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Abstract

In abstractions of linear dynamic networks, selected node signals are removed from the network, while keeping the remaining
node signals invariant. The topology and link dynamics, or modules, of an abstracted network will generally be changed
compared to the original network. Abstractions of dynamic networks can be used to select an appropriate set of node signals
that are to be measured, on the basis of which a particular local module can be estimated. A method is introduced for network
abstraction that generalizes previously introduced algorithms, as e.g. immersion and the method of indirect inputs. For this
abstraction method it is shown under which conditions on the selected signals a particular module will remain invariant. This

leads to sets of conditions on selected measured node variables that allow identification of the target module.
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1 Introduction

In current and future engineering systems, as well as in
many biological and biomedical systems, large scale in-
terconnected dynamical systems become a prime mod-
elling target for analysis and control. The resulting dy-
namic networks that represent these interconnected sys-
tems, are studied from many different perspectives. In
this paper our main motivation is directed towards meth-
ods and tools for data-driven modelling of (parts of) a
dynamic network, extending identification methods to
be able to deal with linear dynamic networks.

In network identification literature, typically three main
objectives can be distinguished. One objective is to per-
form identification of both the topology and dynamics,
see for example Sanandaji et al.| (2011));|Chiuso and Pil-|
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lonetto|(2012); Materassi and Salapakal (2012]); Zorzi and|
Chiusol (2017)). In situations where there is prior knowl-
edge of the topology, the objective can be to identify all
dynamic modules, as is done for example in [Goncalves
land Warnick| (2008)); [Yuan et al.| (2011)); Weerts et al.
(2018c), including addressing the aspect of network iden-
tifiability, (Weerts et al.l 2018b}; Hendrickx et al.| |2019).
A third possible objective is the identification of the
dynamics of a single local element, or module, in the
network, when the topology of the network is known.
This has been addressed in [Van den Hof et al.| (2013,
by extending classical closed-loop prediction error meth-
ods, known as the direct method, two-stage method and
joint-io method, to the situation of dynamic networks.
The reasoning has been extended inDankers et al.|(2015)
to deal with signal measurements that are affected by
sensor noise. Additional extensions concern identifiabil-
ity aspects of local modules (Bazanella et al., 2017; Hen-|
drickx et all 2019} [Gevers et all [2018} [Weerts et al.]
2018a)), and combination of the prediction error method
with Bayesian estimation in [Everitt et al.| (2018);
[maswamy et al.|(2018).

In this paper we will elaborate on this local module iden-
tification problem, and focus on the selection of signals
to be measured in the network, to allow a particular
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module to be identified. While in general it may be at-
tractive to have all node signals in a network available
from measurements, in practice it may be costly or even
impossible to measure some of the nodes. Then, a rel-
evant question is which set of measured node signals is
sufficient for single module identification. This problem
has been addressed in several different ways.

e In|Dankers et al.| (2016]) the module of interest is iden-
tified in a multi-input-single-output setting with ei-
ther a direct method or a two-stage method. Signals
are selected by removing non-selected signals from the
network through an elimination procedure called ¢m-
mersion, while requiring that the target module re-
mains invariant. This allows a consistent identifica-
tion of the target module dynamics under appropri-
ate excitation and disturbance conditions. A system-
atic way of selecting the measured node signals is pro-
vided. The selection method is extended in [Dankers
et al.| (2017) to handle situations of confounding vari-
ables being caused by disturbances that are spatially
correlated over the different node signals. This is par-
ticularly of interest when applying the direct method,
aiming at maximum likelihood results.

e The approach in |[Linder| (2017); Linder and Enqvist
(2017bjal) is also in a multi-input-single-output set-
ting, but with an instrumental variable identification
method. It follows the same philosophy as the one in
Dankers et al.| (2016), but applies a different elimi-
nation procedure, referred to as the indirect inputs
method, and thus results in a different set of conditions
on selected measured node signals.

e In Materassi and Salapaka) (2015, [2019), selection of
node signals is being done on the basis of graphical
models, while Wiener filters are being used for dy-
namic model reconstruction, and no reference excita-
tions are present. This approach can be characterized
as an indirect approach where several dynamic objects
are identified from data, after which the target mod-
ule is reconstructed.

e The approach in [Bazanella et al.| (2017)); [Hendrickx
et al.| (2019)) is also based on indirect identification for
the situation that all nodes are excited by external
excitations. Here an identifiability analysis is made in
order to verify whether the module of interest can be
recovered uniquely from a set of estimated transfer
functions from reference signals to a set of selected
node signals.

Since all algorithms provide only sufficient conditions
for arriving at a set of to-be-measured node signals, it
is attractive to obtain results that fully characterize the
degrees of freedom that are available in selecting node
signals that allow appropriate module estimates.

In this paper we are going to adopt the strategy of the
first two approaches, eliminating node variables to ar-
rive at a so-called abstracted network, while keeping the
dynamics of the target module invariant. After abstrac-

tion, the target module can be estimated on the basis of
the node variables that are retained in the abstraction.
While bothDankers et al. (2016 and|Linder and Enqvist
(2017b) have employed a particular way of abstracting
networks, e.g. through network immersion (Kron reduc-
tion) or through the so-called indirect inputs method,
here we develop a more general notion of abstraction
that generalizes the two earlier approaches, and provides
a higher flexibility in the selection mechanism of choos-
ing which nodes to measure/retain and which nodes to
discard/abstract in a multi-input single-output identifi-
cation setup for estimating the target module.

In order to develop this generalized abstraction algo-
rithm, we use the fundamental property that the net-
work representation is not a unique representation of
the behavior of the network. When manipulating the
network equations, different representations can be ob-
tained leading to different identification setups for esti-
mating the target module. This freedom will be exploited
for developing generalized conditions for selecting the
node signals that are used as inputs in an identification
setup for estimating the target module.

The paper is organized as follows. After defining the ba-
sis network setup in Section 2, in Section 3 the non-
uniqueness of the network representations is character-
ized. This is exploited in Section 4 to arrive at a gen-
eralized abstraction algorithm, which is illustrated by
examples in Section 5. In Section 6 it is specified under
which conditions the target module remains invariant,
and consequences for the identification setup and the se-
lection of node signals are presented in Section 7. The
proofs of all results are collected in the Appendix.

2 Dynamic network definition

In this section a dynamic network model is formulated
on the basis of the setup in|Van den Hof et al.| (2013). A
dynamic network consists of L scalar internal variables
or nodes wj, j = 1,...,L, and K external variables 7y,
k=1,..., K. Each node is a basic building block of the
network and is described as:

L
wi(t) =Y Giulqwi(t) + u;(t) + v;(t) (1)
=1
l#5

!is the delay operator, i.e. ¢~ w; (t) = w;(t—1);

where ¢~

e G are proper rational transfer functions that are re-
ferred to as modules in the network;

e There are no self-loops in the network, i.e. nodes are
not directly connected to themselves G;; = OE

! Since Gj; are rational transfer functions, this does not

limit the dynamical description of w;(¢).



e u;(t) are generated by the external variables ri(t) via

K
ui(t) = Rj(@)ri(t), (2)
k=1

where 7 can directly be manipulated by the user, and
R;j, are proper rational transfer functions;

e v; is process nmoise, where the vector process v =
[vg---vr]T is modeled as a stationary stochastic
process with rational spectral density, such that
there exists an L-dimensional white noise process
e := [e1---er]T, with covariance matrix A > 0 such

that
v(t) = H(q)e(t),
with H(q) a proper rational transfer function.

