used later) has
the form

L1V (x, y, i, t) = q|x|q−2xT f(x, y, i, t)

+
q

2
|x|q−2|g(x, y, i, t)|2 +

q(q − 2)

2
|x|q−4|xT g(x, y, i, t)|2

(2.8)

(namely, L1 may be regarded as the differential operator
corresponding to the SDDE (1.1)). Then, by Assumption
2.2,

L1V (x, y, i, t)

≤ q|x|q−2
[
α1(|x|2 + |y|2)− α2|x|p + α3|y|p

]
.

(2.9)

Choose a positive number α < α2 − α3. By the well-

known Young inequality, we have

α1|x|q−2|y|2

≤ q − 2

q
(0.5qα)−2/(q−2)α

q/(q−2)
1 |x|q + α|y|q

≤ q − 2

q
(0.5qα)−2/(q−2)α

q/(q−2)
1 |x|q + α(1 + |y|q+p−2)

and

|x|q−2|y|p ≤ q − 2

q + p− 2
|x|q+p−2 +

p

q + p− 2
|y|q+p−2.

It therefore follows from (2.9) that

L1V (x, y, i, t) ≤ qα+ β1|x|q − β2|x|q+p−2 + β3|y|q+p−2

≤ c− 0.5(β2 + β3)(1 + |x|q+p−2) + β3(1 + |y|q+p−2),

where

β1 = q
(
α1 +

q − 2

q
(0.5qα)−2/(q−2)α

q/(q−2)
1

)
,

β2 = q
(
α2 −

α3(q − 2)

q + p− 2

)
, β3 = q

(
α+

α3p

q + p− 2

)
and

c = sup
u≥0

(qα+0.5(β2−β3)+β1u
q−0.5(β2−β3)uq+p−2) <∞.

If we let U1(x, t) = |x|q and U2(x, t) = 1 + |x|q+p−2 for
(x, t) ∈ Rn × R+, we have verified Assumption 2.2 in
[11]. The proof of the theorem is therefore complete. 2

It is useful to point out that in some hybrid SDDEs, the
constants p and q in Assumption 2.2 are different. In
fact, q could be arbitrarily large sometimes. For example,
consider the scalar hybrid SDDE

dx(t) = f(x(t), x(t− δ), r(t), t)dt
+ g(x(t), x(t− δ), r(t), t)dB(t),

(2.10)

where the coefficients f and g are defined by

f(x, y, 1, t) = x(1− 3x2 + y2),

g(x, y, 1, t) = |x|3/2 + 0.5y,

f(x, y, 2, t) = x(1− 2x2 − y2),

g(x, y, 2, t) = 0.5|x|3/2 − 0.5y,

(2.11)

B(t) is a scalar Brownian motion, r(t) is a Markov chain
on the state space S = {1, 2} with its generator

Γ =

(
−1 1

1 −1

)
. (2.12)
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This is a simple version of hybrid SDDE models ap-
peared frequently in population systems (see, e.g., [3,20])
and it is highly nonlinear (see, e.g., [8,11,17] for more on
highly nonlinear hybrid SDDEs). It is easy to see that
Assumption 2.1 is satisfied with q1 = 3, q2 = 3, q3 = 1.5
and q4 = 1. Moreover, for any (x, y, i, t) ∈ R×R×S×R+,

xT f(x, y, i, t) +
q − 1

2
|g(x, y, i, t)|2 ≤{

x2 − 2.5x4 + 0.5y4 + (q − 1)(|x|3 + 0.25y2), i = 1,

x2 − 1.5x4 + 0.5y4 + (q − 1)(0.25|x|3 + 0.25y2), i = 2.

(2.13)

But
(q − 1)|x|3 ≤ |x|4 + 0.25(q − 1)2x2.

Hence

xT f(x, y, i, t) +
q − 1

2
|g(x, y, i, t)|2

≤(1 + 0.25(q − 1)2)(x2 + y2)− 1.25x4 + 0.5y4. (2.14)

That is, the hybrid SDDE (2.10) satisfies Assumption 2.2
for any q > 6 along with p = 4, α1 = 1 + 0.25(q − 1)2,
α2 = 1.25 and α3 = 0.5.

3 Rules for Delay Feedback Controls

Although the solution of the hybrid SDDE (1.1) is
bounded under Assumptions 2.1 and 2.2, the equation
may not be stable. In this case, we are required to design
a delay feedback control u(x(t − τ), r(t), t) for the con-
trolled equation (1.3) to become stable. Here the control
function u : Rn × S × R+ → Rn is Borel measurable,
while we shall assume τ ≤ δ (it is possible to allow τ > δ
but the calculations will become more complicated). In
this section, we shall propose a number of rules for the
control function u to meet for the stabilisation purpose.
Our first rule is:

Rule 3.1 There exists a positive number β such that

|u(x, i, t)− u(y, i, t)| ≤ β|x− y| (3.1)

for all x, y ∈ Rn, i ∈ S and t ≥ 0. Moreover, for the
stability purpose, we require that u(0, i, t) ≡ 0.

That is, the control function u(x, i, t) is globally Lips-
chitz continuous in x. This assumption implies the linear
growth condition

|u(x, i, t)| ≤ β|x|, ∀(x, i, t) ∈ Rn × S ×R+. (3.2)

This is a bit surprise as we would normally look for a
highly nonlinear control function given that the coef-
ficients of the given SDDE (1.1) are highly nonlinear.

However, we will show that the globally Lipschitz con-
tinuous control function can work very well. Indeed, it is
this rule that enables us to design the required control
function much more easily. The following theorem forms
a foundation for this paper.

Theorem 3.2 Let Assumptions 2.1 and 2.2 hold. If the
control function u satisfies Rule 3.1, then the controlled
SDDE (1.3) with the initial data (2.1) has a unique global
solution x(t) on [−τ,∞) which satisfies

sup
−τ≤t<∞

E|x(t)|q <∞. (3.3)

This theorem can be proved in the same way as The-
orem 2.3 so the proof is omitted. It is useful to point
out that Theorem 3.2 along with conditions (2.3) and
(2.4) guarantees, for example, f(x(t), x(t − δ), r(t), t)
and g(x(t), x(t − δ), r(t), t) are bounded in L2 on t ∈
[0,∞); x(t) is bounded in Lq̄ for any q̄ ∈ (0, q]. Theorem
3.2 shows that the controlled SDDE (1.3) preserves the
boundedness of the given SDDE (1.1). However, in or-
der for the stability of the controlled SDDE, the control
function needs to meet more rules. The following one is
more technical.

