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Abstract

This paper proposes a coordinate-free controller to drive a mobile robot to encircle a target at unknown position by only using
range measurements. Different from the existing works, a backstepping based controller is proposed to encircle the target with
zero steady-state error for any desired smooth pattern. Moreover, we show its asymptotic exponential convergence under a
fixed set of control parameters, which are independent of the initial distance to the target. The effectiveness and advantages
of the proposed controller are validated via simulations.
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1 Introduction

Target tracking with robots has been widely applied in
both military and civilian fields, such as border patrol,
convey protection, and aerial surveillance, and has at-
tracted considerable research attention in decades. One
of the tracking patterns is target encirclement (Marasco
et al. 2012), which requires that a tracking robot encloses
the target with flexible commands to neutralize the tar-
get by restricting its movement. Particularly, circumnav-
igation refers to that the robot exactly slides on a cir-
cle centered at the target (Shames et al. 2012, Matveev
et al. 2011). Many works have focused on this problem,
see e.g., Frew et al. (2007), Deghat et al. (2014), Hafez
et al. (2014), Cao (2015), Zhang et al. (2017), Xiao &
Lu (2017), Yu & Liu (2017) and references therein. How-
ever, their controllers cannot be applied to the target
encirclement of this work.

If the states (position, velocity, course, etc.) of both the
robot and target are available, a Lyapunov guidance
vector fields method is proposed by Lawrence (2003)
and adopted in Frew et al. (2008). Moreover, both the
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backstepping control method and the sliding mode con-
trol method have been introduced in Jiang & Nijmeijer
(1997) and Lee et al. (2013), respectively. Clearly, they
are coordinate-based and cannot be applied in the GPS-
denied environment.

If the robot state is available but the target state is un-
known, e.g., the target is an intruder, the target position
can be estimated based on sensor measurements, such as
range-only (Shames et al. 2012), bearing-only (Deghat
et al. 2014, Zheng et al. 2015), or received signal strength
(Hu et al. 2011). For a stationary target, an adaptive
localization algorithm is devised using range-only mea-
surements in Shames et al. (2012). By using a single vi-
sion camera, a vision-based motion estimator and an ex-
tended Kalman filter are designed in Dobrokhodov et al.
(2008) and Zhang & Liu (2010), respectively. Note that
it is impossible to locate the target if the robot state is
unknown.

If neither the robot state nor the target position is avail-
able, e.g., the robot is an underwater or indoor vehi-
cle, this problem becomes much more difficult. A sliding
mode approach is proposed in Matveev et al. (2011) to
solve the circumnavigation problem. Although the chat-
tering phenomenon can be eliminated or reduced, their
approach cannot achieve zero steady-state. Besides, it
requires a particular assumption that the initial posi-
tion of the robot is sufficiently far away from the target.
A range-only controller is devised in Milutinovic et al.
(2014), Milutinovi et al. (2017), whose control parame-
ters strongly depend on the initial distance to the tar-
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get. In addition, Cao (2015) introduces a geometrical
guidance law, whose idea is to drive the robot towards
the tangent point of an auxiliary circle. However, this
method involves the computation of trigonometric and
inverse trigonometric functions. Since there is no control
input to the robot if it enters this auxiliary circle, this
may result in large overshoots. To solve it, a switching
idea is adopted in Zhang et al. (2017) where the switch-
ing is performed based on the tracking error.

Note that all the aforementioned range-only based con-
trollers are only applicable to the circumnavigation
problem of a stationary target. Clearly, this pattern
cannot adapt to the time-varying/complicated envi-
ronment, e.g. obstacle avoidance, circumnavigation of
multiple targets, moving target, and etc. Thus, we are
interested in the so-called target encirclement with
smooth time-varying reference commands in this work.
To this purpose, we propose a coordinate-free controller
with range-only measurements by exploiting the back-
stepping control. In a preliminary version of this work
(Dong & You 2019), we have shown its effectiveness
for the circumnavigation problem. For a time-varying
reference command, our controller naturally contains
its time derivative in the recursively backward process.
Thus, our approach can guarantee global convergence
and exponential stability with zero steady-state error.
Moreover, the control parameters are independent of the
initial state due to the use of a saturation function in the
backstepping control. The effectiveness and advantages
of the proposed controller are validated via simulations.

The rest of this paper is organized as follows. In Section
2, the problem under consideration is formulated in de-
tails. In Section 3, the proposed controller is given by
exploiting the backstepping control method. In Section
4, we prove the stability and convergence of the pro-
posed controller for the circumnavigation problem. Tar-
get encirclement with smooth time-varying commands is
shown in Section 5. Simulations are included in Section
6, and some concluding remarks are drawn in Section 7.