By combining the L node signals, the network expression

wy 0 G - Gir ||ws Uy vy
w2| |Gy O : (0 () V2
- Sl T+
: Gr-1t|| :
wr| |Gpi - Gop-1 0 wr, ur, VL

is obtained, where the zeros are due to absence of self-
loops. In matrix notation the dynamic network is repre-
sented as

w(t) = G(g)w(t) + R(g)r(t) + H(ge(t).  (4)

A set notation is introduced for notational convenience.
Let the sets S and Z each contain a number of node in-
dices, then wg denotes the vector of node signals consist-
ingofall w;, 7 € S. Similarly, Gsz is the matrix of trans-
fer functions that contains all modules Gj;,j € S,i € Z.

The transfer function that maps the external signals r
and e into the node signals w is denoted by:

T(0) = [T (@) Tuea)] (5)

with
Tur(q) = (I — G(q))"" R(q), and (6)
Tuelq) = (I — G(q))" " H(q). (7)

This is also known as the open-loop response of the net-
work corresponding with

w(t) = Tyrr(t) +0(¢), (8)
where noise component o(t) is defined by

0(t) = Tuwe(g)e(t), (9)

with power spectral density
By (w) 1= Tue(e™)ATT (e7). (10)

Some notions from graph theory will be used in the
dynamic network. Modules form the interconnections /
links between nodes. A node wy, is said to be an in-
neighbor of node w; if G # 0, and then wyj is said to
be an out-neighbor of node wy. A path in a network is a
sequence of interconnected nodes, more precisely there
exists a path through nodes wy,,, ..., wy, if

Gnlnangng e Gn(k—l)nk # 0.

A loop is a path where n; = ny.

A dynamic network model is then formally defined in
the following way.

Definition 1 (dynamic network model) A network
model of a network with L nodes, and K external excita-
tion signals, with a noise process of rank L is defined by
the quadruple:

M = (G,R,H,A\)
with

G € REXE(2), diagonal entries 0;
R € RIXK (%)
H ¢ REXL(z
nuverse;

A e REXE A >0;

The network is well-posed (Dankers, |2014)), implying
that (I —G) ™! exists. Additionally we require that (I —
G)~ 'R is proper and stable. O

), monic, proper, stable, with a stable

Remark 2 In Definition 1 we do not require modules
to be proper, while in (1) we do require properness. Real
systems in practice are reflected by (1), and these will
typically have proper modules. In this paper we will use
the freedom to allow network models to have non-proper
modules. For this reason we define a representation of
these networks that allows modules to be non-proper in
Definition 1. Note that for a network model representa-
tion as in Definition 1, we require T, to be proper and
stable, while the noise transfer Ty, is allowed to be non-
proper, representing a non-causal mapping. This allows
us to maintain a monic, proper, stable and stably invert-
ible noise filter H, which is attractive from an identifica-
tion perspective.

Remark 3 With the analysis provided in|Weerts et al.
(2018d), it is possible to extend the results in the current
paper to the situation of a noise process having rank p

smaller than L, implying that H € REXP(2), and A €
RP*P,



3 Equivalent network representations

The freedom that is present in dynamic network repre-
sentations allows for different selections of node signals
to be used for identification of a module. This freedom
is formally characterized in this section. Moreover, the
general concept of removing a node from a network is
defined as abstraction, such that in later sections we can
consider abstractions that are relevant for identification.

3.1 Transformation of the global network

Fundamentally, we need to define when two networks
are equivalent descriptions of behavior, and what free-
dom is available to transform the network to an equiv-
alent representation. In the network model definition, it
has been stated that the external variables  and nodes
w are known, and it is reasonable to state that equiva-
lent networks must describe the same relation between r
and w. The dynamic influence of r on w is described by
the open-loop transfer function matrix Ty,,, and so the
equivalence of two networks additionally requires equal-
ity of the two related open-loop transfer function matri-
ces from r to w. The open-loop response of the network
is described by (8), i.e. w(t) = Tyrr(t) +9(t). If w, r and
T, are the same for two networks, then also ¥ must be
the same.

Definition 4 Let the network model M) correspond to

open-loop transfer Ti(f) and noise spectrum ‘I’E—,i) fori =
{1,2}. Network models M) and M®) are said to be
equivalent if

TO =732 and Y =P, (11)

v
O

In the above definition, T and @%i) are associated with
w and r for ¢ = {1,2}. There is an implicit assumption
in the definition that the w and r are the same for both

i={1,2}.

The full freedom that is available for transformation of a
network model to an equivalent network model is char-
acterized by operations applied to the network equa-
tion. These transformations can be represented by pre-
multiplying with a matrix. Consider a square rational
transfer function matrix P, then pre-multiplication of
network equation (4) results in

P(a)u(t) = Pa)(Gla)w(®) + u(t) + v().  (12)

The above pre-multiplication typically leads to a left-
hand side unequal to w(¢), in which case we need to move
terms to the right-hand side until we have w(t) on the

left-hand side, i.e.

wit)=(1 = Pla))w(t) + P(a) (Glayw(t) + u(t) +v(0)),
(13)

which is denoted as
w(t) = G (Qw(t) + u? () + v@ (1) (14)
where

G®=1-PI-G), u® =Pu, o® =Puv (15

The transfer function matrix R is then transformed as
R® = PR. (16)

A transformation of the noise model is defined in the
following way. When we describe the noise model as v =
He, apre-multiplication with P does not necessarily lead
to a proper, monic, stable and stably invertible filter
PH. For that reason H® and A® are obtained through
spectral factorization of the transformed noise spectrum

P<eiw)q)v (w)PT(e—iw) _ H(Q) (eiw)A(2) (H(Q) (e—iw))T_
(17)
A transformation P that leads to an appropriate network
representation must satisfy some conditions.

Proposition 5 Let network model MV satisfy Defini-
tion 1. The transformation P operating on M) as de-
fined in (15), (16), and (17) leads to a network model
M) that satisfies Definition 1 and that is equivalent to
M if and only if:

(1) P is full rank, and
(2) diag(I — P(I — GWY)) =0.

Proof: Collected in the appendix. O

An interesting feature of the network transformations
is that the response from external variables and pro-
cess noises to internal variables remains the same. A
pre-multiplication P as defined above leaves the transfer
function matrix T, invariant, since

T, = (P(I - G))"'PR, (18)
where the identity P~1P = I is used.

A pre-multiplication P that leads to a non-hollow G(?)
can be used to transform a network. However, in that
situation additional manipulations would be necessary
to arrive at a hollow representation. Without loss of gen-
erality we will restrict to transformations P that imme-
diately result in a network representation that satisfies
(1). There are some restrictions on P, but a large free-
dom in the choice of transformation P is left.



Proposition 6 The equivalence transformation pre-
sented in (15), (16), and (17) can transform a network
model MY with corresponding modules GV into a net-
work model M) with corresponding modules G?) using
the transformation

P=(1-GP)I-GgM) (19)

Proof: Collected in the appendix. O

The proposition allows for G(!) to be transformed into
an arbitrary G(®) as long as it is part of a valid network
description. The consequence of transforming G(Y) to an
arbitrary G(? is that the corresponding R® will have a
complex structure

R® = PRW = (1 — GPYI - G)7IRMD.  (20)

The implication is that when G(!) is transformed, R(®

will compensate the changes to keep the node behavior
invariant. This also holds for the noise model, which will
contain additional correlations. Without any further re-
strictions on the choice of R and H, the modules repre-
sented in G contain no information on the dynamic net-
work. It is the combination of G, R, H that determines
the dynamic network.