Rule 3.3 Design the control function u : Rn×S×R+ →
Rn so that we can find real numbers ai, āi, positive num-
bers ci, c̄i and nonnegative numbers bi, b̄i, di, d̄i (i ∈ S)
such that

xT [f(x, y, i, t) + u(x, i, t)] +
1

2
|g(x, y, i, t)|2

≤ ai|x|2 + bi|y|2 − ci|x|p + di|y|p
(3.4)

and

xT [f(x, y, i, t) + u(x, i, t)] +
q1

2
|g(x, y, i, t)|2

≤ āi|x|2 + b̄i|y|2 − c̄i|x|p + d̄i|y|p
(3.5)

for all (x, y, i, t) ∈ Rn ×Rn × S ×R+; while both

A1 := −2diag(a1, · · · , aN )− Γ,

and A2 := −(q1 + 1)diag(ā1, · · · , āN )− Γ
(3.6)

are nonsingular M-matrices; and moreover,

1 > γ1, γ2 > γ3, 1 > γ4, γ5 > γ6, (3.7)

where

(θ1, · · · , θN )T = A−1
1 (1, · · · , 1)T ,

(θ̄1, · · · , θ̄N )T = A−1
2 (1, · · · , 1)T ,

(3.8)
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γ1 = max
i∈S

2θibi, γ2 = min
i∈S

2θici,

γ3 = max
i∈S

2θidi, γ4 = max
i∈S

(q1 + 1)θ̄ib̄i,

γ5 = min
i∈S

(q1 + 1)θ̄ic̄i, γ6 = max
i∈S

(q1 + 1)θ̄id̄i.

(3.9)

We should point out that all θi and θ̄i defined by (3.8) are
positive as both A1 and A2 are nonsingular M-matrices.
Regarding the theory on M-matrices we refer the reader
to [25, Section 2.6].

Let us explain that there are lots of such control func-
tions available under Assumption 2.2. For example, in
the case when the state x(t) of the given SDDE (1.1) is
observable in any mode i ∈ S (otherwise it is more com-
plicated and we will explain later), we could, for exam-
ple, design the control function u(x, i, t) = AxT , where
A is a symmetric n×n real-valued negative-definite ma-
trix such that λmax(A) ≤ −(κ+ 1)α1 with κ > 1. Then

xTu(x, i, t) ≤ −(κ+1)α1|x|2, ∀(x, i, t) ∈ Rn×S×R+.

By Assumption 2.2, in particular, noting q−1 ≥ q1 > 1,
we further have

xT [f(x, y, i, t) + u(x, i, t)] +
1

2
|g(x, i, t)|2

≤ −κα1|x|2 + α1|y|2 − α2|x|p + α3|y|p,

xT [f(x, i, t) + u(x, i, t)] +
q1

2
|g(x, i, t)|2

≤ −κα1|x|2 + α1|y|2 − α2|x|p + α3|y|p.

Consequently,

A1 = 2κdiag(α1, · · · , α1)− Γ,

A2 = κ(q1 + 1) diag(α1, · · · , α1)− Γ.

By the theory of M-matrices (see, e.g., [25, Theo-
rem 2.10]), we see easily that both are nonsingular
M-matrices. Moreover, when κ is sufficiently large,
θi ≈ 1/(2κα1) and θ̄i ≈ 1/(κα1(q1 + 1)) for all
i ∈ S. It then easy to see (3.7) is satisfied. In other
words, for a sufficiently large number κ, the control
function u(x, i, t) = AxT meets Rule 3.3 as long as
λmax(A) ≤ −(κ + 1)α1. Of course, in application, we
need to make full use of the special forms of both coef-
ficients f and g to design the control function u more
wisely.

Let us now explain why we propose Rule 3.3. Define a
function U : Rn × S → R+ by

U(x, i) = θi|x|2 + θ̄i|x|q1+1, (x, i) ∈ Rn × S (3.10)

while define a function L2U : Rn × Rn × S × R+ → R

with respect to (1.2) by

L2U(x, y, i, t)

= 2θi

[
xT [f(x, y, i, t) + u(x, i, t)] +

1

2
|g(x, y, i, t)|2

]
+ (q1 + 1)θ̄i|x|q1−1xT [f(x, y, i, t) + u(x, i, t)]

+
(q1 + 1)θ̄i|x|q1−1

2
|g(x, y, i, t)|2 +

N∑
j=1

γij θ̄j |x|q1+1

+

N∑
j=1

γijθj |x|2 +
(q1 + 1)(q1 − 1)θ̄i

2
|x|q1−3|xT g(x, y, i, t)|2.

(3.11)

Please note that L2U is only a function (not L2 acting
on U) and it is associated with the the diffusion operator
of the controlled SDDE (1.2) (where the control is non-
delay one). By (3.4), (3.5) and (3.8), (3.9), we have

L2U(x, y, i, t)

≤ −|x|2 + γ1|y|2 − γ2|x|p + γ3|y|p

− |x|q1+1 + γ4|x|q1−1|y|2 − γ5|x|p+q1−1 + γ6|x|q1−1|y|p

≤ −|x|2 + γ1|y|2 − γ2|x|p + γ3|y|p +
2γ4

q1 + 1
|y|q1+1

−
(

1− γ4(q1 − 1)

q1 + 1

)
|x|q1+1 +

γ6p

p+ q1 − 1
|y|p+q1−1

−
(
γ5 −

γ6(q1 − 1)

p+ q1 − 1

)
|x|p+q1−1. (3.12)

By [11, Theorem 3.1] and condition (3.7), we know that
the controlled SDDE (1.2) is asymptotically stable. In
other words, the control function u(x, i, t) satisfying
Rules 3.1 and 3.3 will stabilise the given SDDE if the
feedback control is of non-delay, i.e., u(x(t), r(t), t).
However, as explained in Section 1, it is better to use
the delay state feedback control u(x(t−τ), r(t), t). That
is, the controlled SDDE should be of the form (1.3) in-
stead of (1.2). Comparing (1.3) with (1.2), we observe
that if τ , the time lag between the time when the state
is observed and that when the feedback control reaches
the system, is sufficiently small, equation (1.3) should
behave similarly to what equation (1.2) performs (i.e.,
stable). To describe ”sufficiently small” more precisely
while to cope with the highly nonlinear nature of the
underlying SDDE, we now propose one more rule.

