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Abstract

Available control methods for underactuated Euler-Lagrange (EL) systems rely on structure-specific constraints that may be
appropriate for some systems, but restrictive for others. A generalized (structure-independent) control framework is to a large
extent missing, especially in the presence of uncertainty. This paper introduces an adaptive-robust control framework for a
quite general class of uncertain underactuated EL systems. Compared to existing literature, the important attributes of the
proposed solution are: (i) avoiding structure-specific restrictions, namely, symmetry condition property of the mass matrix,
and a priori bounds on non-actuated states or state derivatives; (ii) considering Coriolis, centripetal, friction and gravity terms
to be unknown, while only requiring the knowledge of maximum perturbation around a nominal value of the mass matrix;
(iii) handling state-dependent uncertainties irrespective of their linear or nonlinear in parameters structure. These features
significantly widen the range of underactuated EL systems the proposed solution can handle in comparison to the available
methods. Stability is studied analytically and the performance is verified in simulation using offshore boom crane dynamics.

Key words: Adaptive-robust control; Euler-Lagrange systems; Underactuated systems.

1 Introduction

Euler-Lagrange (EL) dynamics are used to describe a
large range of real-world systems like robotic manipula-
tors, mobile robots, underwater vehicles, aircrafts, satel-
lites, among others [1–5]. Underactuation arises in these
systems whenever the independent control inputs are
less than their degrees of freedom. Underactuation can
be: inherent in the system dynamics (e.g., cranes [6], air-
crafts, helicopters [7]); desirable for cost reduction (e.g.,
satellites with fewer thrusters [8]); imposed for bench-
marking (e.g., Acrobot [9], Pendubot [10]). Despite their
merits in terms of costs and operational flexibility, un-
deractuated EL, as compared to fully-actuated EL sys-
tems, come with greater challenges in terms of control.

Underactuated EL systems have received extensive at-
tentions. Application-specific works [6, 10–16] have ap-
peared along with theoretic works on special classes of
underactuated dynamics [7–9,17–21]. Works in the first

? This work was partly supported by the Fundamental Re-
search Funds for the Central Universities Grant 4007019109,
and by the special guiding funds for double first-class Grant
4007019201. Corresponding author: S. Baldi

Email addresses: spandan.roy@iiit.ac.in (Spandan
Roy), s.baldi@tudelft.nl (Simone Baldi).

category rely on structure-specific physical constraints
that may be appropriate for some systems, but restric-
tive for others (e.g. prior assumption for a crane on
bounded non-actuated state [6, 11, 13] is eventually re-
strictive for a satellite [8]). For this reason, finding gener-
alized (structure-independent) control solutions for un-
deractuated EL systems is a challenging open problem.
Even most works in the second category ([7,17–20]) rely
on a structural symmetry condition of the mass matrix
(i.e., the mass matrix being function of only the actuated
states or only the non-actuated states), stemming from
the pioneering work [7]. Such condition becomes diffi-
cult to be satisfied as the system complexity rises (e.g.,
cranes [6,11,13], underwater vehicles [22], satellites [8]).

On top of this, parametric uncertainties in underactu-
ated EL system dynamics terms (mass, Coriolis, cen-
tripetal, friction and gravity terms), inevitable in prac-
tical scenarios, increase the control challenge. While [19]
gives an overview of control approaches aimed at tack-
ling uncertainty in a robust sense, such approaches ei-
ther require precise knowledge of such terms [19–21], or
perturbation bounds around nominal values [8,16]. Such
a priori system knowledge is often difficult to obtain. In
light of this overview, a control design for uncertain un-
deractuated EL systems removing several restrictions in
terms of structural constraints and a priori knowledge of
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system dynamics, is relevant and missing. In pursuit of
this objective, this paper proposes an Adaptive-Robust
Control (ARC) framework for a class of uncertain un-
deractuated EL systems with three main contributions:

• The proposed solution does not rely on symmetry con-
dition of mass matrix and it does not assume non-
actuated states to be bounded.
• Coriolis, centripetal, friction and gravity terms are

considered completely unknown; only a perturbation
bound around a nominal value of the mass matrix is
required for control design.
• Compared to ARC advances [23–25] (dealing with

fully-actuated dynamics), the proposed ARC tackles
underactuated dynamics in both linear-in-parameters
(LIP) and nonlinear-in-parameters (NLIP) form.

The class under consideration covers several underactu-
ated EL systems addressed in literature, with the excep-
tion of non-holonomic EL systems (cf. Remark 3).

