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Abstract. We consider a group of computation units
trying to cooperatively solve a distributed optimization
problem with shared linear equality and inequality con-
straints. Assuming that the computation units are commu-
nicating over a network whose topology is described by a
time-invariant directed graph, by combining saddle-point
dynamics with Lie bracket approximation techniques we
derive a methodology that allows to design distributed
continuous-time optimization algorithms that solve this
problem under minimal assumptions on the graph topol-
ogy as well as on the structure of the constraints. We
discuss several extensions as well as special cases in which
the proposed procedure becomes particularly simple.

1. Introduction

Driven by new applications and advancing communica-
tion technologies, the idea of solving optimization prob-
lems in a distributed fashion using a group of agents in-
terchanging information over a communication network
has gained a lot of interest during the last decades. Ap-
plication examples include, among others, optimal power
dispatch problems in smart grids [2], distributed machine
learning [3] or formation control problems [4]. Besides sev-
eral results on distributed computation [5], controllability
and stabilization [6, 7, 8], there also exists a vast body of
literature on distributed optimization algorithms, both in
discrete- [9, 3] and continuous-time [10, 11, 12, 13, 14, 15],
where in the present work we will focus on the latter one.

*  This article is a sligthly extended version of [1] with the follwing ad-
ditions: an extra illustration in Figure 2, an additional result Lemma 4,
some supplementary details on formal brackets in Appendix A.6, a
section on filtered sadle-point dynamics (Section 4.4), a slightly ex-
tended example which illustrates the effect of such filtered dynamics
and a proof of Lemma 1.

While in most of the works a consensus-based approach is
used where all agents aim to agree on a common solution
of the overall optimization problem, in the last years other
solutions have been proposed as well [13]. However, it
is usually assumed that the underlying communication
network is of undirected nature or is weight-balanced and
it has turned out that establishing distributed optimiza-
tion algorithms in the presence of directed communication
structures is much more difficult. While there exist some
approaches aiming to address this problem [14, 15], these
are limited to unconstrained optimization problems using
a consensus-based approach.

The contribution of this work is to provide a unified
framework that allows the design of continuous-time dis-
tributed optimization algorithms for a very general class
of constrained optimization problems under mild assump-
tions on the possibly directed underlying communication
network. The main idea of our approach is to employ
classical saddle-point dynamics with proven convergence
guarantees in a centralized setting and derive distributed
approximations thereof. To this end, we follow a two-
step procedure where we first propose suitable Lie bracket
representations of saddle-point dynamics and then use
ideas from geometric control theory to design distributed
approximations thereof. This idea has already been em-
ployed in previous works using a consensus-based ap-
proach [16] and for more general optimization problems
with linear equality constraints in a gradient-free setting
[17]. However, the focus in both works was on the first
step of rewriting the saddle-point dynamics and the sec-
ond step of designing distributed approximations was
rarely treated. In the present paper we further contribute
to both steps: on the one hand, we extend the class of
optimization problems the approach is applicable to, and,
on the other, we present an algorithm for designing suit-



able approximations. While we limit ourselves to convex
optimization problems with linear equality and inequality
constraints, we emphasize that the same techniques may
be used for a much larger class of optimization problems,
see [18]. We further emphasize that the main goal of this
work is not to provide distributed algorithms ready to
be implemented in practical applications but to present
a general framework that in principle allows addressing
several limitations common in distributed optimization
and control problems.

2. Preliminaries

Notation. We let N denote the set of non-negative inte-
gers and let N+ o be the set of positive integers. Similarly,
we denote by R” the set of n-dimensional real vectors,
by R’ ; those with non-negative entries and by R ; those
with positive entries. We further write C?, p € N, for
the set of p-times continuously differentiable real-valued
functions. The gradient of a function f : R" = R, f € cl,
with respect to its argument x € R", will be denoted by
Vf : R" — R"; we often omit the subscript, if it is clear
from the context. We denote the (i, j)th entry of a matrix
A € R™" by a;;, and sometimes denote A by A = [a;].
The rank of A is denoted by rank(A). We use ¢; to de-
note the real vector with the ith entry equal to 1 and all
other entries equal to 0, where the dimension should be
clear from the context, and also use the short-hand no-
tation 1, = [1,... ,1]Te R". For a vector A € R" we let
diag(A) € R"*" denote the diagonal matrix whose di-
agonal entries are the entries of A. We denote the sign
function by sgn : R — {—1,0,1}, where sgn(—a) = —1,
sgn(a) = 1 for any a > 0 and sgn(0) = 0. For a vector
x = [x1,...,x,)7 € R"and a finiteset S C {1,...,n}, we
denote by xs the set of all x; with i € 5. We also denote
the complement of a set S C R" by 5°.

Given two continuously differentiable vector fields ¢; :
R" — R" and ¢, : R” — R", the Lie bracket of ¢; and ¢»
evaluated at x is defined to be

(#1,92(0) 1= (g (1)~ B (ga). ()

Observe that the Lie bracket is a bilinear skew-symmetric
operator that fulfills the Jacobi-identity, see also [19]. For
a set of vector fields ® = {¢1,¢2,...,pm}, ¢i : R* — R”,
¢; € C1, we denote by LBr(®) the set of Lie brackets gen-
erated by ®. For an (iterated) Lie bracket B = [By, By],
B1, B, € LBr(®), we then let left(B) = By, right(B) = B,
denote the left and right factor of B, respectively. We
note that the left and right factor are not uniquely defined
for Lie brackets since one Lie bracket can have multiple
representations; in fact, to obtain uniqueness, we would
need to define these operators on the set of formal brack-
ets of indeterminates. The interested reader is referred

to Appendix A.6 or a standard textbook such as [19]
for some more details on this subject. In the follow-
ing we accept this abuse of notation to avoid the formal
overhead and assume that, whenever left(B), right(B) are
used for Lie brackets B € LBr(®), the bracket B has to
interpreted as a formal bracket, and we assume the formal
bracket representation to be given. As an example, for
the left and right factor we distinguish between the two
brackets [¢1, [¢1, ¢2]] and [[p2, 1], ¢1] which are equiva-
lent as brackets in LBr(®) but not equivalent as formal
brackets where each bracket is a word consisting of the
symbols ¢, ¢2, the brackets, as well as the comma. We
further define the degree of a Lie bracket B € LB(®P)
as 6(B) = bo(B) and the degree of the kth vector field,
k=1,2,...,M,as é(B) = 5{¢k}(B), where

58— |1 ifBeS
S\ 5s(left(B)) + ds(right(B)) otherwise,

with § € ®. Again, we note that formally we would
require to define the degree on the set of formal brackets
for it to be mathematically precise.

Basics on graph theory. We recall some basic notions on
graph theory, and refer the reader to [20] or other standard
references for more information. A directed graph (or
simply digraph) is an ordered pair G = (V, &), where
V ={vy,02,...,04}, 0; # vj for i # j, is the set of nodes
and & C V x V is the set of edges, ie. (v;,v;) € & if
there is an edge from node v; to v;. In our setup the edges
encode to which other agents some agent has access to, i.e.
(vi, Uj) € £ means that node v; receives information from
node v;. We say that node v; is an out-neighbor of node v;
if there is an edge from node v; to node v;. The adjacency
matrix A = [a;;] € R"*" associated to G is defined as

1
ai]-: 0

We also define the out-degree matrix D = [d;;] associated
to G as

ifi #jand (vi,v]-) €é,
otherwise.

@)

ifi=j )

di = {EZ—1 aAjk
1 .
0 otherwise.
Finally, we call G = D — A = [g;;] € R"*" the Laplacian
of G. A digraph is said to be undirected if (v;,v;) € &€
implies that (v]-, v;) € &, or, equivalently, if G = GT.
Further, a digraph G is called weight-balanced if 11 G = 0.
A directed path in G is a sequence of nodes connected by
edges, and we write p; ;. = (v;,|v;,| ... |v;,) for a path from
node v;, to node v; . We further denote by head(p;,;,) = i1
and tail(p;,;,) = ir the head and the tail of a path p;;,



respectively. We also let £(p;,;,) = r — 1 denote the length
of the path. A digraph G is said to be strongly connected
(or simply connected in case of undirected graphs) if there
is a directed path between any two nodes. For a path p;;
from node v; to node v; we denote by subpath,, (p;;) and
subpath,;(pjj) the set of all subpaths of p;; (not including
pij itself) which, respectively, start at v; or end at v;. Given
a subpath g € subpath;, (p;;), we denote by 4° the path in
subpath.j(pij) whose composition with g gives p;;.

3. Problem setup

Consider an optimization problem of the form

min F(x) = 3 F(x)

st ax—b;=0,
cix —d; <0,

4
€ Teq C {1,2,...,1}, @)

ie Iineq C {1,2,...,1’1},

where x = [Xl,. . .,xn]T c R", a;,c; € Rlxn[ birdi € R,
andthe F;: R - R, F; € C2?, are assumed to be strictly
convex functions. We assume further that the feasible set
of (4) is non-empty; thus, there exists a unique solution
x* € R" to (4).

The problem can be interpreted as having n computa-
tion units or agents available, each one trying to optimize
its own objective function F; while, if i € Zineq o1 i € Zeq,
respecting the ith global constraints among all agents. It is
reasonable to assume that the constraints are associated to
the agents in such a way that the constraint corresponding
to agent i involves its own state. This is ensured by the
following assumption on the set of constraints:

Assumption 1. For each i € Z¢q, if a; # 0, then a;e; # 0;
and, for each i € Zineq, if ¢; # 0, then c;e; # 0. °

It should be noted that, merely for the ease of presen-
tation, we limit ourselves to the case that each agent has
at most one equality and one inequality constraint but
the following results apply with some modifications to
the case where each agent has several constraints, i.e.,
a; € RMixn . ¢ R™>" for some m;, M; € N-j. Our
intention is to focus on presenting our results in a more
understandable fashion and avoid complicated notations
introduced when considering more general problem se-
tups. Still, we emphasize that the framework is applicable
in fairly general situations, and we refer the reader to [18],
where we focus on the discussion of the class of distributed
optimization problems the methodology can in principle
be applied to.

Going along that direction of a simpler notation, we
augment the problem (4) by non-restrictive constraints

such that exactly one equality and one inequality con-
straint is associated to each agent, i.e., we consider the
augmented problem

min  F(x) = ZFi(xi)

X

)

s.t ajx —b; =0, i=1,2,...,n,

cix—di <0,

where a; = 0,b; = 0 fori ¢ Zeq and ¢; = 0,d; > 0 for
i & Tineq, such that the feasible set as well as the solution
of (4) and (5) are the same.

