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Abstract. This article treats global uniform exponential stability (GUES) of
discrete-time switched linear systems under restricted switching. Given admis-
sible minimum and maximum dwell times, we provide sufficient conditions on
the subsystems under which they admit a set of switching signals that obeys
the given restrictions on dwell times and preserves stability of the resulting
switched system. Our analysis relies on combinatorial arguments applied to
matrix commutators and avoids the employment of Lyapunov-like functions.
The proposed set of stabilizing switching signals is characterized in terms of
duration of activation of Schur stable subsystems and non-consecutive activa-
tion of distinct unstable subsystems.

§ 1. Introduction

Hybrid systems find wide applications in modern day Cyber-Physical Systems
(CPS). In this article we deal with an abstraction of hybrid systems, where we focus
on the discrete dynamics and abstract away the continuous dynamics as switching.
Such an abstraction is called a discrete-time switched system, and contains two
ingredients — a family of systems and a switching signal. The switching signal
selects an active subsystem at every instant of time, i.e., the system from the family
that is currently being followed [14, §1.1.2]. A vast body of hybrid systems literature
is devoted to stability of switched systems.

Given a family of systems, much attention has been devoted to finding estimates
of minimum dwell times on stable subsystems and maximum dwell times on un-
stable subsystems under which stability of a switched system is preserved; see e.g.,
[13, 17, 19]. On the one hand, these stability conditions are only sufficient and do
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2 STABILITY UNDER RESTRICTED SWITCHING

not imply instability under a set of dwell times different from the estimated ones.
On the other hand, the minimum and maximum dwell times on subsystems are
often governed by physical constraints of a system. For instance, actuator satu-
rations may prevent switching frequencies beyond a certain limit, or in order to
switch from one component to another, a system may undergo certain operations
of non-negligible durations leading to a minimum dwell time requirement on each
subsystem. In addition, systems whose components need regular maintenance or
replacements, e.g., aircraft carriers, MEMS systems, etc. and systems that are de-
pendent on diurnal or seasonal changes, e.g., components of an electricity grid have
inherent restrictions on admissible maximum dwell times [8, 11]. It is, therefore,
of interest to study properties of a switched system under pre-specified restrictions
on dwell times. Stability and optimal control of switched systems under restricted
dwell times were dealt with earlier in the literature, see e.g., [7, 8, 9, 11, 12] and
the references therein.

In this article we consider the setting where all subsystems are linear, and study
stability of a switched system under pre-specified restrictions on dwell times. Given
admissible minimum and maximum dwell times, our objective is to characterize sets
of subsystems such that they admit switching signals that obey the given restrictions
and preserve stability of the resulting switched system. We allow both Schur stable
and unstable (not Schur stable) subsystems, and achieve our task in two steps:

○ first, we fix a set of switching signals that obey the given restrictions, and○ second, we identify sufficient conditions on subsystems under which the above
set of switching signals is stabilizing.

Our characterization of stabilizing switching signals is based on minimum dwell
times on Schur stable subsystems and non-consecutive activation of distinct un-
stable subsystems. Sufficient conditions on the subsystem matrices are derived by
employing commutation relations between certain products of these matrices.

A switched linear system is known to be stable under arbitrary switching if the
subsystem matrices are stable and commute pairwise [18] or are sufficiently “close”
to a set of matrices whose elements commute pairwise [1]. Recently in [10] one of the
authors extended the conditions of [1] to the setting of stability under all switching
signals obeying a given minimum dwell time. The overarching assumption in the
above body of results is that all subsystems are Schur stable. In this article we deal
with matrix commutator based characterization of stability of switched systems
under pre-specified restrictions on dwell times when not all subsystems are Schur
stable. Towards this end, we follow the combinatorial analysis technique proposed
in [1], and present two sets of sufficient conditions:

○ The first set of conditions caters to the setting where certain products of Schur
stable and unstable subsystem matrices commute. We rely on the rate of decay
of the Schur stable subsystems to guarantee stability. These conditions, however,
lack robustness in the sense that if the entries of the subsystem matrices are per-
turbed by a margin such that the matrix products of our interest cease to com-
mute, then our conditions are no longer useful to guarantee stability. However,
stability, being a robust property, may be preserved under small perturbations
in the elements of the subsystem matrices. This fact motivates our second set of
stability conditions.○ The second set of conditions caters to sets of subsystems for which the commu-
tators under consideration do not necessarily vanish, but are small quantities in
the induced Euclidean norm. We rely on the rate of decay of the Schur stable
subsystems, upper bounds on the norms of the commutators of certain products
of the subsystem matrices, and a set of scalars relating to the individual matri-
ces and the given minimum and maximum dwell times. These conditions ensure
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robust stability in the sense that if perturbing the elements of the subsystem
matrices does not take them “too far” from a set of matrices for which certain
matrix products commute, then stability of a switched system remains preserved
under the proposed set of switching signals.