The following notations are used: λmin(•) and || • || rep-
resent minimum eigenvalue and Euclidean norm of (•)
respectively; In denotes identity matrix with dimension
n× n; D > 0 denotes a positive definite matrix D.

2 System Dynamics and Problem Formulation

Consider the following class of underactuated Euler-
Lagrange (EL) systems

M(q)q̈+C(q, q̇)q̇+G(q)+F(q̇)+ds = [τT 0T ]T , (1)

where q ∈ Rn is the vector of generalized coordinates
(positions), and q̇ ∈ Rn is the vector of generalized
velocities; M(q) ∈ Rn×n is the mass/inertia matrix;
C(q, q̇) ∈ Rn×n denotes the Coriolis, centripetal terms;
G(q) ∈ Rn denotes the gravity terms; F(q̇) ∈ Rn de-
notes the vector of damping and friction forces; ds(t) ∈
Rn denotes bounded external disturbances and τ ∈ Rm
is the generalized control input, where (n−m) ≤ m < n.
For most EL systems of practical interest, a few proper-
ties can be claimed (cf. [1]) which are later exploited for
control design as well as stability analysis:

Property 1: ∃cb, gb, fb, d̄ ∈ R+ such that ||C(q, q̇)|| ≤
cb||q̇||, ||G(q)|| ≤ gb, ||F(q̇)|| ≤ fb||q̇|| and ||ds(t)|| ≤ d̄.
Property 2: M(q) is symmetric 1 and uniformly posi-
tive definite. This implies that ∃µ1, µ2 ∈ R+ such that

0 < µ1In ≤M(q) ≤ µ2In. (2)

Further, consider the decomposition of M as M = M̂ +
∆M, where M̂ and ∆M represent the nominal and per-
turbation terms of the mass matrix, respectively. The EL

1 The term “symmetric” is not to be confused with the
“symmetry condition” proposed in [7, 17–20], cf. Remark 1.

system (1) is considered to be uncertain in the sense that
precise parametric knowledge of the system dynamics
terms M,C,F,G and ds is not available. The following
challenge is imposed in the form of an assumption:

Assumption 1 Only a nominal M̂ and an upper bound
for ∆M are available, while the terms C,F,G, ds and
their upper bounds cb, fb, gb and d̄ are unknown.

Remark 1 No assumption is made on how actuated and
non-actuated states affect M,C,F,G or ds. Therefore,
restrictive assumptions such as symmetry condition of
mass matrix, i.e., M(q) = M(qa) or M(q) = M(qu)
([7,17–20]) or boundedness of state derivatives ([20]) or
of non-actuated states ([6,11,13]) are completely avoided.

For controller design, as well as for convenience of nota-
tion, let us rewrite system (1) by distinguishing between
the actuated and non-actuated dynamics, as follows:

M(q)q̈ + N(q, q̇) + ds = [τT 0T ]T , (3)

where q = [qa
T qu

T ]T , being qa ∈ Rm the actuated
states, qu ∈ R(n−m) the non-actuated states and

M ,

[
Maa Mau

MT
au Muu

]
,

Maa ∈ Rm×m,Mau ∈ Rm×(n−m)

Muu ∈ R(n−m)×(n−m)
,

N , Cq̇ + G + F =
[
NT

a NT
u

]T
,Na ∈ Rm,Nu ∈ R(n−m),

ds ,
[
dTa dTu

]T
,da ∈ Rm,du ∈ R(n−m). (4)

Dependency of the system dynamic terms on (q, q̇) has
been and will be omitted whenever convenient. After
suitable mathematical rearrangements, the system dy-
namics (3) can further be represented as [9, 21]

q̈u = −M−1
uuMT

auq̈a + hu, (5a)

q̈a = M−1
s τ + ha, (5b)

where

hu ,M−1
uu(Nu + du),

ha ,M−1
s (Na + da −MauM−1

uu(Nu + du)),

Ms ,Maa −MauM−1
uuMT

au.

As M > 0 by Property 2, existence of M−1
s ,M−1

aa and
M−1

uu is always ensured [8, 9, 21].

Remark 2 The dynamics under consideration are a
class of EL dynamics, in view of having (n −m) ≤ m.
Most EL systems of practical interest reported in litera-
ture belong to such class (e.g., Acrobot [9], Pendubot [10],
aircrafts, helicopters [7], quadrotors [14], crane systems
[11–13, 15, 19, 26], satellites [8], ships and underwater
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vehicles [22] etc.). Nevertheless, the class under con-
sideration does not cover having dependent coordinates
(nonholonomic EL systems [16]), or singular mass ma-
trices arising from such dependent coordinates [27, 28].