In the following, we wish to design continuous-time
algorithms that “converge” to an arbitrarily small neigh-
borhood of the solution of (5) and that can be implemented
in a distributed fashion, i.e., each agent only uses informa-
tion of its own state and objective function F; as well as
those of its out-neighbors, where out-neighboring agents
are defined by a communication graph.

More precisely, we assume that the communication
topology is given by some directed graph G = (V, &),
where V = {v1,v,,...,0,} is a finite set of nodes and
& C V x V is the set of edges between the nodes. In our
setup, the nodes play the role of the n agents and the
edges define the allowed communication links between
the agents, i.e., if there exists an edge from agent i to agent
j, then agent i has access to the state of agent j. Using the
graph Laplacian G = [g;j] associated to G, we then have
the following definition of a distributed algorithm:

i=1,2,...,n,

Definition 1. We say that a continuous-time algorithm
with agent dynamics of the form

zj = fi(t,2), (6)

ji=12,...,N,z= [7:1,22,...,7:]\]]T € RN,f]- RxRN
R, is distributed w.r.t. the graph G if it can equivalently be
written as

zj = filt.zv ), 7)
where V(i) := {j = 1,2,...,N : g;j # 0} is the set of
indices of all out-neighboring agents. .

In words, f; may only depend on z; and all states z;
whose corresponding agent j have a communication link
to agent j, i.e., the algorithm obeys the communication
topology defined by the directed graph G.

Our approach relies on the use of saddle-point dynam-
ics, i.e., algorithms that utilize the saddle-point property of
the Lagrangian. The Lagrangian L : R" x R" x RZ; — R
associated to (5) is given by

L(x,v,A) (Fi(x;) + vi(aix — bj) + Ai(cix — d;))

Il
™=

I
—_

=F(x)+v'(Ax—b)+ A" (Cx —d), 8)



where we have used the stacked matrices

C =[a" ... c]', d =[d ... d",

A =" ... anT]T, b = ... bn]T,

A=A AT, vo=[u o owll,
)

with v € R?, A € R" being the associated Lagrange multi-
pliers. Here, a point (x*,v*,A*) € R" x R" x R%, is said
to be a (global) saddle point of L if for all x € R", v € R",
A € RY ) we have

L(x*,v,A) < L(x*,v*,A*) < L(x,v*,A™). (10)

It is well-known that if the Lagrangian has some saddle
point (x*, v*, A*), then x* is a solution of (5). In the present
setup, since (5) is a convex problem and the feasible set
is non-empty, the existence of a saddle point is ensured
(cf., e.g., [21]) such that finding a saddle point of L is
equivalent to finding a solution to (5). We further require
the following regularity assumption to hold:

Assumption 2. The constraints in (4) fulfill the
Mangasarian-Fromovitz constraint qualifications at the
optimal solution x*, i.e., the vectors a;, i € Zeq, are linearly
independent and there exists g € R” such that c;q < 0 for
all i € Zipeq for which ¢;x* —d; = 0 and a;9 = 0 for all
i € Leg- °

This assumption ensures that the set of saddle points of
the Lagrangian associated to (4) is non-empty and com-
pact, see [22, Theorem 1]. Note that, due to the augmenta-
tion of the optimization problem, the set of saddle points
of the Lagrangian L associated to (5) is in general not com-
pact, an issue that we address by modifying the saddle-
point dynamics. To be more precise, in the following
Lemma we propose a modified saddle-point dynamics,
which is an extension of the one proposed in [12], and
show asymptotic stability of a compact subset of the set of
saddle points; a proof is presented in Appendix A.1.

Lemma 1. Consider the following modified saddle-point
dynamics

X ==V L(x,v,A) = —VFx)-Av—C'A (11a)
v=VyL(x,v,A) +w(v) =Ax—b+w(v) (11b)
A = diag(A)V, L(x,v,A) = diag(A)(Cx —d), (11c)

where F: R" - R, F € C2, is strictly convex and where
w : R" — R" is defined as

w(v) = _Z?:l,iéleq vie; (12)
with e; € R” being the ith unit vector. Let
M :={(x,v,A) e R" x R" x R, : (13)

x =x",v; = 0fori ¢ Zeq, Aj = 0 for i ¢ Tineq,and
L(x*,v,A) < L(x*,v*,A*) < L(x,v*,A")}

and suppose that Assumption 2 holds. Then the set M is
asymptotically stable for (11) with region of attraction

R(M) C{(x,v,A) e R" xR"xR": A e RLy}. (14)
[ ]

Remark 1. Since a point in M might as well lie on the
boundary of R(M), one needs to modify the correspond-
ing notions of stability accordingly, by restricting the
neighborhoods to the set of admissible initial conditions
(cf. [23]); from now on, we assume that this is understood,
without stating it. .

Remark 2. The function w in (11b) is usually not included
in saddle-point dynamics. Here, it is used to render the dy-
namics of the additional dual variables introduced due to
the augmentation asymptotically stable. It should be noted
that the augmentation might lead to a significantly larger
state vector for (11) compared to the saddle-point dynam-
ics corresponding to the original optimization problem
(4). However, it should also be kept in mind that, be-
sides possible performance benefits (cf. the discussion
after Lemma 3), the main reason for the augmentation is a
significantly simpler notation and it is not crucial for the
following methodology to apply (cf. Remark 3). .

While (11) converges to a solution of (4), it is in general
not distributed in the aforementioned sense. Note that
if the underlying graph is undirected and the constraints
are only imposed between neighboring agents, then (11)
is indeed distributed. In the following, we wish to derive
dynamics that “approximate” those of (11) arbitrarily close,
in a sense that will be made precise shortly, and are addi-
tionally distributed, even when the underlying graph is
directed. To be more precise, we consider agent dynamics
of the form

v =y (& Xy iy M) (15b)
A = ugi(t, [xf\/(i),VK/(i),Aj'\/(,-)]), (15¢)

wherei =1,2,...,n,0 € Ry is a parameter and

is the set of indices of all out-neighboring agents of the
ith agent. Note that the state of the ith agent comprises of
(x7,v7, A7) and (15) is obviously distributed according to
Definition 1. Our objective is then to design functions u{ ;,
%v ”K,i' i =1,2,...,n, parametrized by ¢ € R+, such
that the trajectories (x7(t),v7(t),A7(t)) of (15) uniformly
converge to the trajectories (x(t),v(t), A(t)) of (11) with
increasing o. To this end, the main idea of the proposed
methodology is to rewrite the right-hand side of (11) in



terms of Lie brackets of admissible vector fields, i.e., vector
fields that can be computed locally by the nodes, and
then employ ideas from geometric control theory to derive
suitable approximations.

4. Main results

Consider the saddle-point dynamics (11). As a first step,
we separate the right-hand side into admissible and non-
admissible vector fields, where admissible refers to the
part of the dynamics that can be computed locally by the
nodes. For the ease of presentation, we assume in the
following that the constraints of agent i are only imposed
to its out-neighboring agents, i.e., we impose the following
assumption on the constraints:

Assumption 3. For a; = [a;1,...,ai,], ¢; = [ci1,---,Cinl,
i=1,2,...,n,wehave foreachj=1,...,n, that ajj #0
or ¢jj # O only if g;; # 0. .

In other words, we thereby assume that the con-
straints match the communication topology induced by
the graph!. Under this assumption, the right-hand side
of (11b), (11c) is admissible, while parts of the right-hand
side of (11a) are not. Note that the gradient of F is admis-
sible, since F is a separable function; the remaining terms,
however, are not necessarily admissible, since the underly-
ing communication graph is directed. Now, for A = [a;;],
C= [CZ-]-}, we define the admissible part of AT, CT as

n n

Asam =YY Sgn(|gij|)ajiei€jTr (17)
i=1j=1

- n n T

Cadm = ) ngn(|gij|)cjieiej , (18)
i=1j=1

where sgn : R — {—1,0,1} is the sign function and e; is
the ith unit vector. Observe that A,4m, Cadm correspond to
the admissible part of AT and C', respectively. We then
let

Arest = AT - Aadm/ Crest = CT - Cadmr (19)
and define the state of (11) as
z:=[x",vT,AT]T e R%", (20)

Hence, we can write the saddle-point dynamics (11) as

—ArestV — CrestA

Z = fadm(2) + 0 ’ (21)
0

1 It should be noted that the following results can be extended to prob-
lems where this assumption does not hold, cf. [18], Remark 5 as well
as the example in Section 5.2.

where foqm : R¥ — R3" is defined as

—VF(X) - Aadmv - C~aclm)L
Ax —b+w(v) . (22
diag(A) (Cx —d)

fadm (Z) =

Here, faqm is admissible whereas the second term on the
right-hand side of (21) is not. The essential idea to de-
rive suitable distributed approximations is to rewrite the
non-admissible part in terms of Lie brackets of admissible
vector fields; we will elaborate on this in what follows
next.

4.1. Rewriting the non-admissible vector
fields

We first define the index set
(i) :={i,n+1i2n+i}, (23)

wherei = 1,2,...,n, associating the components of z to
the ith agent, i.e., Z7(i) is the state of agent i. We then define

a set of vector fields hi,]- (R 5 R, i,j=1,2,...,3n,as
hi,j (Z) = ziej, (24)

where ¢; € R3" is the jth unit vector. Observe that hi;is an
admissible vector field if and only if there exist ¢, k such
thati € Z(¢),j € Z(k) and gxs # 0. Before we present a
general construction rule, let us first illustrate the main
idea by means of a simple example.

Example 1. Consider the graph shown in Figure 1 with
n = 5nodes. Let h; ; be defined as in (24) and observe that
hy43,n+2, Iy 2,1 are admissible. Consider the Lie bracket

[hn+3,n+2/ hn+2,1] (Z)

T T
= €1€,42Zn+3Cn+2 — €n+26y43Z2n+2€1
= Zpy3€1, (25)

which, according to (24), is equal to 1,43 1(z), i.e., a non-
admissible vector field. Given the graphical representation
in Figure 1, this can be interpreted as a “fictitious” edge
from agent 1 to agent 3, generated by the Lie bracket of
two admissible vector fields. This observation is of key
importance in the rest of the paper. More generally, we
can observe that

[hij hix) (z) = hix(z), (26)
foranyi,j,k=1,2,...,3n. °
Next, we generalize this idea. Let p;; = (v;| ... [v;,) be

apathin G = (V,&) from node v; to node v}, i.e. i = iy,
j=irvi,...,0, €V, r>2 and let K(pi]-) =r — 1 denote
its length. We now, recursively, define a mapping Ry, x,,
ki,kp =1,2,...,3n, from a given path pij in G to the set of
vector fields on R3":



21(5)

Z7(1) Z7(2) Z7(3) Z7(4)
@ hni21 /2\ hut3n+2 /3\ han+as ® hants2n+a
. N oA NG

hn+3,1 (Z) = [h;z+3,11+2/ hn-Z,]} (Z)

e for {(p;;) = 1, we define

Ry, ko (Pif) = Py iy (27)
e for {(p;j) > 2, we define
Ry ky (Pij) = [Riy s (), Rs iy (9)], (28)

where g is any subpath in subpath,,(p;;) and s €
Z(tail(q)).