We utilize the dwell time restrictions on our switching signals to split matrix prod-
ucts into sums, and apply counting arguments on them; see Remark 14 for a detailed
comparison between our analysis techniques and the methods of [1]. Since we aim
for a subset of the set of all admissible switching signals for stability, we are able
to accommodate unstable subsystems in the setting of matrix commutators. This
is in contrast to stability under arbitrary switching tackled in [1, 18] and minimum
dwell time switching tackled in [10], where all subsystems are necessarily Schur sta-
ble. To the best of our knowledge, this is the first instance in the literature where
commutation relations between subsystem matrices are utilized to characterize sta-
bilizing switching signals in the presence of unstable subsystems and pre-specified
restrictions on dwell times.

The remainder of this article is organized as follows: We formulate the problem
under consideration in §2, and catalog a set of preliminaries in §3. Our main results
appear in §4, where we also discuss various features of our results. Numerical
examples are presented in §5, and we conclude in §6 with a brief discussion of open
problems.

Notation. N is the set of natural numbers, N0 = N ∪ {0}. ∥⋅∥ denotes the
Euclidean norm (resp., induced matrix norm) of a vector (resp., a matrix). 0d×d is
the d-dimensional 0 matrix. For a matrix P , given by a product of matrices Mi’s,∣P ∣ denotes the length of the product, i.e., the number of matrices that appear in
P , counting repetitions.

§ 2. Problem statement

We consider a family of discrete-time linear systems

x(t + 1) = Aix(t), x(0) = x0, i ∈ P , t ∈ N0,(2.1)

where x(t) ∈ Rd is the vector of states at time t, P = {1, 2, . . . , N} is an index
set, and Ai ∈ Rd×d, i ∈ P , are known constant matrices. Let σ ∶ N0 → P be a
switching signal that specifies at every time t, the index of the active subsystem,
i.e., the dynamics from (2.1) that is being followed at t. A discrete-time switched
linear system generated by the family of systems (2.1) and a switching signal σ is
described by the recursion

x(t + 1) = Aσ(t)x(t), x(0) = x0, t ∈ N0.(2.2)

The solution to (2.2) is given by

x(t) = Aσ(t−1)Aσ(t−2) . . . Aσ(2)Aσ(1)Aσ(0)x0, t ∈ N,(2.3)

where we have suppressed the dependence of x on σ for notational simplicity. Our
focus is on global uniform exponential stability (GUES) of the switched system
(2.2).

Definition 1. [1, §2] The switched system (2.2) is globally uniformly exponentially
stable (GUES) over a set of switching signals S if there exist positive numbers c

and λ such that for arbitrary choices of the initial condition x0 and switching signal
σ ∈ S, the following inequality holds:

∥x(t)∥ ⩽ c exp(−λt) ∥x0∥ for all t ∈ N.(2.4)

The term ‘uniform’ in the above definition refers to the fact that the numbers c

and λ can be chosen irrespective of σ. Let 0 =∶ τ0 < τ1 < ⋯ be the points in time
where σ “jumps”; these are the switching instants. In this article we will work with
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switching signals σ that satisfy the following condition: there exist δ and ∆ ∈ N
such that

δ ⩽ τk+1 − τk ⩽∆, k = 0, 1, 2, . . . .(2.5)

Condition (2.5) implies that the duration of activation of any subsystem i ∈ P is at
least δ and at most ∆ units of time. We call δ and ∆ as the minimum and maximum
dwell times, respectively. Given δ and ∆, let S(δ, ∆) denote the set of all switching
signals σ that satisfy condition (2.5). We will solve the following problem:

Problem 1. Given admissible minimum and maximum dwell times δ and ∆ ∈ N,
δ <∆, find conditions on the matrices {Ai ∣i ∈ P} such that there is a set of switching
signals S̃(δ, ∆) ⊂ S(δ, ∆) over which the switched system (2.2) is GUES.

Remark 1. The classical problem of stability under dwell time switching [14, Chap-
ter 3] deals with identifying minimum dwell time on stable subsystems and maxi-
mum dwell time on unstable subsystems such that a switched system generated by
a given family of systems is stable. Formally, if S is the set of all switching signals
σ ∶ N0 → P ; we seek elements of S that are stabilizing. In contrast, in Problem 1 we
consider the admissible minimum and maximum dwell times to be “given”, and aim
to identify families of systems that admit stabilizing switching signals that obey the
given restrictions. In other words, we restrict our attention to the set S(δ, ∆) ⊂ S,
and find conditions on {Ai ∣ i ∈ P} such that S(δ, ∆) contains stabilizing elements.

Remark 2. Recently in [11, 12] one of the authors studied the algorithmic design of
switching signals that preserve stability of switched nonlinear systems under pre-
specified restrictions on minimum and maximum dwell times. Stabilizing switching
signals were designed under the assumption that the underlying weighted directed
graph of a switched system admits a certain class of cycles. While [11, 12] are
concerned with a “design” problem, in this article we are dealing with an “existence”
problem. In particular, we restrict our attention to linear subsystems and seek for
sets of subsystems that admit stabilizing switching signals under restricted dwell
times.

Towards solving Problem 1, we will employ two steps:
○ first, we fix a subset S̃(δ, ∆) of the set of switching signals S(δ, ∆), and
○ second, we identify sufficient conditions on the subsystem matrices {Ai ∣ i ∈ P}

under which S̃(δ, ∆) is stabilizing.

