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Abstract

This paper investigates adaptive model predictive control (MPC) for a class of constrained linear systems with unknown
model parameters. We firstly propose an online strategy for the estimation of unknown parameters and uncertainty sets based
on the recursive least square technique. Then the estimated unknown parameters and uncertainty sets are employed in the
construction of homothetic prediction tubes for robust constraint satisfaction. By deriving non-increasing properties on the
proposed estimation routine, the resulting tube-based adaptive MPC scheme is recursively feasible under recursive model
updates, while providing the less conservative performance compared with the robust tube MPC method. Furthermore, we
theoretically show the perturbed closed-loop system is asymptotically stable under standard assumptions. Finally, numerical
simulations and comparisons are given to illustrate the efficacy of the proposed method.
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1 Introduction

Model predictive control (MPC) has become one of the
most successful methods for multivariable control sys-
tems since it provides an effective and efficient methodol-
ogy to handle complex and constrained systems [13]. The
main insight of MPC is to obtain a sequence of optimal
control actions over the prediction horizon by solving an
optimization problem. The prediction employed in MPC
is conducted based on an explicit system model. There-
fore having an accurate model is critical for achieving
the desirable performance. However, various categories
of uncertainties, such as the measurement noise and the
modelmismatch, are inevitable in practical control prob-
lems. Although standard MPC, which is designed for
the nominal system model without considering uncer-
tainties, has certain inherent robustness against suffi-
ciently small disturbances under certain conditions [32],
its performance may be unacceptable for many practi-
cal applications due to the limited robustness, therefore
robust MPC has attracted considerable attention in re-
cent years [12, 14, 19]. Yet, the robust MPC method is
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generally developed based on the given bound of uncer-
tainties, its performance is relatively conservative if the
uncertainties are constant or slowly changing. To im-
prove the performance, a general solution is to reformu-
late the robustMPC schememanually based on different
description of uncertainties [24], however, which is rela-
tively resource-intensive and time-consuming. Alterna-
tively, a promising solution is to allow for online model
adaptation in the MPC framework, which is termed as
adaptive MPC.

In recent years, adaptive MPC has drawn increasing
attention since it provides a promising solution to re-
duce conservatism of robust MPC by incorporating
system identification into the robust MPC framework.
Mayne and Michalska firstly proposed an adaptive
MPC method in [20] for input-constrained nonlinear
uncertain systems, where the convergence of parameter
estimates can be guaranteed if the MPC problem is
recursively feasible. Later in [7], a data selection mech-
anism is considered to improve the convergence perfor-
mance of parameter estimates for linear systems, then
the estimated error bound is employed to construct the
comparison model used in the robust MPC framework.
But this method relies on the system model represented
in a controllable canonical form. An alternative of ful-
filling the persistent excitation (PE) condition is to
impose an additional constraint on system states [18] or
control inputs [31] to the MPC optimization problem.
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With this strategy, the convergence of parameter esti-
mates can be ensured, but the system state can only be
stabilized in a small region around the origin due to the
presence of constraints from the PE condition.

In the literature, another category of research on adap-
tive MPC is to combine set-membership identification
with robust MPC. In [1], an ellipsoidal uncertainty set
is constructed based on the recursive least square (RLS)
technique, then a stabilizing min-max MPC scheme is
developed for constrained continuous-time nonlinear
systems. The discrete-time version of this approach is
presented in [2]. The polytope based set-membership
identification is considered in [30], where an adaptive
output feedback MPC approach is designed for con-
strained stable finite impulse response (FIR) systems.
This method has been extended to handle chance con-
straints [4] and time-varying systems [29]. A combina-
tion of the set-membership identification and homo-
thetic tube MPC is proposed in [16, 17], in which the
worst-case realization of the uncertainty is considered
based on a set-based state prediction and uncertainty
estimation. Recently, incorporating machine learning
techniques with robust MPC has also attracted much
attention. The true model is described by a nominal
model plus a learned model, e.g., the Gaussian pro-
cess [22] and the neural network [21, 33]. Although
aforementioned works on machine learning based meth-
ods have showed empirical success, how to theoretically
guarantee the closed-loop stability and recursive fea-
sibility with desired estimation performance is still a
major challenge. The application of adaptive MPC to
repetitive or iterative processes can be found in [5, 26].

In this work, we propose a computationally tractable
adaptive MPC algorithm for a class of constrained lin-
ear systems subject to parametric uncertainties. Similar
to [1], the proposedmethod uses an RLS based estimator
to identify the unknown system parameters. Note that
the estimated uncertainty set in [1] is employed to up-
date the min-max optimization problem for robust con-
straint satisfaction, which is non-convex and computa-
tionally complicated. Alternatively, the proposed work
employs the tube MPC technique ,e.g., [6, 8, 11, 25], to
handle the uncertainty, which has a comparable compu-
tational complexity to standard MPC. Recently, there
are some novel adaptive MPC strategies [16, 17] com-
bining the homothetic tube MPC technique, e.g., [25],
with the set-membership identification, where the se-
quence of state tubes {Xl|k} is developed with the form
Xl|k = zl|k + σl|kX0 to guarantee the robust constraint
satisfaction. Here, zl|k is the nominal system state, X0

is a given set and σl|k is a scalar to be optimized by the
MPC optimization problem. It can be seen that the tube
cross sections are shaped by the set X0, translated and
scaled by the MPC optimization problem. The set X0

is calculated offline according to the initial knowledge
of the uncertainty set, which may be conservative un-
der recursive updates of the uncertainty set. Inspired by

the tube MPC approach in [6], we construct the homo-
thetic tubes in this work, where both the size and shape
of the tube cross sections are optimized via the MPC
optimization problem. Consequently, it will promisingly
lead to control performance improvement by using the
proposed method. The main contribution of this work
is to extend the robust MPC framework in [6] to al-
low for online model adaptation, while guaranteeing the
closed-loop stability and recursive feasibility. Compared
with the methods in [16, 17], the proposed approach in-
troduces additional decision variables in the MPC opti-
mization problem to optimize both the shape and size of
the tube cross sections, resulting in the reduced conser-
vatism. In addition, to provide a trade-off between the
computational complexity and conservatism, a special-
ization of the proposed adaptive method is also given
with reduced computational complexity and compara-
ble control performance. A numerical example and com-
parison study are given to illustrate the benefits of the
proposed method.