Observe that Ry, , is independent of the path p;; accord-
ing to the definition (27). However, the path comes into
play when it gets to choosing kq, k> such that the resulting
Lie bracket is a Lie bracket of admissible vector fields,
cf. Lemma 2. Using (27), (28), we next state a result that
extends the ideas from Example 1; a proof is provided
in Appendix A.2.

Lemma 2. Consider a directed graph G = (V,€) of n
nodes. Let p;; be a path between v; and vj, v;, v; € V, and
let Ry, x, be defined as in (27), (28). Then, if k1 # ko, we
have for all z € R3"

Ry, (Pif) (2) = 2k, €k, = hy 1, (2), (29)
and, if ky € Z(tail(pij)), ko € Z(head(pjj)), then

Ry, k, (pij) is a Lie bracket of admissible vector fields. o

Remark 3. The same result holds true if we drop the as-
sumption that each agent has exactly one equality and one
inequality constraint, since this only leads to a reformu-
lation of the index sets Z(i), i = 1,2, ..., n. Interestingly,
additional constraints also introduce additional degrees
of freedom in rewriting the non-admissible vector fields,

since the index set Z(tail(g)) grows. .

Remark 4. It is worth pointing out that admissible vector
fields of the form (24) are not the only ones that can be
used to rewrite (linear) non-admissible vector fields in
terms of Lie brackets of admissible vector fields. In fact,
as discussed in [18] in detail, there exists a whole class
of admissible vector fields which can be employed for
this purpose. Similar as in [24], a different choice can
positively affect the approximation quality of the resulting

distributed algorithm. .

hant53(2) = [hont52n+4 hontas)(z)

Figure 1. A communication structure with n = 5
nodes is depicted. The arrows indicate to which
agent state some agent has access to, e.g., agent 1
has access to the state of agent 2 given by z7(5) =
[x2,v2,A2] T but not the other way round. The dotted
green arrow shows a fictitious edge with associated
vector fields created by Lie brackets of admissible
vector fields.

While Lemma 2 holds for any directed path in G, from
now on we use the shortest path as it leads to iterated
Lie brackets of smallest degree. We do not discuss how
to compute the paths here since this is a problem on its
own but refer the reader to standard algorithms, see, e.g.,
[25]. Further, the choice of subpath and the state index s in
the recursion (28) is arbitrary as well. In Lemma 3 in Sec-
tion 4.2, we provide a particular choice that turns out to be
beneficial in the construction of the approximating input
sequences. The next result is an immediate consequence
of Lemma 2.

Proposition 1. Suppose that Assumption 3 holds and that
G = (V, &) isstrongly connected. Foralli,j =1,...,n,let p;,
denote a path from node v; to node vj, where v;, vj € V. Then,
withz = [x",v",AT]T, the dynamics (21) can equivalently be
written as

N

Z= fadm(z) -

I

Arestij Ru+ji (pij) (2)
=i

non
— Z Z 5rest,in2n+f'i(pij) (Z)

i=1j=1

(30)

and the right-hand side is a linear combination of Lie brackets of

admissible vector fields. .

Remark 5. If Assumption 3 does not hold the terms
[0, fadm2(2),0] ", 0,0, fadms3(z)] T may no longer be ad-
missible. While [0, f,qm2(2),0] " can be rewritten using
Lemma 2, for [0,0, fagm3(z)] " different construction tech-
niques are required, since f,4p, 3 is bilinear as a function
of x and A. However, it should be noted that it is still
possible to rewrite these terms by means of admissible

vector fields, see [18]. °

Remark 6. In general, having a strongly connected graph
is sufficient but not necessary. In fact, it is sufficient that
there exists a path from node v; to node v; for all 7, j such

that ﬁrest,ij 7é Oor Erest,ij 7é 0.

Now that we have rewritten the non-admissible vector
fields in terms of iterated Lie brackets of admissible vector
fields, there is still the issue of generating suitable func-

tions uf ;, ul ;, ug ; to be addressed. We will study this in



the next section and provide a result on how (15) and (30)
are related in terms of their stability properties under a
suitable choice of the input functions.

4.2. Construction of distributed control laws

Our main objective in this section is to elaborate on how to
construct suitable input functions u? 7 uv S ug ni such that
the trajectories of (15) uniformly converge to those of (30)
as we increase ¢. The following procedure is based on
the results presented in [26], [27], [28]. In [28], the relation
between the trajectories of a system of the form

+Z‘Pk

where fo, ¢x : RN — RN, U,f ‘R = R, zp € RN and the
trajectories of an associated extended system

Z—fo +ZUBB

BeB

27 = fo(z7 27(0) =z0,  (31)

Z ) = Zo, (32)

is studied, where B is a finite set of Lie brackets of the
vector fields ¢, k = 1,..., M, and vg € R is the corre-
sponding coefficient. In our setup, (15) will play the role
of (31) with ¢y being the admissible vector fields and (30)
plays the role of (32) with B being the set of Lie brackets
of admissible vector fields required to rewrite the non-
admissible vector fields. It is shown in [28] that, under a
suitable choice of the input functions U, the solutions of
(31) uniformly converge to those of (32) on compact time
intervals for increasing o, i.e., for each zg € RN, for each
¢ > 0 and for each T > 0, there exists ¢* > 0 such that for
allo > o* and t € [0, T] we have that

I12(t)

An algorithm for constructing suitable input functions Uy’
that fulfill these assumptions is presented in [26] as well
as in a brief version in [27]; we will follow this idea in
here, however, given that in [26] the input functions are
not given in explicit form, we exploit the special structure
of the admissible vector fields in order to simplify this
procedure and arrive at explicit formulas for a large class
of scenarios applicable to our work.

—F ()] < (33)

4.2.1. Writing the Lie brackets in terms of a P. Hall
basis

The algorithm presented in [26] requires the brackets used
in (32) to be brackets in a so-called P. Hall basis; we need
to “project” the brackets in (30) to such a basis, in the
sense that will be made precise shortly. We first recall the
definition of a P. Hall basis; we let §(B) denote the degree
of a bracket B.

Definition 2. [P. Hall basis of a Lie algebra] Let
D = {¢1,¢2,...,¢m} be a set of smooth vector fields. A
P. Hall basis PH (®) = (P, <) of the Lie algebra generated
by @ is a set P of brackets equipped with a total ordering

< that fulfills the followin erties:
[PHl] Every ¢y, k=1,2,. & I:)Mpls inP

[PH2] ¢y < ¢;if and only if k < j.
[PH3] If By, B, € Pand §(B1) < 6(By), then By < Bs.

[PH4] Each B = [By, By| € Pif and only if
[PH4.a] By,B, € Pand B; < By

[PH4.b] either §(Bp) = 1 or By = [Bs, By] for some
Bs, B4 such that B3 < By. °

Remark 7. It is understood that a P. Hall basis is well-
defined only for formal brackets of indeterminates but not
for Lie brackets of vector fields. In particular, in [PH3]
and [PH4], for Lie brackets the degree as well as the left
and right factors By and B; are not uniquely defined, see
also ??. For the purpose of a clearer presentation we avoid
this formal overhead accepting this abuse of notation and
assume that B is interpreted as a formal bracket in [PH3],
[PH4]. The interested reader is referred to Appendix A.6
for some more details on this subject.

Note that [PH2] is usually not included in the definition
of a P. Hall basis, but it is common to include it for the ap-
proximation problem at hand. Moreover, the construction
rule [PH4] ensures that no brackets are included in the
basis that are related to other brackets in the basis by the
Jacobi identity or skew-symmetry; thus the brackets are
in this sense independent. However, this does not mean
that, when evaluating the brackets, the resulting vector
fields are independent, which we will exploit later. It is
as well worth mentioning that the ordering fulfilling the
properties [PH1] - [PH4] is in general not unique, i.e., for a
given set of vector fields ®, there may exist several P. Hall
bases.

Let us now return to our setup. Let ® be given by the
set of admissible vector fields defined as

LORES {hi,]- : Jky, ko€ {1,2,...,n} such thati € Z(ky),
j € Z(k2), §phy # 0}, (34)

where £; j is defined in (24). Every bracket in the set of
Lie brackets of admissible vector fields 5B can then be pro-
jected onto some P. Hall basis PH(®P), i.e., be uniquely
written as a linear combination of elements of PH (P) by
successively resorting the brackets, making use of skew-
symmetry and the Jacobi identity, cf. Remark 8 for an
example. Such a projection algorithm is for example given
in [29] and in the following we let for any B € LBr(®)

=Y 03B (35)

BeP

projp (B



denote the unique representation of B in terms of brackets
from a P. Hall basis PH(®) = (P, <). However, for brack-
ets of higher degree, finding this representation might be
tedious and results in a large number of brackets B; we
hence propose an alternative approach. Instead of resort-
ing the complete brackets appearing in (30), we suggest to
reduce the resorting to brackets of low degree by a proper
choice of the subpaths in the construction procedure pre-
sented in Lemma 2. The main idea is to choose the subpath
g in (28) in such a way that, in each recursion step, the de-
gree of the left factor of the bracket is strictly smaller than
the degree of the right factor and such that the degree of
the left factor of the right factor is smaller than that of the
left factor of the original bracket such that [PH4.a] and
[PH4.b] are automatically fulfilled. Since the degree di-
rectly corresponds to the length of the subpath this can be
achieved by choosing the subpath appropriately, see also
Figure 2. We make this idea more precise in the following
Lemma.