§ 3. Preliminaries

Let PS and PU denote the sets of indices of Schur stable and unstable subsystems,
respectively, P = PS ⊔PU

1.

Remark 3. The case of stability of (2.2) under all switching signals obeying a
certain minimum dwell time is addressed recently in [10]. A necessary condition
there is that all subsystem matrices {Ai ∣ i ∈ P} are Schur stable. The analysis
technique presented in [10] extends readily to the setting of restricted minimum
and maximum dwell times with all Schur stable subsystems, see [10, Remark 7] for
a detailed discussion. In contrast, here we focus on families of systems (2.1) that
contain both Schur stable and unstable subsystems.

We let

M ∶=max
i∈P
∥Ai∥ .(3.1)

1The set of unstable subsystems “also” includes Lyapunov stable but not asymptotically stable
(Schur stable) subsystems.
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Assumption 1. There exists m ∈ N with δ ⩽ m ⩽ ∆ such that the following
condition holds:

∥Am
i ∥ ⩽ ρ < 1 for all i ∈ PS .(3.2)

Remark 4. Notice that for a Schur stable matrix Ai, there exists an integer m ⩾ 1
such that ∥Am

i ∥ < 1. We will work with the smallest m ∈ {δ, δ + 1, . . . , ∆} such
that for every n ∈ {m + 1, . . . , ∆}, the condition (3.2) holds with n = m.2 Clearly,
Assumption 1 excludes those Schur stable matrices for which the smallest integer
m satisfying (3.2) is strictly bigger than the given integer ∆.

Let K1 be the largest integer satisfying K1δ ⩽ m and K2 be the largest integer
satisfying K2δ ⩽ ∆. We will need to employ the following relations for (matrix)
commutators of products of matrices:

E
p,q
ij = A

p
i A

q
j −A

q
jA

p
i , p, q ∈ {1, δ}, i ∈ PU , j ∈ PS .(3.3)

Remark 5. Notice that E
p,q
ij are commutators between products of Schur stable and

unstable subsystem matrices Aj and Ai of length p, q ∈ {1, δ}. The choice of these
commutators is motivated by our set of stabilizing switching signals to be described
momentarily; see Remark 14 for a detailed discussion.

Given the numbers M, N and m, we define the functions ζp,q ∶ N × N → R,
p, q ∈ {1, δ} as follows:

ζδ,δ(δ, ∆) =K1K2M (N−1)(m+∆−1)+m+∆−2δ,(3.4)

ζ1,δ(δ, ∆) =K1(∆ −K2δ)M (N−1)(m+∆−1)+m+∆−δ−1,(3.5)

ζδ,1(δ, ∆) = (m −K1δ)K2M (N−1)(m+∆−1)+m+∆−δ−1,(3.6)

ζ1,1(δ, ∆) = (m −K1δ)(∆ −K2δ)M (N−1)(m+∆−1)+m+∆−2.(3.7)

These functions will be useful in our analysis. We are now in a position to present
our results of this article.

§ 4. Results and discussions

Fix a switching signal σ ∈ S(δ, ∆) that satisfies the following conditions for all
k = 0, 1, 2, . . .:

τk+1 − τk ⩾m, if σ(τk) ∈ PS , and(4.1)

σ(τk+1) ∈ PS , if σ(τk) ∈ PU ,(4.2)

Let S̃(δ, ∆) ⊂ S(δ, ∆) denote the set of all switching signals σ that satisfy conditions
(4.1)-(4.2).

Remark 6. Given δ and ∆, every element of S(δ, ∆) dwells both on Schur stable
and unstable subsystems for at least δ and at most ∆ units of time. The set
S̃(δ, ∆) contains those elements of S(δ, ∆) that dwell on Schur stable subsystems
for at least m ⩾ δ units of time and do not activate two distinct unstable subsystems
consecutively. Notice that if m =∆, then τk+1−τk =∆ for σ(τk) ∈ PS , k = 0, 1, 2, . . ..

Remark 7. If PU = ∅, then the elements of S̃(δ, ∆) are the ones that obey a
minimum dwell time m and a maximum dwell time ∆ on every subsystem. In view
of our choice of m described in Remark 4, the norms of each product A

τk+1−τk

j , k =
0, 1, . . ., j ∈ PS is strictly less than 1. Consequently, ∥Aσ(t−1)Aσ(t−2)⋯Aσ(1)Aσ(0)∥→
0 as t→ +∞. Notice that the set of switching signals S̃(δ, ∆) is not defined if PS = ∅.
Indeed, otherwise condition (4.2) is violated.

2A discussion on the choice of m is provided in Remark 15.
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Remark 8. The elements of S̃(δ, ∆) restricts consecutive activation of distinct un-
stable subsystems. Theoretically, this feature is restrictive. However, in many
practical contexts, it is a natural choice for a switching mechanism to take a sys-
tem from a faulty component to a healthy component. The elements of S̃(δ, ∆)
cater to this setting.