The remainder of this paper is organized as follows: Sec-
tion 2 demonstrates the problem formulation. In Sec-
tion 3, the estimation of the unknown parameter and the
uncertainty set are discussed. An adaptive MPC algo-
rithm is presented in Section 4, followed by the analysis
of closed-loop stability and recursive feasibility. Simula-
tion and comparison studies are illustrated in Section 5.
Finally Section 6 concludes this work.

2 Problem Formulation

2.1 Notation

Let R,Rn and R
m×n denote the sets of real numbers,

column real vectors with n components and realmatrices
consisting of n columns and m rows, respectively. The
notation N denotes the set of non-negative integers, and
N

b
a = {x ∈ N|a ≤ x ≤ b}. Given a vector x ∈ R

n, the
Euclidean norm and infinity norm of x are denoted by
‖x‖ and ‖x‖∞, respectively. We define ‖x‖Q = xTQx.
The Pontryagin difference of sets X ⊆ R

n and Y ⊆ R
n

is denoted by X ⊖ Y = {z ∈ R
n : z + y ∈ X ; ∀y ∈

Y }, and the Minkowski sum is X ⊕ Y = {x + y|x ∈
X, y ∈ Y }. The column operation col(· · · ) is defined
as col(x1, x2, · · · , xn) = [xT

1 , x
T
2 , · · · , x

T
n ]

T. We use In
to denote an identity matrix of size n. For an unknown

vector θ, the notations θ̂ and θ∗ represent its estimation
and real value, respectively. Then the estimation error

is defined as θ̃ = θ∗ − θ̂.

2.2 Problem setup

Consider a discrete-time linear time-invariant (LTI) sys-
tem with an unknown parameter θ ∈ R

nθ

xk+1 = A(θ)xk +B(θ)uk, (1)
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subject to a mixed constraint

M = {(xk, uk)|Fxk +Guk ≤ 1}, (2)

where xk ∈ R
nx and uk ∈ R

nu are the system
state and input, respectively. The matrices A(θ)
and B(θ) are the real affine functions of θ, i.e.,
A(θ) = A0 +

∑nθ

i=1
Aiθi, B(θ) = B0 +

∑nθ

i=1
Biθi.

θ = col(θ1, θ2, · · · , θnθ
) is the vector of unknown pa-

rameters, which is assumed to be uniquely identifi-
able [27]. It is assumed that the parameter θ is bounded
by a given set Θ0 = {θ|‖θ‖ ≤ r0} which contains the
real parameter θ∗.

In this paper, the goal is to design a state feedback con-
trol law for the perturbed and constrained system in
(1) while ensuring the desirable closed-loop performance
and robust constraint satisfaction by means of adaptive
MPC. In particular, we consider the following parame-
terization of the control input

uk = Kxk + vk, (3)

where vk ∈ R
nu is the decision variable of the MPC

optimization problem; K ∈ R
nu×nx is a prestabilizing

state feedback gain such that φ(θ) = A(θ) + B(θ)K is
quadratically stable for all θ ∈ Θ0.

Definition 1 ( [3]) A polyhedral set Z is robustly posi-
tively invariant (RPI) for the system in (1) with respect to
the constraint (2) and the feedback control law uk = Kxk

iff (xk,Kxk) ∈ M and φ(θ)xk ∈ Z for all xk ∈ Z and
θ ∈ Θ0.

Suppose that Z is an RPI set for the system in (1) with
respect to the constraint (2) and the control law uk =
Kxk, if Z contains every RPI set, then Z is the maximal
RPI (MRPI) set for the system in (1). As shown in [23], if
the MRPI set Z for the system in (1) exists, it is unique.
An example of calculating the MPRI set Z can be found
in [23].

3 Uncertainty Estimation

In this section, we introduce an online parameter estima-
tion scheme based on the RLS technique with guaranteed
non-increasing estimation errors. Thereafter, in order to
reduce conservatism in robust MPC, the approximation
of feasible solution set (FSS) of the unknown parameters
is presented. Finally, we conclude this section by analyz-
ing the performance of the proposed estimation scheme.

3.1 Parameter estimation

Let g(xk, uk)θ =
∑nθ

i=1
(Aixk+Biuk)θi, then we can for-

mulate a regressor model yk = g(xk, uk)θ
∗ with yk =

xk+1 − A0xk − B0uk to estimate θ∗ by using the stan-
dard RLS method. But the convergence of this solution
relies on the PE condition of g(xk, uk), which cannot be
guaranteed if xk = 0 and uk = 0. Similar to [2], we in-
troduce the following filter wk for the regressor g(xk, uk)
to improve the convergence performance,

wk+1 = g(xk, uk)−Kewk, (4)

where w0 = 0 and Ke is a Schur stable gain matrix. Let
x̂k denote the system state estimated at time k−1, based
on (1) and (4), a state estimator at time k is designed as
follows:

x̂k+1 = A0xk +B0uk + g(xk, uk)θ̂k+1

+Kex̃k +Kewk(θ̂k − θ̂k+1),
(5)

where x̃k = xk − x̂k is the state estimation error. Then
subtracting (1) from (5) yields

x̃k+1 = g(xk, uk)θ̃k+1 −Kex̃k −Kewk(θ̂k − θ̂k+1). (6)