Remark 3 In the absence of the unmatched disturbance
du in (3), asymptotic stability was achieved [19] assum-
ing no parametric uncertainty. In the presence of du,
[20] showed that asymptotic stability is impossible and
proposed Uniformly Ultimately Bounded (UUB) stabil-
ity, again assuming no parametric uncertainty. In the
presence of unmatched disturbance and parametric un-
certainty, no control design has been reported avoiding
the issues in Remark 1, which is the objective of this work.

Let q, q̇ be available for feedback, and let us consider
a fixed-point equilibrium qd for the unforced version of
system (5) (without external forces such as inputs and
disturbances), i.e., qd being feasible. The following is
a sufficient condition known in underactuated dynam-
ics literature to ensure controllability to a desired fixed-
point equilibrium qd of system (5) [29–31].

Assumption 2 The block Mau(q) is full rank ∀q ∈ Rn.

Remark 4 Assumption 2 excludes ill-posed cases such
as Mau being zero, in which case the non-actuated dy-
namics (5a) would be uncontrollable. Assumption 2 fo-
cuses on stabilization around a fixed point. For tracking of
time-varying trajectories, it is challenging to characterize
the feasible trajectories: these are in general application-
specific (cf. [8, 32] for discussions on feasibility).

3 Controller Design

Let qd , [qda
T

qdu
T

]T and let ea , qa − qda, eu , qu −
qdu be the tracking error in actuated and non-actuated
states, respectively. Define an auxiliary error variable r
as:

r , Υaėa + Γaea + Υuėu + Γueu, (6)

where Υa,Γa ∈ Rm×m and Υu,Γu ∈ Rm×(n−m) are
user-defined matrices; Υa,Γa are designed such that
Υa > 0,Γa > 0 and Υ−1

a Γa > 0; Υu,Γu are designed
to be of full rank (n−m).

Using (5a) and (5b), the time derivative of (6) yields

ṙ = Υaq̈a + Γaėa + Υuq̈u + Γuėu

= (Υa −ΥuM−1
uuMT

au)(M−1
s τ + ha) + Υuhu

+ Γaėa + Γuėu

= bτ + φ + Sr, (7)

where b , (Υa −ΥuM−1
uuMT

au)M−1
s

φ , (Υa −ΥuM−1
uuMT

au)ha + Υuhu

Sr , Γaėa + Γuėu.

The control law is designed as

τ = b̂−1(−Λr− Sr −∆τ ), ∆τ =

{
ρ r
||r|| if ||r|| ≥ ε
ρ r
ε if ||r|| < ε

,

(8)

where Λ ∈ Rm×m satisfies Λ > 0; ∆τ tackles uncertain-
ties utilizing the gain ρ and ε > 0 is a small scalar to
avoid chattering (the saturation in (8) can be replaced
with a smooth sigmoid function with minor modifica-
tions in stability analysis [33]). The design of ρ will be

discussed later. Finally, b̂ is the nominal value of b (aris-
ing from the nominal knowledge of M) which satisfies:

Assumption 3 A scalar E is known such that

||bb̂−1 − Im|| ≤ E < 1. (9)

Remark 5 Similarly to fully-actuated EL systems [1,
33–35], the value ofE can be calculated based on the upper
bound of ∆M (cf. Assumption 1): the smaller ∆M, the
smaller E, being E < 1 required for stability analysis.

Substituting (8) into (7) yields

ṙ = −Λr−∆τ + Ψ− (bb̂−1 − Im)∆τ , (10)

where Ψ , φ− (bb̂−1− Im)(Λr + Sr). From Properties
1 and 2, one can verify

||N|| ≤ ||C||||q̇||+ ||G||+ ||F||
≤ cb||q̇||2 + gb + fb||q̇||. (11)

Let ξ , [eT ėT ]T = [eTa eTu ėTa ėTu ]T . Using the fact
||ė|| ≤ ||ξ||, and substituting q̇ = ė in (11) gives

||N|| ≤ gb + fb||ξ||+ cb||ξ||2. (12)

Using the inequalities ||Nu|| ≤ ||N||, ||Na|| ≤ ||N||,
||du|| ≤ ||d|| ≤ d̄, ||da|| ≤ ||d|| ≤ d̄, ||ea|| ≤ ||ξ||,
||eu|| ≤ ||ξ||, ||ėa|| ≤ ||ξ||, ||ėu|| ≤ ||ξ|| in (5) as well as
(9) and (12), the following bound can be obtained:

||Ψ|| = ||φ− (bb̂−1 − I)(Λr + Sr)||
≤ ||φ||+ E(||Λ||||r||+ ||Sr||),
≤ θ∗0 + θ∗1 ||ξ||+ θ∗2 ||ξ||2, (13)

with

θ∗0 ,agb + ||Υu||||M−1
uu||(gb + d̄) + a1,

θ∗1 ,afb + ||Υu||||M−1
uu||fb + E(||Γa||+ ||Γu||)