3.2 Abstraction

The next step is to extend network equivalence with the
option to remove nodes from the representation. To this
end the concept of network abstraction is defined next.
This definition is related to the notions of abstraction in
Pappas and Sastry; [Woodbury et al.| (2017)).

Definition 7 Let network model MV be associated with
nodes w) € RE1, external variables 1 € RX, open-
loop transfer qu,lr) € RXK " and noise spectrum @%1) €
RE1%Lr | Let network model M) be associated with nodes

w® e RE2 | external variables r € R¥ | open-loop trans-
fer T&QT) € RE2XE " and noise spectrum 3 ¢ RL2xLz,

Let Ly < Ly and let C be the matriz that selects w® from
w | so define C with one 1 per row, zeros everywhere
else, full row rank, and such that w® = Cw™) . Network

model M®) is said to be an abstraction of MM if

2 1
7? = o1, 9% =caollcT. (21)
The nodes that are in w™, but not in w? are said to be
abstracted from the network. O

Constructing an abstraction of a network implies that
some nodes are removed from the network representa-
tion, while the remaining nodes stay invariant, in the

sense that for the same external signal r, the second or-
der statistical properties of the remaining node signals
are invariant.

The next step is to determine how to obtain an abstrac-
tion of a network. In certain cases, abstracting nodes w
from a network can be done by simply pre-multiplying
the network equation (4) with the selection matrix C,
ie.

Cu(t) = C(Gla)w(t) + Rla)r(t) +v(1)).  (22)

However, this only is an abstraction if the abstracted
nodes w no longer appear on the right-hand side of the
equation. If w appears on the right-hand side of (22) then
the abstracted nodes have an influence on the behavior
of the nodes in Cw, such that (21) cannot hold. It has
to be determined how to define a transformation P such
that an abstraction can be obtained by selecting rows
from the equation, as in (22).

A node w; influences other nodes through its out-
neighbors, and these corresponding modules are located
in a column in G. If a node has no influence on the rest
of the network, then it has no out-neighbors, and the
corresponding column is 0. Abstracting node w; requires
us to transform the network such that a O-column is
formed by transformation, after which the node can be
removed. By Proposition 6 we know that such a trans-
formation always exists. The abstraction satisfies the
relations

G =c(I-PI-G)CT, R®=CPR. (23)

A noise model constructed as CPH™) is a non-square
matrix, which is difficult to handle in an identification

setting. Therefore the transformed noise model H (),
A®) will be obtained through spectral factorization

CP(e™*)®,(w)PT(e7¥)CT =

e I TE )

3.8 Discussion on Identifiability

In Proposition 6 we have seen that G(*) can be trans-
formed into an arbitrary G(?) as long as it is part of
a valid network description. This may give rise to the
question whether we are not dealing with an unnecessar-
ily overparameterized situation, involving G, R and H
to describe a dynamic network. However we particularly
include the situation that measured external excitation
signals enter into physical subsystems of a network, and
thus our modules in G can have an intrinsic interpreta-
tion in the physical world. The price of abstracting nodes
in a network is that H and R can become complex, which



may be impossible to identify. In the identifiability anal-
ysis provided in [Weerts et al.| (2018b)) the following nec-
essary condition for network identifiability can be found:
For a network model set {G(6), R(6), H(6),0 € O} to
be network identifiable it is necessary that at least L en-
tries on each row of [G(q,0) R(q,0) H(g,0)] are fixed
and non-parameterized. If only the topology is known,
then the absent links in the network reflected by zeros in
the matrices G, R, H are the only known entries. In case
H and R become too complex, then the number of zeros
is too small for the model to be embedded in a network
identifiable model set. This implies that it is impossible
to find a unique estimate for the model structure on the
basis of the data. The approach in the next section is
to define a particular abstraction method, that leads to
abstracted networks that can be embedded in network
identifiable model sets.

4 Abstraction of networks

We will now formulate and analyze an abstraction algo-
rithm for dynamic networks that generalizes the proce-
dure of immersion Dankers et al.[(2016)) and the indirect
inputs method [Linder and Enqvist| (2017a)). It starts by
dividing the network nodes into a set of nodes ws that
are retained after abstraction and a set of nodes wz that
will be removed. The abstracted network will then allow
us to analyze the properties of estimated models when
the retained /measured node signals are employed in an
identification procedure.

4.1  Generalized algorithm

It appears that the action of abstracting nodes in a net-
work is not unique. This is particularly due to the de-
grees of freedom that exist in transforming network rep-
resentations to equivalent forms, by premultiplying the
system’s equations by appropriate transformation ma-
trices. In order to incorporate this freedom in the ab-
straction, we decompose each set of node signals S and
Z into two disjunct parts:

S=LUS (25)
Z=VUZ. (26)

The node signals w s will be abstracted directly by sub-
stituting the equation for w3 into the equations for the
other node signals. The node signals wy, have the prop-
erty that they can be indirectly observed by the node
signals w,, and therefore they can be eliminated from
the network by utilizing the equation for nodes w,. The
notion of indirect observation will be specified after the
next step.

Based on these sets, the network can be represented by

ws|  |Gss Gsr Gay Gsz||ws|  |us|  |vs
we| Grs Gere Gey Grs||we N Up N ve ’
wy Gys Gye Gyy Gyz||wy Uy vy
wz|  |Gzs Gzp Gzy Gzz||wz| |uz] |vz
(27)

where w z and wz are defined according to S = S8\L and
Z=2Z2\V.

The node signals w, and wy are chosen in such a way
that the signals w, serve as indirect observations of the
node signals wy, meaning that the signals w, contain
sufficient information of the indirectly observed signals
wy), 80 as to replace them in an elimination procedure.
This is formulated in the following definition.

Definition 8 (indirect observations) The node sig-
nals wp serve as indirect observations of the node signals
wy if the transfer function Gy +G5(I —G35) 1Gzy,
has full column rank. O

The property is satisfied if in the network there exists a
sufficient number of paths from nodes wy to nodes w,
that run through nonmeasured nodes only. An illustra-
tion of indirect observations is provided in Section 4.3.
In the remainder of this paper it will be assumed that
w, and wy are selected to satisfy the full column rank
property of the above definition. Note that this assump-
tion is not restrictive because £ and V are chosen by the
user such that the assumption is satisfied. We can al-
ways choose £ and V as empty sets, so the assumption
does not prevent us from constructing an abstracted net-
work. However, the use of non-empty sets £ and V will
allow us to use more degrees of freedom in constructing
abstracted networks.

Now we can formulate the generalized abstraction algo-
rithm, as follows.

Algorithm 1 Consider a network representation as in
(27). Then the following algorithm leads to a network in
which nodesw z are abstracted and nodeswgs are retained:

a Solve the fourth equation of (27) for wz, and then
substitute the result into the other equations, and
remove the fourth equation from the network.

b Solve the second equation of (27) for wy, and sub-
stitute the result into the first equation.