Lemma 3. Consider a directed graph G = (V,€) of n
nodes. Let the set of admissible vector fields be defined
according to (34). Let some P. Hall basis PH(®) = (P, <)
be given and let projp (B) denote the unique representation
of B in terms of brackets in I, cf. (35). Let p;;, be a path
from node v;, € V tonode v;, € V and define

R ko (Pii,) (36)
Re, ki (Piyi,) if £(piyi,) =1,
= pfojP([Rkl,f(qc)r Rs,kz (17)]) if e(phir) =2,3,4,6,
[Ri, 5(9°), Rs e, ()] otherwise,
where
n—+ip, . ifl1<k;<2n
—_ el(plllr) . 1 (37)
2n + 19(17111;) if2n+1<k <3n

q frg pilif)(l’iﬂ,) E Subpathil.(pilir) (38)

0(pii) = {;f(Pilir) +1 ifé(Pili,') =24 5
|34(piyi,)] +2 otherwise,

with |a] being the largest integer value less or equal than

a € R>¢. Then Rkl,kz(lgilir)(z) = Ry, i, (Piyi,) (z) forall z €

R3" and Rkl,kz(pilir) € P for all ky € Z(tail(p;;,)) ko €

I(head(pilir)). °

A proof is given in Appendix A.3. Equation (36) and
the choice of s, g from (37), (38) can be interpreted as fol-
lows: A bracket corresponding to a path p; ; of length
larger than one is generated by dividing the path into
two complementing subpaths g and 4°, where (39) en-
sures that the resulting brackets have the desired prop-
erties [PH4]. The cases where these properties are not

ensured by that choice, i.e., £(pj,;,) € {2,3,4,6}, are han-
dled separately. Further, s corresponds, roughly speaking,
to the element of the complete state vector over which
the information is passed. As it turns out in the design
of the approximating inputs, this also corresponds to the
components of the complete state in which the perturbing
inputs are injected. It is worth pointing out, as become
clear in the proof, that the aforementioned result is in-
dependent of the choice of s as given in (37); in fact, any
€ I<i9(pi]ir>) - {ie(pi1ir)’n + ie(pi]ir)’zn + i9(Pi]ir)} can be
taken. The specific choice (37) has advantages that will be
made clear later. Observe that the degrees of freedom for
s increase with the number of constraints of each agent.
In particular, it might as well happen that there is no de-
gree of freedom if we do not augment the optimization
problem (4).

Remark 8. It should be noted that the projection can be
computed easily in the given case. To this end, first notice
that — by the choice of subpaths — for £(p;,;,) = 2,3, the
brackets admit the following structure

L) — [(PQV(P@] iff(pl-lir) =2
Rkl,kz (pzm) B { |:(Pu1/ [¢u2/¢u3]] ifE(Pili,) =3

for some a1,,/3 € N> depending on kq, k2, pj,;,, where
¢a; € ®,i =1,2,3. For such brackets, the projection on the
P. Hall basis PH(®P) = (P, <) is easily computed making
use of skew-symmetry and the Jacobi-identity and we
obtain

(40)

prij([CPal,%zD _ {[¢ﬂ1/¢ﬂ2] ifa; <ap, 41)

(ay, Pa, ] ifag > ap,
and
Projp ([¢a,, [9ar, Pas]]) = (42)
ez, (91, 905]) = [9s, [, 0a]] i a1 = min a,
[Pay, [Py, Pas ] ifa, = 121?3 a;,
— [Py, [Pass Par]] if a3 = min_a;.

Note that the brackets have been resorted in such a way
that the brackets on the right hand side of (41), (42) ful-
fill [PH3], [PH4] when interpreted as formal brackets. In
the same manner, for £(p;,;,) = 4,6, we have

[BﬂllBﬂz] if K(Pi i ) =4,
R i) = o 43
kl,kZ(P 1 r) { I:Bal, [Baz,Ba:,’]:I lf g(plllr) — 6, ( )

where the B, are Lie brackets of the ¢; with §(B,,) = 2,
i =1,2,3. The projection is then done by first projection
the inner brackets B,, on the P. Hall basis using (41) and
then resorting Ry, x, (pi,;,) as in (41), (42). .
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q = p14 € subpath;,(p16)
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P13 € subpathl.(p14)
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Figure 2. An illustration of the idea of choosing the subpaths. The complement of the subpath g° is strictly shorter than the subpath
g such that in the recursion (28) the left factor of the bracket has strictly smaller degree than the right factor, hence [PH4.a] in the
Definition of a P. Hall basis holds. Also, the subpath p34 of the subpath g is strictly shorter than g such that in the recursion (28) the
left factor of the right factor of the bracket has strictly smaller degree than the left factor of the bracket, thus making sure that [PH4.b]

holds as well.

Remark 9. It is worth pointing out, as become clear in the
proof, that the aforementioned result is independent of the
choice of s as given in (37); in fact, any s € I(ie(pZ ) =

{io( (piga) T 19(’,1 L) 2n + g, )} can be taken. Although

the partlcular choice made does not make any difference
in rewriting the non-admissible vector fields, it becomes
relevant in designing suitable approximating inputs. In
particular, the choice of s controls in which components of
the complete state the perturbing inputs are injected. The
specific choice (37) is motivated by the idea of injecting
the most perturbation in the dual variables. Observe that
the degrees of freedom for s increase with the number of
constraints of each agent. In particular, it might as well
happen that there is no degree of freedom if we do not
augment the optimization problem (4). .

We no return to study (30). Using Lemma 3 we can then
write (30) as

ii Arest,ij n+], Pl])()

i=1j=1

n
- Z Z 5rest,in2n+j,i (pij) (Z)

i=1j=1

zZ= f adm
(44)

and we can identify the set of brackets B in (32) with
B = {Rysji(pij) : Grestij # 0,i,j =1,...,n}

U {Rontj,i (pi) : Crestij # 0,4, =1,...,n}, )
where now B C P for some P. Hall basis PH = (P, <),
and for the coefficients we have

ORpgij(pif) = ~lirest 1]51gn( "-HJ(p])(l)) (46a)

VRgpesy(py) = ~CrestisSign (Rusij(pi) (1)) (46b)

We are now ready to apply the algorithm presented in [26]
to construct suitable approximating inputs.

4.2.2. Approximating input sequences

We consider the collection of all agent dynamics (15) given
by

ug(t, [x7,v7, A7)
2 =u(t,27) = |ug(t, [x7,v7, A7) |, (47)
ug(t, [x7,v7,A%)

where z7 = [x”T,v‘TT,/\”T]T, x7 € R", and 17 € ]R”,
A7 € R" are the stacked vectors of all x7,v{,AY, i =
1,2,...,n, respectively, and ux,uv,u ]R X R3” — R"
are the stacked vectors of all ux ir uv i uA Li=1,2,.
respectively. Following the algorithm presented in [26]
we let the input take the form

u’(t,z7) = faam(27) + 2 ok (27U ( (48)

where ® = {¢1, 2, ..., P} is the set of admissible vector
fields defined in (34) and where ¢y € P,k = 1,2,..., M,
for some P. Hall basis PH(®) = (P, <). Further, U

R = R,k =1,..., M, are so-called approximating input
sequences with sequence parameter ¢ € N which in the
following we aim to construct in such a way that the so-
lutions of (47) uniformly converge to those of (44) with
increasing ¢. The algorithm in [26] relies on a “superposi-
tion principle”, i.e., we group all brackets in B defined by
(45) into equivalence classes, which we later denote by E,
treat each equivalence class separately and sum the result-
ing approximating inputs up in the end. More precisely,



we associate to each class an input U} . and then let

Up(t) = ) UZe(t),
Ee€&

(49)

where £ is the set of all equivalence classes in 3. Roughly
speaking, two brackets are said to be equivalent if each
vector field appears the same number of times in the
bracket but possibly in a different order. A precise defi-
nition of the equivalence relation is given in Definition 3.
For each equivalence class E € £ and k = 1,...,M we
then define the corresponding input U} (t) as follows:

o I 6 (E) = 0: U (1) = 0.
o If§(E) = 2,5¢(E) = 1:

UYL (t) = 2v/0Re (i (wp)e ™). (50)
e If§(E)=N,Ne€{3,4,...},6(E) =1
N—1 lEl -
Ulp(t) =20 N Y Re(n7e(wg,pi)e ). (51)
=1

Here, it is 6(E) = §(B), 6(E) = 6(B) for any B € €£.
Further, wg, wg,x € R are frequencies we will specify
later, g, e : R — C are coefficients to be chosen in
dependence of the frequencies, and i € C is the imaginary
unit. However, the superposition principle does not hold
as desired and there are two major issues one has to take
care of:

1. The input sequences U ; may not interfere with each
other in a way which ensures that the superposition
principle holds; this can be dealt with by a proper
choice of the frequencies.

2. Each input sequence Uy ; not only generates the desired
brackets E N B for o — oo, but also all other equivalent
brackets in E; we can overcome this by a proper choice
of the coefficients 7, , w. The idea behind this is to
also generate the undesired equivalent brackets on pur-
pose, which itself also generate the desired brackets, in
such a way that the undesired equivalent brackets all
cancel out.

While the problem at hand does not allow for simplifica-
tions in the choice of the frequencies, the calculation of
proper coefficients #,, k, 17 can be simplified drastically by
exploiting some structural properties of the set of brackets
B. More precisely, there are two properties that turn out to
be beneficial: First, in each bracket B € B each vector field
¢k appears only once, i.e., 6 (B) € {0,1}, forany B € B,
k=1,..., M, and second, for any bracket B € B, all equiv-
alent brackets either evaluate to the same vector field as
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B or vanish, see Lemma 4. We present and discuss the
simplified calculation procedure in Appendix A.5. While
this procedure may be tedious, it is not time-consuming,
can be done off-line and is algorithmically implementable.
It is worth mentioning that the calculation of the P. Hall
basis as well as the approximating input sequences is not
distributed and requires preliminary global information;
hence, the design of the distributed algorithm is not dis-
tributed but its implementation is. It is a matter of future
research to develop distributed design procedures.

4.3. Distributed algorithm

We next state our main result which relates the solutions
of (11) with those of (47) in closed loop with the distributed
control input (48)-(51). We use the notion of practically
uniformly asymptotically stability from [23, 30], without ex-
plicitly defining it here.

Theorem 1. Consider the distributed optimization prob-
lem (4) and suppose that the communication topology
is given by a strongly connected digraph with n nodes.
Assume that F is strictly convex and suppose further
that Assumption 1 - 3 hold. Consider the agent dy-
namics (47) with the control law (48)-(51), where the pa-
rameters in the control law are chosen according to the
algorithm presented in Appendix A.5. Then, for each
¢ > 0, for each T > 0, and for each initial condition
z7(0) = z(0) = zp € R(M), with R(M) given in (14),
there exists ¢* > 0 such that for all ¢ > ¢* the following
holds: For all 0 < t < T, we have
27— =(0)] < &, 62
where 27 (t) is the solution of (47) with the control law (48)
- (51) and z(t) = (x(t),v(t),A(t)) is the solution of (11),
with initial condition z7(0) = z(0) = zg. Further, the set
M defined by (13) is practically uniformly asymptotically
stable (given 6(B) = 2 for all B € B in (45)). .