+ E||Λ||(||Υa||+ ||Γa||+ ||Υu||+ ||Γu||),
θ∗2 ,acb + ||Υu||||M−1

uu||cb,
a ,||(Υa −ΥuM−1

uuMau)||(||M−1
s + ||MauM−1

uu||),
a1 ,||(Υa −ΥuM−1

uuMau)||||M−1
s (1 + ||MauM−1

uu||)d̄,

3



where the scalars θ∗i ∈ R+, i = 0, 1, 2 are completely
unknown according to Assumption 1.

Using (5a)-(5b), the error dynamics of the non-actuated
dynamics can be represented as

ëu = q̈u = −M−1
uuMT

auq̈a + hu

= −M−1
uuMT

au(M−1
s τ + ha) + hu. (14)

Substituting (8) into (14) yields

ẋ1 = x2

ẋ2 = −gυ − φ1, (15)

where x1 , eu,x2 , ėu,φ1 , (M−1
uuMT

auha + hu),

υ , (−Λr − Sr −∆τ ),g , (M−1
uuMT

auM−1
s )b̂−1. Note

that (n−m) ≤ m by the system definition (1); thus, one
can design a constant full-rank matrix H ∈ R(n−m)×m

such that the following holds:

K1 , HΛΓu > 0, K2 , HΛΥu > 0. (16)

Adding and subtracting Hυ to (15) yields

ẋ1 = x2

ẋ2 = −K1x1 −K2x2 + g∆τ + φ2, (17)

where φ2 , gSr+(H + g)Λr−φ1−HΛ(Υaėa+Γaea).
In line with [29–31] Assumption 2 is required because,
when Mau is not full rank, the rank deficiency in g would
not allow to tackle the uncertainty φ2 via ∆τ .

Therefore, taking x , [xT1 xT2 ]T , A ,

[
0 I(n−m)

−K1 −K2

]
and B ,

[
0 I(n−m)

]T
, one has from (17)

ẋ = Ax + B(g∆τ + φ2) (18)

where K1 > 0,K2 > 0 guarantee that A is Hurwitz.
From Properties 1-2, the following holds

||φ2||||PB|| ≤
(
θ∗∗0 + θ∗∗1 ||ξ||+ θ∗∗2 ||ξ||2

)
, (19)

where θ∗∗i ∈ R+, i = 0, 1, 2 are unknown scalars whose
expressions follow from similar steps as (13); P > 0 is
the solution to the Lyapunov equation ATP+PA = −Q
for some Q > 0. The term ||PB|| in (19) is primarily
considered for subsequent mathematical simplifications.
The vectors Ψ and φ2 act as the overall uncertainty in
the closed-loop dynamics (7) and (18), respectively.

Remark 6 A standard assumption in underactuated EL
literature is that the system dynamics terms are LIP
[12, 13, 23–25]. Control designs for NLIP systems have

appeared, e.g., in [36], which however do not consider un-
deractuation. It is noteworthy that, due to Properties 1
and 2, the upper bounds of ||Ψ|| and ||φ2|| always exhibit
the LIP structures (13) and (19), irrespective of the fact
that the terms Ψ and φ2 are LIP or NLIP.

Using the structures of the upper bounds of ||Ψ|| and
||φ2|| in (13) and (19) respectively, we are now ready to
design ρ in (8) as

ρ =
1

(1− E)
(θ̂0 + θ̂1||ξ||+ θ̂2||ξ||2 + γ), (20)

with adaptive laws (i = 0, 1, 2)

˙̂
θi = ηi(||r||+ ||x||)||ξ||i − ζiθ̂iβ||x||||ξ||i, (21a)

γ̇ = −γ
{
γ0 + γ1(||ξ||5 − ||ξ||4) + γ2(||x||+ ||ξ||)

}
+ γ0(||r||+ ||x||) + γ0ν, (21b)

initial conditions θ̂i(0) > 0, γ(0) > ν, (21c)

and ηi, ζi, β, γ0, γ1, γ2, ν ∈ R+, (21d)

satisfying the following inequalities

γ2 ≥ γ1, β > 1 + (E1/(1− E)), (21e)

with E1 being a constant satisfying ||PBg|| ≤ E1, and
derived from the known upper bound of ∆M in Assump-

tion 1. In (21), θ̂i is the estimate of θ̄∗i , max{θ∗i , θ∗∗i },
i = 0, 1, 2; γ is an auxiliary gain which has a crucial
role in closed-loop system stabilization and it will be de-
tailed later (cf. Remark 7). It can be verified that the
design γ0, γ1, γ2 ∈ R+ with γ2 ≥ γ1 makes the term
‘γ0 +γ1(||ξ||5−||ξ||4)+γ2(||x||+ ||ξ||)’ in (21b) positive
for all x, ξ.