¢ Solve the third equation of (27) for wy, and substi-
tute the result into the second equation, and remove
the third equation from the network.

d Remove possible self-loops in the resulting network
representation by shifting self-loop terms to the left
hand side of the equations and scaling the equations
such that an identity matriz remains at the left hand
side. O



The algorithm shows that the essential difference be-
tween the nodes in wg and w, is how wy is removed
from their equation. After application of the algorithm,
the abstracted network will be represented by

wg
wr
Note that the particular type and ordering of variable

substitution in Algorithm 1 essentially influences the re-
sult. This will be illustrated with examples in Section 5.

Gss Gsr g

Gﬁg GLL

= wé S

+ (28)

we Ug g

4.2 Specification through transformations

Algorithm 1 can be specified by denoting the algebraic
manipulations that generate the substitution and elimi-
nation operations in the different steps of the algorithm.
We will first describe the substitution operations on the
set of equations, and at the end of the procedure address
the removal of equations.

In step (a) the elimination of wz is performed, which
corresponds to applying the transformation matrix

100 GSZ(I_G )_1
010G 5(I—Gzz5)"
001 sz([—G )_
1

000 (I*G22)7

ZZ

(29)

ZZ
1 )
ZZ

to the network representation (27). This leads to a new
G-matrix given by

G =1-PY(I-0@), (30)

where G is partitioned as defined in (27), and GV is
partitioned in the same way.

In steps (b)-(c), we first obtain a new expression for wy
by reverting the expression for w,, and we substitute the
original expression for wy into the expressions for w,.
This corresponds to applying the transformation matrix

I o0 0 0
(1) 1)y~
pe — 0 I GrI-Gy)™o 31
B (D) y ’ (31)
0 (Gp) 0 0
0 0 0 I

with (G2))) = Gey+Gpz(I-Gz5) " Gz, and (G
denoting its left-inverse, and (ngl\),) =Gy +G (1 -
G35) 'G5y, leading to

G® =1 - PO -GW), (32)

where G(®) has the same partitioning as G(*). Note that
the left-inverse exists due to the indirect observations
property of w,, as formulated in Definition 8.

The remaining part of steps (b)-(c) is now to substitute
the new expression for wy in the first equation for wg,
thereby eliminating the dependency of this expression
on wy. This is achieved by applying the transformation
matrix

10GY 0
0I 0 0
P® = : (33)
00 I 0
00GY 1
such that
G® =T1- PO -a¥), (34)

where G®) has the same partitioning as G, The ad-
ditional term G(Z?\)/ that is added in the fourth row of

P®) ensures that in the transformed network all columns
that correspond to wz are zero in G(4), including for the
equations that will be removed.

Step (d) of the Algorithm is addressed by removing self-
loops in the resulting network representation, by apply-
ing a diagonal transformation matrix P*) with diagonal
elements
@) 1
P =
ji @)
1-Gj;

and being 0 elsewhere.

(35)

The total transformation that is applied to the network
representation is now given by

plabs) — p(4)p(3)p(2)p(1)7 (36)

which leads to a G-matrix of the transformed network
representation that is structured according to

Gg, 00

0

78

Gs

Grs Gee 00

GW .= ([ — Plab) ([ —G)) = | L5 TFF (37)
Gpg Gye 00

25Gz,.00

(Y
On

The abstracted network now results by selecting the first
two block rows and columns in the matrix G| thereby
removing the equations for the unmeasured/abstracted
node variables wy and w 3.

Proposition 9 When applying the abstraction proce-
dure of Algorithm 1 to a dynamic network given by (27),



the obtained abstracted network is the same as the ab-
stracted network given by (28) with

I0
Gss Gs 1000 01
88 TS = (I — Pl)(I - @))
Gr.s Grr 0700 00
00
_ug
Ug _ 1000 plabs) Ur
Up 0100 Uy
KE
_Ug
’DS" _ I 0 0 0 (abs) Uﬁ,
Ur 0700 vy
V2
Proof: Collected in the appendix. O

4.8 Interpretations and discussion

Compared to selecting a set of nodes wz, the particular
choice of the sets of nodes w, and wy, creates additional
degrees of freedom in the problem of constructing an
abstracted network, in which the nodes wz (including
wy) are removed. The mechanism that is used is that
the network equation for the node signals w, is inverted
to become an equation that describes the node signals
wy. This equation is then subsequently used to substi-
tute and eliminate the wy signals from the abstracted
network. In order to be able to use the network equation
for w, in this way, it needs to capture full information
on the node signals wy,. This is reflected in the property
of indirect observations, and the required full column
rank property of Gy + G, 5(I — Gz5) 'G5, as for-
mulated in Definition 8. This full rank property implies
that dim(wz) > dim(wy). It is generically satisfied if
there are dim(wy ) vertex-disjoint paths present from wy,
to w, that run through nonmeasured /abstracted nodes
only (van der Woudel, [1991} [Hendrickx et al.,|2019). An
example of the full rank assumption is shown in Figure
1. In the figure there are the two vertex-disjoint paths
Wy1 — wyp and wyo — w, — wig for two nodes that are
indirectly observed. In this case actually any selection of
two nodes from {wy, , wy,, wy, } would be sufficient to act
as indirect observations of {w,, , w,, }.

The network abstraction introduced here, generalizes
two earlier introduced abstraction algorithms. For the
particular choice, £ = () and V = @, Algorithm 1 de-
scribes the method of network immersion, as introduced

Fig. 1. Example network with V = {v1,v2}, Z = {z},
L ={l1,l2,l3}, where the full rank condition is satisfied.

in |Dankers et al.| (2016), and developed for the situa-
tion R = I. In that case steps (2)-(3) of the algorithm
become obsolete.

If w, is restricted to consist of nodes that are out-
neighbors of wy,, and wy, does not contain in-neighbors
ofwg, and Gy has full column rank, then Algorithm 1
describes the indirect inputs method as defined in |Lin-
der and Enqvist| (2017b)), which has been developed for
the situation R = I. If £ = {, then the indirect inputs
method is equivalent to the immersion method.

Because of well-posedness of the original network, all
terms in the transformation matrices P() ... P(*) are
proper, except possibly for the term (Gg),)f which may
be non-proper. This implies that the introduction of the
sets £ and V may lead to a final abstracted network rep-
resentation that is non-proper. Properness of the result-
ing network representation is guaranteed if £ = 0.

4.4 Identifiability analysis

As discussed in Section 3.3, it is impossible to formulate
an identifiable model set for network representations of
high complexity. The underlying objective of the partic-
ular abstraction algorithm is to limit the complexity of
the abstracted network. An evaluation of the structure of
network representations obtained with the abstraction
algorithm is made. In this way we can guarantee that an
identifiable model set can be defined for the abstracted
network.

A sufficient condition for network identifiability that can
easily be verified is that every node has an independent
external excitation. This is achieved when the columns
of R in 3

u(t) = R(g)r (38)
can be permuted to arrive at a matrix with a leading di-
agonal (Weerts et al.,2018b). In order to verify whether
this can be achieved we need to evaluate the structure
of R. The abstracted network generated by Algorithm 1
corresponds to the transformation P(“*%) such that

R:P@ﬂmm, (39)



Since P(@%) and R are formulated in terms of the orig-
inal network, we can formulate conditions for network
identifiability based on the original topology. This is for-
mally done in the next proposition.