In order to establish an implicit regression model for θ̂,
we introduce an auxiliary variable ηk in the following

ηk = x̃k − wkθ̃k. (7)

Then by substituting (4)-(6) into (7), one gets

ηk+1 = −Keηk. (8)

Based on this implicit regression model, we develop the
following parameter estimator by using the standard
RLS algorithm [9]

θ̂k+1 = θ̂k + Γ−1

k+1
wT

k (x̃k − ηk), (9a)

Γk+1 = λΓk + wT
k wk, (9b)

where Γ0 = βInθ
; β is the positive scalar, and λ ∈ (0, 1)

is the forgetting factor. Then it follows from [9] that the
non-increasing estimation error is guaranteed, and the

convergence of parameter estimates θ̂k can be achieved
if the sequence wk is persistently exciting.

By using the proposed estimation mechanism (9),

the convergence of the estimation error θ̃k relies on
the persistently exciting sequence of wk instead of
g(xk, uk). Suppose that the system is stable when
k ≥ ts, ts ∈ N

∞
0 , and wts 6= 0. According to

(4), we have wk+1 = −Kewk for all k ≥ ts. Let
wk = {wk, wk+1, · · · , wk+Np−1} with Np ∈ N

∞
0 . Then

it can be derived that wkw
T
k = Kewkw

T
k K

T
e for k ≥ ts,

where Ke = col(I,−Ke, (−Ke)
2, · · · , (−Ke)

Np−1).
Since Ke is Schur stable, it is possible to find Np, lp ∈
N

∞
0 , td ∈ N

∞
ts
, ρ0 > 0 and ρ1 > 0 such that ρ1INpNx

>

3



∑lp−1

j=0 (wk+jw
T
k+j) > ρ0INpNx

for all k ∈ N
td
ts
. There-

fore, the sequencewk satisfies the PE condition during a
certain period when the system is stable. In addition, it

can be derived from (9) that θ̂k+1 ≈ θ̂k,Γk+1 ≈ λΓk and

the corresponding Θ̂k ≈ Θ̂k+1 when wk is sufficiently
small. Since wk is decreasing when the system in (1) is

stable, Θ̂k will converge to a fixed set in finite time.

3.2 Uncertainty set estimation

To bound the unknown parameters, we introduce the
following ellipsoidal uncertainty set

Θ̂k = {θ|‖θ − θ̂k‖Γk
≤ Vk}. (10)

where Vk > 0 is the bound of the estimation error.
According to (9b), we define the propagation of Vk as
Vk+1 = λVk with V0 = Λ̄(Γ0)r

2
0 , where Λ̄(Γ0) is the

maximal eigenvalue of Γ0.

Let Θk denote the FSS of unknown parameters. Since
unknown parameters are uniquely identifiable and stay
in the a priori known set Θ0, Θk must be the subset of
Θ0. Therefore, for all k ≥ 1, Θk is computed as follows

Θk = Θk−1 ∩ Θ̂k. (11)

By choosing suitable θ̂0,Γ0 and V0, Θ̂0 can be equivalent
to Θ0. The following lemma shows the performance of
uncertainty set estimation.

Lemma 2 Let Θk denote the estimated uncertainty set
updated by following (4)-(11) at each time instant. Sup-
pose that θ∗ ∈ Θ0, then we have θ∗ ∈ Θk for all k ≥ 0.

Proof To prove this lemma, we firstly show that θ∗ ∈
Θ̂k for all k ≥ 0. Let V(θ̃k) = θ̃Tk Γkθ̃k, then it fol-

lows from [9] that V(θ̃k) is non-increasing and V(θ̃k) ≤

λV(θ̃k−1). When k = 0, the condition V(θ̃0) = θ̃T0 Γ0θ̃0 ≤

V0 holds by using ‖θ̃0‖ ≤ r0. When k > 0, we still have

Vk ≥ V(θ̃k) since Vk = λkV0 and V(θ̃k) ≤ λkV(θ̃0).

Therefore, one gets V(θ̃k) ≤ Vk for all k ≥ 0. Then ac-

cording to (10), it can be derived that θ∗ ∈ Θ̂k for all
k ≥ 0. Suppose that θ∗ ∈ Θk. At next time instant, we
have θ∗ ∈ Θ̂k+1, which implies that θ∗ ∈ Θk ∩ Θ̂k+1 =
Θk+1. Hence, it can be concluded that θ∗ ∈ Θk for all
k ≥ 0 if θ∗ ∈ Θ0. �

Generally, the tightened state constraints are widely em-
ployed in robust MPC to guarantee recursive feasibility
and closed-loop stability. These constraints are designed
based the given bounds of uncertainties. Hence, having
an accurate description on the uncertainty is crucial to

obtain the desirable closed-loop performance. By incor-
porating the proposed parameter estimator, it is possi-
ble to use the estimated parameters and uncertainty sets
at each time instant to obtain more accurate predictions
and less conservative tightened state constraints in ro-
bust MPC, and thus improving the control performance.
In the following section, a computationally tractable in-
tegration of tube MPC and the proposed estimator is
presented.