Rule 3.4 Find eight positive constants ρj (1 ≤ j ≤ 8)
with ρ4 > ρ5 and ρ6 ∈ (0, 1), and a function W ∈
C(Rn;R+), such that

L2U(x, y, i, t) + ρ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ ρ2|f(x, y, i, t)|2 + ρ3|g(x, y, i, t)|2

≤ −ρ4|x|2 + ρ5|y|2 −W (x) + ρ6W (y), (3.13)
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and ρ7|x|p+q1−1 ≤W (x) ≤ ρ8(1 + |x|p+q1−1) (3.14)

for all (x, y, i, t) ∈ Rn ×Rn × S ×R+.

Let us now explain why it is always possible to meet this
rule. In fact, by Assumption 2.1 and (3.12), we have that

the left-hand-side terms of (3.13)

≤ L2U(x, y, i, t) + 8ρ1θ
2
i |x|2 + 2ρ1(q1 + 1)2θ̄2

i |x|2q1

+ 4ρ2K
2(|x|2 + |y|2 + |x|2q1 + |x|2q2)

+ 4ρ3K
2(|x|2 + |y|2 + |x|2q3 + |x|2q4). (3.15)

Recalling (2.5), we have p+ q1−1 ≥ 2(q1 ∨ q2 ∨ q3 ∨ q4)
and hence

u2qi ≤ u2 + up+q1−1, ∀u ≥ 0, 1 ≤ j ≤ 4.

Making use of this inequality and (3.12), we can always
choose ρ1, ρ2 and ρ3 sufficiently small such that

the left-hand-side terms of (3.13)

≤ −ρ4|x|2 + ρ5|y|2 − ξ1|x|p + ξ2|y|p − ξ3|x|q1+1

+ ξ4|y|q1+1 − ξ5|x|p+q1−1 + ξ6|y|p+q1−1, (3.16)

where ρ4, ρ5 and ξj (1 ≤ j ≤ 6) are all positive numbers
such that ρ4 > ρ5 and ξ2k−1 > ξ2k for 1 ≤ k ≤ 3. Letting

W (x) = ξ1|x|p + ξ3|x|q1+1 + ξ5|x|p+q1−1 for x ∈ Rn

and ρ6 = max1≤k≤3 ξ2k/ξ2k−1, ρ7 = ξ5, ρ8 = ξ1+ξ3+ξ5,
we see that ρ6 ∈ (0, 1),

the left-hand-side terms of (3.13)

≤ −ρ4|x|2 + ρ5|y|2 −W (x) + ρ6W (y), (3.17)

and ρ7|x|p+q1−1 ≤W (x) ≤ ρ8(1 + |x|p+q1−1).

We have therefore shown that it is always possible to
meet Rule 3.4. Of course, in application, we need to make
full use of the special forms of both coefficients f and g
to choose ρ1 - ρ5 more wisely in order to have a larger
bound on τ as stated in our final rule.

Rule 3.5 The time lag τ satisfies

τ <

√
(ρ4 − ρ5)ρ1

2β2
, τ ≤

√
ρ1ρ2√
2β
∧ ρ1ρ3

β2
∧ 1

4β
. (3.18)

4 Stabilisation

4.1 H∞ stabilisation

We can now form our first theorem on the stabilisation
by the delay feedback control.

Theorem 4.1 Under Assumptions 2.1 and 2.2, we can
design a control function u to satisfy Rules 3.1 and 3.3
and then find eight positive constants ρj (1 ≤ j ≤ 8)
and a function W ∈ C(Rn;R+) to satisfy Rule 3.4. If we
further make sure τ to be sufficiently small for Rule 3.5
to hold, then the solution of the controlled SDDE (1.3)
with the initial data (2.1) has the property that

∫ ∞
0

E|x(t)|q̄dt <∞, ∀q̄ ∈ [2, p+ q1 − 1]. (4.1)

That is, the controlled system (1.3) is H∞-stable in Lq̄

for any q̄ ∈ [2, p+ q1 − 1].

Proof. To make the proof more understandable, we di-
vide it into a number of steps.

Step 1. We will use the method of Lyapunov functionals
to prove the theorem (please see, e.g., [4,7–10,14] for
more details on the method). For this purpose, we define
two segments x̂t := {x(t + s) : −2δ ≤ s ≤ 0} and
r̂t := {r(t + s) : −2δ ≤ s ≤ 0} for t ≥ 0. For x̂t and
r̂t to be well defined for 0 ≤ t < 2δ, we set x(s) = x0

and r(s) = r0 for s ∈ [−2δ, 0). The Lyapunov functional
used in this proof has the form

V (x̂t, r̂t, t) = U(x(t), r(t)) + I(t) (4.2)

for t ≥ 0, where U has been defined by (3.10), ζ is a
positive constant to be determined later and

I(t) = ζ

∫ 0

−τ

∫ t

t+s

[
τ |f(x(v), x(v − δ), r(v), v)

+ u(x(v − τ), r(v), v)|2

+ |g(x(v), x(v − δ), r(v), v)|2
]
dvds. (4.3)

Here we set f(x, y, i, v) = f(x, y, i, 0), u(x, i, v) =
u(x, i, 0), g(x, y, i, v) = g(x, y, i, 0) for (x, i, y, v) ∈
Rn × Rn × S × [−2δ, 0). We claim that V (x̂t, r̂t, t) is
an Itô process on t ≥ 0. In fact, by the generalised Itô
formula (see, e.g., [25]), we have

dU(x(t), r(t)) = dM(t) +
(
L3U(x(t), x(t− δ), r(t), t)

− (2θi + (q1 + 1)θ̄i|x|q1−1)xT (t)[u(x(t), r(t), t)

− u(x(t− τ), r(t), t)]
)
dt (4.4)

for t ≥ 0, where M(t) is a continuous local martingale
with M(0) = 0 (the explicit form of M(t) is of no use in
this paper so we do not state it here but it can be found
in [25, Theorem 1.45 on page 48]) and L3U : Rn×Rn×
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S ×R+ → R with respect to (1.3) is defined by

L3U(x, y, i, t)

= 2θi

[
xT [f(x, y, i, t) + u(x, i, t)] +

1

2
|g(x, y, i, t)|2

]
+ (q1 + 1)θ̄i|x|q1−1xT [f(x, y, i, t) + u(x, i, t)]

+
q1(q1 + 1)θ̄i

2
|x|q1−1|g(x, y, i, t)|2

+
(q1 + 1)(q1 − 1)

2
θ̄i|x|q1−3|xT g(x, y, i, t)|2

+

N∑
j=1

γij(θj |x|2 + θ̄j |x|q1+1).