Proposition 10 Consider the abstracted network (28)
obtained by abstracting the original network (4) with Al-
gorithm 1 by using the sets of nodes S, L,V, Z. The rep-
resentation of the external excitations is u(t) = R(q)r.
The matriz R(q) can be given a leading diagonal by col-
umn operations if the original network is such that

(1) Rgg is diagonal, and rg is not an in-neighbor of
nodes other than wg,

(2) Ryy is diagonal, and ry is not an in-neighbor of
nodes other than wy, and

(3) Gy is diagonal, G,z =0, Gyy =0, and Gy, 5 = 0.

Proof: Collected in the appendix. O

The proposition implies that abstracted networks that
are obtained by Algorithm 1 can be embedded in network
identifiable model sets, under some restrictions on the
original network. Here we have analyzed network iden-
tifiability of all modules in the abstracted network using
sufficient conditions. The result may be extended by us-
ing less restrictive conditions that make use of the topol-
ogy present in G [Weerts et al.| (2018b). Moreover, for
consistency of the module of interest only network iden-
tifiability of that particular module is necessary. Condi-
tions for network identifiability of a particular module
are less restrictive than conditions for network identifia-
bility of all modules (Weerts et al. [2018a)), which could
further reduce the imposed conditions on the structure
of the network.

5 Abstraction applied to an example network

In this section we will provide an example to illustrate
some of the options that are available in network ab-
straction. Consider the network in Figure 2 where the
nodes are described by the following equations

wy = Growy + Giaws + Grawy + 11 + 01 (
wy = Gagwy + 19 + 2 (
w3 =13 + U3 (42
wy =Gpnwi +r4+ 4 (

If we would like to abstract node wy, e.g. because this
node signal cannot be measured, then we have different
options for doing so. The set of retained nodes is § =
{1,2,3} and the set of removed nodes is Z = {4}.

We have to make a choice on whether nodes are used
as indirect observations. If we choose that there are
no indirect observations, then £ = V = (), such that

Fig. 2. Example network to illustrate abstraction.

S =1{1,2,3} and Z = {4}. We eliminate wy from the
system equations by substituting its expression (43) in
the expressions of the nodes that are retained (40)-(42).
This leads to a new set of equations given by

w1 = GuuGuwi +Grawe+Grsws+r1+v1 +Gra(ra+vs)
wa = GoaGaiwr + 12 + va + Gaa(r4 + v4)
w3 =13 + U3

which induces a self-loop around w;. This can be com-
pensated for by moving the w;-dependent term to the
left hand side, and rewriting the equation for w; as

wy = S[Graws + Gizws + 11 + v1 + Gra(ra + v4)]

with S := (1 — G14G41)~ " As a result the abstracted
network is obtained and sketched in Figure 3. This
way of eliminating node wy is referred to as immersion
(Dankers et al. [2016]), and comes down to lifting each
path in the original network that contains the node sig-
nal that is eliminated. After removing the abstracted
node signals, the remaining node signals are invariant.

Vgatly

Fig. 3. Network obtained after abstracting node w4 through
immersion.

As an alternative for the chosen abstraction, we can
choose wy as an indirect observation of wy, such that
L={2},V={4}, S ={1,3}, and Z = 0. In this situ-
ation, node signal wy is abstracted by utilizing the ex-



pression for wy. We rewrite equation (41) as
wy = G2_41(w2 — Vg — TQ)

and substitute this into (40) to obtain the expression for
w1

wy = Graw2 +G3wz+Ga G2_41(”LU2 — 19 — Ug) 411+ 1.

Wy

In order to obtain the new expression for wy we directly
substitute the expression for w4 (43) into the expression
for wo (41). The abstracted network is sketched in Figure
4, and given by the following equations:

wy =(G1a + G14Gy )wa + Grzws + 11 + v
- G14G2_41(7“2 + v2)

wy =GogGarwy + ro + v2 + Gos(r4 + v4)

w3 =13 + U3

This alternative method of eliminating node variable wy
is referred to as the indirect inputs method introduced in
[Linder and Enqvist| (2017al). The principle idea is that
the out-neighbor of a node that needs to be abstracted
contains information about that node. Then the equa-
tion of the out-neighbor is manipulated in order to ob-
tain an explicit expression for the node to be abstracted,
which is then used to eliminate the node from the net-
work. A major difference with the method of immersion
is that the inverse of modules may appear in the result-
ing network representation.

It can be observed that the network topology and module
dynamics can change when nodes are abstracted from
the network. In particular the module G713 has changed
to SG13 when the immersion method is applied, while
it remains invariant when the indirect inputs method is
applied. This is going to be important when considering
the problem of identifying a local module on the basis
of a restricted set of measured node signals, as will be
discussed in the next section.

G +
G14(Gza)*

'(G24)>1G14

Fig. 4. Modification of the network depicted in Figure 2,
obtained after removal of node ws4 by the indirect inputs
method.
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6 Identification setting for invariant modules

We have introduced an algorithm to perform network
abstraction. The remaining question to answer is how
this will help to select nodes for the identification of the
module of interest. A central point in our reasoning will
be the invariance of the target module in the abstracted
network. Although for consistent identification of the
target module it is not strictly necessary to have target
module invariance, cf. e.g. the indirect type identifica-
tion methods of Bazanella et al.| (2017); |Gevers et al.|
(2018); Hendrickx et al.|(2019) or the Wiener-filter based
method of Materassi and Salapakal (2015} 2019), invari-
ant target modules are very attractive in two-stage meth-
ods (Dankers et all, [2016} [Linder and Enqvist| [20174)),
and they are indispensable in direct methods (Dankers
that have the potential to provide consis-
tent and maximum likelihood (and thus minimum vari-
ance) results. In Dankers et al.| (2016) and Linder and
Engvist| (2017a) two different abstraction methods have
been used to select node signals to be measured for iden-
tification of a target module, based on the invariant mod-
ule principle. The prime reasoning and the formulation
of generalized results are presented next.

6.1 Direct identification setup

If the target module to be identified is G;;(g), then a
MISO identification setup on the basis of the abstracted
network can be formulated in the following way. Node
w; is used as output, and the following nodes are inputs:
wg\ ; with i € S, wg, and possibly additional external
excitations. In this way an identification algorithm can
provide us with a consistent estimate of the modules of
the abstracted network G’jk for all k € S, provided that
some regularity conditions are satisfied, among which
sufficient excitation properties of the measured signals.
We have seen in the examples of the previous section
that a module may remain unchanged after abstraction
for particular choices of the sets S, £, V, Z, i.e.

Gjila) = Gji(q)- (44)
If the modules of the abstracted network are estimated
consistently, and the module of interest has remained
invariant in the abstracted network, then the module of
interest is estimated consistently. In the remainder of
this section we will address the problem under which
conditions the abstracted network has the mentioned
invariance property (44) of Gj;.

6.2 Invariance of the module G;

When applying immersion as a specific abstraction algo-
rithm, it has been analyzed in Dankers et al.| (2016)) un-
der which conditions on the set of retained node signals,
a particular module in the network will remain invariant.




Fig. 5. Networks to illustrate issues with parallel paths when
abstracting.