When both PS and PU ≠ ∅, stability of (2.2) under an element σ of S̃(δ, ∆)
depends on the choice of the subsystem matrices {Ai ∣ i ∈ P}. We demonstrate this
fact in the following example:

Example 1. Consider P = {1, 2} with

A1 = (−0.24 0.14
−0.85 −0.89

) and A2 = (0.12 1.12
1.74 −1.48

) .

Clearly, PS = {1} and PU = {2}. Let δ = 2 and ∆ = 3. We have

∥A2

1∥ = 1.18 and ∥A3

1∥ = 0.95.

Consequently, m = 3. Let a switching signal σ satisfy

τi+1 − τi =m = 3, i = 0, 1, 2, . . . .

Clearly, σ ∈ S̃(2, 3). We observe that the switched system (2.2) is unstable under
the above σ. In Figure 1 we illustrate the corresponding (∥x(t)∥)t∈N0

. The initial

condition for this plot is chosen as x0 = (−1
1
).

Now, consider

Ã1 = A1 and Ã2 = (0.10 0.90
0.50 −1.20

) .

It is observed that the switching signal σ under consideration, is stabilizing. The

corresponding plot of (∥x(t)∥)t∈N0
with initial condition x0 = (−1

1
), is shown in

Figure 2.
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Figure 1. Plot of (∥x(t)∥)t∈N0
with subsystems A1 and A2 de-

scribed in Example 1

Fix a switching signal σ ∈ S̃(δ, ∆). Let W̃ be the corresponding matrix prod-
uct defined as: W̃ = . . . Aσ(2)Aσ(1)Aσ(0). Let W̃(δ, ∆) be the set of all products

corresponding to the switching signals belonging to the set S̃(δ, ∆). The condition
for GUES of (2.2) over the set S̃(δ, ∆) can be written equivalently as [1, §2]: for
arbitrary choice of W̃ ∈ W̃(δ, ∆), the following condition holds:

∥W̃ ∥ ⩽ ce−λ∣W̃ ∣ for all ∣W̃ ∣ .(4.3)
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Figure 2. Plot of (∥x(t)∥)t∈N0
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scribed in Example 1

Our first result identifies conditions on {Ai ∣ i ∈ P} such that (4.3) is true.

Theorem 1. Consider a family of discrete-time linear systems (2.1). Let δ, ∆ ∈ N
be given, δ < ∆, the matrices {Ai ∣ i ∈ PS} satisfy (3.2), and let λ be an arbitrary
positive number satisfying

ρeλm < 1.(4.4)

Suppose that the commutators of products of matrices defined in (3.3) satisfy

E
p,q
ij = 0d×d for all p, q ∈ {1, δ} and all j ∈ PS and i ∈ PU .(4.5)

Then there exists a positive number c such that (4.3) holds for arbitrary choice of
W̃ ∈ W̃(δ, ∆).
Remark 9. Theorem 1 provides a solution to Problem 1. It relies on commutativity
of the matrix products A

p
i and A

q
j for all p, q ∈ {1, δ} and all i ∈ PU and j ∈ PS . Given

admissible minimum and maximum dwell times δ and ∆, if the above mentioned
matrix products commute, then there exists a positive number c such that (4.3)
holds for arbitrary choice of W̃ ∈ W̃(δ, ∆). In view of Definition 1, the switched
system (2.2) is GUES over the set of switching signals whose elements
○ dwell for at least m(⩾ δ) and at most ∆ units of time on Schur stable subsystems,

and for at least δ and at most ∆ units of time on unstable subsystems, and
○ do not activate distinct unstable subsystems consecutively.

Remark 10. In [18] a switched linear system was shown to be stable under arbi-
trary switching if the subsystem matrices are Schur stable and commute pairwise.
In the setting of arbitrary switching Schur stability of all subsystems is a neces-
sary condition. In contrast, we seek for stability under a subset of the set of all
switching signals that satisfy certain pre-specified restrictions on dwell times and
accommodate unstable subsystems.

Remark 11. Notice that the stability conditions proposed in Theorem 1 are not
robust with respect to small perturbations in the elements of the subsystem matri-
ces. Indeed, if the elements of the subsystem matrices {Ai ∣ i ∈ P} are perturbed
to generate the matrices {Ãi ∣ i ∈ P}, such that the matrix products Ã

p
i and Ã

q
j ,

p, q ∈ {1, δ}, i ∈ PU , j ∈ PS do not commute, then our stability conditions are no
longer useful. However, stability being a robust property, may continue to hold
under small perturbations in the elements of the subsystem matrices. This feature
motivates our search for stability under a set of subsystems for which the matrix
products of our interest do not necessarily commute, but are sufficiently “close” to
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a set of matrices for which these products commute. Our next result characterizes
such sets of subsystems.