2 Problem Formulation

Let po := [xo, yo]′ be the unknown position of a station-
ary target and the dynamics of the robot is given by

ṗ(t) = vc[cos θ(t), sin θ(t)]′,

θ̇(t) = u(t),
(1)

where p(t) ∈ R2, vc, θ(t), and u(t) denote the position,
constant linear speed, heading course, and angular speed
of the robot, respectively.

Under mild conditions, the objective of this work is to
design a proper controller u(t) by using range-only mea-

surements

d(t) := ‖p(t)− po‖2

such that the robot eventually encircles the target in the
form of any given smooth pattern, which can be specified
by a smooth reference signal r(t). That is,

lim
t→∞

|d(t)− r(t)| = lim
t→∞

|ḋ(t)− ṙ(t)| = 0. (2)

If r(t) ≡ rc is a positive constant, the desired pattern
of the robot becomes an exact circle with the stationary
target as its center. This is the celebrated circumnaviga-
tion problem in Cao (2015), Matveev et al. (2011) and
see Fig. 1 for illustration. However, it is confirmed via
simulations in Section 6 that their controllers cannot be
directly extended to the case of time-varying r(t), which
is the focus of this paper. Since the controller of this work
only relies on range measurements between the robot
and target, it is particularly useful in the GPS-denied
environment and also substantially different from Do-
brokhodov et al. (2008), Zhang & Liu (2010), Deghat
et al. (2014), Xiao & Lu (2017), all of which need the
GPS state information of the robot.

3 Controller Design

In this section, the controller is designed by using range-
only measurements such that the distance d(t) to the
target is able to track a smooth reference signal r(t) in
the sense of (2). Our main idea is to exploit the advan-
tage of the backstepping method, which is substantially
different from Cao (2015), Matveev et al. (2011), Xiao &
Lu (2017) and they can only solve the circumnavigation
problem.

3.1 Range-only based controller for encircling

Let φ(t) ∈ (−π, π] be the angle formed by the direction
from the target O to the robot and the heading direc-
tion of the robot, see Fig. 1. By convention, the counter-
clockwise direction is set to be positive. Then, the robot
dynamics in (1) can be transformed into

ḋ(t) = vc cosφ(t),

φ̇(t) = u(t)− vc
d(t)

sinφ(t).
(3)

From Fig. 1, we also have the relation that

φ(t) = θ(t)− η(t),

where η(t) := arctan((y(t)−yo)/(x(t)−xo)) is the angle
between the direction from the target to the robot and
the positive direction of x-axis.
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Fig. 1. Target encirclement by a mobile robot.

For a given smooth reference signal r(t), we exploit the
backstepping method to design the following range-only
based controller

u(t) =
vcα(t)

d(t)
+

1

vcα(t)
× (4)(

k1

(
ḋ(t)− ṙ(t) + k2sat

(d(t)− r(t)
k3

))
− r̈(t)

)
,

where ki, i = 1, 2, 3 are positive parameters, and

α(t) = | sinφ(t)| =
√
v2c − (ḋ(t))2/vc.

The saturation function sat(·) is defined as

sat(η) :=

{
η, |η| < 1,

sgn(η), |η| ≥ 1,

where sgn(·) is the standard signum function, and is uti-
lized to ensure that all parameters work for any initial
state of the robot. Moreover, we set d(t) = ε1 if d(t) ≤ ε1,
and α(t) = ε2 if α(t) ≤ ε2, where εi, i = 1, 2 are positive
constant. Although it is extremely difficult to establish
an explicit dependence, the tracking accuracy is posi-
tively related to k1, and the convergence speed is mainly
determined by k2 and k3.

Moreover, one may employ a washout filter to track the
derivative of d(t). That is, ḋ(t) in (4) is replaced by ξ(t),
whose Laplace transform is given by

ξ(s) =
hs

s+ h
d(s), (5)

where s is the Laplace operator, h > 0 is the filter pa-
rameter, and d(s) is the Laplace transform of the range-
only input. Here the washout filter is used to damp the
DC component of the range measurement d(t) (Lin et al.

2016). Noting that ξ(t) = ḋ(t) if there is no measurement

noise, and otherwise ξ(t) is a filtered version of ḋ(t). A
similar idea of (5) has also been adopted in Guler & Fi-
dan (2015).

3.2 Interpreting (4) from the backstepping control

Taking the derivative on both side of (3), we obtain that

d̈(t) = −φ̇(t)vc sinφ(t). (6)

Consider the following state vector of the robot

x(t) := [x1(t), x2(t)]′ = [d(t), ḋ(t)]′. (7)

Then, it follows from (6) that

ẋ1(t) = x2(t),

ẋ2(t) = f(x(t)) + g(x(t))u(t),
(8)

where the functions f and g are given by

f(x(t)) =
v2c
x1(t)

sin2 φ(t),

g(x(t)) = −vc sinφ(t).