4 Adaptive Model Predictive Control

In this section, we present a computationally tractable
adaptive MPC algorithm based on the homothetic tube
MPC technique. Let xl|k denote the predicted real sys-
tem state l steps ahead from time k and xl|k = zl|k+el|k,
where zl|k and el|k are the predicted nominal system
state and the error state, respectively. Our objective is
to design a sequence of state tubes {Xl|k} for robust con-
straint satisfaction, i.e., the following conditions hold for
some ul|k:

xk ∈ X0|k (12a)

A(θ)x +B(θ)ul|k ∈ Xl+1|k, ∀x ∈ Xl|k, θ ∈ Θk+1 (12b)

(x, ul|k) ∈ M, ∀x ∈ Xl|k (12c)

Instead of designing the state tube Xl|k directly, in this
work we construct the tube cross section Sl|k for the er-
ror state el|k. Therefore, the state tube can be estab-
lished indirectly as Xl|k = zl|k ⊕ Sl|k. In the following,
we present how to design the homothetic tubes accord-
ing to the estimation of uncertainties.

4.1 Error tube and constraint satisfaction

As mentioned in Section 3.1, we predict θ̂k+1 and Θk at
time k based on the state estimation error x̃k. Hence the
system matrices A(θ̂k+1) and B(θ̂k+1) are considered in
the following for predicting the nominal system state at
time k:

zl+1|k = Ak+1zl|k +Bk+1ul|k (13)

where Ak+1 = A(θ̂k+1) and Bk+1 = B(θ̂k+1); N is the

prediction horizon and l ∈ N
N−1
0 .

Then subtracting (1) from (13) results in

el+1|k = xl+1|k − zl+1|k

= φ∗el|k +∆φk+1zl|k +∆Bk+1vl|k,
(14)

where φ∗ = A(θ∗) + B(θ∗)K,φk+1 = Ak+1 + Bk+1K,
∆φk+1 = φ∗ − φk+1 and ∆Bk+1 = B(θ∗)−Bk+1. Since
Θk is compact and convex, we can find a polytope to
over approximate Θk by following the algorithm in [28].
Let Θ̄k denote the polytopic over approximation of Θk,
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and Pol(·) is the polytopic approximation operator from
the algorithm in [28]. Hence Θ̄k can be directly calcu-
lated as Θ̄k = Pol(Θk). Due to the recursive set inter-
section in (11), we calculate Θ̄k indirectly to reduce the

computational load, i.e., Θ̄k = Pol(Θ̂k) ∩ Θ̄k−1 with
Θ̄0 = Pol(Θ0). Suppose that Θ̄k can be equivalently rep-

resented by a convex hullCo(θ̂jk) where j ∈ N
nc

0 and nc is
an integer denoting the number of extreme points in the
convex hull. Hence, a set for the system pair (A(θ), B(θ))
at time k can be approximated by using a convex hull

Co(Aj
k, B

j
k) where A

j
k = A(θ̂jk) and Bj

k = B(θ̂jk).

Inspired by the previous work [6], we consider a polytopic
tube with the form Sl|k = {el|k|V el|k ≤ αl|k} for the
error el|k to handle multiplicative uncertainties, where

V ∈ R
nv×nx is a matrix describing the shape of Sl|k;

αk ∈ R
nv×1 is the tube parameter to be optimized. The

following proposition shows a sufficient condition for the
robust satisfaction of constraint (2).

Proposition 3 Let Sl|k = {el|k|V el|k ≤ αl|k}. Suppose
that el|k ∈ Sl|k, then el+1|k ∈ Sl+1|k. In addition, the
constraint (2) is satisfied at each time instant if the fol-
lowing conditions hold:

1 ≥

{

Hαl|k + (F +GK)zl|k +Gvl|k, l ∈ N
N−1

0

Hαl|k + (F +GK)zl|k, l ∈ N
∞
N

(15a)

αl+1|k ≥ Hj
k+1

αl|k + V (∆φj
k+1

zl|k +∆Bj
k+1

vl|k)

l ∈ N
∞
0 , j ∈ N

nc

0 (15b)

where φj
k = Aj

k + Bj
kK,∆φj

k+1
= φj

k+1
− φk+1 and

∆Bj
k+1

= Bj
k+1

− Bk+1; H and Hj
k+1

are non-negative
matrices satisfying the conditions HV = F + GK and
Hj

k+1
V = V φj

k+1
.

Proof Consider the uncertain input matrix B(θ) in the
system (1), this proof is completed by following the proof
of Proposition 2 in [6]. �

Proposition 3 shows a sequence of tightened sets for the
nominal system state. By considering tube parameters
{αl|k} as extra decision variables of the MPC optimiza-
tion problem, we can obtain the optimal tube cross sec-
tions online.

According to the proposed parameter estimator, we can
obtain the new estimation of the real system with non-
increasing estimation error at each time instant. Hence,
a time-varying nominal system is used to improve the
accuracy of prediction. However, the system is consid-
ered to be invariant during the prediction. In order to

improve the control performance, a time-varying termi-
nal set is constructed based on the new estimation of
uncertainty, which will be presented in the following.

4.2 Construction of terminal sets

Based onProposition 3, we define the following dynamics
of zl|k and αl|k for l ∈ N

∞
N at time k

αl+1|k = max
j∈N

nc
0

{Hj
kαl|k + V∆φj

k+1
zl|k}, (16a)

zl+1|k = φk+1zl|k, (16b)

where the maximization is taken for each element in the
vector. Let Zk denote the polytopic RPI set for the sys-
tem xk+1 = (A(θ) + B(θ)K)xk with respect to the un-

certainty set Θk+1. Since θ̂k+1 ∈ Θk+1, Zk is also RPI
for the system in (16b).

Define Zj

l+1|k as Zj

l+1|k = φj
k+1

Zj

l|k with Zj

0|k = Zk for

all j ∈ N
nc

0 , then we have Zj

l+1|k ⊆ Zj

l|k ⊆ Zk since φj
k+1

is Schur stable for all j ∈ N
nc

0 . Inspired by Proposition
3 in [6], the following proposition is given to construct
the invariant set for the system in (16a).