We postpone the proof of this result to Appendix A.7
and focus on its useful implications in the next section.

4.4. Filtered saddle-point dynamics

The highly oscillatory nature of the approximating in-
puts naturally leads to an undesired oscillating behavior
of the closed-loop trajectories of the distributed approxi-
mation. As discussed in Appendix A.5, the effect on the
primal variables, which are in most cases the ones one
is most interested in, can be reduced by a proper design
of the approximating inputs. Another natural remedy to
this problem is to make use of filters which we want to
briefly discuss in the following. There are different ways



of introducing filters in the feedback loop; in the follow-
ing we concentrate on the situation depicted in Figure 3,
where only the signal uy, u,, 1) are modified by means
of low-pass filters Gy, Gy, G, where Gy, Gy, G, are square
stable and proper transfer matrices of appropriate dimen-
sion. In view of a distributed implementation we restrict
ourselves to diagonal transfer matrices; hence the addi-
tional filters do not introduce new variables which are
not available to an agent in a distributed setting. These
filtered saddle-point dynamics can also be interpreted as
higher order saddle-point dynamics where the minimization
in the primal variable as well as the maximization in the
dual variables is not performed by means of a standard
gradient descent or ascent, respectively, but higher order
optimization algorithms [31] are used. A thorough analy-
sis of these filtered saddle-point dynamics is still open, but
we emphasize that, as long as the filters are “sufficiently
fast”, similar stability results can be obtained making use
of singular perturbation theory.

As to the distributed approximation of the filtered
saddle-point dynamics, only minor modifications are re-
quired. In rough words, the non-admissible terms appear-
ing in the filtered saddle-point dynamics take the same
form as the ones without a filter but, since the complete
state is augmented by the internal states of the filter, they
appear in a different component. Hence, we basically only
need to adapt the index sets (23) and augment the vector
fields (24). We illustrate the effect of additional filters by
means of an example in Section 5.2.

Ux Uy fi
G (S) fil

X

X = Uy
Uy Uy fil .
Gy (S) V= Uy fl

u B
A -—>GA(S) ML A = up g

uy = diag(A)V,L(x,v,A)
uy = VyL(x,v,A) +w(v) [+
uy = VyiL(x,v,A)

Figure 3. Saddle-point dynamics (11) with additional low-pass
filters Gy, Gy, G, .

5. Special cases and examples

In this section we discuss special cases in which the in-
puts can be given in explicit form and present several
simulation examples illustrating the previous results.

5.1. Explicit representation of approximating
inputs for low order brackets

While the algorithm given in Appendix A.5 can in general
be complicated to implement, the procedure becomes par-
ticularly simple to implement in scenarios where the set of
brackets B defined in (45) only contains brackets of degree
less or equal than three. As stated in our next result, in
this case the set of equivalent brackets only contains the
bracket itself but no other bracket, thus the second issue 2
in Section 4.2.2 does not come into play.

Proposition 2. Consider (44) and assume that all paths p;;
fulfill £(p;;) < 3. Let PH(®) = (IP, <) be any P. Hall basis
of @ defined by (34) that fulfills hy y, < hi,x, for all ky >
ky. Then, for any path p;; with {(p;;) < 3, we have that the
equivalence class corresponding to the bracket R, j ;(pi;) fulfills
Eg...ipy) = {B €P: B~ Reyjipij), B(z) # 0}

T+j,i

= {R4ji(pij)} (53)
forr € {n,2n}, where the equivalence relation ~ is defined by
Definition 3. .

Remark 10. It should be noted that the ordering of the
P. Hall basis is important for this result to hold. Further,
if Assumption 3 does not hold, different brackets are in-
troduced in (44) which still are of degree three under the
assumption that all paths p;; fulfill £(p;;) < 3 but have a
different structure. Hence, the assumption on the ordering
is in general not sufficient anymore. .

A proof of this result can be found in Appendix A 4.
The condition that all paths p;; in (44) are of length less or
equal than three holds, for example, if the longest cordless
cycle in G is of length 4. Using the result of Proposition 2
and following the algorithm presented in Appendix A.5,
we obtain

* if E = {B} = {[¢,, P, ] }:
Uy g(t) (54)

—@;—E\/ |vpwe]| cos(owet) ifk =k
= sgn(vaB)\/ZTTﬁEV |ZJBCUE| sin(awgt) ifk=ky
0 otherwise,
o if E= {B} = { [k, [Px, P1,]] }:
Uge(t) (55)

2 1
—032BE(WE K, WEL,)3 cos(cwpit) ifk =ky, k3
2 1
= —aézﬁ%(wg/klwg/bﬁ cos(cwgy,t) ifk=ky
E
0 otherwise,

where B # 0 is a design parameter. The frequencies
wg,we € R\ {0} need to be chosen such that they fulfill
the following properties:



e All frequencies wg, E € £, §(E) = 2, are distinct.

o For each E = {B} = [¢x,, [¢r, ¢x,]], the set of fre-
quencies {Wg ,, WEk,, WEk,} 1S minimally canceling,
see Definition 4.

e The collection of sets

{{wEYEee s(B)=2 {WE Ky WEkys WE ks YECE 5(E)=3 )
is an independent collection, see Definition 5.

Note that there always exist frequencies that fulfill these
properties, see [26]. Similar explicit formulas can as well
be obtained for brackets of higher degree but they become
more complicated. The main reason is that, while for
brackets of degree strictly less than four all equivalent
brackets evaluate to zero (cf. Table 1), this is no longer
the case for brackets of higher degree such that now the
second issue discussed in Section 4.2.2 needs to be taken
care of.

5.2. Simulation examples

Next, we present some simulated examples to illustrate
our results: We consider an optimization problem of the
form (4) with n = 5 agents, where, fori = 1,2,...,5,
Fi(x;) = (x; — i)?, and the constraints are given by

X1 — X< — 10,
X4+ x3<5 =3,

Xp—x3=1, (56a)

X5 — Xp = 7, (56b)

such that after augmentation we have for the matrices
that define the constraints in (5)

0 0 0 0 0 0
0 1-1 0 0 1
A=|0 0 0 0 of, b=1|0], (57)
0 0 0 0 O 0
0-1 0 0 1] 7
1 -1 0 0 0] [ —10
0 0 0 0 0 K
c=|0 0 0 0 of, d=| K|, 8
0 0 1 1 0 -3
0 0 0 0 O] K

where K = 3 but can as well be chosen arbitrary as long as
K > 0. We consider two different communication graphs
as depicted in Figure 4, where graph (b) is the same as
graph (a) except that the edge from agent 5 to agent 2
got broken, thus an additional fictitious edge is required.
While the constraints match the communication topology
of graph (a), i.e., Assumption 3 holds, this is not the case
for graph (b) due to the last constraint in (56). We first con-
sider the case that graph (a) represents the communication
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topology. In this case, the graph Laplacian is given by

2 -1 0 0 -1
0 1 -1 0 O
G=|-1 0 1 0 0 (59)
0 0-1 1 0
0-1 0-1 2
and hence
00000 10000
01000 00000
Awam=100000|,Cogm= (0000 0]. (60)
00000 00010
00001 00000
The saddle-point dynamics (21) are then given by

Z = fadm(2) — (—e3z7 — e2z11 — €221 + €3214)
= fadm (Z) + hn+2,3 (Z) + h2n+1,2 (Z)
+hny52(2) — honya(z),

(61)

where the admissible part foqm : R® — R is defined
by (22) and the remaining four vector fields are non-
admissible. Following Lemma 2 and choosing the sub-
paths as suggested in Lemma 3 we then rewrite the non-
admissible vector fields as given in the table in Figure 4.

As a next step, we need to write the Lie brackets as
a linear combination of brackets in some P. Hall basis
PH(P) = (P, <) with

P = {hn+2,n+1/ hn+l,3r h2n+1,2n+3/ h2n+3,3/ hn+5,n+1/
Myi1,n+3, Mut32s Montaonts, Montsont1, hongi13}-

In general, we can choose any P. Hall basis and then make
use of Remark 8 for the projection. However, in this case
it is also easily possible to properly choose the ordering of
the P. Hall basis in such a way that the brackets in the table
in Figure 4 are already in IP. More precisely, we only have
to make sure that 11,19 11 < Byy13, hont12n4+3 < honss 3,
husines < Mtz Mnvines < Bugsatt, honssoner <
han+13, han+520+1 < honta2n+5. Note that this is in gen-
eral not possible, since the conditions might be conflicting
and - to keep this example more general — we do not adapt
the ordering in that way in our implementation.

We are now ready to apply the algorithm presented
in Appendix A.5. We do not discuss the resulting in-
put sequences in detail here and also do not provide
the complete simulation results due to space limitations,
but instead do this for the case that the communication
graph is given by graph (b). We refer the interested
reader to employ the Matlab implementation provided
in the supplementary material. We next discuss the im-
plications of having the communication graph given by
graph (b) in Figure 4 instead of graph (a). Since the edge



Graph (b)

vector corresponding Lie bracket

field path

representation

huy23 (v3lv1]vz)
honi12 (v1]vs]o1)
n+52
honta3 (v3lo1]vs|og)

(Mpsoms1s hng1,3)
hop 1, 2n+3r honi33)
451417 P13 3 2]

< [
(v2|vsforvs) [k
< [

honta2n+5, (Man+52m+1, hons1,3)]

Figure 4. Left: Two communication graphs (a) and (b) for the simulation example from Section 5.2. The dashed green arrows indicate
the required fictitious edges, respectively. Right: The results of applying Lemma 2 to rewrite the non-admissible vector fields in the
example from Section 5.2 in terms of Lie brackets of admissible vector fields (n = 5).

from node 2 to node 3 is missing in the graph, Assump-
tion 3 does no longer hold. In particular, the vector field
hy+2n+5(2) = zpt26€n+5, which is included in the admissi-
ble vector field f,4m in case the communication is given by
graph (a), now is non-admissible. Despite Assumption 3
not being fulfilled, we can still use Lemma 2 to rewrite
hy 445, since the result is completely independent of this
assumption. Indeed, the corresponding path is given by
P52 = <U5|U4|’03|Z}1|Uz> and we obtain

h2,n+5 (Z)
= th,nﬂz hus1nt3), (Mussnvas hn+4,n+5]] (z).