On the other hand, the fundamental theory of calculus
shows

dI(t) =
(
ζτ
[
τ |f(x(t), x(t− δ), r(t), t)

+ u(x(t− τ), r(t), t)|2 + |g(x(t), x(t− δ), r(t), t)|2
]

− ζ
∫ t

t−τ

[
τ |f(x(v), x(v − δ), r(v), v)

+ u(x(v − τ), r(v), v)|2

+ |g(x(v), x(v − δ), r(v), v)|2
]
dv
)
dt. (4.5)

Summing (4.4) and (4.5), we see that V (x̂t, r̂t, t) is an
Itô process as claimed, while also noting L3U(x, y, i, t) ≤
L2U(x, y, i, t) (the function L2U has been defined by
(3.11)), we get

dV (x̂t, r̂t, t) ≤ L3V (x̂t, r̂t, t)dt+ dM(t), (4.6)

where

L3V (x̂t, r̂t, t) = L2U(x(t), x(t− δ), r(t), t)
− [2θr(t) + (q1 + 1)θ̄r(t)|x(t)|q1−1]xT (t)

× [u(x(t), r(t), t)− u(x(t− τ), r(t), t)]

+ ζτ
[
τ |f(x(t), x(t− δ), r(t), t) + u(x(t− τ), r(t), t)|2

+ |g(x(t), x(t− δ), r(t), t)|2
]

− ζ
∫ t

t−τ

[
τ |f(x(v), x(v − δ), r(v), v)

+ u(x(v − τ), r(v), v)|2 + |g(x(v), x(v − δ), r(v), v)|2
]
dv.

(4.7)

Moreover, by Theorem 3.2 and Assumptions 2.1 and 2.2
as well as Rules 3.1 and 3.4, it is straightforward to see
that

sup
0≤t<∞

E|L3V (x̂t, r̂t, t)| <∞. (4.8)

Step 2. In this step we will estimate L3V (x̂t, r̂t, t). Let
ζ = β2/ρ1, (please recall that ζ is a free parameter in
the definition of the Lyapunov functional). By Rule 3.1,
we have

− [2θr(t) + (q1 + 1)θ̄r(t)|x(t)|q1−1]xT (t)

× [u(x(t), r(t), t)− u(x(t− τ), r(t), t)]

≤ ρ1

[
2θr(t)|x(t)|+ (q1 + 1)θ̄r(t)|x(t)|q1

]2
+

β2

4ρ1
|x(t)− x(t− τ)|2. (4.9)

By Rule 3.5, we also have

2ζτ2 ≤ ρ2 and ζτ ≤ ρ3. (4.10)

It then follows from (4.7) along with Rule 3.4 and in-
equality (3.2) that

L3V (x̂t, r̂t, t)

≤ −ρ4|x(t)|2 + ρ5|x(t− δ)|2 −W (x(t)) + ρ6W (x(t− δ))

+
2τ2β4

ρ1
|x(t− τ)|2 +

β2

4ρ1
|x(t)− x(t− τ)|2

− β2

ρ1

∫ t

t−τ

[
τ |f(x(v), x(v − δ), r(v), v)

+ u(x(v − τ), r(v), v)|2 + |g(x(v), x(v − δ), r(v), v)|2
]
dv.

But, noting βτ ≤ 1/4 from Rule 3.5, we have

2τ2β4

ρ1
|x(t−τ)|2 ≤ 4τ2β4

ρ1
|x(t)|2 +

β2

4ρ1
|x(t)−x(t−τ)|2.

Consequently,

L3V (x̂t, r̂t, t)

≤ −
(
ρ4 −

4τ2β4

ρ1
)|x(t)|2 + ρ5|x(t− δ)|2 −W (x(t))

+ ρ6W (x(t− δ)) +
β2

2ρ1
|x(t)− x(t− τ)|2

− β2

ρ1

∫ t

t−τ

[
τ |f(x(v), x(v − δ), r(v), v)

+ u(x(v − τ), r(v), v)|2

+ |g(x(v), x(v − δ), r(v), v)|2
]
dv. (4.11)

Step 3. Let k0 > 0 be a sufficiently large integer such that
‖ξ‖ < k0. For each integer k ≥ k0, define the stopping
time

ζk = inf{t ≥ 0 : |x(t)| ≥ k},
where throughout this paper we set inf ∅ =∞ (as usual
∅ denotes the empty set). By Theorem 3.2, we see that
ζk is increasing to infinity with probability 1 as k →∞.
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By the generalised Itô formula (see, e.g., [25, Lemma 1.9
on page 49]), we obtain from (4.6) that

EV (x̂t∧ζk , r̂t∧ζk , t ∧ ζk)

≤ V (x̂0, r̂0, 0) + E
∫ t∧ζk

0

L3V (x̂s, r̂s, s)ds
(4.12)

for any t ≥ 0 and k ≥ k0. Recalling (4.8), we can let k →
∞ and then apply the dominated convergence theorem
as well as the Fubini theorem to get

EV (x̂t, r̂t, t) ≤ V (x̂0, r̂0, 0) +

∫ t

0

EL3V (x̂s, r̂s, s)ds

(4.13)
for any t ≥ 0. By (4.11), we have

EL3V (x̂s, r̂s, s)

≤ −
(
ρ4 −

4τ2β4

ρ1
)E|x(s)|2 + ρ5E|x(s− δ)|2

− EW (x(s)) + ρ6EW (x(s− δ)) +
β2

2ρ1
E|x(s)− x(s− τ)|2

− β2

ρ1
E
∫ s

s−τ

[
τ |f(x(v), x(v − δ), r(v), v)

+ u(x(v − τ), r(v), v)|2 + |g(x(v), x(v − δ), r(v), v)|2
]
dv.

(4.14)

On the other hand, it follows from the SDDE (1.3) that

E|x(s)− x(s− τ)|2

≤ 2E
∫ s

s−τ

[
τ |f(x(v), x(v − δ), r(v), v)

+ u(x(v − τ), r(v), v)|2 + |g(x(v), x(v − δ), r(v), v)|2
]
dv.