Proposition 4 Define

f̄ j

l|k = max
z∈Zj

l|k
{(F +GK)z},

c̄j
l|k = max

z∈Zj

l|k

{V (φj
k+1

− φk+1)z},

ḡj
l|k = max

z1,z2∈Zj

l|k

{V φj
k+1

(z1 − z2)}.

(17)

The set Ak = {α|‖α‖∞ ≤ γk, α ≥ 0} is invariant for the
system in (16a) while the constraintHα+(F+GK)z ≤ 1
is satisfied if the following condition holds

γ̄l|k ≥ γk ≥ γ
l|k

(18)

where

γ
l|k

=
max

j∈N
nc
0

‖c̄j
l|k

‖∞+‖ḡj

l|k
‖∞

1−max
j∈N

nc
0

‖Hj

k+1
‖∞

, γ̄l|k =
1−max

j∈N
nc
0

‖f̄l|k‖∞

‖H‖∞
.

In addition, there exists a γk satisfying the condition (18)
if l is sufficiently large.

Proof This proposition can be proved by following the
proof of Proposition 3 in [6]. �

As shown in [6], the invariant set Ak for the system in

(16a) is nonempty if ‖Hj
k‖∞ < 1 for all k ≥ 0. This

condition can be satisfied by choosing the appropriate
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V such that the set {x|V x ≤ 1} is a λ-contractive set
for the system zk+1 = φ(θ)zk, ∀θ ∈ Θ0. An example of
computing the matrix V can be found in [3].

Lemma 5 Given uncertainty setsΘk andΘk+1, assume
that the sets Ak and Ak+1 are not empty. Let Mk denote
the minimum l that the condition (18) is satisfied. Then
we have Mk ≥ Mk+1 if the condition Θk+1 ⊆ Θk holds.

Proof According to (15) and (17), if Θk+1 ⊆ Θk, it can
be derived that

γ̄l|k+1 ≥ γ̄l|k, γl|k+1
≤ γ

l|k
. (19)

Since the condition (18) holds for all l ≥ Mk, one gets
γ̄Mk|k ≥ γ

Mk|k
. Hence, γ̄Mk|k+1 ≥ γ

Mk|k+1
by following

(19). In addition, from the condition Zl+1|k ⊆ Zl|k, we
have γ̄l+1|k ≥ γ̄l|k and γ

l+1|k
≤ γ

l|k
. Therefore, there

must exist a non-empty set

Mk+1 = {m ∈ N
Mk

0 |γ̄Mk−m|k+1 ≥ γ
Mk−m|k+1

}.

According to Proposition 4, Mk+1 can be chosen as
Mk+1 = Mk −m. Therefore, we have Mk+1 ≤ Mk. �

Remark 6 From Proposition 4, it can be seen that ex-
tra Mk steps are required to steer αl|k into the terminal
set Ak. Hence, the prediction horizon is extended from
N to N +Mk. Based on Lemmas 2 and 5, it can be de-
rived that the sequence {Mk} is non-increasing. Hence,
when k increases, the computational complexity of MPC
optimization problem is non-increasing.

To find the terminal set for the nominal state zN |k, we
have the following assumption:

Assumption 7 Let Zk and Zk+1 denote the MRPI sets
with respect to the uncertainty set Θk+1 and Θk+2, re-
spectively. Then the following condition holds

φ(θ)x ∈ Zk+1, ∀(x, θ) ∈ Zk ×Θk+2 (20)

if Θk+2 ⊆ Θk+1.

Remark 8 To compute the set Zk+1 satisfying the con-
dition (20), we can compute the RPI set Z̄k+1 by follow-
ing Algorithm 1 in [23] without considering (20). Then
starting with Z̄k+1, Zk+1 can be computed by solving
the linear programming problem with the additional con-
straint (20). In addition, given Zk,Θk+1 and Θk+2 with
Θk+2 ⊆ Θk+1, there always exists one Zk+1 such that
(20) holds. A simple example is to chooseZk+1 asZk+1 =
Zk directly.

Assumption 9 Let Mk,Mk+1,Ak and Ak+1 are the
horizons and invariant sets satisfying Proposition 4 with

respect to uncertainty sets Θk+1 and Θk+2, respectively.
Given Mk and Ak, if the condition Θk+2 ⊆ Θk+1 holds,
there exist Mk+1 and Ak+1 such that Mk ≥ Mk+1 and
Ak ⊆ Ak+1.

According to Proposition 4, the feasible solution set of
γk in (18) becomes larger when l increases. Therefore,
the larger invariant set Ak can be found by choosing the
larger horizonMk. In addition, it follows from (11) that
Θk+2 ⊆ Θk+1 for all k ≥ 0. Let γk = γ̄Mk|k, γk+1 =
γ̄Mk+1|k+1 and Mk+1 = Mk, then we have Ak ⊆ Ak+1

since γk+1 ≥ γk. Therefore, given Mk and Ak, we can
always find Mk+1 and Ak+1 such that Assumption 9
holds. As a result, the computational complexity ofMPC
optimization problem is still non-increasing under this
assumption.

Suppose that the RPI set Zk has the polyhedral form
Zk = {x|Vkx ≤ 1}, then the terminal constraints for the
systems in (16) are summarized as follows:

VkzN |k +DkαN |k ≤ 1, (21a)

0 ≤ αN+Mk|k ≤ γk1, (21b)

whereDk is a non-negative matrix satisfyingDkV = Vk.