4 Stability Analysis of The Proposed ARC

Theorem 4 Under Properties 1-2 and Assumptions 1-
3, the closed-loop trajectories of (5) employing the ARC
laws (8), (20) with gain conditions (16) and adaptive
laws (21) are Uniformly Ultimately Bounded (UUB).

Proof. Stability is analyzed via the Lyapunov function:

V =
1

2

{
rT r + xTPx +

2∑
i=0

1

ηi
(θ̂i − θ̄∗i )2 +

γ2

γ0

}
, (22)

where θ̄∗i = max{θ∗i , θ∗∗i }. Stability analysis considers
the two cases (i) ||r|| ≥ ε and (ii) ||r|| < ε using the
common Lyapunov function (22).

Case (i) ||r|| ≥ ε

4



Using (8), (13) and (20), from (7) we have

rT ṙ = rT (−Λr−∆τ + Ψ− (bb̂−1 − Im)∆τ )

≤ −rTΛr− (1− E)ρ||r||+
2∑
i=0

θ∗i ||ξ||i||r||

≤ −rTΛr−
2∑
i=0

(θ̂i||ξ||i + γ)||r||+ θ̄∗i ||ξ||i||r||. (23)

Further,

1

2

d

dt
xTPx = −1

2
xTQx + xTPB(g∆τ + φ2)

≤ −1

2
xTQx + ρE1||x||+ ||φ2||||PB||||x||. (24)

Substituting (19) into (24) yields

1

2

d

dt
xTPx ≤ −1

2
xTQx +

2∑
i=0

θ∗i ||ξ||i||x||

+
E1

1− E

2∑
i=0

(θ̂i||ξ||i + γ)||x|| ≤ −1

2
xTQx

+

2∑
i=0

θ̄∗i ||ξ||i||x||+
E1

1− E

2∑
i=0

(θ̂i||ξ||i + γ)||x||. (25)

Using the adaptive laws (21a) and (21b), we have

(1/ηi)(θ̂i − θ̄∗i )
˙̂
θi = (1/ηi)(θ̂i − θ̄∗i )(ηi(||r||+ ||x||)||ξ||i

− ζiθ̂iβ||x||||ξ||i)
= θ̂i(||r||+ ||x||)||ξ||i − ciθ̂2

i ||x||||ξ||i

− θ̄∗i (||r||+ ||x||)||ξ||i + ciθ̂iθ̄
∗
i ||x||||ξ||i, (26)

γγ̇

γ0
=

γ

γ0
{γ0(||r||+ ||x||)− γ(γ0 + γ1(||ξ||5 − ||ξ||4)

+ γ2||x||) + γ0ν}
= γ(||r||+ ||x||)− γ2{1 + γ̄(||ξ||5 − ||ξ||4)

+ c3(||x||+ ||ξ||)}+ γν, (27)

for i = 0, 1, 2, where ci ,
ζi
ηi
β, c3 ,

γ2
γ0

and γ̄ , γ1
γ0

are

positive by virtue of the choice of (21d)-(21e). Therefore,

d

dt

(
2∑
i=0

(θ̂i − θ̄∗i )2

2ηi
+

γ2

2γ0

)
=

2∑
i=0

θ̂i(||r||+ ||x||)||ξ||i

− ciθ̂2
i ||x||||ξ||i − θ̄∗i (||r||+ ||x||)||ξ||i + ciθ̂iθ̄

∗
i ||x||||ξ||i

− γ2{1 + γ̄(||ξ||5 − ||ξ||4) + c3(||x||+ ||ξ||))}
+ γ(||r||+ ||x||) + γν. (28)

Using (23), (25) and (28), the time derivative of the Lya-

punov function (22) turns out to be

V̇ ≤− δm(||r||2 + ||x||2) + γν + cγ||x||
− γ2{1 + γ̄(||ξ||5 − ||ξ||4) + c3||x||}

+

2∑
i=0

(cθ̂i − ciθ̂2
i + ciθ̂iθ̄

∗
i )||ξ||i||x||, (29)

where δm , min{λmin(Λ), (1/2)λmin(Q)} and c , 1 +
E1

1−E . From θ̂i(t) ≥ 0, the definition of V in (22) yields

V ≤ δM (||r||2 + ||x||2) +

2∑
i=0

(θ̂2
i + θ̄∗

2

i )