(4.15)

Substituting (4.15) into (4.14) and then putting the re-
sult into (4.13) we get

EV (x̂t, r̂t, t)

≤ V (x̂0, r̂0, 0)−
(
ρ4 −

4τ2β4

ρ1
)

∫ t

0

E|x(s)|2ds

+ ρ5

∫ t

0

E|x(s− δ)|2ds−
∫ t

0

EW (x(s))ds

+ ρ6

∫ t

0

EW (x(s− δ))ds. (4.16)

This implies easily that

EV (x̂t, r̂t, t) ≤ C1 −
(
ρ4 − ρ5 −

4τ2β4

ρ1
)

∫ t

0

E|x(s)|2ds

− (1− ρ6)

∫ t

0

EW (x(s))ds, (4.17)

where

C1 = V (x̂0, r̂0, 0)

+ τ sup
−δ≤s≤0

[ρ5E|x(s)|2 + ρ6EW (x(s))] <∞.

By Rule 3.5, ρ4 − ρ5 − 4τ2β4/ρ1 > 0 and 1 − ρ6 > 0.
Hence∫ t

0

E|x(s)|2ds≤ C1

ρ4 − ρ5 − 4τ2β4/ρ1
,∫ t

0

EW (x(s))ds≤ C1

1− ρ6
.

Letting t→∞ and recalling (3.14), we obtain that∫ ∞
0

E|x(s)|2ds <∞ and

∫ ∞
0

E|x(s)|p+q1−1ds <∞.

(4.18)
The required assertion (4.1) follows immediately
as E|x(s)|q̄ ≤ E|x(s)|2ds + E|x(s)|p+q1−1 for any
q̄ ∈ [2, p+ q1 − 1]. The proof is therefore complete. 2

The next slightly weaker result follows directly from the
above proof but under a weaker condition.

Corollary 4.2 Under the same conditions of Theorem
4.1 except that ρ6 ∈ (0, 1) is replaced by ρ6 = 1 in Rule
3.4, then the solution of the controlled SDDE (1.3) with
the initial data (2.1) has the property that∫ ∞

0

E|x(t)|2dt <∞. (4.19)

4.2 Asymptotic stabilisation

In general, it does not follow from (4.19) that lim
t→∞

E|x(t)|2

= 0. However, this is possible in our situation. In fact,
we can even show a stronger result as described in the
following theorem.

Theorem 4.3 Under the same conditions of Theorem
4.2, the solution of the controlled hybrid SDDE (1.3) with
the initial data (2.1) has the property that

lim
t→∞

E|x(t)|q̄ = 0, ∀q̄ ∈ [2, q) (4.20)

That is, the controlled system (1.3) is asymptotically sta-
ble in Lq̄ for any q̄ ∈ [2, q).

Proof. By Theorem 3.2,

C2 := sup
0≤t<∞

E|x(t)|q <∞. (4.21)
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For any 0 ≤ t1 < t2 < ∞, using the Itô formula, by
Assumption 2.1 and Rule 3.1, we see∣∣E|x(t2)|2 − E|x(t1)|2

∣∣
≤E

∫ t2

t1

(
2K|x(t)|(|x(t)|+ |x(t− δ)|+ |x(t)|q1

)
+ 2K|x(t)||x(t− δ)|q1 + 2β|x(t)||x(t− τ)|

+K2
[
|x(t)|+ |x(t− δ)|+ |x(t)|q3 + |x(t− δ)|q4)

]2)
dt

≤
∫ t2

t1

C3

(
1 + E|x(t)|q + E|x(t− δ)|q

)
dt,

where C3 is a constant independent of t1 and t2. This,
together with (4.21), implies E|x(t)|2 is uniformly con-
tinuous in t on R+. It then follows from (4.19) that

lim
t→∞

E|x(t)|2 = 0. (4.22)

Let us now fix any q̄ ∈ (2, q). For a constant ν ∈ (0, 1),
the Hölder inequality shows

E|x(t)|q̄ ≤
(
E|x(t)|2

)ν(E|x(t)|(q̄−2ν)/(1−ν)
)1−ν

.

In particular, letting ν = (q − q̄)/(q − 2), we get

E|x(t)|q̄ ≤
(
E|x(t)|2

)(q−q̄)/(q−2)(E|x(t)|q
)(q̄−2)/(q−2)

≤ C(q̄−2)/(q−2)
2

(
E|x(t)|2

)(q−q̄)/(q−2)
. (4.23)

This, along with (4.22), implies the required assertion
(4.19). The proof is complete. 2

4.3 Exponential stabilisation

Asymptotic stabilisation discussed above shows the so-
lution of the controlled SDDE (1.3) will tend to zero
in Lq̄ asymptotically but does not show the rate of de-
cay. In this subsection, we will take a further step to
show how the delay feedback control can stabilise the
given SDDE exponentially (namely, the solution of the
controlled SDDE (1.3) will tend to zero exponentially
fast). The following theorem shows that under slightly
stronger conditions than those in Theorem 4.1 (condi-
tion (4.24) below is stronger than Rule 3.5), the delay
feedback control can stabilise the given SDDE exponen-
tially in the sense of Lq̄.

Theorem 4.4 Under Assumptions 2.1 and 2.2, we can
design a control function u to satisfy Rules 3.1 and 3.3
and then find eight positive constants ρj (1 ≤ j ≤ 8)
and a function W ∈ C(Rn;R+) to satisfy Rule 3.4. If we
further make sure

τ <

√
(ρ4 − ρ5)ρ1

2β2
and τ ≤

√
ρ1ρ2√
2β
∧ ρ1ρ3

β2
∧ 1

4
√

2β
,

(4.24)

then the solution of the controlled SDDE (1.3) with the
initial data (2.1) has the property that for any initial
value x(0) = x0 ∈ Rn,

lim sup
t→∞

1

t
log(E|x(t)|q̄) < 0, ∀q̄ ∈ [2, q). (4.25)

That is, the controlled SDDE (1.3) is exponentially stable
in Lq̄.

Proof. We will use the same Lyapunov functional
V (x̂t, r̂t, t) as defined by (4.2) with the same ζ = β2/ρ1.
By the method of stopping times as we did in Step 3 of
the proof of Theorem 4.1, we can show that

eεtEV (x̂t, r̂t, t) ≤ V (x̂0, r̂0, 0)

+

∫ t

0

eεsE
(
εV (x̂s, r̂s, s) + LV (x̂s, r̂s, s)

)
ds (4.26)

for all t ≥ 0, where ε is a sufficiently small positive
number to be determined later. Let

h1 = min
i∈S

θi, h2 = max
i∈S

θi, h3 = max
i∈S

θ̄i,

we then have

h1e
εtE|x(t)|2 ≤ V (x̂0, r̂0, 0) +

εβ2

ρ1
J1(t)

+

∫ t

0

eεs
(
εh2E|x(s)|2 + εh3E|x(s)|q1+1

)
ds

+

∫ t

0

eεsELV (x̂s, r̂s, s)ds, (4.27)

where

J1(t) = E
∫ t

0

eεs
(∫ 0

−τ

∫ s

s+u

[
τ |f(x(v), x(v − δ), r(v), v)

+ u(x(v − τ), r(v), v)|2

+ |g(x(v), x(v − δ), r(v), v)|2
]
dvdu

)
ds.