4.3 Construction of the cost function

Let vk = col(v0|k, v1|k, v2|k, · · · , vN−1|k). Define E and
T as shift matrices such that v0|k = Evk and vk+1 =
Tvk, then the prediction of zl|k can be written as ξl+1|k =

Ψk+1ξl|k, where ξl|k =

[

zl|k

vk

]

,Ψk+1 =

[

φk+1 Bk+1E

0 T

]

.

Similarly, the real system state xl|k can be predicted

by using the following dynamics ξ̄l+1|k = Ψ∗ξ̄l|k, where

ξ̄l|k =

[

xl|k

vk

]

and Ψ∗ =

[

φ∗ B∗E

0 T

]

. In this work, the

objective is to minimize a cost function with a quadratic
form J̄k =

∑∞
i=0

(xT
i|kQxi|k + uT

i|kRui|k), where Q > 0

and R > 0 are penalty matrices for the state and in-
put, respectively. Note that the cost function J̄k can be
equivalently represented by J̄k = ξT

0|kW
∗ξ0|k where W ∗

is the solution of a Lyapunov equation

(Ψ∗)TW ∗(Ψ∗)−W ∗ + Q̄ = 0 (22)

with Q̄ =

[

Q+KTRK KTRE

ETRK ETRE

]

. Since φ∗ is unknown,

we cannot find the matrix W ∗ exactly. Alternatively,
we consider an over approximation of J̄k based on the
uncertainty set updated at each time instant.

Lemma 10 Define a new cost function Jk as Jk =
ξT
0|kWk+1ξ0|k, where Wk+1 is a positive definite matrix,
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then Jk ≥ J̄k if the following condition

Wk+1 ≥

[

φ(θ) B(θ)E

0 T

]T

Wk+1

[

φ(θ) B(θ)E

0 T

]

+ Q̄

(23)
holds for all θ ∈ Θk+1.

Proof FromLemma 2, we have θ∗ ∈ Θk+1. Then follow-
ing (23) yields Wk+1 ≥ (Ψ∗)TWk+1(Ψ

∗)+ Q̄. By substi-
tuting Q̄ = W ∗− (Ψ∗)TW (Ψ∗) into the above equation,
we have Wk+1 − W ∗ ≥ (Ψ∗)T(Wk+1 − W ∗)(Ψ∗) ≥ 0.
In addition, Jk − J̄k = ξT

0|kWk+1ξ0|k − ξ̄T
0|kW

∗ξ̄0|k. Since

ξ̄0|k = ξ0|k and Wk+1 − W ∗ ≥ 0, it can be concluded

that Jk ≥ J̄k for all θ ∈ Θk+1. �

Assumption 11 LetWk+1 denote the weighting matrix
at time k, if Θk+1 ⊆ Θk, then the following condition
holds for all k ≥ 0

ξT0|kWk+1ξ0|k ≤ ξT0|kWkξ0|k. (24)

Remark 12 Following (4)-(11), it can be guaranteed
thatΘk+1 ⊆ Θk for all k ≥ 0. GivenWk,by imposing (24)
as an additional constraint for the LMI problem used for
computing Wk+1, we can find a Wk+1 satisfying the con-
dition (24). An example of formulating the LMI problem
can be found in [10] for details.

4.4 Adaptive MPC algorithm

According to the developed terminal sets and cost func-
tion, the adaptive MPC algorithm is based on the fol-
lowing MPC optimization problem:

P : min
vk,{αl|k}

Jk = ξT0|kWk+1ξ0|k

s.t. z0|k = xk

(3), (13), (15a), (15b), (21a), (21b)

At time instant k, we update the estimation of the un-
known parameters and the uncertainty set based on new
measurements, then reformulate the optimization prob-
lem P. Note that the reformulation of P with respect
to the new estimation is not necessary if the estimation
error is sufficiently small. To reduce redundant estimat-
ing actions, we introduce a termination criterion for the
proposed estimator. Let ǫx > 0 and ǫr > 0 denote the
tolerances for the state estimation error and the error
bound of parameter estimation, then the proposed adap-
tive MPC algorithm is summarized in Algorithm 1.

Theorem 13 Suppose that Assumptions 7, 9 and 11
hold, and there is a feasible solution to the optimal con-
trol problem P when k = 0. Then P is recursively feasible
by following Algorithm 1.

Algorithm 1 The Adaptive MPC algorithm

Input: Given initial conditions x0,Θ0 and weighting
matricesQ,R, determine the prestabilizing feedback
gainK and MRPI set Z0. Compute the terminal set
A0 and the horizon M0 according to Proposition 4.
Calculate the weighting matrix W0 satisfying (23).

1: for each time instant k = 0, 1, 2, · · · do
2: if ‖x̃k‖ ≥ ǫx or Vk ≥ ǫr then

3: Calculate θ̂k+1 and Θk+1 by using (4)-(11).
4: ComputeMk,Ak,Wk+1 and Zk with respect to

Θk+1 such that Assumptions 7, 9 and 11 hold.
5: else
6: Let θ̂k+1 = θ̂k,Θk+1 = Θk,Zk =

Zk−1,Wk+1 = Wk,Mk = Mk−1 and Ak =
Ak−1.

7: end if
8: Reformulate and solve the optimization problem

P based on θ̂k+1 and Θk+1 to obtain v∗
k. ,

9: Calculate the control input as uk = Kxk + v∗
0|k,

and then implement uk to the system.
10: end for

Proof Suppose that P is feasible at time k. Let v∗
k and

α
∗
k = {α∗

l|k}l∈N
N+Mk
0

denote the optimal solution of the

MPC problem at time k. {z∗
l|k,S

∗
l|k = {el|k|Vkel|k ≤

α∗
l|k},X

∗
l|k = z∗

l|k ⊕ S∗
l|k}l∈N

N+Mk
0

are the correspond-

ing nominal states, error tubes and state tubes, respec-
tively. Define a candidate input sequence at time k + 1
as v̄k+1 = {v∗

1|k, v
∗
2|k, · · · , v

∗
N−1|k, 0}.