ηi
+
γ2

γ0
, (30)

where δM , max{1, ||P||}. Defining Ω , (δm/δM ) and
using (30), inequality (29) is further simplified to

V̇ ≤− ΩV +

2∑
i=0

Ω

ηi
(θ̂2
i + θ̄∗i )2 +

Ω

γ0
γ2

+

2∑
i=0

(cθ̂i − ciθ̂2
i + ciθ̂iθ̄

∗
i )||ξ||i||x||+ γν + cγ||x||

− γ2(1 + γ̄(||ξ||5 − ||ξ||4) + c3||x||). (31)

Since ci and c3 are positive constants by design, it is
always possible to split these terms as

ci =

3∑
j=1

cij , c3 =

2∑
k=1

c3k, cij , c3k > 0 ∀i, j, k, (32)

leading to the following simplifications

− ciθ̂2
i + cθ̂i + ciθ̂iθ̄

∗
i

= −ci1θ̂2
i − ci2

{(
θ̂i − (c/(2ci2))

)2

− (c2/(4c2i2))

}
− ci3

{(
θ̂i −

(
(ciθ̄

∗
i )/(2ci3)

))2

−
(
(ciθ̄

∗
i )2/(4c2i3)

)}
≤ −ci1θ̂2

i + c2/(4ci2) + (ciθ̄
∗
i )2/(4ci3). (33)

Further,

− γ2(1 + c3||x||) + γν + cγ||x||

= −c31γ
2||x|| −

{
(γ − (ν/2))

2 − (ν/2)2
}

− c32||x||
{

(γ − (c/2c32))
2 −

(
c2/4c232

)}
≤ −c31γ

2||x||+
(
c2/4c32

)
||x||+ (ν2/4). (34)

Investigating the adaptive laws (21a)-(21b) (first-order
time-varying linear systems with negative system matrix
and positive input) and the initial conditions (21c), it

can be verified that θ̂i(t) ≥ 0 and γ(t) ≥ γ > 0 ∀t ≥ 0
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for some positive scalar γ. Further ||ξ|| ≥ ||x||. Then,
using (33)-(34), inequality (31) becomes

V̇ ≤ −ΩV +

2∑
i=0

(Ω/ηi)(θ̂
2
i + (θ̄∗i )2) + (Ω/γ0)γ2 + (ν2/4)

+

2∑
i=0

(
c2

4ci2
+

(
ciθ̄
∗
i

)2
4ci3

)
||ξ||i+1 − ci1θ̂2

i ||x||i+1

− γ2γ̄(||ξ||5 − ||ξ||4)− c31γ
2||x||+

(
c2/4c32

)
||x||

= −ΩV − θ̂2
0 (c01||x|| − (Ω/η0)) + f(||ξ||)

− θ̂2
1

(
c11||x||2 − (Ω/η1)

)
− θ̂2

2

(
c21||x||3 − (Ω/η2)

)
− γ2 (c31||x|| − (Ω/γ0)) , (35)

where f(||ξ||) , −γ2γ̄||ξ||5 + ω4||ξ||4 + ω3||ξ||3

+ ω2||ξ||2 + ω1||ξ||+ ω0,

ω3 ,c
2/(4c22) +

((
c2θ̄
∗
2

)2
/(4c23)

)
, ω4 , γ

2γ̄

ω2 ,
c2

4c12
+

(
c1θ̄
∗
1

)2
4c13

, ω1 ,
c2

4c02
+

(
c0θ̄
∗
0

)2
4c03

+
c2

4c32
,

ω0 ,
2∑
i=0

(Ω/ηi)(θ̄
∗
i )2 + (ν2/4).