(62)

We can then follow the same procedure as discussed be-
fore to project on any P. Hall basis, where ® now addition-
ally includes the vector fields hy ;11, Myt14+3, Mnt3,n+4a,
and hy,14 45, and then apply the algorithm presented in
Appendix A.5. The corresponding simulation results are
depicted in Figure 5. As already indicated in Section 4.4,
the nature of the approximating inputs produces heavy
oscillations in the agents’ states. We next want to illustrate
how a properly chosen filter as described in Section 4.4
can be used to dampen these oscillations while still main-
taining the distributed structure. In this example, we as-
sume that the low—pass filters Gy, G, G, are of first order
and take Gx(s) = 735, Gv(s) = =755, GA(s) = -
We do not go through the calculations necessary to find
distributed approximations of the filtered saddle-points
dynamics since they literally follow the lines of the first
part of the example. The corresponding simulation results
are depicted in Figure 5. Compared to Figure 5, the trajec-
tories of the distributed approximation show less oscilla-
tions which in turn also leads to an improved approximate
solution of the distributed optimization problem. .

6. Conclusion and outlook

We presented a new approach to distributed optimization
problems where the communication topology is given
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by a directed graph. Our approach is based on a two-
step procedure where in a first step first we derived suit-
able Lie bracket representations of saddle-point dynam-
ics and then used Lie bracket approximations techniques
from geometric control theory to obtain distributed control
laws. While we limited ourselves to the class of convex
problems with separable cost function and linear equality
and inequality constraints that match the communica-
tion topology, the methodology is applicable to a much
larger class of optimization problems including, for ex-
ample, non-linear constraints, constraints not compatible
with the graph structure or non-separable cost functions;
we discuss in [18] how the rewriting procedure has to be
adapted. Certainly, this generality comes with the cost
of a possibly complex calculation of the approximating
inputs; however, the strength of the presented approach
is that it provides a unified framework for very general
distributed optimization problems. Additionally, similar
techniques can be applied to distributed control problems.
We also presented a simplified algorithm for the design of
approximating inputs that exploits the problem structure.
Summarizing, the presented approach provides a system-
atic way to address distributed optimization problems
under mild assumptions on the communication graph as
well as the problem structure. We emphasize that, for
practical implementations, there is still a long way to go.
In particular, the highly oscillatory nature of the approx-
imating inputs as well as time synchronization will be
a major challenge. Apart from that, the design of suit-
able approximating inputs with improved transient and
asymptotic behavior is complex and still an important is-
sue to be addressed. While filters can be used as a simple
remedy to this problem, there are also two other ways we
plan to approach this problem: (1) altering the choice of
admissible vector fields and (2) modifying the design of
the approximating inputs including an optimal choice of
parameters.
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Figure 5. Simulation results for the example of Section 5.2 with communication graph (b) given in Figure 4 without (top) and with
additional filters (bottom). The thick lines depict the trajectories of the (non-distributed) saddle-point dynamics with initial condition
z(0) = 1 € R, whereas the thinner oscillating lines depict the solution of the distributed approximation with the same initial
condition z7(0) = z(0). Where no oscillating lines are visible, they are covered by the corresponding component of the solution z(+).
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both simulations the frequencies were chosen differently but accqrtling to some heuristics making sure that the minimally canceling
property from Definition 4 is fulfilled. Further, we used ¢ = 1000.
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A. Appendix

A.1. Proof of Lemma 1

The proof follows a similar argument as the one in [23,
Theorem 5.1.3]. First, using (11c), we have

Ai(t) = exp ( /0 C(ax(T) - b)ADA0),  (63)

for all i = 1,2,...,n; hence, A;(0) > 0 implies that
Ai(t) > 0, for all t+ > 0, and consequently, the set R(M)
is positively invariant w.r.t. (63). Let (x*,v*, A*) be an ar-
bitrary point in M. Consider the candidate Lyapunov

function V : R" x R" x Ry 9 — R>( defined as

V(xv,A) = gl = x|+ 3llv = v|?
n n

+Y (=A%) = Y ArIn(4E). (64)

h . l
i=1 AT #0

We first observe that V is positive definite with respect
to (x*,v*,A*) on R(M), and that all the level sets are
compact. To see this, note that according to [32, p. 207, eq.
(1.5)], the function D : RY ) x R” ; — R defined as

DA%, M) = i —Af + A7 (In(A7) —In(Ay)))  (65)
= i Ai —AY) — i A*ln(—i) (66)
i=1 i:AX 0 &

is positive for all (A*,A) € RZ; x R”  and zero if and
only if A = A* [32, Condition L] and its level sets are
compact [32, Condition V.]. Thus, with V(x,v,A) addi-
tionally being quadratic in x and v, positive definiteness
and compactness of all level sets follows and hence V is
uniformly unbounded on R(M). The derivative of V
along the trajectories of (11) is then given by

V(x, v,A) (67)
—(x—x*)(VE(x) + ATv +CTA)
+(v—v")"(Ax —b)

- i 1/1'2 + i/\i(cix — dl) — i )L:-((Cix — d,)
ié—qu i=1 iAX£0

= —(x—x*)"VF(x) —v' (Ax —b— (Ax* — b))

—AT(Cx—d— (Cx* —d)) + (v—v*) T (Ax — b)

-y }"jlml AP (e — ds) + F(x) — F(x),
i¢Teq =

Using strict convexity of F, we now have that —(x —
x*)TVF(x) < F(x*) — F(x), for all x # x* and hence


https://oeis.org/A000048
https://oeis.org/A006788

we obtain for all x # x*

V(x,v,A)
< F(x*) = F(x) —v' (Ax — b — (Ax* — b))
~AT(Cx—d— (Cx* —d)) + (v—v*) " (Ax —b)
S Y R Y- A (e — )+ F(x) — F(x)
i=1 i=1
i#Teq
x*,v,A) — L(x,v,A) + L(x,v,A) — L(x,v*,A")

v

n
i=1
i€7Teq

(68)

|
~
*

(69)

Due to the saddle point property (10) the derivative of V
along the flow is strictly negative, for all (x,v, 1) except
for (x,v,A) € M; thus, (x*,v*, A*) is stable according to
[23, Theorem 2.2.2]. This procedure can be repeated for
any point (x*,v*,A*) € M, hence M is stable. Let Losig
denote the Lagrangian associated to the original problem
(4) and let Sy;ig denote the corresponding set of saddle
points. Observe that L(x,v,A) = Laig(, Vquf)‘Imeq) —
Z?:l,iéImeq Aid; such that ¥ = Oforalli = 1,2,...,n,
i & Tineq, for any saddle point (x*,v*,A*) of L, since d; > 0
fori=1,2,...,n,i & Lineq- Thus, the set of saddle points
of L is given by

S={(xv,A) e R"xR" xRY;: (70)

(x, VZeq’/\Iineq) S Sorig/ )L,‘ =0fori¢ Iineq}

and hence, M {(x,v,A) € R" xR" x R"

(x, Vo /\Iineq) € Sandv; = 0fori & Teq,Aj = Ofori ¢
Iineq}. Since Sorig is compact due to Assumption 2, the set
M is compact as well. The same argument as the one in
the proof of [23, Theorem 5.1.3] then yields that the set of
saddle points is asymptotically stable with respect to the
set of initial conditions R (M).

A.2. Proof of Lemma 2

We prove the result by induction. For paths of the form
Pivi, = (vi,|vi,), i€, €(piyi,) = 1, by (24) and (27) equation
(29) follows immediately. Further we observe that the
vector field (27) is admissible if k; € Z(j), k, € Z(i) and
gij # 0, which is true since p;; is a path in G. Suppose now
that the result holds for all paths p with ¢(p) < ¢, { > 2.
Let pj i, = (vj,|vj,| . .. |v;,) be any path with £(p;,;, ) = € +
1. Let further g, € subpath, ,(pj;,) be a subpath of p;;
that ends at v,, r = ip,i3,...,i_1. Then, since ¢(q,) < ¢,
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0(q%) < £, we have by (28) and the induction hypothesis

Rk],kz(pilik>(z) = [Rk],S(qi)’ RS,k2 (qr)}(z)
= [hkl,S/ hs,kz](z)
= e, eSTzk1 es — eg elezSek2

= Zkl ekz, (71)
where s € Z(tail(g,)) and where we have used that k; #
ky. This proves (29). Further, if k; € Z(tail(py,;,)),i.e. ki €
Z(tail(g%)), then, by the induction hypothesis and with
s € Z(tail(g,)) = Z(head(q;)), R, s(q7) is a Lie bracket of
admissible vector fields. Similarly, if k; € Z(head(p;,;, )),
by the induction hypothesis and with s € Z(tail(g,)), also
Ry, (qr) is a Lie bracket of admissible vector fields. Thus,
Ri, k, (Piyi,) is a Lie bracket of admissible vector fields as
well, which concludes the proof.

A.3. Proof of Lemma 3

We first observe first that (36) is the same as (27), (28) with
a special choice of the subpath as well as an additional
projection with the property projp(B)(z) = B(z) forallz €
R%". Hence, it immediately follows that Ry, x, (pi,,)(z) =
Ri, k, (Piyi,) (). In the same manner, we also have that

S(Riey ko, (Pigi)) = 6(Riey o, (i) = £(piiy )-

We show the second part by induction. First observe
that for paths p;; with {(p;;) = 1 it is clear that
Ry, k, (piyi,) € P since Ry, k, (pii,) is an admissible vec-
tor field by Lemma 2 and all admissible vector fields are
in P. Further, for paths p;; with £(p;;,) € {2,3,4,6}
it also follows from the definition of the projection that
Ry, k, (piyi,) € P. Suppose now that the result holds true
for all paths p with ¢(p) = ¢, where ¢ > 2, and con-
sider a path p; ; with £(p;; ) = ? 4 1. Observe that all
subbrackets of Ry, , (pi,i,) are in P by the induction hy-
pothesis and hence, by [PH3], [PH4.a], [PH4.b], we have
B := Ry, b, (Piyi,) € Pif

(72)

d(left(B)) < &(right(B))
O (left(right(B))) < é(left(B));

(73)
(74)

we will show next that these conditions are fulfilled for
the above choice of subpaths. By (36) and (38) we have

S (right(Ry, , (pii,))) = 6(Rs, () = £(4)
S(left(Ry, k, (Piyi,))) = 6(Ry, s(9°)) = €(pii,) — €(q)-
Since L%J > %, foralla € Z,b € N, we infer
l ivir 1
0q) = 0(piy;,) — 1 > Pt (75)



for £(p;,;,) > 5, and hence we obtain

5(right(1~{kl/k2 (pilir ) ) ) - 5(left(ﬁk1,k2 (pilir ) ) )

= Upiyi,) +1—L(pii,) > 0. (76)
Thus, (73) holds. For (74), we first note that
d(left(right(Ry, t, (piyi,)))) = 6(left(Ryx, (7)) (77)

and, since left(Rsx,(q)) € P by the induction hypothe-

sis, it is 3(1eft(Raj, (7)) < d(right(Res,(q)) = £(q) -
d(left(Rs,(q))) according to [PH4.a]. Hence, we obtain

(left(right(Ry, i, (piyi ) < . (78)
As a result, (74) is fulfilled when
< Upii) ~ (o). (79)

We now compute

L(piyiy)
30(q) = 31 7B | 4 3 < 30(pii) + 3 < pii,),

for {(p;y;,) > 6; for {(pi;,) = 5, we have that 3¢(q) =
% < L(pi,i,), thus (79) holds for all considered p;,;, which
proves that (74) holds; this concludes the proof.