Two cases are investigated to prove this theorem.
Case (1): Suppose that the estimation termination cri-
terion in Algorithm 1 is not satisfied. Based on z0|l+1

and v̄l|k+1, we firstly construct the following sequence
ᾱk+1 = {αl|k+1}l∈N

N+Mk+1−1

0

such that Xl|k+1 = X ∗
l+1|k.

Let αN+Mk+1|k+1 = max
j∈N

nc
0

{Hj
k+2

αN+Mk+1−1|k+1 +

V∆φj
k+2

zN+Mk+1−1|k+1}, we show that {v̄k+1, ᾱk+1}
is a feasible solution for P in the following.

• For l ∈ N
N+Mk+1−1

0 , since Xl|k+1 = X ∗
l+1|k, we

have {z∗
l+1|k, S

∗
l+1|k} satisfying the condition z∗

l+1|k ⊕

S∗
l+1|k = zl|k+1 ⊕ Sl|k+1, which verifies that the can-

didate sequence {zl|k+1, αl|k+1, v̄l|k+1}
l∈N

N+Mk+1−1

0

satisfies the constraints (15a) and (15b).
• When l = N , it follows form (21a) that Vkz

∗
N |k +

DkV eN |k ≤ 1. By usingDkV = Vk, we have Vk(z
∗
N |k+

eN |k) = VkxN |k ≤ 1, implying that X ∗
N |k ⊆ Zk. As

aforementioned, XN−1|k+1 = X ∗
N |k, then XN−1|k+1 ⊆

Zk. Since Zk is an RPI set, v̄N−1|k+1 = 0 and Θk+2 ⊆
Θk+1, it yields that XN |k+1 ⊆ φk+2Zk ⊆ Zk+1 by
following Assumption 7. Hence, we have zN |k+1 +
eN |k+1 ∈ Zk+1 for all admissible eN |k+1. As a result,
the constraint (21a) is satisfied.
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• When l = N+Mk+1, taking the infinity norm of (16a)

we have ‖αl|k+1‖∞ ≤ max
j∈N

nc
0

{‖Hj
k+2

‖∞‖αl−1|k+1‖∞ +

‖c̄j
l−1|k+1

‖∞}. Since Xl−1|k+1 = X ∗
l|k and Θk+2 ⊆

Θk+1, following Proposition 4 and Assumption 9, it is
concluded that ‖αl|k+1‖∞ ≤ γk ≤ γk+1. Hence, the
constraint (21b) is satisfied.

Case (2): Suppose that the estimation termination
criterion in Algorithm 1 is satisfied. Then we have

θ̂k+2 = θ̂k+1, Zk+1 = Zk,Wk+2 = Wk+1, γk+1 = γk
and Mk+1 = Mk. The recursive feasibility can be
proved by constructing the following candidate sequence
v̄k+1, {α

∗
1|k, α

∗
2|k, · · · , α

∗
N+Mk|k

, max
j∈N

nc
0

{Hj
k+1

αN+Mk|k +

V∆φj
k+1

zN+Mk|k}}.

In summary, there is a feasible solution for the optimal
control problem P at time k + 1 if it is feasible at time
k. Therefore P is proved to be recursively feasible. �

Theorem 14 Suppose that Assumptions 7, 9 and 11
hold, then the system in (1) in closed-loop is asymptoti-
cally stable by applying the adaptive MPC Algorithm 1.

Proof To prove this theorem, in the following, we show
that the optimal cost J∗

k is a Lyapunov function for the
system in (1) in closed-loop with Algorithm 1.

Case (1): Suppose that the estimation termination
criterion in Algorithm 1 is not satisfied. Let z0|k+1 =
xk+1, ξ0|k+1 = col(z0|k+1, v̄k+1), ξ0|k = col(z∗

0|k,v
∗
k)

and J̄k+1 = ξT
0|k+1

Wk+2ξ0|k+1, based on Lemma 10, we

have

ξT
0|k+1

Wk+1ξ0|k+1 − J∗
k

= ξT
0|k(Ψ

∗)TWk+1Ψ
∗ξ0|k − ξT

0|kWk+1ξ0|k

≤ −ξT
0|kQ̄ξ0|k

= −zT
0|kQz0|k − uT

0|kRu0|k

Since Q and R are positive definite and z0|k = xk, it can

be derived that ξ̄T
0|k+1

Wk+1ξ̄0|k+1 − J∗
k ≤ −xT

kQxk −

uT
0|kRu0|k. In addition, from Assumption 7, we have

J̄k+1 = ξ̄T
0|k+1

Wk+2ξ̄0|k+1 ≤ ξ̄T
0|k+1

Wk+1ξ̄0|k+1, which

yields J∗
k+1 − J∗

k ≤ J̄k+1 − J∗
k ≤ −xT

kQxk − uT
kRuk ≤

0, ∀xk 6= 0 and uk 6= 0. Since Wk is positive definite, J∗
k

is a Lyapunov function for the system in (1).

Case (2): Suppose that the estimation termination
criterion in Algorithm 1 is satisfied. Then we have

θ̂k+2 = θ̂k+1, Zk+1 = Zk,Wk+2 = Wk+1, γk+1 = γk
and Mk+1 = Mk. By repeating the above procedure, we
can prove that J∗

k is a Lyapunov function.