(9)

Define an error vector e(t) := [e1(t), e2(t)]′ by

e1(t) :=x1(t)− r(t),
e2(t) :=x2(t)− s(t), (10)

where s(t) is a virtual guidance command and is defined
as

s(t) := −c1e1(t) + ṙ(t). (11)

Here c1 > 0 is a control parameter, and ṙ(t) is the deriva-
tive of the desired command r(t).

Consider the Lyapunov function candidate as

V1(e1) =
1

2
e21(t).

Taking the derivative of V1(e1), we have that

V̇1(e1) = e1(t)ė1(t)

= −c1e1(t)2 + e1(t)e2(t).

If e2(t) = 0, then V̇1(e1) ≤ 0 and x2(t) = s(t). Moreover,

ė1(t) = −c1e1(t).

In this case, e1(t) exponentially converges to 0 as t goes
to infinity. Thus, it is sufficient to design a proper con-
troller u(t) to asymptotically drive e2(t) to zero. A natu-
ral idea is to use a backstepping controller (Khalil 2002,
Jiang & Nijmeijer 1997), i.e.,

u(t) = −c2e2(t) + e1(t) + f(x(t))− ṡ(t)
g(x(t))

, (12)
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where c2 > 0 is a positive parameter, and ṡ(t) is the
derivative of the virtual command s(t).

To validate the controller in (12), consider the Lyapunov
function candidate as

V2(e) = V1(e1) +
1

2
e22(t).

Taking derivative of V2(e) along with (8) leads to that

V̇2(e) = e1(t)ė1(t) + e2(t)ė2(t)

= e1(t)ė1(t) + e2(t)
(
f(x(t)) + g(x(t))u(t)− ṡ(t)

)
= −c1e21(t)− c2e22(t)

≤ 0.

Thus, V2(e) satisfies the following three conditions

• Nonnegative: V2(e) ≥ 0, and V2(e) = 0 if and only if
e(t) = 0.

• Strictly decreasing: V̇2(e) < 0, ∀e(t) 6= 0.
• Radially unbounded: V2(e)→∞, as ‖e(t)‖2 →∞.

By Theorem 4.1 in Khalil (2002), the closed-loop sys-
tem in (8) is asymptotically stable, i.e., d(t)→ r(t) and

ḋ(t)→ ṙ(t) as t→∞.

However, the backstepping controller in (12) further uses
the information of the angle φ(t). To solve it, we note
from the dynamics in (3) that cosφ(t) = x2(t)/vc. Since

sinφ(t) = ±
√

1− cos2 φ(t) and the sign of sinφ(t) is
unknown, we simply use α(t) = | sinφ(t)| to replace it
and the controller in (12) is modified as

u(t) = −vcα(t)

x1(t)
− 1

vcα(t)

(
c2e2(t) + e1(t)− ṡ(t)

)
= −vcα(t)/x1(t)− 1/(vcα(t))×

(c2e2(t) + e1(t) + c1x2(t)− c1ṙ(t)− r̈(t))
= −vcα(t)/x1(t)− 1/(vcα(t))× (13)(

k1

(
x2(t)− ṙ(t) +

x1(t)− r(t)
k3

)
− r̈(t)

)
,

where k1 = c1 + c2, and k3 = (c1 + c2)/(c1c2 + 1).

When φ(t) ∈ [0, π], it is clear that the controller in (13)
is equivalent to that in (12). Thus, if there is a finite
t1 ≥ t0 such that φ(t) ∈ [0, π], ∀t ≥ t1 for any initial state
φ(t0), the controller in (13) can guarantee the global
convergence.

To ensure the existence of such a finite t1, the parame-
ter k3 usually depends on the initial state of x1(t). Note
that |x2(t)| ≤ vc, we adopt a saturation function to han-
dle this problem. Then, the controller in (13) is further
modified as (4).

In the sequel, we shall prove that the controller in (4)
indeed drives the robot to encircle the target in the sense
of (2).

3.3 Comparison with the literature

For the circumnavigation problem, i.e., r(t) ≡ rc, the
proposed controller in (4) naturally reduces as

u(t) =
vcα(t)

d(t)
+

k1
vcα(t)

(
ḋ(t) + k2sat(

d(t)− rc
k3

)

)
.

(14)

When the robot is sliding on the desired orbit, i.e., d(t) =

rc and ḋ(t) = 0, the control output is exact vc/rc, which
implies that there is no steady-state error. In contrast,
the sliding mode controller in Matveev et al. (2011) can-
not achieve zero steady-state error. Since this issue, Cao
(2015) and Zhang et al. (2017) use switching controllers
along with the distance error d(t)−rc. The idea of the ge-
ometrical method in Cao (2015) is to drive the robot to-
wards the tangent point of an auxiliary circle, and there
is no control when the robot enters the auxiliary circle,
which may result in large overshoot.