Theorem 2. Consider a family of discrete-time linear systems (2.1). Let δ, ∆ ∈ N
be given, δ < ∆, the matrices {Ai ∣ i ∈ PS} satisfy (3.2), and let λ be an arbitrary
positive number satisfying (4.4). Suppose that there exist scalars εp,q, p, q ∈ {1, δ}
small enough such that

∥Ep,q
ij ∥ ⩽ εp,q for all p, q ∈ {1, δ} and all j ∈ PS and i ∈ PU ,(4.6)

and

ρeλm
+ (ζδ,δ(δ, ∆)εδ,δ + ζ1,δ(δ, ∆)ε1,δ + ζδ,1(δ, ∆)εδ,1 + ζ1,1(δ, ∆)ε1,1)

× e
λ(N(m+∆−1)+1) ⩽ 1.(4.7)

Then there exists a positive number c such that (4.3) holds for arbitrary choice of
W̃ ∈ W̃(δ, ∆).
Remark 12. Theorem 2 is our second solution to Problem 1. We choose a subset
of the set of all Schur stable matrices by means of condition (3.2). If in addition,
the Euclidean norms of commutators of products of these matrices A

p
j with the

products of unstable subsystem matrices A
q
i , p, q ∈ {1, δ} are bounded above by

scalars εp,q, p, q ∈ {1, δ} small enough such that condition (4.7) holds, then there
exists a positive number c such that (4.3) is true for arbitrary choice of matrix
products corresponding to the switching signals σ ∈ S̃(δ, ∆). Consequently, the
switched system (2.2) is GUES over the set of switching signals S̃(δ, ∆).
Remark 13. In contrast to commutativity of matrix products employed in Theo-
rem 1, we utilize a measure of “closeness” to commutativity of matrix products in
Theorem 2. This technique in spirit is close to [1]. The usage of upper bounds on
the norms of E

p,q
ij , p, q ∈ {1, δ}, i ∈ PU , j ∈ PS provides inherent robustness to the

stability conditions of Theorem 2. Indeed, consider a set of subsystem matrices{Ai ∣ i ∈ P}, for which Assumption 1 and conditions (4.4), (4.6)-(4.7) hold. Now, if
the entries of {Ai ∣ i ∈ P} are perturbed to generate Ãi, i ∈ P , such that Assumption
1 and conditions (4.4), (4.6)-(4.7) continue to hold, then a switched system (2.2)
generated by the set of matrices {Ãi ∣ i ∈ P}, continues to be GUES over the set of
switching signals S̃(δ, ∆).

Prior to discussing other features of our results, we will provide their proofs and
explain the analysis technique in detail.

Proof of Theorem 1. It suffices to show that if the conditions of Theorem 1 hold,
then for arbitrary W̃ ∈ W̃(δ, ∆), the condition (4.3) is true. We will employ math-
ematical induction on ∣W̃ ∣ to establish (4.3).

A. Induction basis: Pick c large enough so that (4.3) holds for all W̃ satisfying∣W̃ ∣ ⩽N(m +∆ − 1) + 1.

B. Induction hypothesis: Let ∣W̃ ∣ ⩾ N(m+∆−1)+2 and assume that (4.3) holds

for all products of length less than ∣W̃ ∣.
C. Induction step: Let W̃ = LR, where ∣R∣ = N(m+∆− 1)+ 1 = (N − 1)(m+∆−

1) +m +∆. We observe that there exists an index j ∈ PS such that R contains at
least m consecutive Aj ’s. Indeed, otherwise conditions (4.1)-(4.2) are violated.

Without loss of generality, let j = 1 be the first index (reading the product W̃

from the right) of a Schur stable subsystem, and by the hypothesized properties of
a σ ∈ S̃(δ, ∆), A1 appears at least for m consecutive entries. We rewrite R as

R = R1Am
1 +R2,
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where ∣R1∣ = (N −1)(m+∆−1). (Consider, for example, N = 2, PS = {1}, PU = {2},
δ = 2, ∆ = 3, m = 3. Let R =⋯A1A1A1A2A2A2. It can be rewritten as

R = ⋯A1A2

1A2A2

2

= ⋯A1A2A2

1A2

2 −⋯A1E
1,2
21

A2

2

= ⋯A1A2A2

2A2

1 −⋯A1A2E
2,2
21
−⋯A1E

1,2
21

A2

2

= ⋯A2A1A2

2A2

1 −⋯E
1,1
21

A2

2A2

1 −⋯A1A2E
2,2
21
−⋯A1E

1,2
21

A2

2

= ⋯A2A2

2A1A2

1 −⋯A2E
2,1
21

A2

1 −⋯E
1,1
21

A2

2A2

1 −⋯A1A2E
2,2
21
−⋯A1E

1,2
21

A2

2.)
The sum R2 contains at most
○ K1K2 terms of length (N − 1)(m +∆− 1)+m +∆ − 2δ + 1 with (N − 1)(m+∆ −

1) +m +∆ − 2δ Ai’s and 1 E
δ,δ
i1 (generated by exchanging K1-many Aδ

1’s with

K2-many Aδ
i ’s, i ∈ PU ),

○ K1(∆ −K2δ) terms of length (N − 1)(m +∆ − 1) +m +∆ − δ with (N − 1)(m +
∆ − 1) +m +∆ − δ − 1 Ai’s and 1 E

1,δ
i1 (generated by exchanging K1-many Aδ

1’s
with (∆ −K2δ)-many Ai’s, i ∈ PU ),
○ (m −K1δ)K2 terms of length (N − 1)(m +∆ − 1) +m +∆ − δ with (N − 1)(m +

∆− 1)+m+∆− δ− 1 Ai’s and 1 E
δ,1
i1 (generated by exchanging (m−K1δ)-many

A1’s with K2-many Aδ
i ’s, i ∈ PU ), and

○ (m−K1δ)(∆−K2δ) terms of length (N −1)(m+∆−1)+m+∆−1 with (N−1)(m+
∆ − 1) +m +∆ − 2 Ai’s and 1 E

1,1
i1 (generated by exchanging (m −K1δ)-many

A1’s with (∆ −K2δ)-many Aδ
i ’s, i ∈ PU ).