As we did in Step 2 of the proof of Theorem 4.4, we can
show that

L3V (x̂s, r̂s, s)

≤ −
(
ρ4 −

4τ2β4

ρ1
)|x(s)|2 + ρ5|x(s− δ)|2

−W (x(s)) + ρ6W (x(s− δ)) +
3β2

8ρ1
|x(s)− x(s− τ)|2

− β2

ρ1

∫ s

s−τ

[
τ |f(x(v), x(v − δ), r(v), v)

+ u(x(v − τ), r(v), v)|2 + |g(x(v), x(v − δ), r(v), v)|2
]
dv.

(4.28)
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Making use of (4.15), we get

L3V (x̂s, r̂s, s)

≤ −
(
ρ4 −

4τ2β4

ρ1
)|x(s)|2 + ρ5|x(s− δ)|2 −W (x(t))

+ ρ6W (x(t− δ))− β2

4ρ1

∫ s

s−τ

[
τ |f(x(v), x(v − δ), r(v), v)

+ u(x(v − τ), r(v), v)|2 + |g(x(v), x(v − δ), r(v), v)|2
]
dv.

(4.29)

Moreover, we clearly have

E|x(s)|q1+1 ≤ E|x(s)|2 + E|x(s)|p+q1−1

≤ E|x(s)|2 + ρ−1
7 EW (x(s)). (4.30)

Substituting (4.29) and (4.30) into (4.27) yields

h1e
εtE|x(t)|2 ≤ V (x̂0, r̂0, 0) +

εβ2

ρ1
J1(t)− β2

4ρ1
J2(t)

−
(
ρ4 −

4τ2β4

ρ1
− εh2 − εh3

)∫ t

0

eεsE|x(s)|2ds

+ ρ5

∫ t

0

eεsE|x(s− δ)|2ds+ ρ6

∫ t

0

eεsEW (x(s− δ))ds

−
(

1− εh3

ρ7
)

∫ t

0

eεsEW (x(s))ds, (4.31)

where

J2(t) = E
∫ t

0

eεs
(∫ s

s−τ

[
τ |f(x(v), x(v − δ), r(v), v)

+ u(x(v − τ), r(v), v)|2

+ |g(x(v), x(v − δ), r(v), v)|2
]
dv
)
ds.

On the other hand, it is easy to see that

J1(t) ≤ τJ2(t).

We can now choose a sufficiently small ε > 0 such that

ετ ≤ 1

4
, ε(h2+h3)+ρ5e

εδ ≤ ρ4−
4τ2β4

ρ1
, ρ6e

εδ+
εh3

ρ7
≤ 1.

We can then easily show from (4.31) that

E|x(t)|2 ≤ C4e
−εt, ∀t ≥ 0, (4.32)

where

C4 = h−1
1

[
V (x̂0, r̂0, 0)

+ τ(ρ5 ∨ ρ6) sup
−δ≤s≤0

(E|x(s)|2 + EW (x(s)))
]
.

Finally, for any q̄ ∈ [2, q), by (4.23) and (4.32), we get

E|x(t)|q̄ ≤ C(q̄−2)/(q−2)
2 C

(q−q̄)/(q−2)
4 e−εt(q−q̄)/(q−2).

(4.33)

This implies the required assertion (4.25). The proof is
complete.

In general, it is not possible to imply the almost surely
exponential stability from the q̄th moment exponential
stability. However, in our situation, this is possible as
described in the following theorem.

Theorem 4.5 Let all the conditions of Theorem 4.4
hold. Then the solution of the controlled system (1.3)
with the initial data (2.1) has the property that

lim sup
t→∞

1

t
log(|x(t)|) < 0 a.s. (4.34)

That is, the controlled SDDE (1.3) is almost surely ex-
ponentially stable.

Proof. Let k be any nonnegative integer. By the Hölder
inequality and the Doob martingale inequality (see, e.g.,
[25]), we can obtain that

E
(

sup
k≤t≤k+1

|x(t)|2
)

≤3E|x(k)|2 + 3E
∫ k+1

k

(
|f(x(t), x(t− δ), r(t), t)

+ u(x(t− τ), r(t), t)|2
)
dt

+ 12E
∫ k+1

k

|g(x(t), x(t− δ), r(t), t)|2dt.

By Assumption 2.1, it is then straightforward to show
that

E
(

sup
k≤t≤k+1

|x(t)|2
)
≤ 3E|x(k)|2

+ C5

∫ k+1

k

E
(
|x(t)|2 + |x(t− δ)|2 + |x(t− τ)|2

)
dt

+ C5

∫ k+1

k

E
(
|x(t)|q̄ + |x(t− δ)|q̄

)
dt,

where q̄ = 2(q1∨q2∨q3∨q4) andC5 is a positive constant.
Noting that q̄ ∈ [2, q) by Assumption 2.2, we can apply
(4.32) and (4.33) (both of them hold for t ∈ [−δ, 0] as
well) to get

E
(

sup
k≤t≤k+1

|x(t)|2
)
≤ C6e

−ε̄k,
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where ε̄ = ε(q − q̄)/(q − 2) and C6 is another positive
constant. Consequently

∞∑
k=0

P
(

sup
k≤t≤k+1

|x(t)| > e−0.25ε̄k
)
≤
∞∑
k=0

C6e
−0.5ε̄k <∞.

The well-known Borel-Cantelli lemma (see, e.g., [25,
p.10]) shows that for almost all ω ∈ Ω, there is positive
integer k0 = k0(ω) such that

sup
k≤t≤k+1

|x(t)| ≤ e−0.25ε̄k, k ≥ k0.

Hence, for almost all ω ∈ Ω,

1

t
log(|x(t)|) ≤ − 0.25ε̄k

(k + 1)
, t ∈ [k, k + 1], k ≥ k0.

This implies

lim sup
t→∞

1

t
log(|x(t)|) ≤ −0.25ε̄ < 0 a.s.

which is the required assertion. The proof is complete. 2

Let us make a number of comments to close this section.
The results established in this paper are all independent
of δ, which is the time lag of the given SDDE, but very
much dependent on τ , which is the time lag between the
time when the state is observed and the time when the
feedback control reaches the system.