In terms of the stability and convergence, our controller
in (14) can ensure global convergence, and the control
parameters are independent of the initial distance. In
comparison, the sliding mode approach in Matveev et al.
(2011) requires that the initial distance to the target is
lager enough than the desired radius. The control pa-
rameters in Milutinovi et al. (2017) are determined by
solving a linear quadratic regulator (LQR) problem and
depends on the initial distance.

Note that all methods mentioned above are concerned
with the problem of target circumnavigation. Their
methods cannot be directly extended to the case of
smooth time-varying reference commands as confirmed
in Section 6.

4 Target Encirclement with a Constant Refer-
ence Distance

As mentioned before, circumnavigation is a special case
of target encirclement of this work, and is shown to be
achieved under controller in (4) by setting r(t) ≡ rc.

4.1 Stability and convergence

Proposition 1 Consider the encirclement system in (8)
under the range-only based controller in (4). Let r(t) ≡ rc
andxe := [rc, 0]′. If the controller parameters are selected
to satisfy that

0 < k2 < vc, and k3 = rc (15)
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there exists a finite t1 > t0 such that

‖x(t)− xe‖ ≤ C‖x(t1)− xe‖ exp (−ρ(t− t1)) ,∀t > t1

where x(t) is defined in (7), ρ and C are two positive
constants.

Thus, a proper set of parameters in (15) ensures that
the robot completes the circumnavigation task for any
initial state and the convergence is exponentially fast.

Ifx(t) = xe, the controller in (4) reduces to u(t) = vc/rc,
which together with (3) implies that there is no steady-
state error. In contrast, the sliding mode approach in
Matveev et al. (2011) cannot achieve zero steady-state
error.

4.2 Proof of Proposition 1

If φ(t) ∈ [0, π], the controller in (13) is equivalent to that
in (12), the effectiveness of which has been proved in
Section 3.2. Thus, we first show that there must exist a
finite time instant t1 ≥ t0 such that φ(t) ∈ [0, π],∀t ≥ t1
for any initial state, see Lemma 2. Then, the closed-loop
system in (8) under (14) is shown to be asymptotically
stable in Lemma 3 and exponentially stable in Lemma 4.

Lemma 2 Under the conditions in Proposition 1, there
must exist a finite time instant t1 ≥ t0 such that φ(t) ∈
[0, π], ∀t ≥ t1, for any initial state φ(t0) ∈ (−π, π].

PROOF. We prove that (a) φ(t) ∈ [0, π] for any t ≥ t0
if φ(t0) ∈ [0, π] and (b) there exists a t1 > t0 such that
φ(t1) ∈ [0, π] for any φ(t0) ∈ (−π, 0).

Combining (3) with (14), we obtain that

φ̇(t) =
vcα(t)

d(t)
+

k1
vcα(t)

(
ḋ(t) + k2sat(

d(t)− rc
k3

)
)

− vc
d(t)

sinφ(t). (16)

To prove part (a), we just need to show that φ̇(t) > 0 if

φ(t) = 0, and φ̇(t) < 0 if φ(t) = π. If φ(t) = 0, it follows
from (16) that

φ̇(t) = (vcε2)−1k1

(
vc + k2sat(

d(t)− rc
k3

)

)
≥ (vcε2)−1k1(vc − k2) > 0,

where the last inequality uses the fact that vc > k2.
Similarly, φ(t) = π leads to that

φ̇(t) = (vcε2)−1k1

(
−vc + k2sat(

d(t)− rc
k3

)

)
≤ (vcε2)−1k1(−vc + k2) < 0. (17)
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Fig. 2. States of the robot.

To prove part (b), four cases in Fig. 2 are considered.

For the case in Fig. 2(a), i.e., d(t0) ∈ [rc,∞) and φ(t0) ∈
[−π/2, 0), it follows from (4) and (16) that ḋ(t0) ≥ 0

and φ̇(t0) > 0. Thus, there must exist a t∗ > t0 such

that 0 > φ(t∗) > −π/2 and ḋ(t∗) > 0. This implies that
d(t∗) > rc, and

φ̇(t∗) = − k1
vc sinφ(t∗)

(
ḋ(t∗) + k2sat(

d(t∗)− rc
k3

)

)
− 2vc sinφ(t∗)

d(t∗)

> −k1cotφ(t∗)

> 0.

Thus, φ(t) will monotonically increase until φ(t1) ≥ 0 at
some finite time instant t1.