A.4. Proof of Proposition 2

Itis clear that (53) holds for £(p;;) = 2, since Rrﬂ,i(pi]-) isa
bracket of degree two, i.e., a bracket of the form [¢y,, Px,],
k1 # ky, such that

Consider now a path p; ;, =
i3 75 i4, ie., E(pi1i4) = 3. Then

[Py, i, if k1 < k2
[Pk, Pry ) if k2 < k1.

E (80)

projp (5, 4x,))

(v, |vi, [vig|vi,), 11 # B2 #

Rr+i4,i1 (pi1i4)
= prOjP(RT+i4,i] (pl114)>
= PrOjp([Mrtiy rtiss Mrtig rrins Mrtiniy)])

= - [hr+z‘4,r+z‘3/ [hr+i2,ilr hr+z‘3,r+i2”r (81)

where we have used the assumption on the ordering of
the P. Hall basis. The only equivalent bracket in IP is then
given by B = [N,y r1iy, [Briiyiys Brtiyri5]]), but we have
that B(z) = 0, since

[h7'+i2,i1/ h7+i4,7+i3] (Z)
(82)

_ S . _ e el A
= CrtiyCpy, Ciy Zrtiy — €iyCpyj CryinZyiy = 0.

Thus, the claim follows.
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A.5. A simplified algorithm for the
construction of approximating sequences

Our objective in this section is to provide a modified ver-
sion of the construction procedure from [26] using the
structural properties of the problem at hand, which leads
to considerable simplifications. Given the scopes of this
paper and the complicated nature of the subject, we do
not discuss this algorithm in detail; we refer the reader
to the supplementary material of the present manuscript,
as well as the original work [26]. We first provide a formal
definition of the already mentioned equivalence relation
on the set of Lie brackets:

Definition 3. [Equivalent brackets] Let PH = (P, <) be a
P. Hall basis of ® = {¢,...,¢p} and let 5;(B) denote the
degree of the vector field ¢y in the bracket B € PH. We
say that two brackets By, B, € [P are equivalent, denoted
by Bl ~ Bz,if(sk(Bl) :(Sk(Bz) forall k = 1,...,M. [ ]

For a given set of brackets [P, we then denote by Eg =
{B € P: B ~ B} the equivalence class corresponding to
the bracket B € P. Note that, by definition of the equiv-
alence relation, all brackets contained in an equivalence
class E = {By, By, ..., B/}, r € N5, have the same degree
and we hence let 6(E) = 6(By), k € {1,2,...,r}, denote
the degree of the equivalence class. For the construction
of the sets of frequencies, we also need the following two
definitions:

Definition 4. [Minimally canceling] A set Q
{wy,...,wy} is called minimally canceling if for each col-
lection of integers {y;}!" ;, such that } ;" ; |yx| < m we
have Y }' ; yxwy = 0if and only if all y, are equal. .

Definition 5. [Independent collection] A finite collection
of sets {O,}N_;, where Q) = {wy1,wy5-. L wAM, }, s
called independent if the followings hold:

1. the sets (), are pairwise disjoint, and

2. for each collection of integers {yi,k}iliy k=1,...,M;,
such that
N M; N M; N
Yo ) vikwip=0 and Y ) |yl <Y M,
i=1k=1 i=1k=1 i=1
we have
M;
Y Yikwix =0, (83)
k=1
foreachi=1,...,N. °
Consider now an extended system of the form
(84)

z=folz)+ Y, vgB(z2),
BeB
5(B)>2



5(B) 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
|Eggan| 1 2 3! 4 5 6 70 8 9! 100 11! 12! 13! 14! 15! 16!
|Eg] 11 2 3 5 9 16 28 51 93 170 315 585 1089 2048 3855

Table 1. A comparison of |Ep ¢yy1| and |Ep| for a specific choice of the P. Hall basis that fulfills the assumptions as in Proposition 2. The
numbers were obtained by symbolically computing the resulting vector fields using a computer algebra system. Interestingly, the
sequence of |Ep| has two matching sequences [33] and [34] except for the value for 6(B) = 15 which should be 1091 or 1092, thus we

conjecture that these sequences are a good upper bound for |Eg]|.

where fj : RN — RN, B ¢ P, B finite, for some P. Hall
basis P%(@) = (IP), -4), P = {(Plr¢2/ .. .,(PM}, ¢k ;RN —
RN, fo, ¢ sufficiently smooth, v € R\ {0} and B(z) # 0
for all B € B. Suppose that for any B € B, we have that
(B) € {0,1},k=1,2,..., M. Consider the system

M
X7 = fo(X7) + ) e(XNUL (). (85)

k=1

The following algorithm allows to compute suitable in-
put functions U} such that the solutions of (85) uniformly
converge to those of (84) with increasing ¢. It should as
well be mentioned that we also provide an exemplary
implementation of the algorithm in Matlab in the supple-
mentary material.

Algorithm

Step 1 (Determining the equivalence classes): For all
B € B, determine the associated (reduced) equivalence
class

Eg={BeP:B~BB(z) #0}
= {BEJ/BE/Z"' /BE,‘E(B”}’

and let £ = {Ep, B € B}. For each B € P, set

~ UB
0 =
-1

Step 2 (Determining the frequencies): Forall E € &, :=
{E € £ : §(E) = 2}, choose |&;| distinct frequencies
wg € R\ {0}, and forall E € &, 6(E) > 3 choose M|E]|
sets

ifBeB
otherwise.

ot = Jlweext if(E) =1
Epk =@ if 6,(E) =0
E,p,k = _QEp,k’

wepx € R\{0},k=1,...,M,p=1,...,|E| such that
1. ForeachE € £,6(E) > 3,and eachp = 1,..., |E|, the
set Q'E" 0= UkM: 1 QE ok is minimally canceling.
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2. The collection of sets
{{ws, ~WE}pee {QF, U0, }565,15(15)53,}
o=1,..,
is independent.

—-
H

Step 3 (Calculating the auxiliary matrix Eg): For all E €
E with 6(E) > 3, compute

+ + +
Bpa,1 B2 Bg,|E|
+ + &t
- | 7Beal Bep2 By |E|
SE = . . . ’
+ + +
Bg gl 7Bgg).2 Bg ||,  E|

where, for any B € E, we let

Chp = 8B(WEp00(1): WEp05(2): -+ WE,p,04(5(8)) )7

with 0g(i) = k if the ith vector field in B is ¢} and where

§p: ROB) ; R js defined as follows:
4 If(S(B) =1, then gB(d)l) =1

e If B = [By, By], then
Oym) = 8B, (@01, @2, ..., @s(p,))
A -

® ngl) @;

X 8B, (Ws(B,)+1, Ds(By)+27 - - -+ D5(By)+6(By))-

gp(@n, @, ...

Step 4 (Calculating the input coefficients): Forall E € £
with 6(E) =2, i.e,, E(B) = {B} = [¢,, Px, ], set

M (WE) = ig;sign(Tpwe)y/ 3 |TpwEl

NEk, (WE) = PE\/ 3|TBWE|,

where Bg # 0. For all E € £ with §(E) > 3 let?

TEA UBg,

’)/E,Z = EEl 035,2
: 5

VE,|E| Br e

2 We tacitly assume here that Zf is invertible. It has been shown in [26]
that there always exists a choice of frequencies such that the corre-
sponding matrix obtained when using “full” equivalence classes is
invertible; however, it is not clear whether this also holds in the case
of reduced equivalence classes where Z is a submatrix obtained from
the general one by removing several rows and columns.



and compute #7g(w) as follows:
e If§(E)isodd, foreachp =1,...,|E|, take

_1
NE (w) = ABE,(U (%')/E,piﬁ(E)_l) J(E)
forallw € QEP, and

e if 5(E) iseven, foreachp = 1,..., |E|, take
1

ne(@) = i/%E,(;,sign('yE,p(t)i‘s(E)_z) ‘%’YE,p(t)iJ(E)—ZV(E)

for some @ € OFf ) and
1

ﬂE(w) _ ,BE,w ‘%,YE’p(t)ié(E)—Zlm

forallw € QEP \ {@}.

In both cases B, € R can be chosen freely such that it
fulfills [T,cqf Prw =1
0

Step 5 (Calculating the approximating inputs): Com-
pute the input according to U] (t) = Lpce U £(t) with
Uy g : R — R being defined as follows:

o ffop(E) = 0: U (1) = 0.

o If6(E) =2,6,(E) = 1:
UL E(t) = 2v/oRe (g (wE)e L.
e If6(E) = N, 6, (E) = 1:
N—1 [El

Uip(t) =20 N ) Re(ne(wgpx)
=1

eiawt) .