Rule 3.3 describes a way how to find positive numbers θi
and θ̄i (i ∈ S) and then further to find positive numbers
ρj (1 ≤ j ≤ 8) in Rule 3.4. On the other hands, if one
can find all these positive numbers for Rule 3.4 to be
satisfied, then all of our results hold without Rule 3.3.

The control function u used in this paper is allowed to
depend on mode i, namely we use u(x, i, t). This enables
us to make use of different system structure in different
mode to design the control function more wisely. It is
possible to use a simpler control function which depends
on the state x only, namely u(x), for example, u(x) = Ax
as shown in the paragraph below Rule 3.3. Of course,
this is applicable only in the situation where the state
is observable and the feedback control can be input in
every mode. In some situation where the state of the
underlying system is not observable in some modes, we
have to design the feedback control function only on
those modes which state is observable and put no control
on the other modes. The examples discussed in the next
section illustrate these situations fully.

5 Examples

To illustrate our theoretical results, we will discuss a
couple of examples.

Example 5.1 Let us return to the hybrid SDE (2.10),
where the coefficients f and g are defined by (2.11), B(t)
is a scalar Brownian motion and r(t) is a Markov chain
on S = {1, 2} with the generator Γ defined by (2.12).
As we mentioned in Section 1, this is a simple version of
hybrid SDE models appeared frequently in finance and
population systems (see, e.g., [3,20]).

Recalling the last paragraph in Section 2, we know that
the SDDE (2.10) satisfies Assumptions 2.1 and 2.2 with
any q > 6 and p = 4, q1 = q2 = 3, q3 = 1.5, q4 = 1,
α1 = (1+0.25(q−1)2)∨(q−1), α2 = 1.25 and α3 = 0.5.

We first consider the case where the system is fully ob-
servable and controllable in both mode 1 and 2. That is,
we could use a feedback control in both modes to stabilise
the given unstable hybrid SDDE (2.10). In our notation,
we will use the control function u : R × S × R+ → R
defined by

u(x, 1, t) = −5x, u(x, 2, t) = −4x. (5.1)

Obviously, Rule 3.1 is satisfied with β = 5. By Theorem
3.2, the controlled system

dx(t) = [f(x(t), x(t− δ), r(t), t) + u(x(t− τ), r(t), t)]dt

+ g(x(t), x(t− δ), r(t), t)dB(t) (5.2)

has a unique global solution on t ≥ −δ for any initial
data ξ ∈ C([−δ, 0];R) and the solution has the property
that

sup
−δ≤t<∞

E|x(t)|q <∞ ∀q > 6. (5.3)

Let us now verify Rule 3.3. It is straightforward to show
that, for (x, y, i, t) ∈ R×R× S ×R+,

x[f(x, y, i, t) + u(x, t, i)] +
1

2
|g(x, y, t, i)|2

≤

{
−3.5x2 + 0.25y2 − 2x4 + 0.5y4, i = 1,

−2.875x2 + 0.25y2 − 1.375x4 + 0.5y4, i = 2,

and

x[f(x, y, i, t) + u(x, t, i)] +
q1

2
|g(x, y, t, i)|2

≤

{
−2.5x2 + 0.75y2 − x4 + 0.5y4, i = 1,

−2.625x2 + 0.75y2 − 1.125x4 + 0.5y4, i = 2.

Namely, (3.4) and (3.5) hold with

a1 = −3.5, b1 = 0.25, c1 = 2, d1 = 0.5,

a2 = −2.875, b2 = 0.25, c2 = 1.375, d2 = 0.5,

ā1 = −2.5, b̄1 = 0.75, c̄1 = 1, d̄1 = 0.5,

ā2 = −2.625, b̄2 = 0.75, c̄2 = 1.125, d̄2 = 0.5.
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Moreover,

A1 =

(
8 −1

−1 6.75

)
and A2 =

(
11 −1

−1 11.5

)
,

which are both M-matrices. By (3.8), we then have

θ1 = 0.1462, θ2 = 0.1698, θ̄1 = 0.0996, θ̄2 = 0.0956.

Consequently,

γ1 = 0.0849, γ2 = 0.4670, γ3 = 0.1698,

γ4 = 0.2988, γ5 = 0.3984, γ6 = 0.1992.

Hence (3.7) holds as well. We have therefore verified
Rule 3.3. To verify Rule 3.4, we note that the function
U defined by (3.10) has the form

U(x, i) =

{
0.1462x2 + 0.0996x4, i = 1,

0.1698x2 + 0.0956x4, i = 2.

By (3.12), we also have

L2U(x, y, i, t) ≤ −x2 + 0.0849y2 − 1.3176x4

+ 0.3192y4 − 0.3320x6 + 0.1328y6.

Moreover, we can show (by elementary calculations) that(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2 ≤ 0.1153x2 + 0.2597x4

+ 0.1587x6,

|f(x, y, i, t)|2 ≤ x2 − 4x4 + y4 + 9.3333x6 + 2y6,

|g(x, y, i, t)|2 ≤ 0.5x2 + 0.5y2 + 2x4.

Choosing ρ1 = 0.4, ρ2 = 0.01 and ρ3 = 0.45, we then
obtain

L2U(x, y, i, t) + ρ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ ρ2|f(x, y, i, t)|2 + ρ3|g(x, y, i, t)|2

≤ −0.7189x2 + 0.3099y2 −W (x) + 0.9307W (y) (5.4)

where W (x) = 0.3537x4 +0.1752x6. That is, Rule 3.5 is
satisfied with additional ρ4 = 0.7189, ρ5 = 0.3099, ρ6 =
0.9307, ρ7 = 0.1752 and ρ8 = 0.8419. Consequently,
Condition (4.24) becomes τ < 0.0071. By Theorems 4.4
and 4.5, we can therefore conclude that the controlled
system (2.10) with the control function (5.1) is not only
exponentially stable in Lq̄ for any q̄ ≥ 2 but also almost
surely exponentially stable provided τ < 0.0071.

We perform a computer simulation with δ = 0.2, τ =
0.005, the initial data x(t) = 1 + cos(t) for t ∈ [−0.2, 0]
and r(0) = 1. The sample paths of the Markov chain and
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Figure 5.1: The computer simulation of the sample paths of
the Markov chain and the solution of the controlled SDDE

(5.2) using the Euler–Maruyama method with step size
10−4.

the solution of the controlled SDDE (5.2) are plotted
in Figure 5.1. The simulation supports our theoretical
results clearly.