For the case in Fig. 2(b), i.e., d(t0) ∈ [rc,∞) and φ(t0) ∈
(−π,−π/2), it follows from (16) and (17) that

{
φ̇(t) > 0, if φ(t) = −π/2,
φ̇(t) < 0, if φ(t) = −π.

In this case, there are three possible results after some
finite time ∆ > 0: (i) φ(t0+∆) < −π and d(t0+∆) ≥ rc,
then part (b) is finished; (ii) φ(t0 + ∆) > −π/2 and
d(t0 + ∆) ≥ rc, which is the case in Fig. 2(a); (iii) d(t0 +
∆) < rc which is to be shown for the cases in Fig. 2(c)
and (d).

For d(t0) ∈ (0, rc), it contains both cases in Fig. 2(c) and

5



(d). When φ(t) = −π/2, it follows from (16) that

φ̇(t) =
−2vc
d(t)

− k1k2
rcvc

(d(t)− rc) (18)

=
−d2(t) + rcd(t)− 2rcv

2
c/(k1k2)

rcvcd(t)/(k1k2)
. (19)

Note that the numerator in the last equality is quadratic
in d(t). If k1k2 < 8v2c , then it can be easily verified that

r2c − 4× 2rcv
2
c

k1k2
< 0

and φ̇(t) < 0 for φ(t) = −π/2 and any d(t) ∈ (0, rc). If
k1k2 ≥ 8v2c , there exists an equilibrium ỹe := [d∗,−π/2]′

such that φ̇(t) = 0, where d∗ ∈ (0, rc). However, this
equilibrium ỹe is unstable. To prove it, we define y(t) :=
[d(t), φ(t)]′ and linearize the closed-loop system in (3)
around ỹe as follows

ẏ(t) = F (y(t)− ỹe)

where the Jacobian matrix F is given by

F =

 0 vc
k1k2
rcvc

− 2vc
d2∗

k1

 .
It is clear that at least one eigenvalue of F has positive
real part, i.e., the equilibrium ỹe is unstable. Thus, φ(t)
cannot converge to −π/2 for any d(t) ∈ (0, rc).

Suppose that φ(t) can stay in (−π/2, 0) for all time,

then we have ḋ(t) > 0 in light of (3). Together with the
fact that φ(t) cannot converge to −π/2 for any d(t) ∈
(0, rc), there must exist some finite time ∆ > 0 such that
d(t0 + ∆) ≥ rc, which is the case in Fig. 2(a).

Similarly, d(t) > 0 implies that φ(t) cannot stay in
(−π,−π/2) for all time.

Consequently, there must exist a finite t1 such that
φ(t1) ∈ [0, π] for any φ(t0) ∈ (−π, 0).

In virtue of Lemma 2, the controller in (13) is eventually
equivalent to that in (12), whose effectiveness has been
shown in Section 3.2.

Lemma 3 Under the conditions in Proposition 1, the
closed-loop system in (8) is asymptotically stable.

PROOF. In view of Lemma 2, it holds that φ(t) ∈ [0, π]
for any t ≥ t1. By (16), we obtain that

φ̇(t) =
k1

vc sinφ(t)

(
ḋ(t) + k2sat(

d(t)− rc
k3

)

)
. (20)

Consider the Lyapunov function candidate as

V3(x) = k1k2

∫ x1(t)

rc

sat(
τ − rc
k3

)dτ +
1

2
x22(t).

Taking the time derivative of V3(x) along with (6), (8)
and (20) leads to that

V̇3(x) = k1k2sat(
x1(t)− rc

k3
)x2(t) + x2(t)ẋ2(t)

= k1k2sat(
x1(t)− rc

k3
)x2(t)

− x2(t)

(
k1x2(t) + k1k2sat(

x1(t)− rc
k3

)

)
= −k1x22(t)

≤ 0.

However, V̇3(x) is not always negative definite, e.g.,

V̇3(x) = 0 for x2(t) = 0 and any x1(t) > 0. Let

S := {x|V̇3(x) = 0}. For any x0 ∈ S but x0 6= xe, it
holds that

ẋ2(t)|x(t)=x0
= k1k2sat

(x1(t)− rc
k3

)
6= 0.

Thus, x2(t) cannot maintain the state x(t) = xo, i.e.,
x0 cannot stay identically in S.

Moreover, V3(x) is nonnegative and radially unbounded.
By the LaSalle’s invariance theorem (Khalil 2002, Corol-
lary 4.2), xe = [rc, 0]′ is an asymptotically stable equi-
librium point of the closed-loop system in (8).