Now, applying the sub-multiplicativity and sub-additivity properties of the in-
duced Euclidean norm, we obtain

∥W̃ ∥ = ∥LR∥ ⩽ ∥LR1∥ ∥Am
1 ∥ + ∥L∥∥R2∥

⩽ ce
−λ(∣W̃ ∣−m)

ρ + ce
−λ(∣W̃ ∣−(N(m+∆−1)+1))

×

⎛
⎝K1K2 ∥Eδ,δ

i1 ∥M (N−1)(m+∆−1)+m+∆−2δ

+K1(∆ −K2δ) ∥E1,δ
i1 ∥M (N−1)(m+∆−1)+m+∆−δ−1

+ (m −K1δ)K2 ∥Eδ,1
i1 ∥M (N−1)(m+∆−1)+m+∆−δ−1

+ (m −K1δ)(∆ −K2δ) ∥E1,1
i1 ∥M (N−1)(m+∆−1)+m+∆−2

⎞
⎠

= ce
−λ(∣W̃ ∣−m)

ρ + ce
−λ(∣W̃ ∣−(N(m+∆−1)+1))

×

(ζδ,δ(δ, ∆) ∥Eδ,δ
i1 ∥ + ζ1,δ(δ, ∆) ∥E1,δ

i1 ∥ + ζδ,1(δ, ∆) ∥Eδ,1
i1 ∥ + ζ1,1(δ, ∆) ∥E1,1

i1 ∥),
(4.8)

where the upper bounds on ∥LR1∥ and ∥L∥ are obtained by using the relations∣W̃∆∣ = ∣LR1∣+ ∣Am
1 ∣ and ∣W̃∆∣ = ∣L∣+ ∣R∣, respectively. From condition (4.5), we have

that

ζδ,δ(δ, ∆) ∥Eδ,δ
i1 ∥ + ζ1,δ(δ, ∆) ∥E1,δ

i1 ∥ + ζδ,1(δ, ∆) ∥Eδ,1
i1 ∥ + ζ1,1(δ, ∆) ∥E1,1

i1 ∥ = 0.

Consequently, the right-hand side of (4.8) becomes

ce−λ∣W̃ ∣
⋅ ρeλm.(4.9)

Applying (4.4) to (4.9) leads to (4.3).
This completes our proof of Theorem 1. �
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Proof of Theorem 2. The proof follows with exactly the same set of arguments as
in our proof of Theorem 1, except that the commutators of matrix products, E

p,q
ij ,

p, q ∈ {1, δ}, i ∈ PU , j ∈ PS are no longer 0 matrices. Recall that we have

∥W̃ ∥ ⩽ ce
−λ(∣W̃ ∣−m)

ρ + ce
−λ(∣W̃ ∣−(N(m+∆−1)+1))

×

⎛
⎝ζδ,δ(δ, ∆) ∥Eδ,δ

i1 ∥ + ζ1,δ(δ, ∆) ∥E1,δ
i1 ∥ + ζδ,1(δ, ∆) ∥Eδ,1

i1 ∥ + ζ1,1(δ, ∆) ∥E1,1
i1 ∥⎞⎠.

Applying (4.6) on the right-hand side of the above inequality, we obtain

∥W̃ ∥ ⩽ ce
−λ(∣W̃ ∣−m)

ρ + ce
−λ(∣W̃ ∣−(N(m+∆−1)+1))

×

(ζδ,δ(δ, ∆)εδ,δ + ζ1,δ(δ, ∆)ε1,δ + ζδ,1(δ, ∆)εδ,1 + ζ1,1(δ, ∆)ε1,1)
= ce−λ∣W̃ ∣⎛⎝ρeλm

+ (ζδ,δ(δ, ∆)εδ,δ + ζ1,δ(δ, ∆)ε1,δ + ζδ,1(δ, ∆)εδ,1 + ζ1,1(δ, ∆)ε1,1)

× e
λ(N(m+∆−1)+1)⎞⎠.(4.10)

Applying (4.7) to (4.10), we obtain that (4.3) holds, thereby completing our proof
of Theorem 2. �

Remark 14. The technique of applying counting arguments to matrix products
split into sums was applied earlier to cater to arbitrary switching in [1, Proof of
Proposition 1]. The overarching hypothesis there is that all subsystems are Schur
stable. In this section we admit unstable systems in the family (2.1) and focus
on a set of switching signals that obeys the given restrictions on dwell times and
preserves stability of the switched system (2.2). The differences of our analysis
technique with respect to [1] are highlighted below:

○ In [1] the authors split a matrix product W into two sub-products: the left sub-

product L and the right sub-product R, split L as a sum to arrive at (An

1 L1+L2)R,

where n ∈ N satisfies ∥An

1∥ ⩽ ρ < 1, and then apply counting arguments. Here,

we split the right sub-product R of W̃ into sums by utilizing the structure of the
switching signals σ ∈ S̃(δ, ∆). In the worst case, the rightmost m +∆ terms of
W̃ , ∣W̃ ∣ ⩾ m +∆, are (reading from the left) m-many Aj ’s followed by ∆-many
Ai’s, i ∈ PU , j ∈ PS .

○ The procedure of rearranging W in the form (An

1 L1 + L2)R presented in [1] in-

volves exchanging at every step two distinct matrices Ai and Aj that appear con-

secutively in L, and consequently, the stability conditions involve upper bounds
on the norm of the matrix commutators of Ai and Aj . Our procedure to exchange
Schur stable and unstable matrices to obtain the form L(R1Am

1 +R2) utilizes the
structure of a σ ∈ S̃(δ, ∆), and involves the following steps:
◇ K1 products of length δ of a Schur stable matrix Aj are exchanged with at

most K2 products of length δ and ∆ −K2δ entries of an unstable matrix Ai,
and

◇ m −K1δ entries of a Schur stable matrix Aj are exchanged with at most K2

products of length δ and ∆ −K2δ entries of an unstable matrix Ai.

This leads us to rely on the commutators of matrix products, E
1,1
ij , E

1,δ
ij , E

δ,1
ij

and E
δ,δ
ij defined in (3.3). With E

p,q
ij = 0 for all p, q ∈ {1, δ} and all i ∈ PU and

j ∈ PS , we arrive at Theorem 1, while to achieve robustness with respect to small
perturbations in the elements of the subsystem matrices, we employ ∥Ep,q

ij ∥ ⩽ εp,q

for all p, q ∈ {1, δ} and all i ∈ PU and j ∈ PS in Theorem 2.
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Remark 15. The choice of m described in Remark 4 is restrictive as far as the ele-
ments of S̃(δ, ∆) that activate unstable subsystems, are concerned. The restriction
is in the sense of the size of the subsets of Schur stable matrices that Theorems 1-2
cater to. Indeed, ∥Ak

j ∥ < 1, k ∈ {m+1, . . . , ∆} is not utilized explicitly in our proofs
of Theorems 1-2, but are taken care of in condition (4.7). In fact, the use of the
smallest δ ⩽ m ⩽ ∆ satisfying (3.2), suffices. However, as explained in Remark 7,
the choice of m described in Remark 4 is useful for the elements of S̃(δ, ∆) that do
not activate unstable subsystems at all. To accommodate Schur stable subsystems
that satisfy ∥Am

j ∥ < 1 and ∥An
j ∥ > 1, ∆ ⩾ n > m ⩾ δ, we require rearranging the

matrix products Aσ(t−1) . . . Aσ(1)Aσ(0) in the form Am
j1

Am
j2

. . ., which leads to the
requirement of additional conditions on the commutators of the matrix products
A

p
j1

and A
q
j2

, p, q ∈ {m, m + 1, . . . , ∆}, j1, j2 ∈ PS . The reader is referred to [10,

Remark 7] for a discussion on matrix commutator based stability conditions that
cater to restricted switching with all Schur stable subsystems.

Remark 16. A commonly used tool for studying stability of switched systems under
dwell time switching is multiple Lyapunov-like functions [4]. The analysis technique
involves compensating the maximum increase in these functions caused by activa-
tion of unstable subsystems and occurrence of switches, by the minimum decrease in
these functions caused by activation of stable subsystems, see e.g., [11, 12, 13, 17]. In
this article we follow a paradigm shift, and rely on commutation relations between
subsystem matrices. Matrix commutators (Lie brackets) have been used widely to
cater to arbitrary switching earlier in the literature. A switched linear system is
stable under arbitrary switching if the subsystem matrices pairwise commute [18],
Lie algebra is nilpotent [5], solvable [16], or has a compact semisimple part [2].
In [6] the authors addressed the problem of designing state-feedback matrices such
that Lie algebra associated to the closed-loop subsystems is approximately solvable.
Robustness of matrix commutation relations with respect to small perturbations in
the elements of the subsystem matrices was addressed in [15] for periodic switching
and in [1] for arbitrary switching. Here, we extend the analysis technique of [1]
to the setting of restricted switching in the presence of unstable subsystems. The
use of matrix commutators allows us to characterize stability directly in terms of
properties of subsystem matrices, and not in terms of existence of certain classes
of Lyapunov-like functions.