Using Descartes’ rule of sign change [37] and Bolzano’s
Theorem [38], it can be verified that the polynomial f has
exactly one positive real root. Let ι ∈ R+ be the positive
real root of f . The coefficient of the highest degree of f
is negative as γ2γ̄ ∈ R+. Therefore, f(||ξ||) ≤ 0 when

||ξ|| ≥ ι. Define ι0 , Ω
η0c01

, ι1 ,
√

Ω
η1c11

, ι2 ,
(

Ω
η2c21

)1/3

and ι3 , Ω
γ0c31

. Hence, from (35), V̇ ≤ −ΩV when

min {||x||, ||ξ||} ≥ max {ι, ι0, ι1, ι2, ι3}
⇒ ||x|| ≥ max {ι, ι0, ι1, ι2, ι3} . (36)

Case (ii) ||r|| < ε

Using (8), (13) and (20), from (7), for ||r|| < ε we have

rT ṙ ≤ −rTΛr− (1− E)ρ(||r||2/ε) +

2∑
i=0

θ∗i ||ξ||i||r||

≤ −rTΛr +

2∑
i=0

θ̄∗i ||ξ||i||r||. (37)

Before proceeding further, the following simplification is
made for i = 0, 1, 2:

εθ̂i||ξ||i = θ̂2
i −

{(
θ̂i − (ε||ξ||i)/2

)2

− (ε2||ξ||(2i))/4
}

≤ θ̂2
i + (ε2||ξ||(2i))/4. (38)

Using (37)-(38) and a similar procedure as Case (i), the
following can be deduced for Case (ii):

V̇ ≤− ΩV − θ̂2
0 (c01||x|| − ((Ω/η0) + 1)) + f1(||ξ||)

− θ̂2
1

(
c11||x||2 − ((Ω/η1) + 1)

)
− θ̂2

2

(
c21||x||3 − ((Ω/η2) + 1)

)
− γ2 (c31||x|| − ((Ω/γ0) + 1)) , (39)

where f1(||ξ||) , −γ2γ̄||ξ||5 + ω′4||ξ||4 + ω3||ξ||3

+ ω′2||ξ||2 + ω1||ξ||+ ω′0,

ω′4 , ω4 + (ε2/4), ω′2 , ω2 + (ε2/4)

ω′0 ,
2∑
i=0

(Ω/ηi)(θ̄
∗
i )2 + ((ν + ε)2/4) + (ε2/4).

Asserting similar argument made for Case (i), V̇ ≤ −ΩV
is guaranteed when

||x|| ≥ max {ι′, ι′0, ι′1, ι′2, ι′3} , (40)

where ι′ is the sole positive real root of the polynomial

f1 and ι′0 ,
(

Ω
η0c01

+ (1/c01)
)

, ι′1 ,
√

Ω
η1c11

+ 1
c11

, ι′2 ,(
Ω

η2c21
+ 1

c21

)1/3

and ι′3 ,
(

Ω
γ0c31

+ 1
c31

)
.

Hence, investigating the results for Cases (i) and (ii),

UUB stability can be concluded, implying r, eu, ėu, θ̂i, γ ∈
L∞. Let us now write (6) as

ėa = −Υ−1
a Γaea −Υ−1

a (Υuėu + Γueu) + Υ−1
a r (41)

where Υ−1
a exists being Υa > 0. Using Υ−1

a Γa > 0
and r, eu, ėu ∈ L∞ we conclude that ea, ėa ∈ L∞. This
concludes the proof. Note that the leakage action in (21a)
and (21b) cannot guarantee convergent error even with
convergent disturbance, a standard result in adaptive
robust control [5,34,35]. �

Remark 7 The importance of the auxiliary gain γ in
(8) can be realized from (35) and (39). There, the neg-
ative fifth degree term −γ2γ̄||ξ||5 (contributed by γ̇) en-
sures stability by making f(||ξ||) ≤ 0 for ||ξ|| ≥ ι and
f1(||ξ||) ≤ 0 for ||ξ|| ≥ ι′ for Case (i) and (ii).

Remark 8 The behavior of the non-actuated dynamics
(17) can be tuned via K1,K2, designed through (16);
(41) reveals that large Υ−1

a Γa leads to faster conver-
gence of actuated errors. Large values of ηi, γ1, γ2 and ν
lead to large γ2γ̄ and small ιi, ι

′
i, making the polynomials

f(||ξ||) < 0 and f1(||ξ||) < 0 (cf. the definition of γ̄ after
(27) and the negative fifth-degree term in (35) and (39)).
However, such large values might lead to high control in-
put and therefore these gains should be selected according
to application requirements.
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Figure 1. A schematic diagram of offshore boom crane.