Note that this algorithm is a reformulation of the one
presented in [26] (see the supplements of this manuscript
for a derivation) exploiting two structural properties of
the problem at hand: (1) each B € B fulfills é;(B) € {0,1}
forallk =1,2,..., M and (2) a large number of the equiv-
alent brackets evaluate to zero (see Table 1). Note that (1)
simplifies the calculation of CE 0 in step 3 and (2) reduces
the cardinality of each Ep in step 1, where usually the full
equivalence class Egqy) = {B € B : B ~ B} is used, thus
leading to a reduction of the dimension of Zf in step 3 and
hence also simplifying step 4. In fact, we can derive the
following result on the equivalent brackets:

Lemma 4. Consider a graph G = (V,€) of n nodes.
Let p;i, = (vil, Vi, ..., 0;, ) be the shortest path between
v;, and v;, v, € Vfork = 1,2,...,r, v > 3. Let
D = {Pa,, Pay, - - -, Pa, , } be a set of vector fields with

Pa; € { iy, 1 € L(ij11), k2 € Z(ij)}, (86)
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forj = 1,2,...,r — 1. Denote some given P. Hall basis
of ® by PH(®P) = (P, <). Let B € P and suppose that
da;(B) € {0,1} for j =1,2,...,r — 1. Define J(B) = {j =
1,2,...,r —=1:64(B) = 1} and further denote

(87)

‘minB = i ’/ ‘maxB = it
jmin(B) ],emjl(fl;){]} jmax(B) jg;(g){f}

Then, if J(B) is a connected set, ie., J(B)
{jmin(B), jmin(B) + 1,...,jmin(B) + 6(B) — 1} and
jmax(B) = jmin(B) +d(B) — 1, for any k; € I(ijmaX(B)+1)r
ky € Z(i; . (p)) and forallz € R3", we have that

B(z) = +hy, x,(z) or B(z)=0. (88)

If 7(B) is not a connected set, we have B(z) = 0 for all
z € R, °

Proof. We prove this result by induction. Suppose first that
d(B) = 1. Then J (B) = {jmin} = {jmax}, which means it
has only one element. Hence, the claim is obviously true.
Since the case of J (B) not being a connected set does not
appear for §(B) = 1, weaalsolook at §(B) = 2. Let 7 (B) =
{j1,j2}, j1 # j2- Observe that, forall j1,j» = 1,2,...,r — 1,
j1 #j2,and j; <r—2(orjp <r—1), we have

B(Z) = [‘Pllh/‘l)ﬂjz](z)
= [y ey M ] (2)
= [Zkl Ckys Zks %J

T T
= €k, ey ChyZhy — Chy Ch, ChyZhss (89)

where k1 € Z(ij 1), k2 € Z(ij;), ks € Z(ij,41), and k4 €
Z(ij,). We then compute

Zfy €y if k2 = k3
[(Pajl ’ (Pajz} (Z) = _Zk3 ekg if kl = k4 (90)
0 otherwise.

Note that ko = k3 only if ij, = ij,,1,ie,j1 = ja+1=
jmax, Jmin = Jj2, and k1 = k4 only if ij, = ij41, e,
jo = j1+1 = jmax, i = jmin; hence B(z) is non-zero
only if J(B) = {j1,j2} is connected, which proves that
the claim is true for 6(B) = 2. Note also that the case
ki = k4, ky = k3 cannot occur since j; # j,. The sec-
ond claim (88) follows immediately from these consid-
erations. To proceed with our induction argument, sup-
pose now that the claim is true for all B € P that fulfill
the assumptions with §(B) < 6%, §* < r — 1. Consider
now some B € P with §(B) = 6*+1 > 2. Every B
can be written as B = [By, Bz], where §(B1),6(By) < 6*.
Let 7(B) = {j1, j2,---,j5)} and assume, without loss of
generality, that jy < jxyq, forallk =1,...,5(B) — 1. By
the induction hypothesis, B;(z) and B(z) are non-zero



only if J(B;1) and J (B;) are both connected sets. Since
J(B2) = J(B) \ J(By) this is the case if and only if

{{jl/]‘Z/"*/]’&(Bl)} or
{j5(3)*5(31)+1/j&(B)—zS(Bl)Jrzr- .. ,]'5(3)}
{j5(B)_§(Bl)+1’jé(B)—(s(Bl)-‘y‘l + ]'l ceey

Js(B)—s(By)+1 T 0(B1) — 1}

J(By) =

or

We only consider the first case here, since the second case
can be treated analogously. Using the first equality above,
fork, € I(ij1+5(31)),k2 c I(l]l ), and k3 € I(ij5(3)+1>,k4 €

Z(ijy, B+ ), we have by the induction hypothesis that

Bi(z) = £hy j,(z) or By(z) =0
By(z) = £hy,k,(z) or By(z) =0.

1)
(92)

Obviously, following our previous calculations, [By, B
is non-zero only if k; = k3, meaning that j; = js3) + 1,
or if k; = kg4, meaning that j1 + 6(B1) = jsp,)+1- The
first case cannot occur, since §(B) > 2 and jx,1 > ji; the
second case holds true if and only if 7 (B) is connected,
thus showing that B(z) is non-zero only if 7 (B) is con-
nected. To show that (88) holds, consider the case that
J(B) is connected, i.e., 7(B) = {j1,j1 +1,...,j1 + 6(B)},
jmin(B) = jl/ jmax(B) = j1 +§(B), and k1 = k4. Then,
following the same arguments as before, we have that
B(Z) ihkg,,kz(z) for k3 € I(l] = I(ijmax(3)+1)’
ky € Z(ij) = Z(i O

5(B)+1)
jmin (B) ), which concludes the proof.
Remark 11. The condition that 7 (B) must be a connected
set can be interpreted as follows: Each admissible vector
field ¢q; can be associated to an edge in the communication
graph G. The condition then means that the vector fields
in the bracket must be ordered along a path. .

The algorithm presented beforehand still includes sev-
eral degrees of freedom, namely the specific choice of
frequencies in step 2 as well as the scalings B, BE ., in step
4. While the conditions on the frequencies are not hard to
satisfy and in fact, are not restrictive, it turns out that their
choice is crucial in practical implementations. There is still
no constructive way of choosing “good” frequencies that
we are aware of in the literature. The situation is similar as
it comes to the choice of scalings, but here a heuristic way
of how to choose them is to distribute the energy of the
approximating inputs among different admissible input
vector fields ¢. In this spirit, we suggest decreasing the
amplitudes of the approximating inputs entering in the
primal variables, which will lead to an increase of the am-
plitudes of the inputs entering in the dual variables. Our
simulations results indicate that this procedure usually
leads to a better transient and asymptotic behavior of the
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primal variables, which we are typically most interested
in.

A.6. Formal brackets

As indicated beforehand, objects such as the degree, the
left factor, the right factor, or a P. Hall basis are not well-
defined for Lie brackets but need to be defined for for-
mal brackets. We very briefly discuss this in the follow-
ing; for a more detailed treatment we refer the reader to
standard textbooks on the subject, e.g., [19], . Let X =
{X1,X2,..., Xm} be a finite set of M non-commuting ob-
jects, the so-called indeterminates. We denote by FBr(X)
the set of formal brackets constructed from X, where a
formal bracket is a word fulfilling certain requirements
which is constructed from the alphabet consisting of the
symbols Xj in X as well as the brackets [ and | and the
comma ,. The set of formal brackets FBr(X) is then de-
fined as the smallest set of words built from that alphabet
which contains all elements of X and has the property that,
for all By, B, € FBr(X), the word [By, B;] is an element of
FBr(X). In this sense, a formal bracket can be seen as a
string representation of a Lie bracket. However, this string
representation is in general not unique. As an example, we
distinguish between the two formal brackets ¢, [¢1, ¢2]]
and [[¢2, ¢1], ¢1], but these brackets are equivalent as Lie
brackets. This is the reason why left and right factors as
well as the degree is not well-defined for Lie brackets. For
formal brackets B = [By, By € FBr(X), By, B, € FBr(X),
we can uniquely define left(B) = By, right(B) = B, as
the left and right factor of B, respectively. We can further
define the degree of a formal bracket B € FBr(X) in the
same way as in ??2.

Now, FBr(X) and LBr(X) are related by a mapping
u: FBr(X) — LBr(X), which, in rough words, replaces
formal brackets by Lie brackets. In general, this mapping
is not bijective; however, it is if we restrict the domain of
u to a P. Hall basis of X ([19]), which is basically defined
in the same way as in Definition 2 but with the set of
indeterminates X instead of the the set of vector fields ®
and formal brackets instead of Lie brackets. Thus, in all
of Section 4.2, formally we would need to explicitly use
y to map from the formal brackets to Lie brackets as well
as an evaluation map Ev : LBr(X) — LBr(®), which
basically simply replaces the indeterminate X; € X by the
vector field ¢; € ®.

A.7. Proof of Theorem 1

The proof of Theorem 1 relies on the next general stability
result. The proof follows the same lines as the proof of [30,
Theorem 2], and is omitted here.



Lemma 5. Consider the two dynamics

i(t) = f(t,z(1)), z(to) = zo, (93)
27(t) = f(t,2°(t)), z%(tg) = zo, (94)

where f,f7 : RxR" = R", f,f7 € Cl, tp € R and

o € Ry is a parameter. Suppose that

1. a compact set S is locally uniformly asymptotically
stable for (93);

2. the region of attraction R(S) C R” of S is positively
invariant for (94);

3. for every ¢ > 0, for every T > 0 and for every
K C R(S) there exists ¢* > 0 such that, for all
o > o, for all ty € R and for all zy5 € K, there ex-
ist unique solutions z, z” of (93) and (94) that fulfill for
allt e [to, to + T]

l2(t) =27 (D) <. (95)

Then the set S is locally practically uniformly asymptoti-
cally stable for (94) and z7(¢) uniformly converges to z(t)
on [ty, c0) for increasing o. o

We are now ready to prove Theorem 1 making use of
Lemma 5. Since the control law (48) is obtained from
the construction procedure presented in [26], it follows
directly from [26, Theorem 8.1] that for each € > 0, for each
T > 0 and for each initial condition z7(0) = zy € R(M),
there exists 0* > 0 such that for all ¢ > ¢* and for all t €
[0, T] the inequality (52) holds, which shows convergence
on finite time intervals. For the extension to infinite time
intervals we make use of Lemma 5. First, note that the set
M defined by (13) is compact by Assumption 2 (see also
the proof of Lemma 1) and asymptotically stable for (11)
with region of attraction R(M) = {(x,v,A) € R" x R" x
R™ : A € RZ,}, according to Lemma 1. Also, by the same
argumentation as the one in the proof of Lemma 1, the
set R(M) is positively invariant for (47) together with the
control law (48) - (51). For the last assumption in Lemma 5,
we first note that we cannot use [26, Theorem 8.1], since,
according to assumption 3 in Lemma 5, we are required to
find one o* that works for all {; € R and for all z; € K, but
the latter reference only provides uniform convergence
in t. However, for brackets of degree two, by [30], we
conclude that such a ¢* exists; hence, all assumptions
from Lemma 5 are fulfilled and the result follows. For
higher order brackets, the existence of such ¢* has not
been shown explicitly, which is why practical uniform
asymptotic stability can only be guaranteed if all brackets
are of degree two; still, it is expected that this also holds
for the general case.
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