In summary, the optimal cost function J∗
k is a Lyapunov

function for the system in (1) in closed-loop with Algo-
rithm 1. Hence, the closed-loop system is asymptotically
stable. �

Remark 15 Note that, unlike the robust method in [6],
the propagation of homothetic tube Sl|k (15) in our pro-

posed method depends on the estimation θ̂k+1 and Θ̂k+1.
In addition, the nominal system in (13), the terminal con-
ditions in (21) and the weighting matrix Wk+1 are also
updated based on the estimation of uncertainty at each
time instant. By following (4)-(11), the non-increasing
properties on the proposed estimation scheme are guar-
anteed. Therefore, the resulting adaptive MPC scheme
can reduce conservatism compared with the original ro-
bust MPC method. The numerical simulations will elab-
orate this argument.

Remark 16 As shown in Algorithm 1, when updating

the parameter estimate θ̂k and uncertainty set Θk, we
need to re-compute Mk,Zk+1 and Wk+1, which is rel-
atively computationally expensive. For some problems
which have the strict requirement on the computational
load, a solution to reduce the computational complexity
is to choose the relatively large ǫx and ǫr. An alterna-
tive is to omit the update of terminal conditions and cost
function by setting Mk = M0,Zk = Z0 and Wk = W0

for all k ≥ 0. Due to the fact that Θk+1 ⊆ Θk ⊆ Θ0,
this strategy can significantly reduce the computational
load with guaranteed closed-loop stability and recursive
feasibility, but results in a relatively conservative con-
trol performance. Note that the recursive updates of sys-
tem model and uncertainty set are considered in the tube
propagation, and thus, this simplified method still has
less conservative closed-loop performance compared with
the robust MPC method. The numerical simulation will
demonstrate this argument.

5 Simulation Results

In this section, a numerical example is presented to show
the effectiveness of proposed adaptive MPC algorithms.
The numerical test is conducted in Matlab, where the
MPC optimization problem is formulated and solved by
using Yalmip [15].

We consider the following example for testing:

A0 =

[

0.42 −0.28

0.02 0.6

]

, A1 =

[

−0.12 −0.08

−0.12 −0.17

]

, A2 = −A1,

B0 =
[

0.3 −0.4
]T

, B1 =
[

0.04 −0.08
]T

, B2 = −1.5B1.

Θ0 = {θ ∈ R
2|‖θ‖ ≤ 1}, {x|‖x‖∞ ≤ 17} and {u|‖u‖∞ ≤

4}. The weighting matrices are chosen as Q = I2 and
R = 1. By following [10], the prestabilizing feedback
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Fig. 1. The time evolution of the system state x1.
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Fig. 2. The time evolution of the system state x2.

gain is chosen as K = [−0.4187 1.1562]. Set the pre-
diction horizon N = 10, then the horizon and terminal
region are derived as M0 = 3 and γ0 = 0.4266. The pa-
rameters used in Algorithm 1 are given in the following
ǫr = 0.001, ǫx = 0.001, λ = 0.5 and Γ0 = 0.15I2.

The robust MPC method in [6] (RMPC1) and [17]
(RMPC2) are introduced for the purpose of comparison.
The initial point is set as x0 = [8, 8]T. The real system
parameter θ∗ = [−0.2, 0.5]T is given to evaluate the
proposed parameter estimator. Figs. 1 and 2 show the
trajectories of system state and control input obtained
by applying different control methods. From these fig-
ures, it can be seen that the recursive feasibility can
be guaranteed by using these methods while the pro-
posed method can accelerate the convergence of system
state. To further compare the control performances of
different MPC formulations, we introduce the following

index J̄p =
∑Tstp

k=0
(xT

kQxk + uT
kRuk)/Tstp, where Tstp

denotes the simulation time. The corresponding results
are illustrated in Table 1, implying that the proposed
method can achieve the less conservative performance.
The polytopic approximation of uncertainty sets ob-
tained at time k = 0, 3, 7, 20 are depicted in Fig. 4. It
can be seen that the estimate of uncertainty set is non-
increasing, and finally converges to a fixed set, which
verifies the proposed results.

Algorithm 1 Remark 15 RMPC1 RMPC2

J̄p 9.2023 9.2524 9.2524 9.3747

Table 1
The comparison of system performance.
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-0.5
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Algorithm 1
Remark 15
RMPC1
RMPC2

Fig. 3. Trajectories of control input u.

Fig. 4. The estimated uncertainty set Θ obtained at
k = 0, 3, 7, 20.

6 Conclusion

In this paper, we have investigated adaptive MPC for
constrained linear systems subject to multiplicative un-
certainties. An online parameter estimator has been de-
signed based on the RLS technique for simultaneous pa-
rameter identification and uncertainty set estimation.
By integrating the proposed estimator with homoth-
etic prediction tubes, the resulting tube-based adaptive
MPC scheme is recursively feasible with recursive model
updates, while giving rise to enhanced performance com-
pared with the robust tube MPC method. The simpli-
fied version of the proposed adaptive MPC method was
also given to provide a trade-off between conservatism
and computational complexity. We have proven that the
closed-loop system is asymptotically stable. Numerical
simulations and comparison studies have been given to
demonstrate the efficacy and advantages of the proposed
adaptiveMPCmethod. On the other hand, the main lim-
itation of proposed adaptive MPC approach comes from
the polytopic over approximation of the uncertainty set
employed in the construction of homothetic tubes, lead-
ing to an undesired increase in conservatism and compu-
tational complexity. Furthermore, this work considered
the constant parametric uncertainties only, which poten-
tially poses certain limitations to practical applications.
The future research will focus on how to efficiently use
poytopes for bounding the FSS of unknown parameters
with a tight overestimation. Incorporating such an idea
to develop adaptive MPC algorithms for handling time-
varying multiplicative and additive disturbances is also
an interesting direction for future research.
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