Example 5.2 Consider the scalar hybrid SDDE

dx(t) = f(x(t), x(t− δ), r(t), t)dt
+ g(x(t), x(t− δ), r(t), t)dB(t),

(5.5)

where the coefficients f and g are defined by

f(x, y, 1, t) = x(−2x2 + 2y), g(x, y, 1, t) = 0.3|y|3/2,
f(x, y, 2, t) = x(−1.5x2 + y), g(x, y, 2, t) = 0.1|y|3/2,

(5.6)

B(t) is a scalar Brownian motion, r(t) is a Markov chain
on the state space S = {1, 2} with its generator Γ =(
−1 1

6 −6

)
. It is easy to see that Assumptions 2.1 and

2.2 hold with q1 = 3, q2 = 2, q3 = 1, q4 = 1.5, p = 4 and
any q > 6.

Assume that the system is observable only in mode 1 but
not in mode 2 so we could only use a feedback control in
mode 1 (namely we have to set the control function to
be 0 in mode 2). Accordingly, we let the control function

u(x, 1, t) = −3x, u(x, 2, t) = 0. (5.7)

Obviously, Rule 3.1 is satisfied with β = 3. By Theorem
3.2, the controlled system

dx(t) = [f(x(t), x(t− δ), r(t), t) + u(x(t− τ), r(t), t)]dt

+ g(x(t), x(t− δ), r(t), t)dB(t) (5.8)

has a unique global solution on t ≥ −δ for any initial
data ξ ∈ C([−δ, 0];R) and the solution has the property
that

sup
−δ≤t<∞

E|x(t)|q <∞ ∀q > 4. (5.9)
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It is straightforward to show that, for (x, y, i, t) ∈ R ×
R× S ×R+,

x[f(x, y, i, t) + u(x, t, i)] +
1

2
|g(x, y, t, i)|2

≤

{
−3x2 + 1.0225y2 − x4 + 0.0225y4, i = 1,

0.5025y2 − x4 + 0.0025y4, i = 2,

and

x[f(x, y, i, t) + u(x, t, i)] +
q1

2
|g(x, y, t, i)|2

≤

{
−3x2 + 1.0675y2 − x4 + 0.0675y4, i = 1,

0.5075y2 − x4 + 0.0075y4, i = 2.

Namely, (3.4) and (3.5) hold with

a1 = −3, b1 = 1.0225, c1 = 1, d1 = 0.0225,

a2 = 0, b2 = 0.5025, c2 = 1, d2 = 0.0025,

ā1 = −3, b̄1 = 1.0675, c̄1 = 1, d̄1 = 0.0675,

ā2 = 0, b̄2 = 0.5075, c̄2 = 1, d̄2 = 0.0075.

Moreover, A1 =

(
7 −1

−6 6

)
and A2 =

(
13 −1

−6 6

)
,

which are both M-matrices. By (3.8), we then have

θ1 = 0.1944, θ2 = 0.3611, θ̄1 = 0.0972, θ̄2 = 0.2639.

Consequently,

γ1 = 0.3975, γ2 = 0.3888, γ3 = 0.0087,

γ4 = 0.5357, γ5 = 0.3888, γ6 = 0.0262.

Hence (3.7) holds as well. We have therefore verified
Rule 3.3. To verify Rule 3.4, we note that the function
U defined by (3.10) has the form

U(x, i) =

{
0.1944x2 + 0.0972x4 if i = 1,

0.3611x2 + 0.2639x4 if i = 2.

By (3.12), we also have

L2U(x, y, i, t) ≤ −x2 + 0.3975y2 − 1.1210x4

+ 0.2766y4 − 0.3801x6 + 0.0175y6.

Moreover, we can show that(
2θi|x|+(q1+1)θ̄i|x|q1

)2 ≤ 0.5215x2+1.5247x4+1.1143x6,

|f(x, y, i, t)|2 ≤ 8x4 + 4y4 + 8x6,

|g(x, y, i, t)|2 ≤ 0.045y2 + 0.045y4.

Choosing ρ1 = 0.25, ρ2 = 0.01 and ρ3 = 1, we then
obtain

L2U(x, y, i, t) + ρ1

(
2θi|x|+ (q1 + 1)θ̄i|x|q1

)2
+ ρ2|f(x, y, i, t)|2 + ρ3|g(x, y, i, t)|2

≤ −0.8696x2 + 0.4425y2 −W (x) + 0.8139W (y)
(5.10)

where W (x) = 0.6598x4 + 0.0215x6. That is, Rule 3.5 is
satisfied with additional ρ4 = 0.8283, ρ5 = 0.4425, ρ6 =
0.8139, ρ7 = 0.0215 and ρ8 = 0.4614. Consequently,
Condition (4.24) becomes τ < 0.01178. By Theorems 4.4
and 4.5, we can therefore conclude that the controlled
system (5.8) with the control function (5.7) is not only
exponentially stable in Lq̄ for any q̄ ≥ 2 but also almost
surely exponentially stable provided τ < 0.01178.

We perform a computer simulation with δ = 0.2, τ =
0.01, the initial data x(t) = 1 + cos(t) for t ∈ [−0.2, 0]
and r(0) = 2. The sample paths of the Markov chain and
the solution of the controlled SDDE (5.8) are plotted
in Figure 5.2. The simulation supports our theoretical
results clearly.
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Figure 5.2: The computer simulation of the sample paths of
the Markov chain and the solution of the controlled SDDE

(5.8) using the Euler–Maruyama method with step size
10−4.

6 Conclusion

In this paper we have discussed the stabilisation of highly
nonlinear hybrid SDDEs by the delay feedback controls.
We pointed out that there is little known on this stabil-
isation problem when the feedback control is based on
the past state although the feedback control based on
the current state has been well studied. We also pointed
out that the problem becomes even harder when the co-
efficients of the underlying hybrid SDDE do not satisfy
the linear growth condition (namely, the coefficients are
highly nonlinear). In this paper we consider a class of
hybrid SDDEs which are not stable but their solutions
are bounded in qth moment. We then propose four rules
for the control functions such that the controlled SD-
DEs become stable. These rules, to a very much degree,
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also describe a way how to design the control functions.
The stability discussed in this paper include the H∞-
stable in Lq̄, asymptotic stability in q̄th moment, qth
moment exponential stability and almost surely expo-
nential stability. The key technique used in this paper is
the method of Lyapunov functionals. A couple of exam-
ples and computer simulations have been used to illus-
trate our theory.
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