Remark 17. In [11, 12] the design of stabilizing switching signals under dwell time
constraints involves constructing negative weight cycles on the underlying weighted
digraph of a switched system. While the techniques of [11, 12] cater to general
nonlinear setting, the existence of stabilizing cycles depends on the existence of
Lyapunov-like functions that satisfy certain conditions individually and among
themselves. Given a family of systems, designing such functions is, in general,
a numerically difficult problem. In contrast, the results proposed in this article do
not involve verifying if suitable Lyapunov-like functions exist for a given family of
systems, instead checking certain properties of the subsystem matrices is sufficient.
Our stability conditions are, however, limited to the case of switched linear systems
unlike Lyapunov-like function based techniques that extend to switched nonlinear
systems under standard assumptions.

§ 5. Numerical examples

Example 2. We consider P = {1, 2} with

A1 = (−0.92 0
0 0.77

) and A2 = (1.24 0
0 0.89

) .
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Clearly, PS = {1} and PU = {2}. Let δ = 2 and ∆ = 3. We have

∥A2

1
∥ = 0.85, ∥A3

1
∥ = 0.78.

Hence, m = 2 and ρ = 0.85. Let λ = 0.001, which leads to

ρeλm = 0.85 < 1.

Also, ∥E2,2
21
∥ = 0, ∥E1,2

21
∥ = 0, ∥E2,1

21
∥ = 0, ∥E1,1

21
∥ = 0.

Consequently, the conditions of Theorem 1 hold.
We generate 1000 random switching signals that obey conditions (4.1)-(4.2) and

plot the corresponding (∥x(t)∥)t∈N0
in Figure 3. The initial conditions x0 are chosen

uniformly at random from the interval [−100, 100]2. We observe that the switched
system (2.2) is GUES under all these signals.

t
0 10 20 30 40 50

||x
(t

)|
|

0

20

40

60

80

100

120
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(b) log ∥x(t)∥ versus t

Figure 3. Plot of (∥x(t)∥)t∈N0
for Example 2

Example 3. Consider the setting of Example 2. We now perturb the elements of{Ai ∣ i ∈ P} to generate

Ã1 = A1 + (0 0.1
0 0

) = (−0.92 0.1
0 0.77

) and

Ã2 = A2 + ( 0 0
0.05 0

) = (1.24 0
0.05 0.89

) .

The above perturbations preserve PS = {1} and PU = {2}. However, the matrices
Ã

p
2

and Ã
q
1
, p, q ∈ {1, δ} no longer commute. Indeed,

∥E2,2
21
∥ = 0.0272, ∥E1,2

21
∥ = 0.0127, ∥E2,1

21
∥ = 0.1811, ∥E1,1

21
∥ = 0.0850.

We will apply Theorem 2. We have

M =max{∥A1∥ , ∥A2∥} = 1.24,

∥A2

1
∥ = 0.85, ∥A3

1
∥ = 0.78,

ρ = 0.85, m = 2, λ = 0.001,

K1 = ⌊m
δ
⌋ = 1, K2 = ⌊∆

δ
⌋ = 1,

ζ2,2(2, 3) = 2.93, ζ1,2(2, 3) = 3.64, ζ2,1(2, 3) = 0, ζ1,1(2, 3) = 0,

e
λ(N(m+∆−1)+1) = 1.0090.

Consequently,

ρeλm
+ (ζδ,δ(δ, ∆)εδ,δ + ζ1,δ(δ, ∆)ε1,δ + ζδ,1(δ, ∆)εδ,1 + ζ1,1(δ, ∆)ε1,1)
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× e
λ(N(m+∆−1)+1)

= 0.85 × e2×0.001
+ (2.93 × 0.0272+ 3.64 × 0.0127+ 0 + 0) × 1.0090

= 0.98 < 1,

and the conditions of Theorem 2 hold.
We generate 1000 random switching signals that obey conditions (4.1)-(4.2) and

plot the corresponding (∥x(t)∥)t∈N0
in Figure 4. The initial conditions x0 are chosen

uniformly at random from the interval [−100, 100]2. We observe that the switched
system (2.2) is GUES under all these signals.
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Figure 4. Plot of (∥x(t)∥)t∈N0
for Example 2

§ 6. Concluding remarks

To summarize, we identified sufficient conditions on the subsystems of a switched
system such that they admit a set of switching signals that obeys pre-specified re-
strictions on admissible minimum and maximum dwell times and preserves stability
of the resulting switched system. Our set of stabilizing switching signals is char-
acterized in terms of dwell times on Schur stable subsystems and non-consecutive
activation of distinct unstable subsystems.

In the recent past stabilizing switching signals for discrete-time switched linear
systems that rely solely on the asymptotic behaviour of these signals was proposed
in [13]. The characterization of these switching signals depends on the existence
of a family of Lyapunov-like functions, the elements of which satisfy certain condi-
tions individually and among themselves. Recently in [3] the authors characterized
sets of subsystems that admit the set of stabilizing switching signals proposed in
[13]. However, the said characterization is in terms of existence of Lyapunov-like
functions, and the design of these functions from the subsystem matrices is not
addressed. Identifying conditions on subsystems such that they admit large classes
of stabilizing switching signals (e.g., the one proposed in [13]) directly in terms of
properties of the subsystem matrices is an open problem. We envision that the
combinatorial techniques presented in this article is a potential tool to address this
setting.
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