If the initial position of the robot is far away from the
target, i.e., d(t0)− rc � k3 and φ(t0) ∈ [0, π]. It follows
from (20) that

φ̇(t0) =
k1

vc sinφ(t0)
(vc cosφ(t0) + k2). (21)

For simplicity, we define ϕ := cos−1(−k2/vc). If φ(t0) ∈
[0, ϕ), then φ̇(t0) > 0 according to (21). Hence, φ(t)
monotonically increases until φ(t∗) = ϕ at some finite
time instant t∗ > t0. Similarly, if φ(t0) ∈ (ϕ, π], then φ(t)
monotonically decreases until φ(t∗) = ϕ. Once φ(t) = ϕ,

it follows from (21) that φ̇(t) = 0, i.e., ḋ(t) + k2 = 0.

Consequently, d(t) converges to rc at the speed ḋ(t) =
−k2 until d(t2) − rc = k3, where t2 > t1 is finite. The
above statement is to be validated in Subsection 6.1.

Lemma 4 further proves that the proposed controller in
(14) is able to ensure that the convergence is exponen-
tially fast.
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Lemma 4 Under the conditions in Proposition 1, there
must exist a finite t1 ≥ t0 such that

‖x(t)− xe‖ ≤ C‖x(t1)− xe‖ exp (−ρ(t− t1)) ,∀t > t1

where ρ and C are two positive constants.

PROOF. In view of Lemma 3, there must exist a finite
t1 ≥ t0 such that |x1(t1) − rc| < k3 and φ(t1) ∈ [0, π].
Thus, for any t > t1, it follows from (8) and (14) that

ẋ(t) = A(x(t)− xe), (22)

where

A =

[
0 1

−k1k2/k3 −k1

]
. (23)

One can easily verify that both the eigenvalues ofA have
negative real part, i.e., A is Hurwitz.

In addition, it follows from (22) that the trajectory of
this system after t1 must satisfy

x(t)− xe = Q exp (Λ(t− t1))Q−1(x(t1)− xe),∀t > t1,

where A = QΛQ−1, Λ = diag(λ1, λ2), and λi, i = 1, 2 is
the eigenvalue of A. Finally, it holds that

‖x(t)− xe‖ = ‖Q exp(Λ(t− t1))Q−1(x(t1)− xe)‖
≤ C‖x(t1)− xe‖ exp(−ρ(t− t1))

where C = ‖Q‖‖Q−1‖,

ρ =

{
(k1 −

√
∆)/2 , if ∆ > 0,

k1/2 , if ∆ ≤ 0,

and ∆ = k21 − 4× k1k2/k3.

Proof of Proposition 1. In view of Lemma 2, there must
exist a finite t1 ≥ t0 such that φ(t) ∈ [0, π], ∀t ≥ t1, for
any φ(t0) ∈ (−π, π]. Once φ(t) enters the region [0, π],
the closed-loop system in (8) asymptotically converges
to the equilibrium xe = [rc, 0]′ by Lemma 3. Thus xe

is a global stable equilibrium for any initial states. Fur-
thermore, if |x1(t)− rc| < k3 and x2(t)(x1(t)− rc), the
convergence is exponentially fast based on Lemma 4.

5 Target Encirclement with Smooth Patterns

In this section, we show that the controller in (4) is fur-
ther able to follow smooth time-varying r(t). For exam-
ple, the command in (2) is generated by a sine func-
tion. In comparison, either the sliding mode approach in
Matveev et al. (2011) or the geometrical method in Cao
(2015) is unable to complete this task.

Proposition 5 Consider the encirclement system in (8)
under the range-only based controller in (4). Suppose that
the command r(t) is twice continuous differentiable, and
ṙ(t), r̈(t) denote the first and second order derivatives
of r(t), respectively. If |ṙ(t)| ≤ rv, |r̈(t)| ≤ ra, and the
controller parameters are selected to satisfy that

k1 >
k2
k3
, k1(vc − k2 − rv) > ra, and k1(v2c − r2v) > rvra,

(24)

and φ(t0) ∈ [0, π], then there exists a finite t1 > t0 such
that

‖z(t)‖ ≤ C‖z(t1)‖ exp (−ρ(t− t1)) ,∀t > t1

where z(t) := x(t) − xe(t), xe(t) := [r(t), ṙ(t)]′, ρ and
C are two positive constants.

PROOF. Firstly, we show that φ(t) ∈ [0, π] holds for
all t ≥ t0.

Submitting (4) into (3) yields that

φ̇(t) =
vcα(t)

d(t)
− vc
d(t)

sinφ(t) +
1

vcα(t)
× (25)(

k1

(
ḋ(t)− ṙ(t) + k2sat

(d(t)− r(t)
k3

))
− r̈(t)

)
.