Proposition 11 (Dankers et al.| (2016)) Consider a
dynamic network as defined in (4), and let Gj;(q) be

the module of interest. Denote with va'jl-(q,S,E,V,Zj’)
the module G; in the network that is abstracted using

Algorithm 1 with the sets S.L,V,Z. Let the network
abstraction be performed through immersion, i.e. with
L =YV = 0. Define the set D; =S\ j. Then

éji(qagv‘cvvaz) = GJZ(Q) (45)

if D; satisfies the following conditions:

(1) i€Dj, j ¢ Dy,

(2) every path from w, to w;, excluding the path Gj;,
goes through a node wy, k € D;,

(8) every loop from w; to w; goes through a node wy,

ke D;. O

According to this proposition, there are two situations
that need to be checked for guaranteeing module invari-
ance: parallel paths and loops around the output. Every
path that connects input and output parallel to the tar-
get module, and every loop around the output should

be “blocked” by another node that is retained in the ab-
stracted network.

6.3 Generalization of invariance conditions

The following two examples illustrate the parallel paths
and loops around the outputs, leading to a generalization
of Proposition 11 that extends the applicability from
the immersion abstraction algorithm to the generalized
abstraction algorithm. In the next examples, noise-free
networks are used in order to stick to the core reasoning.

Example 12 (Parallel paths) Consider the left net-
work in Figure 5 and the module of interest G ;. Paths
that run in parallel to this module, i.e. paths from w; to
wj, may lead to changes in the module of interest dur-
ing abstraction. If w, is removed using immersion, with
L=20,V =0, then w, = Gyw; is substituted into the
equation for w;, such that the dynamics of modules G,
and G; are merged with module of interest w; — wy, i.e.

11

Fig. 6. Networks to indicate issues with self-loops when mak-
ing abstractions.

As stated in Proposition 11, a way to prevent these par-
allel paths from changing the module of interest is by in-
cluding a node in every parallel path in the abstracted
network, for example by measuring w,, .

An alternative way of removing w, is to include w; as
an indirect observation of w,,, i.e. by choosing wy = wy,
wy = w,. In this case the node w, is substituted with
Wy, = Gl;lwl such that

wj; = Gjiwi + GjuGl;l’LUl. (47)
The substitution uses an equation that does not contain
wy, such that Gj; remains invariant. Apparently, it is not
strictly necessary to include a node in every parallel path

in the abstracted network. An indirect observation of a
node in the parallel path may be used to block this path.

When an additional path w; — w; exists as in the right
network in Figure 5, the situation changes. Now the equa-
tion for node w; depends on w;, and if the unknown node
Wy, 18 eliminated using the indirect observation wy, then
an additional contribution from w; appears such that the
module of interest is changed, i.e.

w; = (Gji — GjuG;ulGli)wi + GjuGlllwl; (48)
wherew, = Gﬂl (w;—Gw;) is used. If in the left network
of Figure 5 there is no path from w,, towy, then w; cannot
be used as an indirect observation. O

From the example it can be observed that the nodes used
as indirect observations, i.e. w,, should not have w; as
an in-neighbor.

Example 13 (Self-loops) Consider the left network in
Figure 6 and suppose the module of interest is G ;. Paths
that run as a loop around the output of this module, i.e.
paths from w; to w;, may lead to changes in the module
of interest during abstraction. If the node w,, of the left
network in Figure 6 is eliminated by immersion, using
L=0andV =0, then abstraction leads to the following.
The equation w, = G, jw; is substituted into the equation
forwj;, after which a self-loop around w; is resolved. This
leads to the following change in the module of interest

G
— Ji
wj

= ——w;. 4
1= GG (49)



As stated in Proposition 11, a way to prevent these loops
around the output from changing the module of interest
s by including a node in every such loop around w; in
the abstracted network, for example by measuring w,.

An alternative way of removing w, is to include w; as
an indirect observation of w,, i.e. by choosing wy = wy
and wy = wy,. In this case the w, is substituted for w, =
Gl;lwl such that

w; = Gjiwi + GjuGl_ulwl- (50)
The substitution uses an equation that does not contain
wj, such that no self-loop has to be resolved, and G j; re-
mains tnvariant. It is thus not strictly necessary to in-
clude a node in every loop aroundw; in the abstracted net-

work. An indirect observation of a node in a loop around
w; may be used to block this path.

If instead there is a direct link w; — w; like in the right
network of Figure 6, then w; depends directly on w;, and
using this equation for elimination of w, would again lead
to a dependence of w; on itself in the abstracted network,
ie.

wj = Gjiw; + GGy, (w = Gywy),  (51)

where w, s substituted for w, = Gl_u1 (w; — Gjw;). The
self-loop should be resolved, leading to

GuGt
w; = — w J lu
1+ GjuGlu Glj

1+ GGl Gy

i w; (52)

where it is obvious that the module of interest has
changed. (I

In conclusion, for verifying module invariance in ab-
stracted networks obtained by Algorithm 1 we have to
consider the following. It is not sufficient to only con-
sider parallel paths from w; to w; and loops from w; to
w; that appear in the data generating system. We have
to also consider indirect observations of the nodes that
are part of parallel paths and loops around the output.
Paths from w; and w; to the indirect observations w,
also have to be considered to avoid merging of paths and
to keep Gj; invariant under the transformation. These
observations lead to the following formal result.

Theorem 14 Consider a dynamic network as defined
in (4), and let Gj;(q) be the module of interest. De-
note with éji(q,g,ﬁ,v,é) the module éji in the ab-
stracted network that is obtained using Algorithm 1 with
the sets S,L,V, Z. Assume that nodes wy act as indi-
rect observations of nodes wy according to Definition 8,
and that {i,j} C S. Define the sets J = {j} U L and
ICZVUS\{j}. Then

12

if the following conditions on the sets S, L and V are
satisfied:

(a) All paths from w; to wg, excluding the direct path
Gji, pass through a node wy, k € K\ {i},

(b) All paths from w; to wy pass through a node w, k €
K.

Proof: Collected in the appendix. O

In condition (a) the index ¢ is excluded from the set K
since every path that starts in w; contains a node in /.
Conditions (a) and (b) imply that there cannot be any
direct paths from w; and w; to indirect observations w,,
ie. Gri =0, and G5 = 0.

The set K is the set of, either directly retained signals in
S, except for node j, or indirectly observed nodes in V.
The result of the theorem implies that all parallel paths
from w; to wy and all loops around the ’output’, i.e. all
paths from w; to wy, must pass through a node in this
set.

Remark 15 The conditions in Theorem 14 are a gener-
alization of the conditions for immersion. For the choice
L=0andV = 0, Algorithm 1 is equivalent to the im-
mersion algorithm, and the results of Theorem 1/ are
equivalent to the conditions of Proposition 11, (Dankers
et al.,12016). In the generalized situation, parallel paths
w; — w; and loops around the output w; — w; can also
be blocked by indirectly observed nodes, present in V), in-
stead of just by directly observed nodes in S.

Remark 16 The conditions in Theorem 14 are a gener-
alization of the conditions for the indirect inputs method,
as formulated in|Linder and Enquist| (2017a). This latter
method results if we consider the particular situation that
indirect observations are no in-neighbors of the output
node, i.e. Gjz = 0, and that all in-neighbors of indirect
observations are in SUV, i.e. G,z = 0. In the gener-
alized situation presented here, indirect observations w,
are allowed to be in-neighbors of w;, and they are allowed
to have abstracted nodes wz as in-neighbors.

7 Node selection strategy

Theorem 14 allows us to check whether a module remains
invariant under abstraction if the network topology is
known and we have divided the nodes into four groups.
The next question is how to choose the sets of nodes,
based on the network topology, such that the module of
interest remains invariant.