5 Simulation Results

To evaluate the effectiveness of the proposed ARC, an
offshore boom crane example is considered. In Fig. 1,
{OXEYE} and {OXsYs} define the Earth-fixed and
ship-fixed coordinates, respectively; ϑ is the luffing an-
gle of the boom; α is the swing with respect to Ys of
the payload having mass mp; χ is roll angle of the ship
caused by sea wave/current; L(t) is the length of the
rope; PL,m and J are the length, mass and inertia of the
boom; and d is the distance between the barycenter of
the boom and the point O. The objective is to take the
payload to a target location (aL, bL) (in the Earth-fixed
frame) while rejecting the ship rolling. To this end, de-
noting q1 = ϑ−χ, q2 = L, and q3 = α−χ, the dynamics
of the offshore boom crane as in Fig. 1 is given as [11]:

M(q)q̈ + C(q, q̇)q̇ + G(q) + ds = [τT 0]T , (42)

where

M(q) =


J +mpP

2
L −mpPLC1−3 −mpPLq2S1−3

−mpPLC1−3 mp 0

−mpPLq2S1−3 0 mpq
2
2



C(q, q̇) =


0 −mpPLS1−3q̇3 ϑ13

mpPLS1−3q̇1 0 −mpq2q̇3

−mpPLq2C1−3q̇1 mpq2q̇3 mpq2q̇2


ϑ13 = −mpPL(S1−3q̇2 − C1−3q2q̇3),

G(q) =


(mpPL +md)ga cos(q1)

−mpga cos(q3)

mpgaq2 sin(q3)

 , τ =

[
τ1

τ2

]
,q =


q1

q2

q3

 ,
where S1−3 , sin(q1−q3), C1−3 , cos(q1−q3); ga is the
gravity constant; ds are external disturbances represent-
ing the effects of wind, slack in crane wires etc. We select

ds = (0.1 sin(0.01t) + dn)
[
1 1 1

]T
with dn a zero-mean
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Figure 2. The tracking performance of ARC.

Gaussian noise with variance 0.002. Note that the sym-
metry condition of [7,17–20] does not hold for (42), as M
depends on both the actuated (q1, q2) and non-actuated
(q3) states. Transporting the payload to (aL, bL) can be
transformed into stabilization around the following de-
sired position (cf. [11] for the derivation)

qd1 = arccos(aL/PL), qd2 =
√
P 2
L − a2

L − bL, q
d
3 = 0.

i.e. the control problem for (42) is well posed. Note that
no uncertainty in the length of the boom PL must be
considered in order to calculate the desired equilibrium.
In the simulations we take aL = 0.4 m, bL = 0.2 m and
PL = 0.8 m, resulting in qd1 = 1.05 rad (60 degrees) and
qd2 = 0.5 m (all numerical values are appropriately scaled
as in [11] and they are not representative of a real crane).

The actual (and uncertain) system parameters are se-
lected as: m = 20 kg, mp = 0.5 kg, d = 0.4 m and

J = 6.5 kg-m2. The nominal parameters (to compute b̂)

are selected as m̂p = 0.45 kg and Ĵ = 6 kg-m2. By sub-
stituting the actual and nominal values in the mass ma-
trix, it is possible to see that Assumption 3 is satisfied
with E = 0.5. The parametric values of m and d and the
upper bound of ds are considered to be unknown. The
initial configuration is selected as (q1(0), q2(0), q3(0)) =
(0.2, 0.1, 0.1). The control design parameters are Υa =
50I2,Υu = 50[1 1]T ,Γa = 400I2,Γu = 400[1 1]T ,Λ =
15I2, ε = 1, H = [1 1]T , Q = I2, η0 = 3, η1 = 4, η2 =
1, ζ0 = 1, ζ1 = 4, ζ2 = 1, γ0 = 2, γ1 = γ2 = ν = 1,

θ̂i(0) = γ(0) = 10, i = 0, 1, 2. The solution P to the Lya-
punov equation after (19) and the upper bound of ∆M
results in E1 = 1, and thus β = 3.

The tracking performance of the proposed ARC is pro-
vided in Fig. 2 in terms of state responses and track-
ing error (absolute value) for both actuated and non-
actuated states (the plots are given in degrees for better
inference). Therein, after t = 20sec, the tracking errors
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Figure 3. The evaluations of various gains and control input.

in q1 and q3 are below 5 and 3 degrees respectively, while
for q2 the error is below 0.05m. Fig. 3 demonstrates the

(bounded) evolutions of the various gains θ̂i, γ, the over-
all gain ρ and control input τ .

6 Conclusions

An adaptive robust controller was proposed for a class of
uncertain underactuated Euler-Lagrange systems. Com-
pared to the existing methodologies, the proposed one
avoids structure-specific restrictions such as symmetry
condition of the mass matrix, and a priori bounds on
non-actuated states or on state derivatives. Also, the re-
quirement of knowing dynamics terms such as Coriolis,
centripetal, friction and gravity terms has been removed,
while state-dependent uncertainties have been handled
irrespective of their linear or nonlinear in parameters
structure.
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