If φ(t) = 0, it follows from (24) and (25) that

φ̇(t) = (vcε2)−1
(
k1(vc + k2sat(

e1(t)

k3
)− ṙ(t))− r̈(t)

)
≥ (vcε2)−1 (k1(vc − k2 − rv)− ra) > 0.

Similarly, if φ(t) = π, then

φ̇(t) = (vcε2)−1
(
k1(−vc + k2sat(

e1(t)

k3
)− ṙ(t))− r̈(t)

)
≤ (vcε2)−1 (k1(−vc + k2 + rv) + ra) < 0.

Hence, φ(t) ∈ [0, π] holds for any t ≥ t0.
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Let

s(t) := −k2sat(
e1(t)

k3
) + ṙ(t),

e1(1) := d(t)− r(t), (26)

e2(t) := ḋ(t)− s(t).

Then, the proposed controller in (4) can be rewritten as

u(t) = vcα(t)/d(t) + (vcα(t))−1(k1e2(t)− r̈(t)).

Consider the Lyapunov function candidate as

V4(e) =
1

2
e22(t)/2+

k32
k3

(∫ d(t)

r(t)

sat(
τ − r(t)
k3

)dτ +

∫ r(t)

d(t)

sat(
r(t)− τ
k3

)dτ

)
.

Taking the time derivative of V4(e), we obtain that

V̇4(e) =
k22
k3

sat(
e1(t)

k3
)ė1(t) + e2(t)ė2(t)

=
k22
k3

sat(
e1(t)

k3
)ė1(t) + e2(t)(−k1e2(t) + r̈(t)− ṡ(t)).

If |e1(t)| < k3, it follows from (26) that

ṡ(t) = −k2ė1(t)/k3 + r̈(t)

which together with (24) implies that

V̇4(e) = −k
3
2

k33
e21(t)− (k1 −

k2
k3

)e22(t)

≤ 0.

If |e1(t)| ≥ k3, we have ṡ(t) = r̈(t), and

V̇4(e) = −k1e22(t) +
k22
k3

sgn (e1(t)) e2(t)− k32
k3
. (27)

Since the right hand side of (27) is quadratic in e2(t), it
can be easily verified that(

k22
k3

sgn(e1(t))

)2

− 4× (−k1)(−k
3
2

k3
) =

k32
k3

(
k2
k3
− 4k1)

< 0.

Hence, it holds that V̇4(e) ≤ 0.

One can easily verify that the Lyapunov function
candidate V4(e) is nonnegative, strictly decreasing,
and radially unbounded. Thus, e(t) asymptotically
converges to 0 as t → ∞, which implies that the

Table 1
Parameters of the proposed controller

Parameter k1 k2 k3 h ε1 ε2

Value 20 0.45 2.0 100 0.01 0.01

states x(t) = [d(t), ḋ(t)]′ asymptotically converge to
xe(t) = [r(t), ṙ(t)]′.

Thus, there must exist a finite t1 ≥ t0 such that
|z1(t1)| < k3. For any t > t1, it follows from (4) and (8)
that

d̈(t) = −k1
(
z2(t) +

k2
k3
z1(t)

)
+ r̈(t) (28)

and

ż(t) = Fz(t) (29)

where

F =

[
0 1

−k1k2/k3 −k1

]
.

The rest of the proof is of the same as that in Lemma 4.

6 Simulations

Consider a robot as described in (1), and set the linear
speed vc as 0.5m/s. For brevity, let y(t) := [p′(t), θ(t)]′

denote the state of the robot.

6.1 Target encirclement with a constant distance

Let the target position be po = [2, 2]′. To test the
global convergence of the proposed controller, we
select eight different initial states for the robot,
e.g., y(t0) = [7, 2,−3π/5]′, [2, 7, π/2]′, [−3, 2, π]′,
[2,−3,−π/2]′, [2.5, 2, 0]′, [2, 2.5, π/2]′, [1.5, 2, π]′, and
[2, 1.5,−π/2]′, see Fig. 3. The square and the arrow de-
note the initial position and initial course. The control
parameters are given in Table 1, satisfying (15). From
Fig. 3, all trajectories of the robot form a circle centered
at the target with the radius rc = 2.

Fig. 4 illustrates the distance d(t) and angle φ(t) for
the initial state y(t0) = [7, 2,−3π/5]′. The dash lines
in Fig. 4 represent the desired radius rc = 2 and refer-
ence angle π/2, respectively. It is clear that the target
circumnavigation task is eventually completed with zero
steady-state error.

From the partially enlarged view in Fig. 4, we observe
that the angle φ(t) increases from φ(t0) = −3π/5 to
φ(t1) = 0 at the initial stage. Then, φ(t) further increases

8
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until φ(t3) = arccos(−k2/vc) by crossing φ(t2) = π/2.
From t3 to t4, φ(t) maintains the value arccos(−k2/vc),
and d(t) converges to rc at the speed −k2. At the time
instant t4, it holds that d(t4) = rc + k3. Note that, all
these observations are consistent with the statements in
Subsection 4.2.