7.1 Selecting the sets of nodes

The strategy to obtaining a set of measured nodes in
Dankers et al.| (2016)) is as follows. First the input and



output nodes of the module of interest are required to
be measured. Then every parallel path from the input to
the output node must be blocked by a measured node.
This means that nodes are added such that each of those
paths contains a measured node. Similarly every loop
around the output node must be blocked by a measured
node, so nodes are added such that each of those loops
contains a measured node. Different nodes on a path can
be chosen to block the path, so the choice of which nodes
to measure is not unique.

Now, the method of choosing nodes is adapted with the
possibility of using indirectly observed nodes. A paral-
lel path or a loop can now be blocked by either a mea-
sured or an indirectly observed node. However, when we
use an indirect observation to block a path, additional
conditions must be satisfied. Paths from either input or
output of the module of interest to the indirect obser-
vation must also be blocked by either a measured or an
indirectly observed node. For each indirect observation
that is added, this condition on blocking the paths is ap-
plied recursively. This selection method is demonstrated
in the following example.

Fig. 7. Network where measured nodes and indirectly ob-
served nodes are to be selected.

Example 17 (Selecting nodes) For an illustration of
how to select nodes, consider the network in Figure 7.
The module of interest is Gj;, so we select w; as output,
and w; is included as a predictor input. A parallel path
through node w, exists and must be blocked if Gj; is to
remain invariant. We can either include w,, as a predictor
input, or we can choose to indirectly observe it using wy.
When wy is chosen as indirect input measurement, | € L,
and the parallel path from w; to w; through wo should be
blocked, so eitherws should then be included as a predictor

input, or ws can be included as the indirect observation
of wa. O

7.2  Egxternal excitation

In an estimation setting, both the nodes wg, k € S \Jj
and w;,l € L are used as predictor inputs to parame-
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terized modules. The question can then be raised what
the effect is on the identification setup for nodes being
present in one of these sets. The external variables that
are in-neighbors of the node w; in the abstracted net-
work need to be included as input. Depending on the
chosen nodes in S and £ different external variables are
in-neighbors of the node wj;, so different external vari-
ables need to be chosen in the experimental setup. We
have seen that placing a node in either £ or S leads to
a different transformation matrix P(@%$). This leads to
different locations of zeros in the transformed R. The
structure of R can be described as follows. Let D de-
note the structure of a matrix that is diagonal, and let
* denote a matrix of arbitrary structure, then

rs
D 0
as=|_ R (54)
0 % DGy * Ty
=
where
Gey = (Gev+Gpz(I = G22)7'Gzy) . (55)

If we consider situation that the conditions of Proposi-
tion 10 are satisfied, e.g. where R and G .y are diagonal,
where GLZ: Q, Gyy =0, and G,z = 0, and cgnsider—
ing that D is diagonal, then the external excitations
rj, Tz, andrgz

may be in-neighbor of w;. In terms of choosing a network
model set for the abstracted network, the structure of
(54) specifies how to choose the zero-structure of the
parameterized R(q, 6) that is to be used for estimation
of the abstracted network.

7.8 The noise model

Due to the abstraction, the noise process is modified in a
way that is the same as the modification of the external
excitations. The following expression is obtained for the
disturbances

€s

. Dsx 0 = er
vs = (1) (56)

0 % DGy, * ey

€z

with G(Ll\), specified in (55). The obtained noise filter
above is not square, which is problematic in terms of
identification. This noise model relates to a square noise
filter H and white noise ¢ that can be used in an identifi-
cation setting. It is likely that the obtained H is then no



longer diagonal. The zero-structure of the obtained noise
filter can be used as the zero-structure when parame-
terizing the network model set. Under particular condi-
tions special noise structures can be obtained that can
be exploited. If no particular structure is obtained for
the noise model, then all process noises are correlated.

7.4 Identification methods

For a particular network, and a choice of target mod-
ule G;, the choice of the node sets S, £, V, Z will deter-
mine whether the target module will remain invariant
in the abstracted network. This result can be applied in
the problem of identifying the target module G; on the
basis of measured node signals. In the abstracted net-
work we have the node signals wg, which we assume to
be available from observations. We can now construct
an identification setup in line with the methods devel-
oped in [Van den Hof et al|(2013). Determine the set of
input predictors as those node signals in ws that are in-
neighbors of the output w; in the abstracted network. If
Gj; has remained invariant in the abstracted network,
i.e. when the conditions of Theorem 14 are satisfied, he
identification problem of estimating the transfer func-
tions from inputs in ws to output w; will now estimate
the module from input w; to output w; that is equal to
the module G'j; in the original network. Consistent iden-
tification of this module is then possible under the typi-
cal regularity conditions of the prediction error methods,
as formulated in|Van den Hof et al.| (2013)). This implies
that:

e For the two-stage identification method, consis-
tency of the estimate éji is achievable if there is a
sufficient excitation by external excitation signals
in the network;

e For the direct identification method, consistency of
the estimate Gji is achievable, if besides sufficient
excitation by external excitation and disturbance
signals, correlated noises between inputs and out-
puts are taken care of. This can be done by either
choosing the node sets S, L£,V, Z such that these
correlated noises (or confounding variables) do not
occur, (Dankers et all [2017), or by modeling this
noise correlation correctly in the model, leading
to the so-called joint-direct method (Weerts et al.)
2018c; Van den Hof et al.| [2019).

When applied to the abstracted network, the prediction
error associated with the joint-direct method is

e(0) = H'(0) (I — G(0))ws — R(O)r), (57)
where the G(0), R(0), H'(0) are structured according
to the topology obtained by network abstraction, the ws
are all retained nodes, and r are all available external

excitations. Then €7 is minimized over the parameters
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to obtain the estimated model. A further analysis of the
particular identification results is beyond the scope of
this paper.

8 Conclusions

The question to be answered is which set of measured
nodes can lead to consistent estimates of a target mod-
ule. As a way to answer this question the concept of ab-
straction has been introduced as a way to remove un-
measured nodes from a network representation, as a gen-
eralization of methods present in literature. A system-
atic method has been introduced to select nodes such
that the module of interest remains invariant in the ab-
stracted network. Under some assumptions on external
excitations and the network topology the abstracted net-
work can be parameterized with a network identifiable
model set. If the module of interest remains invariant,
and the model set is identifiable, then conditions for con-
sistent estimation can be obtained for various identifica-
tion methods.

A requirement that has been imposed is that the module
of interest remains invariant in the abstracted network,
but this is not necessary for consistency. It may be that
the module of interest can be identified in an indirect
way by combining the knowledge of two or more modules
present in the abstracted network. It is also possible that
there are multiple sets of measured nodes that each lead
to consistent estimates of a module of interest. Selecting
the set of nodes that leads to the smallest variance is
another question for future consideration.
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9 Appendix
9.1  Proof of Proposition 5
Sufficiency: By (15) the diagonal of G(?) is

diag (G<2>) — diag (I P G<1))) , (58)

which is 0 by condition (2), showing that G is hollow.
Moreover if Condition (1) is satisfied, then with (15),
(16):

(I-G?)'R® = (1 - gW)~tRW (59)

which is proper and stable by Definition (1). A monic,
proper, stable, and inversely stable H® and full rank



A®) are obtained through the spectral factorization in
(17).

Necessity: In order for (I — G?))"1R® to be proper
and be stable, it is required that P! exists. Therefore
P has to have full rank. In order for G® to be hollow,
it is required that diag(I — P(I — G™M)) = 0. O

9.2 Proof of Proposition 6

Substituting P = (I - G@)(I —GW)~1
tion of the transformation (15) gives

into the defini-

G =1 —(1-G)I-GW)"(1-GY), (60)

which shows that G() is obtained by applying this trans-
formation. Moreover the diagonal of (I — P(I — G(1))
is 0,50 P = (I — GP)(I — GM)~! is an appropriate
transformation.

9.3 Proof of Proposition 9

In order to prove the proposition we evaluate the expres-
sions for each step of Algorithm 1.

Step a: The fourth equation of (27) is solved for w3

=(I - Gzz)™"

61
(ngwg +G5£w5 +Gz~va +uz +’U5). ( )

Substituting the above equation into the remainder of
the network results for wg in

wS:G(l)wS+G(1)w —|—G( MY +u(1)+v(~1), (62)

with

1
G4y = (Gss + Gzl -
Gyp = (Gsp +Csz(l -

1 _
Gé,), = (Gsy +Gsz(I —Gz5)7'G3y)
uy) = ug+Gas(I—Gzz) uz
vy =vs+Gas(I—Gz5) vs.

For w, we obtain

wp = G(l SWs + G w[; + G(ngjwv + u(ﬁl) (1), (63)
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with

oV =

For wy, we obtain

()

wy = Gvsws + G U/[, + G&);wv + U(l) + U\(})a (64)
with
1 —
GUL = (Gyps+Gyz(I —Gz2)7'Gz5)
GHL = (Gye + Gyz(I - Gz5)7'Gzp)
va = (Gw+G (I -Gz2) Gy,
uy) =uy +Ghs(1 = Gz5) tuz
1}8) =vy + GVZ,?(I -G *2;)_1’02.

It is straightforward to verlfy that the transformation
GO =1 - PO - @), u™ = Py, and vV = PDy
results in the same expressions as the algorithm.

Steps b and c: The two equations that are solved for
wy result in

1 1 1 1 1
wy = (G(m),)Jr (fG(E‘%wS + (- G’(,;,);)wg - u(ﬁ) — v’(c )) ,

(65)
and

wy = (I — Gg}\),) (G(l)w‘S + G4 Ny —|—u§,) —|—v(1))

(66)
Substituting (65) into (62) results in
wg = Gfg‘%wg + G?z):w + ug) + vg’), (67)
with
3 1 1) A1
GSl=ail-aglehia,
3) 1 1)~
GY G( ) +G( )(G(m),) (I a)
3 1 1 1
e )_ug) ay >( W)yt M
3 1 1)~ 1
,Ué) _vg) o O (G0 ).
Substituting (65) into (63) results in
we = Gwg + Gwe +ul) +0P, (68)



with
3) _ ~(1) (1) (1) y—1~(1)
Gcg—G£g+ch(I—va) 1Gv$
3 1 1 1 _ 1
P =L+ G- GU))GY)
3 1 1 1)\ — 1
u@ = ul + G - G )
3 1 1 1)\ — 1
o = o) + GO I - GH)) ey,

The combination of the transformations P®3) P2 is de-
noted by

@) ()
I G (G 0 0
1 1)\ —
pB2) . 0 I Geo(I = Gt 0
0 (GU) 0 0|’
@) ()
0 GZ(Gey) 0 I

and it is straightforward to verify that this transforma-
tion GB) =T — PG2A(1 — GW), 4B = PGy and
v®) = PG2)y() regults in the same expressions as the
algorithm.

Step d: Removal of a self-loop in the equation for node
w; is performed by subtracting the right-hand term for
w; from both sides, and then dividing both sides by 1 mi-
nus the term. This is precisely the operation performed
by the transformation P(®). O

9.4 Proof of Proposition 10
Transfer function matrix R is

R = [1 0} P@WpE p@pM R (69)

where the transformations are defined in Section 4.2. The
structural properties of the matrices will be evaluated.
Let * indicate an unstructured matrix, and let D indicate
a diagonal matrix structure. Then the structure of the
first part of the transformation matrix is

[10] POP® = [1 0] llo) 107] llo) j =D+, (0)

where the matrices are partitioned corresponding to the
blocks S =SULand Z=2ZUV.
The transformation P(2) P() has the following structure

DOO0O|[DO O« DO 0 x
pepy_ |0 DX 0] 10D 0« 10D X
0% 00||00Dx 0 % 0 x
000D||000= 000 *

(71)
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where the matrices are partitioned corresponding to the
blocks S, L,V, Z, and where X = G(Ll‘))(l - GS&)‘l.
From the relations in (63) and (64) we obtain that

Gy = (Gev+Grs(I—G55)7'G3y)
and

G = (G +Gys(I1=G55)7'Gsy).
Then from condition 3 we obtain that X is diagonal.

Under conditions 1 and 2, matrix R has the structure

D x 0 %
0 % 0 %
R= (72)
0« D %
0 % 0 %
such that the following is obtained
D x 0 %
papmp_ |0 P (73)
0% 0 %
0% 0 %
Then the final structure is
D x 0 %
. D 0 % % 0 D % D x 0 %
R= = (74)
0 D x % 0% 0 % 0 *D %
0 % 0 %

It is then obvious that a leading diagonal can be obtained
by column operations. O

9.5  Proof of Theorem 14

In order to prove the theorem, the conditions must be
interpreted in terms of G. Conditions () and () imply
that there are no direct paths from w; and w; to indirect
observations wg, i.e.

(i) Gri =0,
(ii) Gz; = 0.

The conditions also imply that there are no paths from

w; and w; to indirect observations w, and j that only
go through unmeasured nodes w3, i.e.

(zn) Gﬁé(f - Gég)ilGZ“i =0,



(iv) Gpz(I -Gz5)'Gz; =0,
() G,z(I -Gzz)"'Gz =0,
(vi) Giz(I-=Gzz)7'Gz; =0.

The module of interest is a part of G® in (37) which
can be obtained as

GW =1 - PH(I-G®). (75)

Explicit expressions can be found in the proof of Proposi-
tion 9 such that using (%)-(vi) we can see that G%) =Gjs.
First it is shown that Gg-::-’) = G,;. From (67) we obtain
that

Gy =Gy - GRGE)iar). (76)
Then it can be observed that
GY) =Gri+Gpz(I-Gz5) "Gz =0 (77)

if we use the expression from (63) and the obtained con-
ditions () and (%ii). Now Gg-?) = G;? is evaluated using
the expression in (62)

G\ =G+ Giz(I -Gz5)7'G3,. (78)

Then by condition (v) we have Gﬁ) = Gjs.
Since P® is diagonal, all that is left to show is that its

jj-th entry is 1. Using the expression (35) we then need
to show that G§-‘;) = 0. From (67) we obtain that

(3) _ ~(1) (1) ( ~(1) (1)
ij - ij o GjV(GLV)TGEj' (79)
Then it can be observed that
GY) =Grj+Gs(I-Gz5)7'Gz, =0 (80)

if we use the expression from (63) and the obtained con-
ditions (i7) and (iv). Now GS? is evaluated using the
expression in (62)
1 _

GS) =Gy +Gz(1-Gz5) Gy, (81)
Since there are no self loops in G, the G;; = 0. Then by
condition (vi) we have Gg) = 0, such that Pj(;l) =1and

4

G\ =G D
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