Fig. 5 shows the relationship between the convergence
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Fig. 6. Trajectory of the robot with time-varying commands.
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Fig. 7. Distance d(t) and angular φ(t) versus time with time–
varying commands.

speed and parameter k2. The initial state is y(t0) =
[7, 2,−π/2]′, and the parameters are given in Table 1. If
k2 > vc, e.g., k2 = 0.6, the oscillation occurs.

6.2 Target encirclement with smooth patterns

In this subsection, we set the reference command as
r(t) = 20 + 1.8 sin(0.2t). Obviously, |ṙ(t)| ≤ rv = 0.36,
and |r̈(t)| ≤ ra = 0.072. k2 is set as 0.1 and the other
parameters are given in Table 1. Moreover, the initial
state is y(t0) = [40, 0, π/2]′, satisfying all conditions in
Proposition 5.

The results are shown in Fig. 6 and Fig. 7, where the
range error is the difference between d(t) and r(t), and
the angle error is that between φ(t) and arccos(ṙ(t)/vc).

By (3), φ(t) = arccos(ṙ(t)/vc) implies that ḋ(t) = ṙ(t).

It is clear that x(t) = [d(t), ḋ(t)]′ converges to xe(t) =
[r(t), ṙ(t)]′ as t→∞.
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Table 2
Parameters of the proposed controller

Parameter k1 k2 k3 h ε1 ε2

Value 1 0.25 2.0 1 0.01 0.01

6.3 Target encirclement with measurement noises

In this subsection, the range measurement is corrupted
by an additive white Gaussian noise, i.e.,

d(t) = ‖p(t)− po‖2 + ω(t),

where ω(t) ∼ N (0, σ2). The constant command
and time-varying reference command are set as
rc = 2 and r(t) = rc + 0.8 ∗ sin(0.04t), respectively.
Fig. 8 shows the results with different noise level:
σ = 0.05 and 0.1, (2.5%rc and 5%rc). The initial state
is y(t0) = [7, 2,−π/2], and the parameters are selected
as Table 2. From the partially enlarged view of Fig. 8,
we observe that the tracking errors are smaller than the
measurement errors. This illustrates that the proposed
controller is robust against measurement noises.

6.4 Comparison with the existing methods

For comparison, we consider the constraint on control
output and let |u(t)| ≤ ū, where ū = 1rad/s (Matveev
et al. 2011) in this subsection. The comparison methods
are the geometrical approach (Cao 2015) with parame-
ters k = 1 and ra = 9.95, the switching approach (Zhang
et al. 2017) with parameter k = 1.4/rc, and the sliding
mode approach (Matveev et al. 2011) with δ = 0.83 and
γ = 0.3.

Fig. 9 and Fig. 10 show the results with a constant com-
mand rc = 10, where the initial states of the robot are
y(t0) = [7, 7,−3π/4] and y(t0) = [15, 15,−3π/4], re-
spectively. The parameters are configured as Table 1.
When d(t) < ra, the control output of the geometrical
approach is zero, a large overshoot occurs in this simula-
tion. Furthermore, the convergence speed of the switch-
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Fig. 9. Comparison of tracking performance with constant
reference command.

ing approach is slowest. Even though the trajectory gen-
erated by the sliding mode approach is similar to that
generated by the proposed controller, the sliding mode
approach is chattering and has steady-state error, see
the partially enlarged view in Fig. 9 and Fig. 10.

Fig. 11 provides the results with smooth patterns. All
the methods in Cao (2015), Zhang et al. (2017), Matveev
et al. (2011) fail to follow the time-varying command
r(t) = 10 + 1.8 sin(0.2t).

To encircle multiple targets as Matveev et al. (2017), let

d(t) := min
i
‖p(t)− pi‖2

where pi is the position of the i-th target. The trajec-
tories and the tracking errors are given in Fig. 12 and
Fig. 13. The proposed method achieves similar perfor-
mance with that of the sliding mode approach, while ei-
ther the geometrical approach or the switching approach
is unable to complete this task.

Overall, the controller in (4) can handle several tar-
get encircling issues, such as measurement noises, time-
varying reference commands, and multiple targets in the
simulation.

7 Conclusions

In this paper, we have proposed a coordinate-free con-
troller to drive a robot to encircle a stationary target
with any smooth patterns by only using the range mea-
surements. The proposed controller, which is inspired by
the backstepping control method, can guarantee global
convergence and exponential stability with zero steady-
state error. The simulations validated our theoretical re-
sults.
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